JP2006093213A - Manufacturing method of semiconductor element with adhesive layer - Google Patents

Manufacturing method of semiconductor element with adhesive layer Download PDF

Info

Publication number
JP2006093213A
JP2006093213A JP2004273496A JP2004273496A JP2006093213A JP 2006093213 A JP2006093213 A JP 2006093213A JP 2004273496 A JP2004273496 A JP 2004273496A JP 2004273496 A JP2004273496 A JP 2004273496A JP 2006093213 A JP2006093213 A JP 2006093213A
Authority
JP
Japan
Prior art keywords
film
adhesive
adhesive layer
semiconductor
adhesive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004273496A
Other languages
Japanese (ja)
Other versions
JP4923398B2 (en
Inventor
Suzushi Furuya
涼士 古谷
Michio Uruno
道生 宇留野
Takayuki Matsuzaki
隆行 松崎
Michio Masuno
道夫 増野
Maiko Kaneda
麻衣子 金田
Teiichi Inada
禎一 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004273496A priority Critical patent/JP4923398B2/en
Publication of JP2006093213A publication Critical patent/JP2006093213A/en
Application granted granted Critical
Publication of JP4923398B2 publication Critical patent/JP4923398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a semiconductor element with an adhesive layer, in which stealth dicing method or dicing before grinding is used to reduce cracking or chipping of a wafer to obtain a semiconductor element with an adhesive film, resulting in improved productivity and workability in manufacturing of a semiconductor device. <P>SOLUTION: The manufacturing method of a semiconductor element with an adhesive layer includes a process in which a base material film 3, an adhesive layer 2, and a semiconductor wafer 1 are laminated in the order; a process in which the semiconductor wafer 1 is cut at prescribed positions to form a plurality of semiconductor elements; a process in which the base material film 3 is expanded in horizontal direction to form gaps among a plurality of semiconductor elements, for reforming or partially removing the adhesive layer present in the gap among the plurality of semiconductor elements when viewed from the semiconductor wafer 1 side; and a process for cutting the adhesive layer at the reformed part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、接着剤層付き半導体素子の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor element with an adhesive layer.

従来、半導体チップとリードフレーム等の支持部材との接合には銀ペーストが主に使用されていた。しかし、近年の半導体チップの小型化・高性能化に伴い、使用されるリードフレームも小型化・細密化が要求されるようになり、銀ペーストでは、ワイヤボンディング時においてハミ出しや半導体チップの傾きに起因する不具合が発生したり、あるいは接着剤層の膜厚の制御が困難であったり、接着剤層にボイドが発生する等の理由で、上記要求に対処しきれなくなってきた。   Conventionally, silver paste has been mainly used for joining a semiconductor chip and a support member such as a lead frame. However, with the recent miniaturization and high performance of semiconductor chips, the lead frames used are also required to be miniaturized and densified. With silver paste, squeezing and tilting of the semiconductor chip during wire bonding are required. The above-mentioned demands cannot be dealt with because of problems such as occurrence of defects, difficulty in controlling the film thickness of the adhesive layer, and generation of voids in the adhesive layer.

そこで、近年は、銀ペーストに代えて接着フィルム(フィルム状接着剤、フィルム状ダイボンド材、等ともいう。)を、いわゆる個片貼付け方式として、あるいはウェハ裏面貼付け方式で使用するようになってきている。前者の個片貼付け方式で半導体装置を製造する場合、ロール状(リール状)の接着フィルムからカッティングあるいはパンチングによって接着フィルムの個片を切り出した後、この個片をリードフレームに貼り付け、得られた接着フィルム付きリードフレームに、予めダイシング工程にて切断分離(ダイシング)した素子小片(半導体チップ)を載置し接合(ダイボンド)して半導体チップ付きリードフレームを作製し、その後、必要に応じてワイヤボンド工程、封止工程などを経て半導体装置とする。しかし、この場合は、ロール状の接着フィルムから接着フィルムの個片を切り出し、これをリードフレームへ接着させる専用の組立装置が必要なことから、銀ペーストを使用する方法に比べて製造コストが割高になる。   Therefore, in recent years, instead of silver paste, an adhesive film (also referred to as a film-like adhesive, a film-like die-bonding material, etc.) has been used as a so-called individual piece attaching method or a wafer back surface attaching method. Yes. When a semiconductor device is manufactured by the former method of attaching individual pieces, an individual piece of adhesive film is cut out from a roll-like (reel-like) adhesive film by cutting or punching, and then the individual piece is attached to a lead frame. An element film (semiconductor chip) previously cut and separated (diced) in a dicing process is placed on a lead frame with an adhesive film and bonded (die-bonded) to produce a lead frame with a semiconductor chip. A semiconductor device is obtained through a wire bonding process, a sealing process, and the like. However, in this case, a dedicated assembly device that cuts out pieces of the adhesive film from the roll-like adhesive film and adheres it to the lead frame is required. Therefore, the manufacturing cost is higher than the method using silver paste. become.

一方、後者のウェハ裏面貼付け方式で半導体装置を製造する場合は、まず半導体ウェハの裏面に接着フィルムを貼り付け、更にこの上にダイシングテープを貼り合わせ、その後、ダイシングによって接着フィルムが付いた状態で半導体ウェハを個片化し、得られた接着フィルム付き半導体チップの各個片をピックアップし、これをリードフレームに貼り付け、その後、加熱、硬化、ワイヤボンドなどの工程を経て半導体装置とする。この方法では、接着フィルム付き半導体チップをリードフレームに接合するために、接着フィルムを個片化する装置を必要とせず、従来の銀ペースト用の組立装置をそのままあるいは熱盤を付加するなどの装置の一部改良で済むため、製造コストを比較的安く抑えることができる。そのため、接着シートを用いた組立方法の中で製造コストが比較的安く抑えられる方法として利用されている。   On the other hand, in the case of manufacturing a semiconductor device by the latter wafer back surface pasting method, an adhesive film is first pasted on the back surface of the semiconductor wafer, and further a dicing tape is pasted thereon, and then an adhesive film is attached by dicing. The semiconductor wafer is separated into individual pieces, and the individual pieces of the obtained semiconductor chip with an adhesive film are picked up and affixed to a lead frame. Thereafter, the semiconductor device is obtained through processes such as heating, curing, and wire bonding. In this method, in order to join the semiconductor chip with the adhesive film to the lead frame, an apparatus for separating the adhesive film into pieces is not required, and the conventional silver paste assembling apparatus is used as it is or a heating plate is added. Therefore, the manufacturing cost can be kept relatively low. Therefore, it is used as a method in which the manufacturing cost can be kept relatively low in the assembling method using the adhesive sheet.

しかし、このような個片貼付け方法やウェハ裏面貼付け方法では、ダイヤモンドブレードの磨耗による製造コストの上昇やウェハの厚みの薄型化によるダイシング時のチップの割れ、欠けが起こり易くなり歩留の低下を招いていた。   However, such individual piece attaching method and wafer back surface attaching method increase the manufacturing cost due to wear of the diamond blade, and chip cracking and chipping at the time of dicing due to the thinning of the wafer thickness tend to reduce the yield. I was invited.

近年、ウェハの切断方法として、ステルスダイシング方法と先ダイシング方法が提案されている。前者、ステルスダイシング方法はウェハにレーザ光を照射することによりウェハ内部に選択的に改質部を形成し、その後改質部に沿ってダイシングテープを水平方向に引き伸ばすことによりウェハを切断する方法である(例えば特許文献3参照)。このステルスダイシング方法には、チッピングなどの不良を低減する歩留向上効果、また、ダイヤモンドブレードでの切断時に生じる切断幅(カーフ幅)を必要としないことから収率向上効果、ダイシング速度の向上による生産性向上効果などがある。また後者、先ダイシング方法は従来ウェハ作製の順序を変更し、厚いウェハの中央部分までダイヤモンドブレードで切り込みを入れ、その後研削、研磨を行い所定の厚さにウェハを調整する方法である。この先ダイシング方法は従来の設備で対応可能であり、従来の技術の応用であることから適用が容易であり、歩留の向上も実現できる。
これら2つのウェハの切断方法はウェハのみの切断が可能であり、半導体装置の製造方法における個片貼付け方法の応用として利用することができる。しかし、ウェハと接着フィルムを同時に切断することができないため接着フィルム付き半導体素子を得ることができるウェハ裏面貼付け方法の応用として利用することはできなかった。
In recent years, stealth dicing methods and tip dicing methods have been proposed as wafer cutting methods. The former, stealth dicing method is a method in which a modified portion is selectively formed inside the wafer by irradiating the wafer with laser light, and then the wafer is cut by stretching the dicing tape in the horizontal direction along the modified portion. Yes (see Patent Document 3, for example). This stealth dicing method has a yield improvement effect that reduces defects such as chipping, and because it does not require a cutting width (kerf width) that occurs when cutting with a diamond blade, it improves yield and improves dicing speed. There is a productivity improvement effect. Further, the latter, the prior dicing method, is a method in which the order of wafer fabrication is changed, a diamond blade is cut to the center of a thick wafer, and then the wafer is adjusted to a predetermined thickness by grinding and polishing. This prior dicing method can be handled by conventional equipment, and since it is an application of conventional technology, it is easy to apply and can also improve yield.
These two wafer cutting methods can cut only the wafer, and can be used as an application of the piece pasting method in the semiconductor device manufacturing method. However, since the wafer and the adhesive film cannot be cut at the same time, they could not be used as an application of the wafer back surface attaching method capable of obtaining a semiconductor element with an adhesive film.

