JP2006105795A - Insulation inspection method and insulation inspection device - Google Patents

Insulation inspection method and insulation inspection device Download PDF

Info

Publication number
JP2006105795A
JP2006105795A JP2004293146A JP2004293146A JP2006105795A JP 2006105795 A JP2006105795 A JP 2006105795A JP 2004293146 A JP2004293146 A JP 2004293146A JP 2004293146 A JP2004293146 A JP 2004293146A JP 2006105795 A JP2006105795 A JP 2006105795A
Authority
JP
Japan
Prior art keywords
insulation
voltage
conductors
inspection
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004293146A
Other languages
Japanese (ja)
Inventor
Hidehiko Mitsuki
秀彦 満木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2004293146A priority Critical patent/JP2006105795A/en
Publication of JP2006105795A publication Critical patent/JP2006105795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation inspection method which can shorten the inspection time of an insulation inspection for a plurality of conductors. <P>SOLUTION: In the insulation inspection method for inspecting the insulation of conductor patterns 31-1 to 31-n arranged in parallel in a mutually insulated state, a voltage is applied between a set in which the odd number conductor patterns 31-1, 31-3, ... numbered from the edge of the conductor patterns 31-1 to 31-n are commonly connected and a set in which the even number conductor patterns 31-2, 31-4, ... are commonly connected. An electric parameter varied according to the current value of a current flowing between the two sets in response to the application of the voltage is measured. The insulation of the n conductor patterns 31-1 to 31-n is inspected on the basis of the measured electric parameter. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、複数の導体についての絶縁を検査する絶縁検査方法および絶縁検査装置に関するものである。   The present invention relates to an insulation inspection method and an insulation inspection apparatus for inspecting insulation of a plurality of conductors.

この種の絶縁検査装置として、特開2000−193702号公報に開示された基板の絶縁検査装置が知られている。この絶縁検査装置による絶縁検査では、基板に形成されている互いに絶縁された配線パターンの個数をMとしたときに、M個の配線パターンにそれぞれ第1番目〜第M番目のヘッドピンを接触させる。次いで、第1回の検査として、第1番目および第2番目のヘッドピンを正極に接続すると共に第3番目〜第M番目のヘッドピンを負極に接続して絶縁状態を判定する。続いて、絶縁状態が不良でないときに、第2回の検査として、第2番目〜第4番目のヘッドピンを正極に接続すると共に第1番目および第5番目〜第M番目のヘッドピンを負極に接続して絶縁状態を判定する。次いで、絶縁状態が不良でないときに、第3回以降の検査として、正極に接続するヘッドピンの番号を第M番目に向けて2個分だけそのままスライドさせると共に、この正極に接続したヘッドピンに対して第1番目側に隣接する1個のヘッドピンおよび第M番目側のすべてのヘッドピンを負極に接続して絶縁状態を判定する。なお、正極に接続するヘッドピンの個数が3個未満になったときに、この絶縁検査を終了する。この場合、M個の配線パターンがすべて良品であると検査するのに(基板が良品であると検査するのに)必要な検査回数Cは、絶縁検査対象の配線パターンの個数M(ヘッドピンの個数M)が偶数のときに、以下の式によって表される。
C=M/2+1
また、配線パターンの個数Mが奇数のときに、検査回数Cは、以下の式によって表される。
C=(M−1)/2+1
したがって、この絶縁検査装置によれば、配線パターンの個数に対して約半分の検査回数で絶縁検査を実行することが可能となっている。
特開2000−193702号公報(第6−8頁)
As this type of insulation inspection apparatus, a substrate insulation inspection apparatus disclosed in Japanese Unexamined Patent Publication No. 2000-193702 is known. In the insulation inspection by this insulation inspection apparatus, when the number of mutually insulated wiring patterns formed on the substrate is M, the first to Mth head pins are brought into contact with the M wiring patterns, respectively. Next, as the first inspection, the first and second head pins are connected to the positive electrode, and the third to Mth head pins are connected to the negative electrode to determine the insulation state. Subsequently, when the insulation state is not defective, the second to fourth head pins are connected to the positive electrode and the first and fifth to Mth head pins are connected to the negative electrode as the second inspection. To determine the insulation state. Next, when the insulation state is not defective, as the third and subsequent inspections, the number of the head pin connected to the positive electrode is slid as much as two pieces toward the Mth, and the head pin connected to the positive electrode is One head pin adjacent to the first side and all head pins on the Mth side are connected to the negative electrode to determine the insulation state. When the number of head pins connected to the positive electrode is less than 3, this insulation test is terminated. In this case, the number of inspections C required to inspect that all M wiring patterns are non-defective (to inspect that the substrate is non-defective) is the number M of wiring patterns subject to insulation inspection (the number of head pins). When M) is an even number, it is expressed by the following equation.
C = M / 2 + 1
When the number M of wiring patterns is an odd number, the number of inspections C is expressed by the following equation.
C = (M−1) / 2 + 1
Therefore, according to this insulation inspection apparatus, it is possible to execute the insulation inspection with the number of inspections about half the number of wiring patterns.
JP 2000-193702 A (page 6-8)

ところが、従来の絶縁検査装置には、以下の問題点がある。すなわち、従来の絶縁検査装置では、基板(検査対象体)が良品であるときに、配線パターン(導体)数の約半分の検査回数で絶縁検査を終了する。しかしながら、一例として、複数の基板と装置とを接続するバックボード基板の配線パターン、バス配線ケーブル、およびプラズマディスプレイにおける数百を超える走査線電極についての絶縁検査に従来の絶縁検査装置を適用したときには、導体数が多いため、検査回数が導体数の約半分になったとしても依然として検査回数が多く、このことに起因して検査時間が長引くという問題点がある。   However, the conventional insulation inspection apparatus has the following problems. That is, in the conventional insulation inspection apparatus, when the substrate (inspection object) is a non-defective product, the insulation inspection is completed with the number of inspections approximately half the number of wiring patterns (conductors). However, as an example, when a conventional insulation inspection apparatus is applied to an insulation inspection on a wiring pattern of a backboard substrate that connects a plurality of substrates and the device, a bus wiring cable, and more than a few hundred scanning line electrodes in a plasma display. Since the number of conductors is large, even if the number of inspections is about half of the number of conductors, the number of inspections is still large, which causes a problem that the inspection time is prolonged.

本発明は、かかる問題点に鑑みてなされたものであり、複数の導体についての絶縁検査の検査時間を短縮し得る絶縁検査方法および絶縁検査装置を提供することを主目的とする。   The present invention has been made in view of such problems, and it is a main object of the present invention to provide an insulation inspection method and an insulation inspection apparatus that can shorten the inspection time of insulation inspection for a plurality of conductors.

上記目的を達成すべく請求項1記載の絶縁検査方法は、相互に絶縁された状態で並設されているn本(nは3以上の整数)の導体についての絶縁を検査する絶縁検査方法であって、前記n本の導体のうちの端から数えて奇数番目の各導体を共通接続した組と偶数番目の各導体を共通接続した組との間に電圧を印加し、当該電圧の印加に応じて前記両組の間を流れる電流の電流値に応じて変化する電気的パラメータを測定し、当該測定した電気的パラメータに基づいて前記n本の導体についての絶縁を検査する。   In order to achieve the above object, the insulation inspection method according to claim 1 is an insulation inspection method for inspecting insulation of n conductors (n is an integer of 3 or more) arranged in parallel with each other. A voltage is applied between a group in which odd-numbered conductors counted from the end of the n conductors are commonly connected and a group in which even-numbered conductors are commonly connected, and the voltage is applied. Accordingly, an electrical parameter that changes according to the current value of the current flowing between the two sets is measured, and the insulation of the n conductors is inspected based on the measured electrical parameter.

また、請求項2記載の絶縁検査方法は、請求項1記載の絶縁検査方法において、前記n本の導体のうちの互いに隣接する一対の導体の間に電圧を印加し、当該電圧の印加に応じて前記一対の導体の間を流れる電流の電流値に応じて変化する電気的パラメータを測定し、当該測定した電気的パラメータに基づいて前記一対の導体についての絶縁を検査する。   The insulation inspection method according to claim 2 is the insulation inspection method according to claim 1, wherein a voltage is applied between a pair of adjacent conductors of the n conductors, and the voltage is applied in accordance with the application of the voltage. Then, an electrical parameter that changes in accordance with a current value of a current flowing between the pair of conductors is measured, and insulation of the pair of conductors is inspected based on the measured electrical parameter.

また、請求項3記載の絶縁検査方法は、請求項1または2記載の絶縁検査方法において、前記導体の一端および他端の間に電圧を印加し、当該電圧の印加に応じて前記導体を流れる電流の電流値に応じて変化する電気的パラメータを測定し、当該測定した電気的パラメータに基づいて前記導体についての導通を検査する。   The insulation inspection method according to claim 3 is the insulation inspection method according to claim 1 or 2, wherein a voltage is applied between one end and the other end of the conductor, and the conductor flows in response to the application of the voltage. An electrical parameter that changes according to the current value of the current is measured, and the continuity of the conductor is inspected based on the measured electrical parameter.