特開平7−045557号公報Japanese Patent Laid-Open No. 7-045557 特開2002−192370号公報JP 2002-192370 A 特開2003−338467号公報JP 2003-338467 A

上記2つのダイシング方法はウェハ切断方法であり、接着フィルムを同時に切断することはできない。そのため、ウェハ裏面貼付け方法のような接着フィルム付きの半導体素子を得ることができなかった。本発明の目的は上記2つのダイシング方法にて接着フィルム付き半導体素子を得ることができる半導体装置の製造方法とこの製造方法に適用できる接着フィルムを提供することである。   The above two dicing methods are wafer cutting methods, and the adhesive film cannot be cut simultaneously. Therefore, a semiconductor element with an adhesive film as in the wafer back surface attaching method could not be obtained. An object of the present invention is to provide a manufacturing method of a semiconductor device capable of obtaining a semiconductor element with an adhesive film by the two dicing methods and an adhesive film applicable to this manufacturing method.

上記目的を達成するために、本発明者らは種々検討した結果、所定の位置で切断された半導体ウェハと接着フィルムと粘着テープをこの順に積層した構造であり、半導体素子と隣接する半導体素子の間の接着フィルムを改質し、半導体素子と隣接する半導体素子の間の接着フィルムを切断することで複数の個片化された接着フィルム付き半導体素子を得ることができる半導体装置の製造方法と製造方法に適用できる接着フィルムを提供している。   In order to achieve the above object, as a result of various studies, the present inventors have a structure in which a semiconductor wafer cut at a predetermined position, an adhesive film, and an adhesive tape are laminated in this order. Semiconductor device manufacturing method and manufacturing capable of obtaining a plurality of individual semiconductor elements with an adhesive film by modifying the adhesive film between them and cutting the adhesive film between the semiconductor element and the adjacent semiconductor element An adhesive film applicable to the method is provided.

すなわち、本発明は以下の発明に関する。
<1> 基材フィルムと接着剤層と半導体ウェハをこの順に積層する工程と、
所定の位置で半導体ウェハを切断して複数個の半導体素子を形成する工程と、
前記基材フィルムを水平方向に延伸させて前記複数個の半導体素子間に間隙を形成する工程と、
半導体ウェハ側からみて前記複数の半導体素子間の間隙部分に存在する接着剤層を改質又は一部を除去する工程と、
改質された部分で前記接着剤層を切断する工程と、
を含むことを特徴とする接着剤層付き半導体素子の製造方法。
<2> 前記接着剤層を切断する工程は、前記基材フィルムを水平方向に10〜1000mm/秒の速度で5〜50mm引き伸ばすことで接着剤層を切断することを特徴とする<1>記載の接着剤層付き半導体素子の製造方法。
<3> 前記改質は、接着剤層の破断強度を30MPa以下とし、破断伸びを40%以下とする改質であることを特徴とする<1>記載の接着剤層付き半導体素子の製造方法。
<4> 前記改質は、改質前と比較して接着剤層の膜厚を薄くする又は接着剤層を除去することを特徴とする<1>記載の接着剤層付き半導体素子の製造方法。
<5> 基材フィルムと接着剤層と半導体ウェハをこの順に積層する工程と、所定の位置で半導体ウェハを切断して複数個の半導体素子を形成する工程と、前記基材フィルムを水平方向に延伸させて前記複数個の半導体素子間に間隙を形成する工程と、半導体ウェハ側からみて前記複数の半導体素子間の間隙部分に存在する接着剤層を除去する工程と、を含むことを特徴とする接着剤層付き半導体素子の製造方法。
That is, the present invention relates to the following inventions.
<1> a step of laminating a base film, an adhesive layer and a semiconductor wafer in this order;
Cutting a semiconductor wafer at a predetermined position to form a plurality of semiconductor elements;
Stretching the base film in a horizontal direction to form a gap between the plurality of semiconductor elements;
A step of modifying or removing a part of the adhesive layer present in a gap portion between the plurality of semiconductor elements as viewed from the semiconductor wafer side;
Cutting the adhesive layer at the modified portion;
The manufacturing method of the semiconductor element with an adhesive bond layer characterized by including these.
<2> The step of cutting the adhesive layer cuts the adhesive layer by stretching the base film at a rate of 10 to 1000 mm / second in the horizontal direction by 5 to 50 mm. <1> Of manufacturing a semiconductor element with an adhesive layer.
<3> The method for producing a semiconductor element with an adhesive layer according to <1>, wherein the modification is a modification in which the breaking strength of the adhesive layer is 30 MPa or less and the elongation at break is 40% or less. .
<4> The method for producing a semiconductor element with an adhesive layer according to <1>, wherein the modification is performed by reducing the thickness of the adhesive layer or removing the adhesive layer as compared with that before the modification. .
<5> A step of laminating a base film, an adhesive layer, and a semiconductor wafer in this order, a step of cutting the semiconductor wafer at a predetermined position to form a plurality of semiconductor elements, and the base film in the horizontal direction And a step of forming a gap between the plurality of semiconductor elements by stretching, and a step of removing an adhesive layer present in a gap portion between the plurality of semiconductor elements as viewed from the semiconductor wafer side. A method for manufacturing a semiconductor element with an adhesive layer.

本発明の半導体装置の製造方法と接着フィルムによるとステルスダイシング方法や先ダイシング方法を用いてウェハの割れや欠けを低減しつつ、接着フィルム付き半導体素子を得ることができ、半導体装置の製造上、生産性と作業性が向上する。   According to the method for manufacturing a semiconductor device and an adhesive film of the present invention, a semiconductor element with an adhesive film can be obtained while reducing wafer cracks and chips using a stealth dicing method or a tip dicing method. Productivity and workability are improved.

本発明の製造方法としては、図1に示すような工程が挙げられる。図1はウェハを切断した後の構成図であり、本発明の半導体装置の製造方法である。図1(a)はすでにステルスダイシング方法や先ダイシング方法などで所定の位置で切断されたウェハに接着フィルムと粘着テープを貼り付けた構造の上面図である。図1(b)はこれらの構造の側面図である。図1において、1は半導体ウェハ、2は接着層、3粘着シートである。図1における粘着シートは、粘着剤が半導体ウェハと同心の円形をしているが、この形状に限られず、例えば基材に対して全面に粘着剤が塗られていても良いことはいうまでもない。   As a manufacturing method of this invention, a process as shown in FIG. 1 is mentioned. FIG. 1 is a configuration diagram after cutting a wafer, which is a method for manufacturing a semiconductor device of the present invention. FIG. 1A is a top view of a structure in which an adhesive film and an adhesive tape are attached to a wafer that has already been cut at a predetermined position by a stealth dicing method or a tip dicing method. FIG. 1B is a side view of these structures. In FIG. 1, 1 is a semiconductor wafer, 2 is an adhesive layer, and 3 adhesive sheets. The pressure-sensitive adhesive sheet in FIG. 1 has a concentric circular shape with the semiconductor wafer, but is not limited to this shape. For example, the pressure-sensitive adhesive may be applied to the entire surface of the base material. Absent.