また、請求項4記載の絶縁検査装置は、相互に絶縁された状態で並設されているn本(nは3以上の整数)の導体についての絶縁を検査する絶縁検査装置であって、前記n本の導体のうちの端から数えて奇数番目の各導体が共通接続された組と偶数番目の各導体が共通接続された組との間に電圧を印加可能な第1の電圧源と、当該第1の電圧源による前記電圧の印加に応じて前記両組の間を流れる電流の電流値に応じて変化する電気的パラメータを測定する第1の測定部と、当該第1の測定部によって測定される前記電気的パラメータに基づいて前記n本の導体についての絶縁を検査する検査部とを備えている。   The insulation inspection apparatus according to claim 4 is an insulation inspection apparatus that inspects insulation for n conductors (n is an integer of 3 or more) arranged in parallel in a mutually insulated state, a first voltage source capable of applying a voltage between a group in which odd-numbered conductors counted from the end of n conductors are commonly connected and a group in which even-numbered conductors are commonly connected; A first measuring unit that measures an electrical parameter that changes according to a current value of a current that flows between the two sets according to the application of the voltage by the first voltage source; and the first measuring unit. And an inspection unit that inspects insulation of the n conductors based on the measured electrical parameter.

また、請求項5記載の絶縁検査装置は、請求項4記載の絶縁検査装置において、前記n本の導体のうちの互いに隣接する一対の導体の間に電圧を印加可能な第2の電圧源と、当該第2の電圧源による前記電圧の印加に応じて前記一対の導体の間を流れる電流の電流値に応じて変化する電気的パラメータを測定する第2の測定部とを備え、前記検査部は、前記第2の測定部によって測定される前記電気的パラメータに基づいて前記一対の導体についての絶縁を検査する。   According to a fifth aspect of the present invention, there is provided the insulation inspection apparatus according to the fourth aspect, wherein a second voltage source capable of applying a voltage between a pair of adjacent conductors of the n conductors is provided. A second measuring unit that measures an electrical parameter that varies according to a current value of a current that flows between the pair of conductors in response to application of the voltage by the second voltage source, and the inspection unit Checks the insulation of the pair of conductors based on the electrical parameters measured by the second measuring unit.

また、請求項6記載の絶縁検査装置は、請求項4または5記載の絶縁検査装置において、前記導体の一端および他端の間に電圧を印加可能な第3の電圧源と、当該第3の電圧源による前記電圧の印加に応じて前記導体を流れる電流の電流値に応じて変化する電気的パラメータを測定する第3の測定部とを備え、前記検査部は、前記第3の測定部によって測定される前記電気的パラメータに基づいて前記導体についての導通を検査する。   The insulation inspection apparatus according to claim 6 is the insulation inspection apparatus according to claim 4 or 5, wherein a third voltage source capable of applying a voltage between one end and the other end of the conductor, A third measurement unit that measures an electrical parameter that varies according to a current value of a current flowing through the conductor in response to application of the voltage by a voltage source, and the inspection unit is configured by the third measurement unit. Check the continuity for the conductor based on the measured electrical parameter.

請求項1記載の絶縁検査方法および請求項4記載の絶縁検査装置では、相互に絶縁された状態で並設されているn本の導体のうちの端から数えて奇数番目の各導体を共通接続した組と偶数番目の各導体を共通接続した組との間に電圧を印加し、この電圧の印加に応じて両組の間を流れる電流の電流値に応じて変化する電気的パラメータを測定し、測定した電気的パラメータに基づいてn本の導体についての絶縁を検査することにより、絶縁不良が生ずる可能性のある奇数番目の導体と偶数番目の導体とについての絶縁検査を確実に実行できるため、1回の絶縁検査の実行によってn本の導体についての絶縁を検査することができる。この結果、導体の数に対して約半分の検査回数で導体についての絶縁を検査する従来の絶縁検査装置と比較して、絶縁検査の検査時間を大幅に短縮することができる。   The insulation inspection method according to claim 1 and the insulation inspection apparatus according to claim 4, wherein odd-numbered conductors counted from the end of n conductors arranged in parallel in a mutually insulated state are connected in common. A voltage is applied between the set and a set in which the even-numbered conductors are connected in common, and an electrical parameter that changes according to the current value of the current flowing between the two sets is measured in response to the application of this voltage. By inspecting insulation for n conductors based on the measured electrical parameters, it is possible to reliably perform insulation inspection for odd-numbered conductors and even-numbered conductors that may cause insulation failure. The insulation for n conductors can be inspected by performing the insulation inspection once. As a result, the inspection time for the insulation inspection can be greatly shortened as compared with the conventional insulation inspection apparatus that inspects the insulation of the conductor with the number of inspections about half the number of conductors.

また、請求項2記載の絶縁検査方法および請求項5記載の絶縁検査装置によれば、互いに隣接する一対の導体の間に電圧を印加し、この電圧の印加に応じて一対の導体の間を流れる電流の電流値に応じて変化する電気的パラメータを測定し、測定した電気的パラメータに基づいて一対の導体についての絶縁を検査することにより、絶縁不良箇所が生じる可能性のあるn本の導体のうちの互いに隣接する一対の導体のすべてについて絶縁検査が実行されるため、絶縁不良が生じている一組の導体を具体的に特定することができる。   According to the insulation inspection method according to claim 2 and the insulation inspection apparatus according to claim 5, a voltage is applied between a pair of adjacent conductors, and a gap between the pair of conductors is applied according to the application of the voltage. N conductors that may cause defective insulation by measuring an electrical parameter that changes according to the current value of the flowing current and inspecting insulation of the pair of conductors based on the measured electrical parameter Since the insulation test is performed on all of the pair of conductors adjacent to each other, a set of conductors in which insulation failure has occurred can be specifically identified.

また、請求項3記載の絶縁検査方法および請求項6記載の絶縁検査装置では、導体の一端および他端の間に電圧を印加し、この電圧の印加に応じて導体を流れる電流の電流値に応じて変化する電気的パラメータを測定し、測定した電気的パラメータに基づいて導体についての導通を検査することにより、導体の断線有無を検査することができるため、例えば、導体のいずれかの部位に断線および絶縁不良の両方が存在して、この断線によって電圧を絶縁不良部位に印加できないことに起因して絶縁検査を合格と検査するおそれのあるときであっても、導体の断線や絶縁不良を確実に検査することができる。また、この絶縁検査装置によれば、導通検査用の装置を別に用いることなく1つの装置で導体についての導通検査および絶縁検査の両方を実行することができるため、異なる装置を用いて導通検査および絶縁検査を実行するのとは異なり、回路基板などの検査対象体を異なる装置にセットし直すことなく検査できる結果、導通検査および絶縁検査の検査時間を一層短縮することができる。また、1つの装置で導通検査および絶縁検査の両方を実行することができるため、2つの検査装置を用いるのと比較して、検査装置のコストも十分に低減することができる。   Further, in the insulation inspection method according to claim 3 and the insulation inspection apparatus according to claim 6, a voltage is applied between one end and the other end of the conductor, and the current value of the current flowing through the conductor is changed according to the application of the voltage. By measuring the electrical parameters that change accordingly, and checking the continuity of the conductor based on the measured electrical parameters, it is possible to inspect the conductor for disconnection, for example, in any part of the conductor Even when there is both disconnection and insulation failure, and the voltage cannot be applied to the insulation failure site due to this disconnection, even if there is a risk of inspecting the insulation inspection as a pass, conductor disconnection or insulation failure It can be surely inspected. In addition, according to this insulation inspection apparatus, both the continuity inspection and the insulation inspection for the conductor can be performed by one apparatus without using a separate continuity inspection apparatus. Unlike performing an insulation test, the inspection object such as a circuit board can be inspected without being re-set in a different device, so that the inspection time for the continuity test and the insulation test can be further shortened. In addition, since both the continuity test and the insulation test can be executed with one apparatus, the cost of the inspection apparatus can be sufficiently reduced as compared with the use of two inspection apparatuses.

以下、本発明に係る絶縁検査方法および絶縁検査装置の最良の形態について、添付図面を参照して説明する。   Hereinafter, the best mode of an insulation inspection method and an insulation inspection apparatus according to the present invention will be described with reference to the accompanying drawings.

最初に、回路基板検査装置1の構成について、図面を参照して説明する。   First, the configuration of the circuit board inspection apparatus 1 will be described with reference to the drawings.

図1に示す回路基板検査装置1は、本発明における絶縁検査装置の一例であって、プローブ2−1,2−2・・・2−n(nは3以上の整数であって、一例として、nが9以上の例を図示すると共にnが偶数であるものとする)、プローブ3−1,3−2・・・3−n、測定部4、切換部5、制御部6、操作部7、RAM8およびROM9を備えて構成されている。n本のプローブ2−1,2−2・・・2−n(以下、プローブ2−1〜2−nを区別しないときにはプローブ2ともいう)およびn本のプローブ3−1,3−2・・・3−n(以下、プローブ3−1〜3−nを区別しないときにはプローブ3ともいう)は、一例として、ジグ型の接触式プローブであって、切換部5に接続されると共に、回路基板30を回路基板検査装置1にセットすることで、回路基板30の表面における複数の測定ポイントに各プローブ2,3の各先端部が接触されるように予め固定配置されている。   A circuit board inspection apparatus 1 shown in FIG. 1 is an example of an insulation inspection apparatus according to the present invention. Probes 2-1, 2-2,..., 2-n (n is an integer equal to or greater than 3, , N is illustrated as an example of 9 or more and n is an even number), probes 3-1, 3-2 to 3 -n, measuring unit 4, switching unit 5, control unit 6, operating unit 7, RAM 8 and ROM 9 are provided. ... 2-n (hereinafter also referred to as probe 2 when not distinguishing probes 2-1 to 2-n) and n probes 3-1, 3-2,. ... 3-n (hereinafter also referred to as probe 3 when probes 3-1 to 3-n are not distinguished) is, as an example, a jig-type contact probe that is connected to the switching unit 5 and has a circuit. By setting the board 30 in the circuit board inspection apparatus 1, the probes 30 are fixedly arranged in advance so that the tips of the probes 2 and 3 are brought into contact with a plurality of measurement points on the surface of the circuit board 30.