まず、基材フィルムと接着剤層と半導体ウェハをこの順に積層する工程と、所定の位置で半導体ウェハを切断して複数個の半導体素子を形成する工程の例について図2〜4を用いて説明する。   First, an example of a step of laminating a base film, an adhesive layer, and a semiconductor wafer in this order, and a step of cutting a semiconductor wafer at a predetermined position to form a plurality of semiconductor elements will be described with reference to FIGS. To do.

図2は公知のダイシングブレードを用いたダイシング方法であり、粘着シートをウェハや接着フィルムと水平方向に引き伸ばすことで半導体素子と隣り合う半導体素子との間に隙間を作った状態の側面図を示す。さらに図3(a)は本発明の接着フィルムを改質した状態を示す。図3(b)はこの状態のウェハ上面から放射線照射、加熱及び冷却あるいはガスや溶媒などを用いて半導体素子と隣り合う半導体素子の間の接着フィルムを改質した状態を示す拡大図である。図3(c)は同様にウェハ上面から放射線照射、加熱及び冷却あるいはガスや溶媒などを用いて半導体素子と隣り合う半導体素子の間の接着フィルムの膜厚を減少させた状態を示す拡大図である。このような図3(b)、(c)の状態から粘着フィルムをウェハあるいは接着フィルムと水平方向に引っ張ることで接着フィルムを切断し図4のように接着フィルム付きの半導体素子を得ることができる。   FIG. 2 shows a dicing method using a known dicing blade, and shows a side view of a state in which a gap is created between a semiconductor element and an adjacent semiconductor element by stretching the adhesive sheet horizontally with the wafer or adhesive film. . Further, FIG. 3 (a) shows a modified state of the adhesive film of the present invention. FIG. 3B is an enlarged view showing a state in which the adhesive film between the semiconductor element and the adjacent semiconductor element is modified using radiation irradiation, heating and cooling, or gas or a solvent from the upper surface of the wafer in this state. FIG. 3C is an enlarged view showing a state in which the film thickness of the adhesive film between the semiconductor elements and the adjacent semiconductor elements is similarly reduced by irradiation, heating and cooling from the upper surface of the wafer or using a gas or a solvent. is there. By pulling the adhesive film in the horizontal direction with the wafer or the adhesive film from the state shown in FIGS. 3B and 3C, the adhesive film can be cut to obtain a semiconductor element with the adhesive film as shown in FIG. .

上記の積層方法は、基材フィルム上に接着層を設けた接着フィルムを予め用意し、これに半導体ウェハを積層しても良いし、逆に半導体ウェハ上に接着層を形成し、これにダイシングテープを貼り合わせても良い。   In the above lamination method, an adhesive film in which an adhesive layer is provided on a base film is prepared in advance, and a semiconductor wafer may be laminated thereon, or conversely, an adhesive layer is formed on the semiconductor wafer and dicing is performed thereon. Tapes may be attached together.

また、図1〜4においては、基材フィルムとしてダイシングテープを使用したが、接着層として粘接着層を使用し、これを基材フィルム上に形成した、いわゆる一体型の接着フィルムであってもよいことはいうまでもない。   Moreover, in FIGS. 1-4, although the dicing tape was used as a base film, it is what is called an integrated adhesive film which used the adhesive layer as an adhesive layer, and formed this on the base film, It goes without saying.

上記基材フィルムとしては、水平方向に延伸させて前記複数個の半導体素子間に間隙を形成する工程を含むため延伸性に優れたフィルムが好ましい。そのため基材フィルムに用いられる成分としてはポリエチレンテレフタレートフィルム等のポリエステル系フィルム、ポリテトラフルオロエチレンフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリビニルアセテートフィルム等のポリオレフィン系フィルム、ポリ塩化ビニルフィルム、ポリイミドフィルムなどのプラスチックフィルム等や紙、不織布等が使用できるが、より延伸性を考慮するとポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリビニルアセテートフィルム等のポリオレフィン系フィルム、ポリ塩化ビニルフィルムが好ましく用いられる。また、基材フィルムの厚みは、通常10〜500μm、好ましくは50〜200μmである。   The base film is preferably a film excellent in stretchability because it includes a step of stretching in the horizontal direction to form a gap between the plurality of semiconductor elements. Therefore, as a component used for the base film, a polyester film such as a polyethylene terephthalate film, a polytetrafluoroethylene film, a polyethylene film, a polypropylene film, a polymethylpentene film, a polyolefin film such as a polyvinyl acetate film, a polyvinyl chloride film, Plastic film such as polyimide film, paper, non-woven fabric, etc. can be used, but considering more stretchability, polyolefin film such as polyethylene film, polypropylene film, polymethylpentene film, polyvinyl acetate film, and polyvinyl chloride film are preferably used. It is done. Moreover, the thickness of a base film is 10-500 micrometers normally, Preferably it is 50-200 micrometers.

次に、前記基材フィルムを水平方向に延伸させて前記複数個の半導体素子間に間隙を形成する。   Next, the base film is stretched in the horizontal direction to form gaps between the plurality of semiconductor elements.

次に、半導体ウェハ側からみて前記複数の半導体素子間の間隙部分に存在する接着剤層を改質又は一部を除去する。本発明の製造方法は、これまでの工程で半導体素子間に間隙をつくり、これをマスクとして、接着剤が露出した部分だけ改質させることを特徴とする。以下、この工程について詳細に説明する。   Next, the adhesive layer present in the gaps between the plurality of semiconductor elements as seen from the semiconductor wafer side is modified or partially removed. The manufacturing method of the present invention is characterized in that a gap is formed between semiconductor elements in the steps so far, and this is used as a mask to modify only a portion where the adhesive is exposed. Hereinafter, this process will be described in detail.

上記の改質としては、例えば、破断伸び及び破断強度を特定の値に変化させること、露出した部分のみの薄膜を挙げることができる。改質させるための手段としては例えば、放射線照射、加熱、冷却、ガスや溶剤による溶解等を挙げることができ、これらは単独で又は2種類以上を組み合わせて使用することができる。   Examples of the modification include changing the breaking elongation and breaking strength to specific values, and a thin film only in exposed portions. Examples of the means for reforming include irradiation, heating, cooling, dissolution with gas or solvent, and the like. These can be used alone or in combination of two or more.

破断伸び及び破断強度を特定の値に変化させる場合、破断強度が30MPa以下かつ破断伸びが40%以下とすることが好ましい。本発明の接着フィルムは改質直後、破断強度30MPaを超える場合、引っ張りにより切断できなくなる傾向があり、破断伸びが40%を超える場合も、引っ張りにより切断できなくなる傾向にある。このため、改質後の接着フィルムは破断強度20MPa以下が好ましく、10MPa以下がさらに好ましい。同様に改質後の接着フィルムは破断伸び35%以下が好ましく、30%以下がさらに好ましい。   When changing the breaking elongation and breaking strength to specific values, it is preferable that the breaking strength is 30 MPa or less and the breaking elongation is 40% or less. Immediately after the modification, the adhesive film of the present invention tends to be unable to be cut by pulling when the breaking strength exceeds 30 MPa, and tends to be unable to be cut by pulling even when the elongation at break exceeds 40%. For this reason, the adhesive film after modification preferably has a breaking strength of 20 MPa or less, and more preferably 10 MPa or less. Similarly, the modified adhesive film preferably has a breaking elongation of 35% or less, more preferably 30% or less.

接着フィルムの破断強度、破断伸びは、幅10mm、チャック間距離20mm、厚さ1〜250μmの試料について、引っ張り試験機を用いて引っ張り速度0.5m/minで応力、ひずみ曲線を測定し、それから、下式により得たものである。
破断強度(Pa)=最大強度(N)/試料の断面積(m
破断伸び(%)=(破断時の試料のチャック間長さ(mm)−20)/20×100
The breaking strength and breaking elongation of the adhesive film were measured for stress and strain curves at a pulling rate of 0.5 m / min using a tensile tester on a sample having a width of 10 mm, a distance between chucks of 20 mm, and a thickness of 1 to 250 μm. , Obtained by the following formula.
Breaking strength (Pa) = maximum strength (N) / cross-sectional area of sample (m 2 )
Elongation at break (%) = (Length between chucks of sample at break (mm) −20) / 20 × 100

接着フィルムの破断強度を上昇させるためには、弾性率を高くするとともに、材料のじん性を大きくすることが有効である。具体的には、各種フィラー添加により弾性率を高くするとともに、材料のじん性を改良するために、少量のゴムなどを添加することが有効である。破断強度を低減するためには、オリゴマー、モノマーの添加量を多くし、フィルムの破断伸びを低減することが有効である。   In order to increase the breaking strength of the adhesive film, it is effective to increase the elastic modulus and increase the toughness of the material. Specifically, it is effective to add a small amount of rubber or the like in order to increase the elastic modulus by adding various fillers and to improve the toughness of the material. In order to reduce the breaking strength, it is effective to increase the addition amount of oligomers and monomers to reduce the breaking elongation of the film.

破断伸びを上昇させるためには、材料の可とう性、じん性を向上させることが有効であり、例えば、低Tgで分子量の大きい高分子量成分の量、軟化点が30℃未満のオリゴマー、モノマーの添加量を多くすることが有効である。破断伸びを低減するためには、軟化点が30℃以上のオリゴマー、モノマーの添加量、高Tgの高分子量成分量を多くすること、フィラーを添加することでじん性を低下することが有効である。   In order to increase the elongation at break, it is effective to improve the flexibility and toughness of the material. For example, the amount of a high molecular weight component having a low Tg and a large molecular weight, and an oligomer or monomer having a softening point of less than 30 ° C. It is effective to increase the amount of added. In order to reduce the elongation at break, it is effective to decrease the toughness by increasing the amount of high molecular weight components having a softening point of 30 ° C. or higher, the amount of high-Tg high molecular weight components added, and fillers. is there.

接着フィルムは分子内に不飽和2重結合を1個以上有するアクリルモノマーとその光開始剤を含むなどにより、UV硬化性を有していても良く、低温でラミネート後、UV照射により、破断伸びを低下させることで、破断性を向上できる。また、切断できなかった部分を認識しやすい点で、接着フィルムは粘着テープと透明性や色調が異なることが好ましい。
放射線照射や冷却、ガスや溶剤により改質し、半導体素子と隣接する半導体素子の間の接着フィルムを切断することで複数の個片化された接着フィルム付き半導体素子を得ることができる半導体装置の製造方法を提供するものである。
The adhesive film may have UV curability by including an acrylic monomer having one or more unsaturated double bonds in the molecule and its photoinitiator, etc., and after elongation at low temperature, the elongation at break by UV irradiation It is possible to improve the breakability by reducing. Moreover, it is preferable that an adhesive film differs in transparency and a color tone from an adhesive tape at the point which recognizes the part which could not be cut | disconnected.
A semiconductor device capable of obtaining a plurality of individual semiconductor elements with an adhesive film by cutting with an irradiation film between a semiconductor element and an adjacent semiconductor element by modification with radiation irradiation, cooling, gas or solvent A manufacturing method is provided.

すなわち、本発明は、ステルスダイシング方法や先ダイシング方法で所定の位置で切断され複数の半導体素子に分割された半導体ウェハと接着フィルム、ウェハリングを固定する粘着テープを用いて、ウェハ、接着フィルム、粘着テープをこの順に積層した構造を有しており、この積層構造中の半導体素子と隣接する半導体素子の間の接着フィルムは本発明の半導体装置の製造方法を用いることでダイシング時のウェハの割れや欠けなどの低減し歩留向上や生産性向上の効果があり、かつ接着フィルム付き半導体素子を得ることができ、半導体装置製造における作業性と生産性に優れるものである。   That is, the present invention includes a semiconductor wafer and an adhesive film that are cut at a predetermined position by a stealth dicing method or a tip dicing method and divided into a plurality of semiconductor elements, an adhesive tape that fixes the wafer ring, a wafer, an adhesive film, It has a structure in which adhesive tapes are laminated in this order, and an adhesive film between a semiconductor element in this laminated structure and an adjacent semiconductor element is used to crack a wafer during dicing by using the semiconductor device manufacturing method of the present invention. In addition, the semiconductor device with an adhesive film can be obtained, and the workability and productivity in semiconductor device manufacturing are excellent.

ここで、本発明の接着フィルムは放射線照射や冷却、ガスや溶剤により改質した後に、粘着テープを10〜1000mm/秒の速度で5〜50mm引き伸ばすことで切断できる接着フィルムを提供している。引っ張り速度としては半導体素子や粘着テープの破損が起こらず、接着フィルムが切断する範囲で引っ張る必要があり、10〜100mm/秒であることが好ましく、10〜50mm/秒であることがさらに好ましい。10mm/秒未満では接着フィルムが切断できない傾向があり、100mm/秒を超えると粘着テープが破断しやすくなる傾向がある。また、引っ張り量としても粘着テープが破損せず、接着フィルムが切断する範囲で引っ張る必要があり、10〜30mmであることが好ましく、15〜20mmであることがさらに好ましい。引っ張り量が5mm未満では接着フィルムが切断できない傾向があり、50mmを超えると粘着フィルムが破断しやすくなる傾向がある。
また、引っ張り量が25mmを超える場合、粘着テープの基材層としては塩化ビニルテープが適しているが、引っ張り量が25mm以下の場合は粘着テープの基材層としてはポリオレフィンテープが適している。
Here, the adhesive film of the present invention provides an adhesive film that can be cut by stretching the adhesive tape by 5 to 50 mm at a rate of 10 to 1000 mm / sec after being modified by radiation irradiation, cooling, gas or solvent. As the pulling speed, the semiconductor element or the adhesive tape is not damaged, and it is necessary to pull the adhesive film within a range where the adhesive film is cut. The pulling speed is preferably 10 to 100 mm / sec, and more preferably 10 to 50 mm / sec. If it is less than 10 mm / sec, there is a tendency that the adhesive film cannot be cut, and if it exceeds 100 mm / sec, the pressure-sensitive adhesive tape tends to break. Moreover, it is necessary to pull in the range which an adhesive film does not damage as an amount of tension | pulling, and an adhesive film cut | disconnects, and it is preferable that it is 10-30 mm, and it is more preferable that it is 15-20 mm. If the amount of pulling is less than 5 mm, the adhesive film tends not to be cut, and if it exceeds 50 mm, the pressure-sensitive adhesive film tends to break.
Further, when the pulling amount exceeds 25 mm, a vinyl chloride tape is suitable as the base layer of the adhesive tape. However, when the pulling amount is 25 mm or less, a polyolefin tape is suitable as the base layer of the adhesive tape.

また、本発明の接着フィルムでは放射線照射や加熱や冷却、ガスや溶剤により改質した直後、膜厚が薄くなるあるいはフィルムがなくなることを特徴としている。本発明の接着フィルムは膜厚を変化させ、切断することを特徴としている。膜厚変化はもとの厚みに対して90%以下になることが好ましいが、接着フィルムの切断がより容易になるためには50%以下が好ましく、30%以下がさらに好ましい。また放射線照射や加熱や冷却、ガスや溶剤により半導体素子と隣接する半導体素子の間の接着フィルムが完全になくなる場合は、事実上接着フィルムは切断されているためより好ましい。   Further, the adhesive film of the present invention is characterized in that the film thickness becomes thin or the film disappears immediately after irradiation, heating, cooling, reforming with gas or solvent. The adhesive film of the present invention is characterized by being cut by changing the film thickness. The change in film thickness is preferably 90% or less with respect to the original thickness, but is preferably 50% or less and more preferably 30% or less in order to make the cutting of the adhesive film easier. Further, when the adhesive film between the semiconductor elements adjacent to the semiconductor element is completely removed by radiation irradiation, heating, cooling, gas, or solvent, the adhesive film is actually cut, which is more preferable.

接着フィルムは紫外線、赤外線若しくはマイクロ波を照射する、又は、加熱若しくは冷却する、あるいはガスや溶剤により溶解、溶融するなどの後処理により、引っ張る直前に上記特性範囲に改質することを特徴としているが、改質前の状態において上記特性範囲にあればより好ましい。   The adhesive film is characterized by being modified to the above characteristic range immediately before being pulled by post-treatment such as irradiation with ultraviolet rays, infrared rays or microwaves, heating or cooling, or dissolution or melting with a gas or a solvent. However, it is more preferable if it is in the above characteristic range in the state before the reforming.