測定部4は、図1に示すように、可変電圧源11、電流計12、電圧計13および演算回路14を備えて構成されている。可変電圧源11は、本発明における第1〜第3の電圧源に相当し、制御部6から出力される制御信号Sbに応じた電圧値の電圧を出力する。電流計12は、可変電圧源11から検査用電圧が出力された際にその出力電流の電流値を測定して演算回路14に出力する。電圧計13は、可変電圧源11から出力される検査用電圧の電圧値を測定して演算回路14に出力する。演算回路14は、電流計12から出力される電流値および電圧計13から出力される電圧値に基づいて抵抗値(本発明における電気的パラメータの一例)を演算して、この演算した抵抗値を制御部6に出力する。なお、電流計12、電圧計13および演算回路14が相俟って本発明における第1〜第3の測定部を構成する。   As shown in FIG. 1, the measurement unit 4 includes a variable voltage source 11, an ammeter 12, a voltmeter 13, and an arithmetic circuit 14. The variable voltage source 11 corresponds to the first to third voltage sources in the present invention, and outputs a voltage having a voltage value corresponding to the control signal Sb output from the control unit 6. When the test voltage is output from the variable voltage source 11, the ammeter 12 measures the current value of the output current and outputs it to the arithmetic circuit 14. The voltmeter 13 measures the voltage value of the test voltage output from the variable voltage source 11 and outputs it to the arithmetic circuit 14. The arithmetic circuit 14 calculates a resistance value (an example of an electrical parameter in the present invention) based on the current value output from the ammeter 12 and the voltage value output from the voltmeter 13, and calculates the calculated resistance value. Output to the control unit 6. The ammeter 12, the voltmeter 13, and the arithmetic circuit 14 together constitute the first to third measuring units in the present invention.

切換部5は、スキャナ装置であって、図1に示すように、制御部6から出力される制御信号Scに従って開閉制御される複数の切換スイッチを備えて構成されている。具体的には、切換部5は、切換スイッチ21−1a,21−2a・・・21−na(以下、切換スイッチ21−1a〜21−naを区別しないときには切換スイッチ21aともいう)、切換スイッチ21−1b,21−2b・・・21−nb(以下、切換スイッチ21−1b〜21−nbを区別しないときには切換スイッチ21bともいう)、切換スイッチ22−1a,22−2a・・・22−na(以下、切換スイッチ22−1a〜22−naを区別しないときには切換スイッチ22aともいう)、および切換スイッチ22−1b,22−2b・・・22−nb(以下、切換スイッチ22−1b〜22−nbを区別しないときには切換スイッチ22bともいう)を備えて構成されている。   The switching unit 5 is a scanner device and includes a plurality of changeover switches that are controlled to open and close in accordance with a control signal Sc output from the control unit 6 as shown in FIG. Specifically, the changeover unit 5 includes changeover switches 21-1a, 21-2a,... 21-na (hereinafter also referred to as changeover switch 21a when the changeover switches 21-1a to 21-na are not distinguished), changeover switches. 21-1b, 21-2b... 21-nb (hereinafter also referred to as changeover switch 21b when not distinguishing the changeover switches 21-1b to 21-nb), changeover switches 22-1a, 22-2a,. na (hereinafter also referred to as a changeover switch 22a when the changeover switches 22-1a to 22-na are not distinguished), and changeover switches 22-1b, 22-2b... 22-nb (hereinafter referred to as changeover switches 22-1b to 22) -Nb is also referred to as a changeover switch 22b when not distinguished from each other).

また、切換スイッチ21−1a,21−2a・・・21−naは、それぞれの一端同士が相互に接続されると共にこの各一端が可変電圧源11の正電圧端子に接続されて、閉状態に制御されたときに、それぞれの他端に接続されているプローブ2−1,2−2・・・2−nと可変電圧源11の正電圧端子とを接続する。また、切換スイッチ22−1a,22−2a・・・22−naは、それぞれの一端同士が相互に接続されると共にこの各一端が可変電圧源11の正電圧端子に接続されて、閉状態に制御されたときに、それぞれの他端に接続されているプローブ3−1,3−2・・・3−nと可変電圧源11の正電圧端子とを接続する。また、切換スイッチ21−1b,21−2b・・・21−nbは、それぞれの一端同士が相互に接続されると共にこの各一端が可変電圧源11の負電圧端子に電流計12を介して接続され、閉状態に制御されたときに、それぞれの他端に接続されているプローブ2−1,2−2・・・2−nと可変電圧源11の負電圧端子とを電流計12を介して接続する。また、切換スイッチ22−1b,22−2b・・・22−nbは、それぞれの一端同士が相互に接続されると共にこの各一端が可変電圧源11の負電圧端子に電流計12を介して接続され、閉状態に制御されたときに、それぞれの他端に接続されているプローブ3−1,3−2・・・3−nと可変電圧源11の負電圧端子とを電流計12を介して接続する。   In addition, the changeover switches 21-1a, 21-2a,..., 21-na are connected to each other at one end and connected to the positive voltage terminal of the variable voltage source 11 to be closed. When controlled, the probes 2-1, 2-2,... 2 -n connected to the other end of each are connected to the positive voltage terminal of the variable voltage source 11. In addition, the changeover switches 22-1a, 22-2a,..., 22-na are connected to each other at one end and connected to the positive voltage terminal of the variable voltage source 11 to be in a closed state. When controlled, the probes 3-1, 3-2 to 3 -n connected to the other ends of the probes are connected to the positive voltage terminal of the variable voltage source 11. The changeover switches 21-1b, 21-2b,..., 21-nb are connected to each other at one end and connected to the negative voltage terminal of the variable voltage source 11 via the ammeter 12. .., And the negative voltage terminal of the variable voltage source 11 via the ammeter 12 when controlled to the closed state. Connect. Further, the changeover switches 22-1b, 22-2b,..., 22-nb are connected to each other at one end and connected to the negative voltage terminal of the variable voltage source 11 via the ammeter 12. When the closed state is controlled, the probes 3-1, 3-2 to 3 -n connected to the other ends and the negative voltage terminal of the variable voltage source 11 are connected via the ammeter 12. Connect.

制御部6は、本発明における検査部に相当し、可変電圧源11に対する電圧制御、切換部5に対する切換制御、並びに後述する導通検査処理、絶縁検査処理および絶縁不良箇所特定処理などを実行する。操作部7は、各処理で用いる条件を設定する条件設定キーおよび数値入力キーなどを備えて構成され、各操作キーのキー操作に応じた操作信号Siを出力する。RAM8は、導通検査処理に用いる導通検査用電圧の電圧値や導通基準抵抗値、並びに絶縁検査処理および絶縁不良箇所特定処理に用いる絶縁検査用電圧の電圧値や絶縁基準抵抗値を記憶すると共に、制御部6の演算結果などを一時的に記憶する。ROM9は、制御部6の動作プログラムを記憶する。   The control unit 6 corresponds to an inspection unit in the present invention, and executes voltage control for the variable voltage source 11, switching control for the switching unit 5, continuity inspection processing, insulation inspection processing, insulation failure location specifying processing, etc., which will be described later. The operation unit 7 includes a condition setting key for setting conditions used in each process, a numerical value input key, and the like, and outputs an operation signal Si corresponding to the key operation of each operation key. The RAM 8 stores the voltage value and continuity reference resistance value of the continuity test voltage used for the continuity test process, and the voltage value and insulation reference resistance value of the insulation test voltage used for the insulation test process and the insulation failure location specifying process. The calculation result of the control unit 6 is temporarily stored. The ROM 9 stores an operation program for the control unit 6.

一方、図1に示すように、回路基板30には、相互に絶縁された状態で並設されているn本の導体パターン31−1,31−2・・・31−n(本発明におけるn本の導体)がこの順番(回路基板30の端から数えてこの順番)で形成されている。なお、以下、導体パターン31−1,31−2・・・31−nを区別しないときには導体パターン31ともいう。この場合、各導体パターン31の一端および他端には、プローブ2,3が接触させられる測定ポイントがそれぞれ形成されている。   On the other hand, as shown in FIG. 1, the circuit board 30 has n conductor patterns 31-1, 31-2,..., 31-n (n in the present invention) arranged in parallel and insulated from each other. Are formed in this order (this order counted from the end of the circuit board 30). Hereinafter, when the conductor patterns 31-1, 31-2,... 31-n are not distinguished, they are also referred to as conductor patterns 31. In this case, measurement points with which the probes 2 and 3 are brought into contact are formed at one end and the other end of each conductor pattern 31.

次に、回路基板30に形成された導体パターン31に対する回路基板検査装置1による絶縁検査について図面を参照して説明する。   Next, the insulation inspection by the circuit board inspection apparatus 1 for the conductor pattern 31 formed on the circuit board 30 will be described with reference to the drawings.

まず、導体パターン31についての導通検査処理、絶縁検査処理および絶縁不良箇所特定処理の各処理の事前準備として、各処理で用いられる条件を設定する。この場合、操作部7の条件設定キーおよび数値入力キーを操作することで、導通検査用電圧の電圧値、導通基準抵抗値、絶縁検査用電圧の電圧値および絶縁検査用基準抵抗を示す数値を入力する。この際に、制御部6が、この操作に従って操作部7から出力された操作信号Siに応じた数値をRAM8に記憶させる。以上により、各処理で用いられる条件が設定されて、各処理の事前準備が終了する。   First, conditions used in each process are set as advance preparations for the continuity inspection process, the insulation inspection process, and the insulation failure location specifying process for the conductor pattern 31. In this case, by operating the condition setting key and numeric input key of the operation unit 7, the voltage value of the continuity test voltage, the continuity reference resistance value, the voltage value of the insulation test voltage, and the numerical value indicating the insulation test reference resistance are set. input. At this time, the control unit 6 stores a numerical value corresponding to the operation signal Si output from the operation unit 7 in accordance with this operation in the RAM 8. Thus, the conditions used in each process are set, and the preliminary preparation for each process ends.

次に、回路基板30を回路基板検査装置1にセットする。この際には、一例として、図1に示すように、各プローブ2,3と回路基板30の各測定ポイントとがそれぞれ接触させられる。具体的には、一例として、同図に示すように、導体パターン31−1,31−2・・・31−nの一端の測定ポイントとプローブ2−1,2−2・・・2−nとがそれぞれ接触させられると共に、導体パターン31−1,31−2・・・31−nの他端の測定ポイントとプローブ3−1,3−2・・・3−nとがそれぞれ接触させられる。次いで、制御部6が、各導体パターン31についての導通を検査(導通検査)する導通検査処理を実行する。この導通検査処理では、最初に、制御部6が、制御信号Scを出力して、切換スイッチ21−1a,22−1bを閉状態に移行させると共に他の切換スイッチ(切換スイッチ21−1a,22−1bを除いた切換スイッチ21a,21b,22a,22b)を開状態に移行させる。これにより、導体パターン31−1の一端が、プローブ2−1および切換スイッチ21−1aを介して可変電圧源11の正極端子に接続されると共に、導体パターン31−1の他端が、プローブ3−1、切換スイッチ22−1bおよび電流計12を介して可変電圧源11の負極端子に接続される。   Next, the circuit board 30 is set in the circuit board inspection apparatus 1. At this time, as an example, as shown in FIG. 1, the probes 2 and 3 and the measurement points of the circuit board 30 are brought into contact with each other. Specifically, as an example, as shown in the figure, measurement points at one end of the conductor patterns 31-1, 31-2,... 31-n and probes 2-1, 2-2,. And the measurement points at the other ends of the conductor patterns 31-1, 31-2,... 31-n and the probes 3-1, 3-2,. . Next, the control unit 6 executes a continuity inspection process for inspecting the continuity of each conductor pattern 31 (continuity inspection). In this continuity inspection process, first, the control unit 6 outputs a control signal Sc to shift the changeover switches 21-1a and 22-1b to the closed state and to change the other changeover switches (changeover switches 21-1a and 22). The changeover switches 21a, 21b, 22a, 22b) except for -1b are shifted to the open state. Thereby, one end of the conductor pattern 31-1 is connected to the positive terminal of the variable voltage source 11 via the probe 2-1 and the changeover switch 21-1a, and the other end of the conductor pattern 31-1 is connected to the probe 3. -1, connected to the negative terminal of the variable voltage source 11 via the changeover switch 22-1b and the ammeter 12.

次いで、制御部6は、導通検査用電圧の電圧値および導通基準抵抗値をRAM8から読み込む。続いて、制御部6は、導通検査用電圧(一例として直流10V)を所定期間だけ出力させる制御信号Sbを可変電圧源11に出力する。次いで、可変電圧源11が、制御部6から出力された制御信号Sbに従い、プローブ2−1,3−1を介して導体パターン31−1の両端の間に導通検査用電圧を印加する。続いて、電流計12が、導体パターン31−1を流れる電流の電流値を測定して演算回路14に出力する。また、電圧計13が、測定部4から出力される導通検査用電圧の電圧値を測定して演算回路14に出力する。続いて、演算回路14が、電流計12から出力された電流値および電圧計13から出力された電圧値に基づいて抵抗値を演算して、この演算した抵抗値を制御部6に出力する。次いで、制御部6は、演算回路14から出力された抵抗値に基づいて、導体パターン31−1についての導通を検査する。具体的には、制御部6は、測定された抵抗値が導通基準抵抗値以下であるか否かを判別して、導通基準抵抗値以下のときには合格と検査し、導通基準抵抗値を超えるときには不合格と検査する。続いて、制御部6は、導体パターン31−1を合格と検査したときは、上記と同様にして、順次、導体パターン31−2,31−3・・・31−nに対しても導通検査を実行する。以上により、導通検査処理が終了する。   Next, the control unit 6 reads the voltage value of the continuity test voltage and the continuity reference resistance value from the RAM 8. Subsequently, the control unit 6 outputs to the variable voltage source 11 a control signal Sb for outputting a continuity test voltage (DC 10 V as an example) for a predetermined period. Next, the variable voltage source 11 applies a continuity test voltage between both ends of the conductor pattern 31-1 via the probes 2-1 and 3-1 according to the control signal Sb output from the control unit 6. Subsequently, the ammeter 12 measures the current value of the current flowing through the conductor pattern 31-1 and outputs it to the arithmetic circuit 14. The voltmeter 13 measures the voltage value of the continuity test voltage output from the measuring unit 4 and outputs the voltage value to the arithmetic circuit 14. Subsequently, the arithmetic circuit 14 calculates a resistance value based on the current value output from the ammeter 12 and the voltage value output from the voltmeter 13, and outputs the calculated resistance value to the control unit 6. Next, the control unit 6 inspects the continuity of the conductor pattern 31-1 based on the resistance value output from the arithmetic circuit 14. Specifically, the control unit 6 determines whether or not the measured resistance value is less than or equal to the conduction reference resistance value. Check for failure. Subsequently, when the control unit 6 inspects the conductor pattern 31-1 as acceptable, the continuity inspection is sequentially performed on the conductor patterns 31-2, 31-3, ... 31-n in the same manner as described above. Execute. Thus, the continuity inspection process is completed.

次に、制御部6は、すべての導体パターン31を導通検査処理で合格と検査したときに、導体パターン31についての絶縁を検査(絶縁検査)する絶縁検査処理を実行する。この絶縁検査処理では、制御部6は、制御信号Scを出力して、切換スイッチ21a,21b,22a,22bのすべてを開状態に移行させる。次いで、制御部6は、制御信号Scを出力して、切換スイッチ21−1a,21−3a,21−5a・・・21−(n−1)aのように切換スイッチ21aにおける各切換スイッチの符号21−の後ろの数字が奇数のものを閉状態に移行させると共に切換スイッチ21−2b,21−4b,21−6b・・・21−nbのように切換スイッチ21bにおける各切換スイッチの符号21−の後ろの数字が偶数のものを閉状態に移行させる。これにより、図2に示す等価回路のように、プローブ2−1,2−3,2−5・・・2−(n−1)のようにプローブ2における各プローブ2−の後ろの数字が奇数のもの(以下、これらを奇数番目のプローブ2ともいう)同士が相互に接続されると共に可変電圧源11の正極端子に接続される。また、同図に示すように、プローブ2−2,2−4,2−6・・・2−nのようにプローブ2における各プローブ2−の後ろの数字が偶数のもの(以下、これらを偶数番目のプローブ2ともいう)同士が相互に接続されると共に可変電圧源11の負極端子に電流計12を介して接続される。つまり、導体パターン31−1,31−3・・・31−(n−1)のように各導体パターン31における各導体パターンの符号31−の後ろの数字が奇数のもの(本発明における「n本の導体のうちの端から数えて奇数番目の各導体」に相当し、以下、これらを奇数番目の導体パターン31ともいう)が奇数番目のプローブ2を介して共通接続されて可変電圧源11の正極端子に接続される。なお、この共通接続された奇数番目の導体パターン31が本発明における奇数番目の各導体を共通接続した組に相当する。また、導体パターン31−2,31−4・・・31−nのように各導体パターン31における各導体パターンの符号31−の後ろの数字が偶数のもの(本発明における偶数番目の各導体に相当し、以下、これらを偶数番目の導体パターン31ともいう)が偶数番目のプローブ2を介して共通接続されて電流計12を介して可変電圧源11の負極端子に接続される。なお、この共通接続された偶数番目の導体パターン31が本発明における偶数番目の各導体を共通接続した組に相当する。   Next, the control part 6 performs the insulation test process which test | inspects the insulation about the conductor pattern 31 (insulation test), when all the conductor patterns 31 are test | inspected by the continuity test process. In this insulation inspection process, the control unit 6 outputs the control signal Sc and shifts all the changeover switches 21a, 21b, 22a, and 22b to the open state. Next, the control unit 6 outputs a control signal Sc, and the change-over switches 21-1a, 21-3a, 21-5a,. An odd number after the reference numeral 21- is shifted to the closed state, and the changeover switch 21b has a reference numeral 21 such as a change-over switch 21-2b, 21-4b, 21-6b... 21-nb. The one with an even number after-is moved to the closed state. As a result, as in the equivalent circuit shown in FIG. 2, the numbers behind the probes 2 in the probe 2 are changed as shown in the probes 2-1, 2-3, 2-5... 2- (n-1). Odd ones (hereinafter also referred to as odd-numbered probes 2) are connected to each other and connected to the positive terminal of the variable voltage source 11. In addition, as shown in the figure, the numbers after the probes 2 in the probe 2 are even numbers such as probes 2-2, 2-4, 2-6. Are connected to each other and to the negative terminal of the variable voltage source 11 via an ammeter 12. That is, the number after the reference numeral 31- of each conductor pattern 31 in each conductor pattern 31 is an odd number such as the conductor patterns 31-1, 31-3... 31- (n-1) (“n Corresponding to the odd-numbered conductors counted from the end of the two conductors, which are hereinafter also referred to as odd-numbered conductor patterns 31) are connected in common via the odd-numbered probes 2 and the variable voltage source 11 is connected. Connected to the positive terminal. Note that the commonly connected odd-numbered conductor patterns 31 correspond to a group in which odd-numbered conductors are commonly connected in the present invention. In addition, like the conductor patterns 31-2, 31-4,... 31-n, the numbers after the reference numbers 31- of the conductor patterns in the conductor patterns 31 are even numbers (in the even-numbered conductors in the present invention). In the following description, these are also referred to as even-numbered conductor patterns 31) connected in common via the even-numbered probes 2 and connected to the negative terminal of the variable voltage source 11 via the ammeter 12. The evenly connected even-numbered conductor pattern 31 corresponds to a set in which even-numbered conductors are commonly connected in the present invention.