また、切断可能である範囲で、本発明の接着フィルムを複数重ね合わせ、複層の接着シートにしてもよい。また、本発明の接着フィルムと、例えば、熱可塑フィルム、粘着剤、熱硬化樹脂などからなるフィルムを組合せ、フィルムの両面に接着フィルムを重ね合わせるなどし、複層の接着フィルムにしても良い。なお、切断可能である範囲とは、複層にした接着フィルムが改質直後の破断強度及び破断伸びが上記特性範囲にあることをいう。このようなフィルムとして、例えば、ポリイミド、ポリエステルなどの熱可塑性樹脂、エポキシ樹脂、シリコーン樹脂、およびこれらの混合物等からなるフィルムを挙げることができる。これらのフィルムは、各種フィラーを含んでいてもよい。   In addition, a plurality of adhesive films of the present invention may be stacked to form a multilayer adhesive sheet as long as it can be cut. Further, the adhesive film of the present invention may be combined with a film made of, for example, a thermoplastic film, a pressure-sensitive adhesive, a thermosetting resin, etc., and the adhesive film may be overlapped on both surfaces of the film to form a multilayer adhesive film. In addition, the range which can be cut | disconnected means that the breaking strength and breaking elongation immediately after modification | reformation of the adhesive film made into the multilayer are in the said characteristic range. Examples of such films include films made of thermoplastic resins such as polyimide and polyester, epoxy resins, silicone resins, and mixtures thereof. These films may contain various fillers.

本発明の接着フィルムは、動的粘弾性測定による弾性率が一定の温度、周波数依存性を有する場合、室温での可とう性維持し、かつ室温でウェハ切断時に接着シートも同時に切断でき、さらには40〜100℃で貼付することが可能であり好ましい。本発明の接着シートは、25℃の10Hzの動的粘弾性測定による弾性率が1〜3000MPaであることが好ましく、取扱い時に接着シートにクラックが発生し難い点から、好ましくは10〜1500MPa、さらに好ましくは100〜1200MPaである。弾性率が1MPa未満であると、接着シートの伸びが大きく、取扱いし難いため好ましくない。弾性率が3000MPaを超えると、取扱い時に接着シートにクラックが発生するため好ましくない。   The adhesive film of the present invention can maintain flexibility at room temperature when the elastic modulus by dynamic viscoelasticity measurement has a constant temperature and frequency dependence, and can also cut the adhesive sheet at the same time when cutting the wafer at room temperature. Is preferable because it can be applied at 40 to 100 ° C. The adhesive sheet of the present invention preferably has an elastic modulus of 1 to 3000 MPa as measured by dynamic viscoelasticity at 25 ° C. and 10 Hz, and preferably 10 to 1500 MPa, since the adhesive sheet is less likely to crack during handling. Preferably it is 100-1200 MPa. An elastic modulus of less than 1 MPa is not preferable because the adhesive sheet has a large elongation and is difficult to handle. An elastic modulus exceeding 3000 MPa is not preferable because cracks occur in the adhesive sheet during handling.

さらに、25℃の900Hzの動的粘弾性測定による弾性率は4000〜20000MPaであることが好ましく、好ましくは5000〜15000MPaである。4000MPa未満であると切断し難くなる傾向があり、20000MPaを超えると取り扱い時にクラックが発生し易い傾向がある。あるいは、−20℃の10Hzの動的粘弾性測定による弾性率は4000〜20000MPaであることが好ましく、さらに好ましくは5000〜15000MPaである。4000MPa未満であると切断し難くなる傾向があり、20000MPaを超えると取り扱い時にクラックが発生し易い傾向がある。   Furthermore, it is preferable that the elasticity modulus by 25 degreeC 900Hz dynamic viscoelasticity measurement is 4000-20000 MPa, Preferably it is 5000-15000 MPa. If it is less than 4000 MPa, it tends to be difficult to cut, and if it exceeds 20000 MPa, cracks tend to occur during handling. Or it is preferable that the elasticity modulus by -20 degreeC 10-Hz dynamic viscoelasticity measurement is 4000-20000 MPa, More preferably, it is 5000-15000 MPa. If it is less than 4000 MPa, it tends to be difficult to cut, and if it exceeds 20000 MPa, cracks tend to occur during handling.

このフィルムはウェハのそりが小さく、また、室温の取扱い性が良いことから、0〜100℃の間でウェハにラミネートすることが好ましい。したがって、接着フィルムの60℃、10Hzの動的粘弾性測定による弾性率が0.1〜20MPaであることが好ましく、より好ましくは10MPa以下、さらに好ましくは5MPa以下である。0.1MPa未満であると貼付後にフィルムがウェハから剥離したり、ずれることがあるため好ましくない。   Since this film has a small warpage of the wafer and good handleability at room temperature, it is preferably laminated on the wafer at a temperature of 0 to 100 ° C. Accordingly, the elastic modulus of the adhesive film as measured by dynamic viscoelasticity measurement at 60 ° C. and 10 Hz is preferably 0.1 to 20 MPa, more preferably 10 MPa or less, and further preferably 5 MPa or less. If the pressure is less than 0.1 MPa, the film may be peeled off from the wafer after the sticking or may be displaced.

また、本発明の接着フィルムと粘着テープとのBステージ状態における90°ピール強度が、150N/m以下であることが好ましく、5〜100N/mであることがより好ましく、5〜50N/mであることがさらに好ましい。ピール強度が100N/mを超えるとピックアップ時にチップが割れる傾向がある。なお、ピール強度の測定は、25℃の雰囲気中で、90℃の角度で、50mm/分の引張り速度で剥がした際の結果である。   Moreover, it is preferable that the 90 degree peel strength in the B-stage state of the adhesive film of the present invention and the adhesive tape is 150 N / m or less, more preferably 5 to 100 N / m, and 5 to 50 N / m. More preferably it is. If the peel strength exceeds 100 N / m, the chip tends to break during pickup. The measurement of peel strength is the result when peeling was performed at an angle of 90 ° C. and a pulling speed of 50 mm / min in an atmosphere of 25 ° C.

尚、本発明の接着フィルムは、エキスパンド工程直前において、破断強度が30MPa以下かつ破断伸びが40%以下であるという前記特性に加えて、半導体チップ搭載用支持部材に半導体素子を実装する場合に要求される耐熱性および耐湿性を有するものであることが好ましい。また、接着フィルムは上記特性を満足するものであれば特に制限はないが、適当なタック強度を有しシート状での取扱い性が良好であることから、熱硬化性成分及び、高分子量成分及びフィラーを含むことが好ましく、さらにこれらの他、硬化促進剤、触媒、添加剤、カップリング剤等を含んでも良い。破断強度や破断伸びは接着フィルムに含まれる高分子量成分が多く、また、フィラーが少ないほど高くなる傾向があるので、これらの成分は、規定した範囲内になるよう調節することが必要である好ましい。   The adhesive film of the present invention is required when a semiconductor element is mounted on a support member for mounting a semiconductor chip, in addition to the above properties that the breaking strength is 30 MPa or less and the breaking elongation is 40% or less immediately before the expanding step. It is preferable to have heat resistance and moisture resistance. The adhesive film is not particularly limited as long as it satisfies the above characteristics, but has an appropriate tack strength and good handleability in the form of a sheet, so that a thermosetting component, a high molecular weight component, and It is preferable to include a filler, and in addition to these, a curing accelerator, a catalyst, an additive, a coupling agent, and the like may be included. Since the breaking strength and breaking elongation are high in the high molecular weight component contained in the adhesive film and tend to increase as the amount of filler decreases, these components are preferably adjusted to be within the specified range. .

次に、本発明の接着フィルムに用いられる成分についてより詳細に説明する。
本発明における高分子量成分は、前記接着フィルムの特性を満足するものであれば特に制限はないが、Tg(ガラス転移温度)が−30〜50℃で分子量が5万〜100万の高分子量成分が挙げられる。Tgが50℃を超えると、フィルムの柔軟性が低い点で不都合であり、Tgが−30℃未満であると、フィルムの柔軟性が高すぎるため、ウェハ切断時にフィルムが切断し難い点で都合が悪い。分子量が5万未満であるとフィルムの耐熱性が低下する点で不都合であり、分子量が100万を超えるとフィルムの流動性が低下する点で不都合である。
Next, the components used for the adhesive film of the present invention will be described in more detail.
The high molecular weight component in the present invention is not particularly limited as long as it satisfies the properties of the adhesive film. However, the high molecular weight component has a Tg (glass transition temperature) of −30 to 50 ° C. and a molecular weight of 50,000 to 1,000,000. Is mentioned. When Tg exceeds 50 ° C., it is inconvenient in that the flexibility of the film is low, and when Tg is less than −30 ° C., the flexibility of the film is too high, so that the film is difficult to cut during wafer cutting. Is bad. If the molecular weight is less than 50,000, it is disadvantageous in that the heat resistance of the film is lowered, and if the molecular weight exceeds 1,000,000, it is disadvantageous in that the fluidity of the film is lowered.