次いで、制御部6は、RAM8から絶縁検査用電圧の電圧値および絶縁基準抵抗値を読み込む。続いて、制御部6は、絶縁検査用電圧の電圧値(一例として直流100V)を所定期間だけ出力させる制御信号Sbを可変電圧源11に出力する。これにより、可変電圧源11が、奇数番目のプローブ2と偶数番目のプローブ2とを介して奇数番目の導体パターン31と偶数番目の導体パターン31との間に絶縁検査用電圧を印加する。次いで、電流計12が、奇数番目の導体パターン31と偶数番目の導体パターン31との間を絶縁検査用電圧の印加に応じて流れる電流の電流値を測定して演算回路14に出力する。また、電圧計13が、測定部4から出力される絶縁検査用電圧の電圧値を測定して演算回路14に出力する。続いて、演算回路14が、電流計12から出力された電流値および電圧計13から出力された電圧値に基づいて抵抗値を演算して、この演算した抵抗値を制御部6に出力する。次いで、制御部6は、演算回路14から出力された抵抗値に基づいて、導体パターン31についての絶縁を検査する。具体的には、制御部6は、測定された抵抗値が絶縁基準抵抗値以上であるか否かを判別して、絶縁基準抵抗値以上であれば合格と検査し、絶縁基準抵抗値未満であれば不合格と検査する。以上により、絶縁検査処理が終了する。   Next, the control unit 6 reads the voltage value of the insulation test voltage and the insulation reference resistance value from the RAM 8. Subsequently, the control unit 6 outputs to the variable voltage source 11 a control signal Sb that outputs a voltage value of the insulation test voltage (DC 100 V as an example) for a predetermined period. As a result, the variable voltage source 11 applies an insulation test voltage between the odd-numbered conductor pattern 31 and the even-numbered conductor pattern 31 via the odd-numbered probe 2 and the even-numbered probe 2. Next, the ammeter 12 measures the current value of the current that flows between the odd-numbered conductor pattern 31 and the even-numbered conductor pattern 31 in accordance with the application of the insulation test voltage, and outputs it to the arithmetic circuit 14. The voltmeter 13 measures the voltage value of the insulation test voltage output from the measurement unit 4 and outputs the voltage value to the arithmetic circuit 14. Subsequently, the arithmetic circuit 14 calculates a resistance value based on the current value output from the ammeter 12 and the voltage value output from the voltmeter 13, and outputs the calculated resistance value to the control unit 6. Next, the control unit 6 inspects the insulation of the conductor pattern 31 based on the resistance value output from the arithmetic circuit 14. Specifically, the control unit 6 determines whether or not the measured resistance value is greater than or equal to the insulation reference resistance value. If there is any, it will be rejected. Thus, the insulation inspection process is completed.

この場合、導体パターン31−1,31−2・・・31−nは、相互に絶縁された状態で並設されて(平行状態に)形成されている。したがって、この回路基板30において絶縁不良が発生する場合、図2に示すように、同図において黒色で示す奇数番目の導体パターン31と、同図において白色で示す偶数番目の導体パターン31との隣接し合う部分で絶縁不良が発生することになる。このため、奇数番目の導体パターン31同士をすべて接続し、偶数番目の導体パターン31同士をすべて接続して、この接続した奇数番目の導体パターン31とこの接続した偶数番目の導体パターン31とについての絶縁検査を実行することにより、いずれかの奇数番目の導体パターン31と、隣接するいずれかの偶数番目の導体パターン31との間に絶縁不良が生じているときに、この絶縁不良が1回の絶縁検査で検出されて導体パターン31(回路基板30)が不合格と検査される。逆に、導体パターン31に絶縁不良が生じていないときには、1回の絶縁検査で導体パターン31(回路基板30)が合格と検査される。   In this case, the conductor patterns 31-1, 31-2,... 31-n are formed in parallel (in a parallel state) while being insulated from each other. Therefore, when an insulation failure occurs in the circuit board 30, as shown in FIG. 2, the odd-numbered conductor patterns 31 shown in black in the figure and the even-numbered conductor patterns 31 shown in white in the figure are adjacent to each other. Insulation failure will occur at the parts that meet. For this reason, all the odd-numbered conductor patterns 31 are connected, all the even-numbered conductor patterns 31 are connected, and the connected odd-numbered conductor pattern 31 and the connected even-numbered conductor pattern 31 are connected. By performing the insulation test, when an insulation failure occurs between any odd-numbered conductor pattern 31 and any adjacent even-numbered conductor pattern 31, this insulation failure occurs once. The conductor pattern 31 (circuit board 30) is inspected as rejected by the insulation inspection. On the contrary, when there is no insulation failure in the conductor pattern 31, the conductor pattern 31 (circuit board 30) is inspected as being acceptable in one insulation inspection.

次に、制御部6は、絶縁検査処理で導体パターン31(回路基板30)を不合格と検査したときに、操作部7による操作に従い(つまり、必要に応じて)、絶縁不良箇所を特定する絶縁不良箇所特定処理を実行する。この絶縁不良箇所特定処理では、最初に、制御部6は、導体パターン31−1,31−2についての絶縁検査を実行する。この場合、制御部6は、制御信号Scを出力して、切換スイッチ21a,21b,22a,22bのすべてを開状態に移行させる。次いで、制御部6は、制御信号Scを出力して、切換スイッチ21−1a,21−2bを閉状態に移行させる。これにより、プローブ2−1が可変電圧源11の正極端子に接続され、プローブ2−2が可変電圧源11の負極端子に電流計12を介して接続される。続いて、制御部6は、絶縁検査用電圧を所定期間だけ出力させる制御信号Sbを可変電圧源11に出力する。これにより、可変電圧源11が、プローブ2−1,2−2を介して導体パターン31−1,31−2の間に絶縁検査用電圧を印加する。次いで、電流計12が、導体パターン31−1,31−2の間を絶縁検査用電圧の印加に応じて流れる電流の電流値を測定して演算回路14に出力し、電圧計13が、測定部4から出力される絶縁検査用電圧の電圧値を測定して演算回路14に出力する。続いて、演算回路14が、入力した電流値および電圧値に基づいて抵抗値を演算して制御部6に出力する。次いで、制御部6は、上記した絶縁検査処理と同様にして、入力した抵抗値に基づいて、導体パターン31−1,31−2についての絶縁を検査する。   Next, when the control unit 6 inspects the conductor pattern 31 (circuit board 30) as being rejected by the insulation inspection process, the control unit 6 follows the operation by the operation unit 7 (that is, if necessary), and specifies an insulation failure location. Insulation failure location identification processing is executed. In this insulation failure location specifying process, first, the control unit 6 performs an insulation inspection on the conductor patterns 31-1 and 31-2. In this case, the control unit 6 outputs the control signal Sc and shifts all of the changeover switches 21a, 21b, 22a, and 22b to the open state. Next, the control unit 6 outputs a control signal Sc and shifts the changeover switches 21-1a and 21-2b to the closed state. As a result, the probe 2-1 is connected to the positive terminal of the variable voltage source 11, and the probe 2-2 is connected to the negative terminal of the variable voltage source 11 via the ammeter 12. Subsequently, the control unit 6 outputs a control signal Sb for outputting the insulation test voltage for a predetermined period to the variable voltage source 11. Thereby, the variable voltage source 11 applies the voltage for an insulation test between the conductor patterns 31-1 and 31-2 via the probes 2-1 and 2-2. Next, the ammeter 12 measures the current value of the current flowing between the conductor patterns 31-1 and 31-2 in response to the application of the insulation test voltage, and outputs it to the arithmetic circuit 14, and the voltmeter 13 measures the current. The voltage value of the insulation test voltage output from the unit 4 is measured and output to the arithmetic circuit 14. Subsequently, the arithmetic circuit 14 calculates a resistance value based on the input current value and voltage value, and outputs the resistance value to the control unit 6. Next, the control unit 6 inspects the insulation of the conductor patterns 31-1 and 31-2 based on the input resistance value in the same manner as the above-described insulation inspection process.

続いて、制御部6は、上記と同様にして、導体パターン31−2,31−3についての絶縁検査を実行する。次いで、制御部6は、導体パターン31−3,31−4についての絶縁検査を実行するというように、各導体パターン31のうちの互いに隣接する一対(一組)の導体パターンを1つずつ変更して、各導体パターン31のうちのすべての隣接し合う導体パターンの組についての絶縁検査を実行する。以上により、絶縁不良箇所特定処理を終了する。この絶縁不良箇所特定処理により、絶縁不良が生じている一組の導体パターン31が具体的に特定される。   Then, the control part 6 performs the insulation test about the conductor patterns 31-2 and 31-3 like the above. Next, the control unit 6 changes one pair of adjacent conductor patterns (one set) of the conductor patterns 31 one by one, such as performing an insulation test on the conductor patterns 31-3 and 31-4. Then, an insulation test is performed on all the adjacent conductor pattern sets in each conductor pattern 31. Thus, the insulation failure location specifying process is completed. With this insulation failure location identification process, a set of conductor patterns 31 in which insulation failure has occurred is specifically identified.

このように、この回路基板検査装置1では、相互に絶縁された状態で並設されているn本の導体パターン31のうちの奇数番目の導体パターン31を共通接続した組と偶数番目の導体パターン31を共通接続した組との間に絶縁検査用電圧を印加し、絶縁検査用電圧の印加に応じて両組の間を流れる電流の電流値に応じて変化する抵抗値(電気的パラメータ)を測定し、この測定した抵抗値に基づいてn本の導体パターン31についての絶縁を検査する。したがって、この回路基板検査装置1によれば、絶縁不良が生ずる可能性のある奇数番目の導体パターン31と偶数番目の導体パターン31とについての絶縁検査を確実に実行できるため、1回の絶縁検査の実行によってn本の導体パターン31についての絶縁を検査することができる。この結果、導体パターン(配線パターン)の数に対して約半分の検査回数で導体パターンについての絶縁を検査する従来の絶縁検査装置と比較して、絶縁検査の検査時間を大幅に短縮することができる。   In this way, in this circuit board inspection apparatus 1, a set in which odd-numbered conductor patterns 31 among n number of conductor patterns 31 arranged in parallel with each other are connected in common and even-numbered conductor patterns. A voltage for insulation test is applied between the pair of 31 connected in common, and a resistance value (electrical parameter) that changes according to the current value of the current flowing between the two groups in response to the application of the voltage for insulation test Measurement is performed, and the insulation of the n conductor patterns 31 is inspected based on the measured resistance value. Therefore, according to the circuit board inspection apparatus 1, since the insulation inspection can be reliably performed on the odd-numbered conductor pattern 31 and the even-numbered conductor pattern 31 in which insulation failure may occur, one insulation inspection is performed. By performing the above, it is possible to inspect the insulation for the n conductor patterns 31. As a result, it is possible to greatly reduce the inspection time of the insulation inspection as compared with the conventional insulation inspection apparatus that inspects the insulation of the conductor pattern with the number of inspections about half of the number of conductor patterns (wiring patterns). it can.

また、この回路基板検査装置1では、n本の導体パターン31のうちの互いに隣接する一対の導体パターン31,31の間に絶縁検査用電圧を印加し、この絶縁検査用電圧の印加に応じて一対の導体パターン31,31の間を流れる電流の電流値に応じて変化する抵抗値(電気的パラメータ)を測定し、この測定した抵抗値に基づいて一対の導体パターン31,31についての絶縁を検査する。したがって、この回路基板検査装置1によれば、絶縁不良箇所が生じる可能性のあるn本の導体パターン31のうちの互いに隣接する一対の導体パターン31,31のすべてについて絶縁検査が実行されるため、絶縁不良が生じている一組の導体パターン31,31(絶縁不良が生じている箇所)を具体的に特定することができる。   Further, in this circuit board inspection apparatus 1, an insulation inspection voltage is applied between a pair of adjacent conductor patterns 31, 31 of the n conductor patterns 31, and in response to the application of the insulation inspection voltage. A resistance value (electrical parameter) that changes according to the current value of the current flowing between the pair of conductor patterns 31 and 31 is measured, and insulation of the pair of conductor patterns 31 and 31 is performed based on the measured resistance value. inspect. Therefore, according to the circuit board inspection apparatus 1, the insulation inspection is performed on all of the pair of conductor patterns 31 and 31 that are adjacent to each other among the n conductor patterns 31 that may cause an insulation failure location. A set of conductor patterns 31 and 31 (insulations where insulation failure has occurred) in which insulation failure has occurred can be specifically identified.

また、この回路基板検査装置1では、導体パターン31の一端および他端の間に導通検査用電圧を印加し、この導通検査用電圧の印加に応じて導体パターン31を流れる電流の電流値に応じて変化する抵抗値(電気的パラメータ)を測定し、この測定した抵抗値に基づいて導体パターン31についての導通を検査する。したがって、この回路基板検査装置1によれば、導体パターン31の断線有無を検査することができるため、例えば、導体パターン31のいずれかの部位に断線および絶縁不良の両方が存在して、断線によって絶縁検査用電圧を絶縁不良部位に印加できないことに起因して絶縁検査を合格と検査するおそれのあるときであっても、この導通検査を実行することで導体パターン31の断線や絶縁不良を確実に検査することができる。また、この回路基板検査装置1によれば、導通検査用の装置を別に用いることなく1つの装置で導体パターン31についての導通検査および絶縁検査の両方を実行することができるため、異なる装置を用いて導通検査および絶縁検査を実行するのとは異なり、回路基板30を異なる装置にセットし直すことなく検査できる結果、導通検査および絶縁検査の検査時間を一層短縮することができる。また、1つの装置で導通検査および絶縁検査の両方を実行することができるため、2つの検査装置を用いるのと比較して、検査装置のコストも十分に低減することができる。   Further, in this circuit board inspection apparatus 1, a continuity test voltage is applied between one end and the other end of the conductor pattern 31, and according to the current value of the current flowing through the conductor pattern 31 according to the application of the continuity test voltage. The resistance value (electrical parameter) that changes is measured, and the continuity of the conductor pattern 31 is inspected based on the measured resistance value. Therefore, according to the circuit board inspection apparatus 1, since it is possible to inspect the disconnection of the conductor pattern 31, for example, both the disconnection and the insulation failure exist in any part of the conductor pattern 31. Even when there is a possibility that the insulation test may pass the insulation test due to the fact that the insulation test voltage cannot be applied to the insulation failure site, the disconnection of the conductor pattern 31 and the insulation failure are ensured by executing this continuity test. Can be inspected. Further, according to the circuit board inspection apparatus 1, since both the conduction inspection and the insulation inspection for the conductor pattern 31 can be performed by one apparatus without using another apparatus for continuity inspection, different apparatuses are used. Unlike conducting the continuity test and the insulation test, the circuit board 30 can be inspected without resetting it to a different device. As a result, the inspection time for the continuity test and the insulation test can be further shortened. In addition, since both the continuity test and the insulation test can be executed with one apparatus, the cost of the inspection apparatus can be sufficiently reduced as compared with the use of two inspection apparatuses.

なお、本発明は、上記の方法および構成に限定されない。例えば、絶縁検査処理では、奇数番目の導体パターン31と偶数番目の導体パターン31との間の抵抗値を本発明における電気的パラメータとして測定し、その抵抗値に基づいて導体パターン31についての絶縁検査を実行しているが、このときに電流計12によって測定される電流値を本発明における電気的パラメータとして用いて、その測定される電流値に基づいて絶縁検査を実行することもできる。この際には、測定される電流値が予め設定された所定値以下であるか否かを判別して、所定値以下であれば合格と検査し、所定値を超えれば不合格と検査する。この場合、電流計12が本発明における第1の測定部に相当する。同様にして、導体パターン31のうちの互いに隣接する一対の導体パターンについての絶縁検査についても、このときに電流計12によって測定される電流値を本発明における電気的パラメータとして用いて実行することもできる。この場合、電流計12が本発明における第2の測定部に相当する。また、導通検査処理では、各導体パターン31の一端および他端のそれぞれの間の抵抗値を本発明における電気的パラメータとして測定し、この測定した抵抗値に基づいて各導体パターン31についての導通検査を実行しているが、このときに電流計12によって測定される電流値を本発明における電気的パラメータとして用いて、その測定される電流値に基づいて導通検査を実行することもできる。この際に、測定される電流値が予め設定された所定値以上であるか否かを判別して、所定値以上であれば合格と検査し、所定値未満であれば不合格と検査する。この場合、電流計12が本発明における第3の測定部に相当する。さらに、奇数番目の導体パターン31と偶数番目の導体パターン31との間を流れる電流、および導体パターン31のうちの一対の導体パターン31,31の間を流れる電流をそれぞれ電圧に変換して、測定した電圧値を本発明における電気的パラメータとして用いて絶縁検査を実行する構成を採用することもできる。同様にして、各導体パターン31を流れる電流を電圧に変換して、測定した電圧値を本発明における電気的パラメータとして用いて導通検査を実行する構成を採用することができる。   In addition, this invention is not limited to said method and structure. For example, in the insulation inspection process, the resistance value between the odd-numbered conductor pattern 31 and the even-numbered conductor pattern 31 is measured as an electrical parameter in the present invention, and the insulation inspection for the conductor pattern 31 is performed based on the resistance value. However, the current value measured by the ammeter 12 at this time can be used as an electrical parameter in the present invention, and the insulation test can be performed based on the measured current value. At this time, it is determined whether or not the current value to be measured is equal to or less than a predetermined value set in advance. If the current value is equal to or less than the predetermined value, the pass is inspected. In this case, the ammeter 12 corresponds to the first measurement unit in the present invention. Similarly, the insulation test for a pair of conductor patterns adjacent to each other among the conductor patterns 31 may be executed using the current value measured by the ammeter 12 at this time as an electrical parameter in the present invention. it can. In this case, the ammeter 12 corresponds to the second measurement unit in the present invention. In the continuity inspection process, the resistance value between one end and the other end of each conductor pattern 31 is measured as an electrical parameter in the present invention, and the continuity inspection for each conductor pattern 31 is performed based on the measured resistance value. However, the current value measured by the ammeter 12 at this time can be used as an electrical parameter in the present invention, and the continuity test can be executed based on the measured current value. At this time, it is determined whether or not the current value to be measured is greater than or equal to a predetermined value set in advance. If the current value is greater than or equal to the predetermined value, the pass is inspected. In this case, the ammeter 12 corresponds to the third measurement unit in the present invention. Further, the current flowing between the odd-numbered conductor pattern 31 and the even-numbered conductor pattern 31 and the current flowing between the pair of conductor patterns 31 and 31 of the conductor pattern 31 are converted into voltages, respectively, and measured. It is also possible to adopt a configuration in which an insulation test is performed using the voltage value thus obtained as an electrical parameter in the present invention. Similarly, it is possible to adopt a configuration in which a current flowing through each conductor pattern 31 is converted into a voltage, and a continuity test is performed using the measured voltage value as an electrical parameter in the present invention.