ウェハ切断時にフィルムが切断しやすく、また耐熱性が高い点で、Tgが−20℃〜45℃で分子量が10万〜90万の高分子量成分が好ましく、Tgが−20℃〜45℃で分子量が30万〜90万の高分子量成分が好ましく、Tgが−10〜40℃で分子量が50万〜90万の高分子量成分がさらに好ましい。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)で標準ポリスチレンによる検量線を用いたポリスチレン換算値である。   A high molecular weight component having a Tg of −20 ° C. to 45 ° C. and a molecular weight of 100,000 to 900,000 is preferable, and a molecular weight of Tg of −20 ° C. to 45 ° C. is preferable in that the film is easily cut at the time of wafer cutting. Is preferably a high molecular weight component having a molecular weight of 500,000 to 900,000, and more preferably a high molecular weight component having a Tg of -10 to 40 ° C. In addition, a weight average molecular weight is a polystyrene conversion value using the calibration curve by a standard polystyrene by the gel permeation chromatography method (GPC).

具体的には、ポリイミド、ポリスチレン、ポリエチレン、ポリエステル、ポリアミド、ブタジエンゴム、アクリルゴム、(メタ)アクリル樹脂、ウレタン樹脂、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、フェノキシ樹脂、ポリカーボネート、ポリフェニレンエーテル、変性ポリフェニレンエーテル及びそれらの混合物などが挙げられる。特に、官能性モノマーを含む重量平均分子量が10万以上である高分子量成分、例えば、グリシジルアクリレートまたはグリシジルメタクリレートなどの官能性モノマーを含有し、かつ重量平均分子量が10万以上であるエポキシ基含有(メタ)アクリル共重合体などが好ましい。エポキシ基含有(メタ)アクリル共重合体は、たとえば、(メタ)アクリルエステル共重合体、アクリルゴムなどを使用することができ、アクリルゴムがより好ましい。アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリルなどの共重合体や、エチルアクリレートとアクリロニトリルなどの共重合体などからなるゴムである。   Specifically, polyimide, polystyrene, polyethylene, polyester, polyamide, butadiene rubber, acrylic rubber, (meth) acrylic resin, urethane resin, polyphenylene ether resin, polyetherimide resin, phenoxy resin, polycarbonate, polyphenylene ether, modified polyphenylene ether And mixtures thereof. In particular, a high molecular weight component containing a functional monomer and having a weight average molecular weight of 100,000 or more, for example, a functional monomer such as glycidyl acrylate or glycidyl methacrylate, and an epoxy group containing a weight average molecular weight of 100,000 or more ( A (meth) acrylic copolymer is preferred. As the epoxy group-containing (meth) acrylic copolymer, for example, a (meth) acrylic ester copolymer, acrylic rubber or the like can be used, and acrylic rubber is more preferable. Acrylic rubber is a rubber mainly composed of an acrylate ester and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like.

高分子量成分は、接着フィルムの全重量からフィラーの重量を除いた重量に対し、25重量%以上45重量%以下含まれることが好ましく、さらに好ましくは27重量%以上40重量%以下である。配合量が多いと切断性が悪化する傾向があり、配合量が少ないと接着時の流動性が大きすぎるため、ボイドが発生する傾向がある。   The high molecular weight component is preferably contained in an amount of 25% by weight or more and 45% by weight or less, more preferably 27% by weight or more and 40% by weight or less, based on the weight of the adhesive film excluding the weight of the filler. When the blending amount is large, the cutting property tends to be deteriorated, and when the blending amount is small, the fluidity at the time of bonding is too large, and voids tend to be generated.

熱硬化性成分としては、エポキシ樹脂、シアネート樹脂、フェノール樹脂及びその硬化剤等があるが、耐熱性が高い点で、エポキシ樹脂が好ましい。エポキシ樹脂は、硬化して接着作用を有するものであれば特に限定されない。ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ビスフェノールS型エポキシなどの二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂やクレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂などを使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂または脂環式エポキシ樹脂など、一般に知られているものを適用することができる。   Examples of the thermosetting component include an epoxy resin, a cyanate resin, a phenol resin, and a curing agent thereof, and an epoxy resin is preferable in terms of high heat resistance. The epoxy resin is not particularly limited as long as it is cured and has an adhesive action. Bifunctional epoxy resins such as bisphenol A type epoxy, bisphenol F type epoxy and bisphenol S type epoxy, novolac type epoxy resins such as phenol novolak type epoxy resin and cresol novolak type epoxy resin, and the like can be used. Moreover, what is generally known, such as a polyfunctional epoxy resin, a glycidyl amine type epoxy resin, a heterocyclic ring-containing epoxy resin, or an alicyclic epoxy resin, can be applied.

さらに、本発明の接着フィルムには、Bステージ状態の接着フィルムの破断強度、破断伸びの低減、接着フィルムの取扱い性の向上、熱伝導性の向上、溶融粘度の調整、チクソトロピック性の付与などを目的としてフィラー、好ましくは無機フィラーを配合することが好ましい。 Furthermore, the adhesive film of the present invention has a breaking strength, a reduction in elongation at break, an improvement in the handling property of the adhesive film, an improvement in thermal conductivity, an adjustment of melt viscosity, a thixotropic property, etc. For this purpose, it is preferable to add a filler, preferably an inorganic filler.

無機フィラーとしては、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、窒化アルミニウム、ホウ酸アルミウイスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ、アンチモン酸化物などが挙げられる。熱伝導性向上のためには、アルミナ、窒化アルミニウム、窒化ホウ素、結晶性シリカ、非晶性シリカ等が好ましい。溶融粘度の調整やチクソトロピック性の付与の目的には、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、アルミナ、結晶性シリカ、非晶性シリカ等が好ましい。また、耐湿性を向上させるためにはアルミナ、シリカ、水酸化アルミニウム、アン
チモン酸化物が好ましい。
As the inorganic filler, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, aluminum nitride, aluminum borate whisker, boron nitride, crystalline silica, Examples thereof include amorphous silica and antimony oxide. In order to improve thermal conductivity, alumina, aluminum nitride, boron nitride, crystalline silica, amorphous silica and the like are preferable. For the purpose of adjusting melt viscosity and imparting thixotropic properties, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, alumina, crystalline silica, non-crystalline silica Crystalline silica and the like are preferred. In order to improve moisture resistance, alumina, silica, aluminum hydroxide, and antimony oxide are preferable.

また本発明の接着フィルムは改質前後の特性を変化させるため放射線重合性化合物や熱硬化性高分子、ガスや溶媒に対して溶解性、反応性を持つ物質を含むことが好ましい。放射線重合性化合物としては特に制限は無く、例えば、アクリル酸化合物や、メタクリル酸化合物、アクリル酸エステル化合物、メタクリル酸エステル化合物、芳香族化合物、芳香族アミン系化合物、ジオール系化合物、イソシアネート化合物、ウレタン(メタ)アクリレート化合物、尿素メタクリレート化合物及び側鎖にエチレン性不飽和基を有する放射線重合性共重合体が挙げられる。これらの放射線重合性化合物は、単独で又は2種類以上を組み合わせても、使用することができる。熱硬化性高分子としては上記の化合物が挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。ガスや溶媒に対して、溶解性、反応性をもつ物質としては特に制限はないが、例えば、アクリル酸化合物や、メタクリル酸化合物、アクリル酸エステル化合物、メタクリル酸エステル化合物、芳香族化合物、芳香族アミン系化合物などが挙げられる。これらの成分も単独で又は2種類以上を組み合わせて使用することができる。   The adhesive film of the present invention preferably contains a radiation-polymerizable compound, a thermosetting polymer, a substance having solubility and reactivity with respect to gas and solvent in order to change the properties before and after the modification. There is no restriction | limiting in particular as a radiation polymerizable compound, For example, an acrylic acid compound, a methacrylic acid compound, an acrylic ester compound, a methacrylic ester compound, an aromatic compound, an aromatic amine compound, a diol compound, an isocyanate compound, urethane Examples include (meth) acrylate compounds, urea methacrylate compounds, and radiation-polymerizable copolymers having an ethylenically unsaturated group in the side chain. These radiation polymerizable compounds can be used alone or in combination of two or more. Examples of the thermosetting polymer include the above-mentioned compounds, and these can be used alone or in combination of two or more. There is no particular limitation on the substance having solubility and reactivity with respect to gas and solvent, but for example, acrylic acid compound, methacrylic acid compound, acrylic acid ester compound, methacrylic acid ester compound, aromatic compound, aromatic Examples thereof include amine compounds. These components can also be used alone or in combination of two or more.

本発明の接着フィルムは、前記高分子量成分、熱硬化性成分、フィラー、及び必要に応じて上記の改質に携わる成分を有機溶媒中で混合、混練してワニスを調製した後、基材フィルム上に上記ワニスの層を形成させ、加熱乾燥した後、基材フィルムを除去して得ることができる。基材フィルムの除去は、接着フィルムを半導体ウェハに貼り付けた後に行ってもよい。   The adhesive film of the present invention is prepared by mixing and kneading the high molecular weight component, thermosetting component, filler, and, if necessary, the above-mentioned modification component in an organic solvent, and then preparing a varnish. After the above varnish layer is formed and heat-dried, it can be obtained by removing the base film. The substrate film may be removed after the adhesive film is attached to the semiconductor wafer.

上記の混合、混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を適宜、組み合わせて行うことができる。上記の加熱乾燥の条件は、使用した溶媒が充分に揮散する条件であれば特に制限はないが、通常60℃〜200℃で、0.1〜90分間加熱して行う。   The above mixing and kneading can be carried out by appropriately combining dispersers such as ordinary stirrers, crackers, three rolls, and ball mills. The heating and drying conditions are not particularly limited as long as the used solvent is sufficiently volatilized, but the heating is usually performed at 60 to 200 ° C. for 0.1 to 90 minutes.

上記接着フィルムの製造における上記ワニスの調整に用いる有機溶媒、即ち接着フィルム調製後の残存揮発分は、材料を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N―メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレン等が挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノンなどを使用することが好ましい。   The organic solvent used for adjusting the varnish in the production of the adhesive film, that is, the residual volatile content after preparation of the adhesive film is not limited as long as the material can be uniformly dissolved, kneaded or dispersed, and a conventionally known one is used. can do. Examples of such a solvent include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.

有機溶媒の使用量は、接着シート調製後の残存揮発分が全重量基準で0.01〜3重量%であれば特に制限はないが、耐熱信頼性の観点からは全重量基準で0.01〜2.0重量%が好ましく、全重量基準で0.01〜1.5重量%がさらに好ましい。   The amount of the organic solvent used is not particularly limited as long as the residual volatile content after preparation of the adhesive sheet is 0.01 to 3% by weight based on the total weight, but from the viewpoint of heat resistance reliability, 0.01% based on the total weight. -2.0 wt% is preferable, and 0.01-1.5 wt% is more preferable based on the total weight.

また、半導体装置を製造する際に用いた場合、工程途中には半導体素子が飛散しない接着力を有し、その後ピックアップ時には粘着テープから剥離することが好ましい。たとえば、接着シートの粘着性が高すぎると溝端部の樹脂が融着して、分離が困難になることがある。そのため、適宜、接着フィルムのタック強度を調節することが好ましく、その方法としては、接着フィルムの室温における流動性を上昇させることにより、接着強度及びタック強度も上昇する傾向があり、流動性を低下させれば接着強度及びタック強度も低下する傾向があることを利用すればよい。例えば、流動性を上昇させる場合には、可塑剤の含有量の増加、粘着付与材含有量の増加等の方法がある。逆に流動性を低下させる場合には、前記化合物の含有量を減らせばよい。前記可塑剤としては、例えば、単官能のアクリルモノマー、単官能エポキシ樹脂、液状エポキシ樹脂、アクリル系樹脂、エポキシ系のいわゆる希釈剤等が挙げられる。   Further, when used in manufacturing a semiconductor device, it is preferable that the semiconductor element has an adhesive force that does not scatter during the process, and is then peeled off from the adhesive tape during pickup. For example, if the adhesive sheet is too sticky, the resin at the groove end may be fused, making separation difficult. For this reason, it is preferable to appropriately adjust the tack strength of the adhesive film. As a method for this, by increasing the fluidity of the adhesive film at room temperature, the adhesive strength and the tack strength tend to increase, and the fluidity is lowered. If this is done, the fact that the adhesive strength and tack strength tend to decrease may be utilized. For example, in order to increase fluidity, there are methods such as increasing the plasticizer content and increasing the tackifier content. Conversely, when the fluidity is lowered, the content of the compound may be reduced. Examples of the plasticizer include monofunctional acrylic monomers, monofunctional epoxy resins, liquid epoxy resins, acrylic resins, and epoxy-based so-called diluents.

接着フィルムの膜厚は、特に制限はないが、1〜250μmが好ましい。1μmより薄いと応力緩和効果や接着性が乏しくなる傾向があり、250μmより厚いと経済的でなくなる上に、半導体装置の小型化の要求に応えられない、粘着テープを引っ張る工程において切断が困難となる傾向がある。なお、接着性が高く、また、半導体装置を薄型化できる点、良好に切断が可能である点で3〜100μmが好ましく、さらに好ましくは5〜55μmである。   Although there is no restriction | limiting in particular in the film thickness of an adhesive film, 1-250 micrometers is preferable. If it is thinner than 1 μm, the stress relaxation effect and adhesiveness tend to be poor, and if it is thicker than 250 μm, it is not economical, and it cannot meet the demand for miniaturization of the semiconductor device, and it is difficult to cut in the process of pulling the adhesive tape. Tend to be. Note that the thickness is preferably 3 to 100 μm, more preferably 5 to 55 μm, in terms of high adhesiveness, thinness of the semiconductor device, and good cutting ability.

また、上記の接着フィルムは粘着テープと予め貼り合わせた粘着テープ一体型接着フィルムとしても使用される。この場合、ウェハへのラミネート工程が一回で済む点で、作業の効率化が可能である。この場合、粘着テープ上に接着フィルムを積層する方法としては、印刷のほか、予め作成した接着シートをダイシングテープ上にプレス、ホットロールラミネートする方法が挙げられるが、連続的に製造でき、効率が良い点でホットロールラミネートする方法が好ましい。   Moreover, said adhesive film is used also as an adhesive tape integrated adhesive film previously bonded with the adhesive tape. In this case, the efficiency of the operation can be improved in that the laminating process on the wafer is performed only once. In this case, as a method of laminating the adhesive film on the pressure-sensitive adhesive tape, in addition to printing, there is a method of pressing and hot roll laminating a pre-made adhesive sheet on the dicing tape. A hot roll laminating method is preferable in terms of good points.

本発明に使用する粘着テープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムなどのプラスチックフィルム等が挙げられる。また、必要に応じてプライマー塗布、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理を行っても良い。   Examples of the pressure-sensitive adhesive tape used in the present invention include plastic films such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film. Further, surface treatment such as primer coating, UV treatment, corona discharge treatment, polishing treatment and etching treatment may be performed as necessary.

粘着テープは粘着性を有するものであり、上述のプラスチックフィルムに粘着性を付与したものを用いても良いし、上述のプラスチックフィルムの片面に粘着剤層を設けたものでも良い。これは、粘着剤組成物において、特に液状成分の比率、高分子量成分のTgを調整することによって得られる適度なタック強度を有する組成物を塗布乾燥することで形成可能である。粘着テープとしては、公知のダイシングテープを用いることができる。   The pressure-sensitive adhesive tape has adhesiveness, and the above-mentioned plastic film provided with adhesiveness may be used, or the above-mentioned plastic film may be provided with an adhesive layer. This can be formed by applying and drying a composition having an appropriate tack strength obtained by adjusting the ratio of the liquid component and the Tg of the high molecular weight component in the pressure-sensitive adhesive composition. A known dicing tape can be used as the adhesive tape.

尚、粘着テープの膜厚は、特に制限はなく、接着フィルムの膜厚や粘着テープ一体型接着フィルムの用途によって適宜、当業者の知識に基づいて定められるものであるが、経済性がよく、フィルムの取扱い性が良い点で60〜150μm、好ましくは70〜130μmである。   The thickness of the pressure-sensitive adhesive tape is not particularly limited and is appropriately determined based on the knowledge of those skilled in the art depending on the thickness of the adhesive film and the application of the adhesive tape-integrated adhesive film. The film has a handleability of 60 to 150 μm, preferably 70 to 130 μm.