また、ジグ型のプローブ2,3を用いる構成について説明したが、この構成に代えて、制御部6の制御下で複数のプローブを上下左右に移動させるプローブ移動機構を備えて、回路基板30の表面における任意の位置に複数のプローブの先端部を移動可能に構成されているプローブを用いる構成を採用することができる。   Further, the configuration using the jig-type probes 2 and 3 has been described, but instead of this configuration, a probe moving mechanism that moves a plurality of probes up and down and left and right under the control of the control unit 6 is provided. A configuration using a probe configured to be able to move the tip portions of a plurality of probes to arbitrary positions on the surface can be employed.

また、本発明における絶縁検査装置として、回路基板30に形成された導体パターン31(本発明における導体)についての絶縁検査を実行する回路基板検査装置1について説明したが、例えば、プラズマディスプレイのガラス材の表面において相互に絶縁された状態で一列ずつ整然と配列(並設)されているn本の走査線電極(本発明における導体)についての絶縁検査を実行する走査線電極絶縁検査装置、フラットケーブルにおいて相互に絶縁された状態で一列ずつ整然と配列(並設)されているn本の導通線材についての絶縁検査を実行するフラットケーブル絶縁検査装置、コネクタにおいて相互に絶縁された状態で並設されているn本の接続ピンについての絶縁検査を実行するコネクタ絶縁検査装置に本発明を適用することができる。   Moreover, although the circuit board inspection apparatus 1 which performs the insulation inspection about the conductor pattern 31 (conductor in this invention) formed in the circuit board 30 was demonstrated as an insulation inspection apparatus in this invention, for example, the glass material of a plasma display In a scanning line electrode insulation inspection apparatus and a flat cable for performing an insulation inspection on n scanning line electrodes (conductors in the present invention) that are arranged in a row in order (parallelly arranged) in a state of being insulated from each other on the surface of Flat cable insulation inspection device for performing insulation inspection on n conductive wires arranged in a line one by one in a state of being insulated from each other, and arranged in parallel while being insulated from each other in a connector The present invention can be applied to a connector insulation inspection apparatus that performs insulation inspection on n connection pins.

また、導体パターン31についての導通検査を実行した後に絶縁検査を実行する例について説明したが、絶縁検査を実行した後に導通検査を実行することもできるし、その際に、絶縁検査によって不良と検査されたときには、その後の導通検査を省略することもできる。さらに、絶縁不良箇所の特定が不要のときには、一対の導体パターン31,31についての絶縁検査を省略できるのは勿論である。   Moreover, although the example which performs an insulation test | inspection after performing the continuity test about the conductor pattern 31 was demonstrated, a continuity test | inspection can also be performed after performing an insulation test | inspection, and in that case, it is test | inspected with a defect by an insulation test. When done, the subsequent continuity test can be omitted. Furthermore, when it is not necessary to specify the insulation failure location, it is needless to say that the insulation inspection for the pair of conductor patterns 31, 31 can be omitted.

回路基板検査装置1の構成を示す構成図である。1 is a configuration diagram showing a configuration of a circuit board inspection device 1. FIG. 回路基板30の導体パターン31−1,31−2・・・31−nについての絶縁検査を実行しているときの回路基板検査装置1の等価回路図である。FIG. 3 is an equivalent circuit diagram of the circuit board inspection apparatus 1 when an insulation inspection is performed on conductor patterns 31-1, 31-2,... 31-n of the circuit board 30.

符号の説明Explanation of symbols

1 回路基板検査装置
2−1,2−2・・・2−n,3−1,3−2・・・3−n プローブ
4 制御部
5 切換部
6 制御部
11 可変電圧源
12 電流計
13 電圧計
14 演算回路
30 回路基板
31−1,31−2・・・31−n 導体パターン
DESCRIPTION OF SYMBOLS 1 Circuit board inspection apparatus 2-1, 2-2 ... 2-n, 3-1, 3-2 ... 3-n Probe 4 Control part 5 Switching part 6 Control part 11 Variable voltage source 12 Ammeter 13 Voltmeter 14 Arithmetic circuit 30 Circuit boards 31-1, 31-2, ... 31-n Conductor pattern

Claims (6)

相互に絶縁された状態で並設されているn本(nは3以上の整数)の導体についての絶縁を検査する絶縁検査方法であって、
前記n本の導体のうちの端から数えて奇数番目の各導体を共通接続した組と偶数番目の各導体を共通接続した組との間に電圧を印加し、当該電圧の印加に応じて前記両組の間を流れる電流の電流値に応じて変化する電気的パラメータを測定し、当該測定した電気的パラメータに基づいて前記n本の導体についての絶縁を検査する絶縁検査方法。
An insulation inspection method for inspecting insulation for n conductors (n is an integer of 3 or more) arranged in parallel in a mutually insulated state,
A voltage is applied between a group in which odd-numbered conductors counted from the end of the n conductors are commonly connected and a group in which even-numbered conductors are commonly connected, and the voltage is applied according to the application of the voltage. An insulation inspection method for measuring an electrical parameter that changes according to a current value of a current flowing between both sets, and inspecting insulation for the n conductors based on the measured electrical parameter.
前記n本の導体のうちの互いに隣接する一対の導体の間に電圧を印加し、当該電圧の印加に応じて前記一対の導体の間を流れる電流の電流値に応じて変化する電気的パラメータを測定し、当該測定した電気的パラメータに基づいて前記一対の導体についての絶縁を検査する請求項1記載の絶縁検査方法。   A voltage is applied between a pair of adjacent conductors of the n conductors, and an electrical parameter that changes according to a current value of a current flowing between the pair of conductors in response to the application of the voltage. The insulation inspection method according to claim 1, wherein the insulation is inspected for insulation of the pair of conductors based on the measured electrical parameters. 前記導体の一端および他端の間に電圧を印加し、当該電圧の印加に応じて前記導体を流れる電流の電流値に応じて変化する電気的パラメータを測定し、当該測定した電気的パラメータに基づいて前記導体についての導通を検査する請求項1または2記載の絶縁検査方法。   A voltage is applied between one end and the other end of the conductor, and an electrical parameter that changes according to a current value of a current flowing through the conductor is measured in accordance with the application of the voltage, and based on the measured electrical parameter The insulation inspection method according to claim 1, wherein continuity of the conductor is inspected. 相互に絶縁された状態で並設されているn本(nは3以上の整数)の導体についての絶縁を検査する絶縁検査装置であって、
前記n本の導体のうちの端から数えて奇数番目の各導体が共通接続された組と偶数番目の各導体が共通接続された組との間に電圧を印加可能な第1の電圧源と、当該第1の電圧源による前記電圧の印加に応じて前記両組の間を流れる電流の電流値に応じて変化する電気的パラメータを測定する第1の測定部と、当該第1の測定部によって測定される前記電気的パラメータに基づいて前記n本の導体についての絶縁を検査する検査部とを備えている絶縁検査装置。
An insulation inspection apparatus for inspecting insulation of n conductors (n is an integer of 3 or more) arranged in parallel in a mutually insulated state,
A first voltage source capable of applying a voltage between a group in which odd-numbered conductors counted from the end of the n conductors are commonly connected and a group in which even-numbered conductors are commonly connected; A first measurement unit that measures an electrical parameter that varies according to a current value of a current that flows between the two groups in response to application of the voltage by the first voltage source; and the first measurement unit And an inspection unit that inspects insulation of the n conductors based on the electrical parameters measured by the electrical parameter.
前記n本の導体のうちの互いに隣接する一対の導体の間に電圧を印加可能な第2の電圧源と、当該第2の電圧源による前記電圧の印加に応じて前記一対の導体の間を流れる電流の電流値に応じて変化する電気的パラメータを測定する第2の測定部とを備え、
前記検査部は、前記第2の測定部によって測定される前記電気的パラメータに基づいて前記一対の導体についての絶縁を検査する請求項4記載の絶縁検査装置。
A second voltage source capable of applying a voltage between a pair of adjacent conductors of the n conductors, and between the pair of conductors according to the application of the voltage by the second voltage source. A second measuring unit that measures an electrical parameter that changes according to the current value of the flowing current,
The insulation inspection apparatus according to claim 4, wherein the inspection unit inspects insulation of the pair of conductors based on the electrical parameter measured by the second measurement unit.
前記導体の一端および他端の間に電圧を印加可能な第3の電圧源と、当該第3の電圧源による前記電圧の印加に応じて前記導体を流れる電流の電流値に応じて変化する電気的パラメータを測定する第3の測定部とを備え、
前記検査部は、前記第3の測定部によって測定される前記電気的パラメータに基づいて前記導体についての導通を検査する請求項4または5記載の絶縁検査装置。
A third voltage source capable of applying a voltage between one end and the other end of the conductor, and an electric which changes in accordance with a current value of a current flowing through the conductor in accordance with the application of the voltage by the third voltage source. A third measuring unit for measuring a physical parameter,
The insulation inspection apparatus according to claim 4 or 5, wherein the inspection unit inspects continuity of the conductor based on the electrical parameter measured by the third measurement unit.
JP2004293146A 2004-10-06 2004-10-06 Insulation inspection method and insulation inspection device Pending JP2006105795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293146A JP2006105795A (en) 2004-10-06 2004-10-06 Insulation inspection method and insulation inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293146A JP2006105795A (en) 2004-10-06 2004-10-06 Insulation inspection method and insulation inspection device

Publications (1)

Publication Number Publication Date
JP2006105795A true JP2006105795A (en) 2006-04-20

Family

ID=36375712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293146A Pending JP2006105795A (en) 2004-10-06 2004-10-06 Insulation inspection method and insulation inspection device

Country Status (1)

Country Link
JP (1) JP2006105795A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232679A (en) * 2007-03-19 2008-10-02 Nidec-Read Corp Insulation inspection device
JP2010014597A (en) * 2008-07-04 2010-01-21 Micronics Japan Co Ltd Mobile contact inspection apparatus
JP2010032293A (en) * 2008-07-28 2010-02-12 Hioki Ee Corp Circuit board inspecting device and circuit board inspection method
JP2010032458A (en) * 2008-07-31 2010-02-12 Hioki Ee Corp Circuit board inspecting device and circuit board inspection method
JP2010032310A (en) * 2008-07-28 2010-02-12 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
JP2010032286A (en) * 2008-07-28 2010-02-12 Hioki Ee Corp Circuit board inspecting device and circuit board inspection method
JP2010038769A (en) * 2008-08-06 2010-02-18 Azusa Tech Co Circuit inspection apparatus
JP2010133836A (en) * 2008-12-05 2010-06-17 Hioki Ee Corp Insulation inspection method and insulation inspection device
JP2010190784A (en) * 2009-02-19 2010-09-02 Hioki Ee Corp Circuit board inspection device
JP2010236889A (en) * 2009-03-30 2010-10-21 Hioki Ee Corp Circuit board inspection apparatus and circuit board inspection method
JP2011242137A (en) * 2010-05-14 2011-12-01 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
JP2011242136A (en) * 2010-05-14 2011-12-01 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
JP2013024588A (en) * 2011-07-15 2013-02-04 Hioki Ee Corp Circuit board checkup device and circuit board checkup method
JP2013242251A (en) * 2012-05-22 2013-12-05 Hioki Ee Corp Continuity testing apparatus and continuity testing method
CN113391124A (en) * 2021-06-03 2021-09-14 珠海万力达电气自动化有限公司 Method, device and system for monitoring insulation level of medium-voltage power system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698663A (en) * 1980-01-11 1981-08-08 Hitachi Ltd Cable check circuit
JPS56154678A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Inspection method for conductor pattern
JPS63292113A (en) * 1987-05-26 1988-11-29 Matsushita Electric Ind Co Ltd Manufacture of active matrix display device
JPH0626987A (en) * 1990-07-24 1994-02-04 Photon Dynamics Inc Method and device for determining position of crossing short-circuit defect in lcd panel
JPH07183350A (en) * 1993-12-24 1995-07-21 Tokyo Electron Ltd Tester
JPH09138422A (en) * 1995-11-10 1997-05-27 Nec Corp Liquic crystal display device and its inspecting method
JPH11119683A (en) * 1997-10-13 1999-04-30 Fujitsu Ltd Method of inspecting liquid crystal display panel
JP2000193702A (en) * 1998-12-28 2000-07-14 Nippon Densan Riido Kk Apparatus and method for inspecting insulation of board
JP2002328627A (en) * 2001-04-27 2002-11-15 Seiko Epson Corp Inspection method of display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5698663A (en) * 1980-01-11 1981-08-08 Hitachi Ltd Cable check circuit
JPS56154678A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Inspection method for conductor pattern
JPS63292113A (en) * 1987-05-26 1988-11-29 Matsushita Electric Ind Co Ltd Manufacture of active matrix display device
JPH0626987A (en) * 1990-07-24 1994-02-04 Photon Dynamics Inc Method and device for determining position of crossing short-circuit defect in lcd panel
JPH07183350A (en) * 1993-12-24 1995-07-21 Tokyo Electron Ltd Tester
JPH09138422A (en) * 1995-11-10 1997-05-27 Nec Corp Liquic crystal display device and its inspecting method
JPH11119683A (en) * 1997-10-13 1999-04-30 Fujitsu Ltd Method of inspecting liquid crystal display panel
JP2000193702A (en) * 1998-12-28 2000-07-14 Nippon Densan Riido Kk Apparatus and method for inspecting insulation of board
JP2002328627A (en) * 2001-04-27 2002-11-15 Seiko Epson Corp Inspection method of display device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232679A (en) * 2007-03-19 2008-10-02 Nidec-Read Corp Insulation inspection device
JP2010014597A (en) * 2008-07-04 2010-01-21 Micronics Japan Co Ltd Mobile contact inspection apparatus
JP2010032293A (en) * 2008-07-28 2010-02-12 Hioki Ee Corp Circuit board inspecting device and circuit board inspection method
JP2010032310A (en) * 2008-07-28 2010-02-12 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
JP2010032286A (en) * 2008-07-28 2010-02-12 Hioki Ee Corp Circuit board inspecting device and circuit board inspection method
JP2010032458A (en) * 2008-07-31 2010-02-12 Hioki Ee Corp Circuit board inspecting device and circuit board inspection method
JP2010038769A (en) * 2008-08-06 2010-02-18 Azusa Tech Co Circuit inspection apparatus
JP2010133836A (en) * 2008-12-05 2010-06-17 Hioki Ee Corp Insulation inspection method and insulation inspection device
JP2010190784A (en) * 2009-02-19 2010-09-02 Hioki Ee Corp Circuit board inspection device
JP2010236889A (en) * 2009-03-30 2010-10-21 Hioki Ee Corp Circuit board inspection apparatus and circuit board inspection method
JP2011242137A (en) * 2010-05-14 2011-12-01 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
JP2011242136A (en) * 2010-05-14 2011-12-01 Hioki Ee Corp Circuit board inspection device and circuit board inspection method
JP2013024588A (en) * 2011-07-15 2013-02-04 Hioki Ee Corp Circuit board checkup device and circuit board checkup method
JP2013242251A (en) * 2012-05-22 2013-12-05 Hioki Ee Corp Continuity testing apparatus and continuity testing method
CN113391124A (en) * 2021-06-03 2021-09-14 珠海万力达电气自动化有限公司 Method, device and system for monitoring insulation level of medium-voltage power system
CN113391124B (en) * 2021-06-03 2023-09-29 珠海万力达电气自动化有限公司 Insulation level monitoring method, device and system for medium-voltage power system

Similar Documents

Publication Publication Date Title
JP2006105795A (en) Insulation inspection method and insulation inspection device
JP4773304B2 (en) Inspection apparatus and inspection method
JP2008002823A (en) Substrate inspecting device and substrate inspection method
JP4068248B2 (en) Insulation inspection apparatus for substrate and insulation inspection method thereof
JP5215149B2 (en) Insulation inspection method and insulation inspection apparatus
JP5437183B2 (en) Measuring device and substrate inspection device
JP5215072B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5208787B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP6918659B2 (en) Circuit board inspection equipment
JP5317554B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5485012B2 (en) Circuit board inspection apparatus and circuit board inspection method
WO2014174852A1 (en) Circuit board inspection apparatus and circuit board inspection method
JP5160332B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5844096B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP2013061261A (en) Circuit board inspection device and circuit board inspection method
JP5420303B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5213114B2 (en) Continuity inspection method and continuity inspection device
JP2010014597A (en) Mobile contact inspection apparatus
JP5828697B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP6076034B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5512384B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5474392B2 (en) Circuit board inspection apparatus and circuit board inspection method
JP5107104B2 (en) Board inspection equipment
JP2576673B2 (en) Inspection method of bus line of liquid crystal display element substrate
JP5972763B2 (en) Circuit board inspection apparatus and circuit board inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713