ステルスダイシング方法や先ダイシング方法で割れや欠けを低減しウェハを切断することが可能である。しかし、これまでの接着フィルムではウェハと同時に接着フィルムを切断することができず、接着フィルム付き半導体素子を得ることができない。そこで本発明で提案する特性を持つフィルムを用いて本発明の半導体装置の製造方法を用いることでステルスダイシング方法や先ダイシング方法を用いてウェハの割れや欠けを低減しつつ、接着フィルム付き半導体素子を得ることができる。半導体装置の製造上、生産性と作業性が向上する。   The stealth dicing method or the tip dicing method can reduce cracks and chips and cut the wafer. However, with the conventional adhesive film, the adhesive film cannot be cut simultaneously with the wafer, and a semiconductor element with an adhesive film cannot be obtained. Therefore, by using the method for manufacturing a semiconductor device of the present invention using a film having the characteristics proposed in the present invention, a semiconductor element with an adhesive film while reducing cracks and chips of the wafer using a stealth dicing method or a tip dicing method is used. Can be obtained. Productivity and workability are improved in the manufacture of semiconductor devices.

ウェハを切断した後の構成図であり、本発明の半導体装置の製造方法である。(a)は上面図、(b)は側面図である。It is a block diagram after cut | disconnecting a wafer, and is a manufacturing method of the semiconductor device of this invention. (A) is a top view, (b) is a side view. 粘着シートを水平方向に引き伸ばすことで半導体素子と隣り合う半導体素子との間に隙間を作った状態の側面図である。It is a side view of the state where a gap was made between a semiconductor element and an adjacent semiconductor element by stretching the adhesive sheet in the horizontal direction. (a)は本発明の接着フィルムを改質した状態を示す。(b)は半導体素子と隣り合う半導体素子の間の接着フィルムを改質した状態を示す拡大図である。(c)は半導体素子と隣り合う半導体素子の間の接着フィルムの膜厚を減少させた状態を示す拡大図である。(a) shows a modified state of the adhesive film of the present invention. (B) is an enlarged view showing a state where an adhesive film between a semiconductor element and an adjacent semiconductor element is modified. (C) is an enlarged view which shows the state which reduced the film thickness of the adhesive film between the semiconductor element adjacent to a semiconductor element. 本発明の接着フィルム付きの半導体素子である。It is a semiconductor element with the adhesive film of this invention.

符号の説明Explanation of symbols

1:半導体ウェハ
2:接着フィルム
3:粘着シート
4:半導体素子
5:改質された接着フィルム
1: Semiconductor wafer 2: Adhesive film 3: Adhesive sheet 4: Semiconductor element 5: Modified adhesive film

Claims (5)

基材フィルムと接着剤層と半導体ウェハをこの順に積層する工程と、
所定の位置で半導体ウェハを切断して複数個の半導体素子を形成する工程と、
前記基材フィルムを水平方向に延伸させて前記複数個の半導体素子間に間隙を形成する工程と、
半導体ウェハ側からみて前記複数の半導体素子間の間隙部分に存在する接着剤層を改質又は一部を除去する工程と、
改質された部分で前記接着剤層を切断する工程と、
を含むことを特徴とする接着剤層付き半導体素子の製造方法。
A step of laminating a base film, an adhesive layer and a semiconductor wafer in this order;
Cutting a semiconductor wafer at a predetermined position to form a plurality of semiconductor elements;
Stretching the base film in a horizontal direction to form a gap between the plurality of semiconductor elements;
A step of modifying or removing a part of the adhesive layer present in a gap portion between the plurality of semiconductor elements as viewed from the semiconductor wafer side;
Cutting the adhesive layer at the modified portion;
The manufacturing method of the semiconductor element with an adhesive bond layer characterized by including these.
前記接着剤層を切断する工程は、前記基材フィルムを水平方向に10〜1000mm/秒の速度で5〜50mm引き伸ばすことで接着剤層を切断することを特徴とする請求項1記載の接着剤層付き半導体素子の製造方法。 2. The adhesive according to claim 1, wherein the step of cutting the adhesive layer cuts the adhesive layer by stretching the base film by 5 to 50 mm in a horizontal direction at a speed of 10 to 1000 mm / second. A method for manufacturing a semiconductor device with a layer. 前記改質は、接着剤層の破断強度を30MPa以下とし、破断伸びを40%以下とする改質であることを特徴とする請求項1記載の接着剤層付き半導体素子の製造方法。 2. The method of manufacturing a semiconductor element with an adhesive layer according to claim 1, wherein the modification is a modification in which the breaking strength of the adhesive layer is set to 30 MPa or less and the breaking elongation is set to 40% or less. 前記改質は、改質前と比較して接着剤層の膜厚を薄くする又は接着剤層を除去することを特徴とする請求項1記載の接着剤層付き半導体素子の製造方法。 2. The method of manufacturing a semiconductor element with an adhesive layer according to claim 1, wherein in the modification, the thickness of the adhesive layer is reduced or the adhesive layer is removed as compared with that before the modification. 基材フィルムと接着剤層と半導体ウェハをこの順に積層する工程と、所定の位置で半導体ウェハを切断して複数個の半導体素子を形成する工程と、前記基材フィルムを水平方向に延伸させて前記複数個の半導体素子間に間隙を形成する工程と、半導体ウェハ側からみて前記複数の半導体素子間の間隙部分に存在する接着剤層を除去する工程と、を含むことを特徴とする接着剤層付き半導体素子の製造方法。

A step of laminating a base film, an adhesive layer and a semiconductor wafer in this order; a step of cutting a semiconductor wafer at a predetermined position to form a plurality of semiconductor elements; and extending the base film in a horizontal direction. An adhesive comprising: a step of forming a gap between the plurality of semiconductor elements; and a step of removing an adhesive layer present in the gap between the plurality of semiconductor elements as viewed from the semiconductor wafer side. A method for manufacturing a semiconductor device with a layer.

JP2004273496A 2004-09-21 2004-09-21 Manufacturing method of semiconductor element with adhesive layer Active JP4923398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273496A JP4923398B2 (en) 2004-09-21 2004-09-21 Manufacturing method of semiconductor element with adhesive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273496A JP4923398B2 (en) 2004-09-21 2004-09-21 Manufacturing method of semiconductor element with adhesive layer

Publications (2)

Publication Number Publication Date
JP2006093213A true JP2006093213A (en) 2006-04-06
JP4923398B2 JP4923398B2 (en) 2012-04-25

Family

ID=36233921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273496A Active JP4923398B2 (en) 2004-09-21 2004-09-21 Manufacturing method of semiconductor element with adhesive layer

Country Status (1)

Country Link
JP (1) JP4923398B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245467A (en) * 2005-03-07 2006-09-14 Disco Abrasive Syst Ltd Laser-machining method and laser-machining apparatus
JP2007335643A (en) * 2006-06-15 2007-12-27 Nitto Denko Corp Method of manufacturing semiconductor device
JP2008098215A (en) * 2006-10-06 2008-04-24 Nippon Steel Chem Co Ltd Process for manufacturing semiconductor element with adhesive, and film with adhesive for use in that manufacturing process
JP2008226982A (en) * 2007-03-09 2008-09-25 Disco Abrasive Syst Ltd Manufacturing method of device
JP2008227470A (en) * 2007-02-13 2008-09-25 Disco Abrasive Syst Ltd Dividing method of wafer and laser beam machine
JP2008235650A (en) * 2007-03-22 2008-10-02 Disco Abrasive Syst Ltd Method of manufacturing device
JP2008235723A (en) * 2007-03-22 2008-10-02 Zycube:Kk Wafer body structure and manufacturing method thereof
JP2009065047A (en) * 2007-09-07 2009-03-26 Sekisui Chem Co Ltd Method of peeling protection sheet off and method of manufacturing semiconductor chip with die-bonding film
JP2009238770A (en) * 2008-03-25 2009-10-15 Hitachi Chem Co Ltd Dicing tape, dicing tape integrated type adhesive sheet, and manufacturing method of semiconductor device
JP2009260211A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Method of manufacturing semiconductor device
JP2009260226A (en) * 2008-03-27 2009-11-05 Hitachi Chem Co Ltd Method of manufacturing semiconductor device
JP2010074129A (en) * 2008-08-20 2010-04-02 Hitachi Chem Co Ltd Method of manufacturing semiconductor device and semiconductor device manufactured by the same, and dicing-tape integral type adhesive sheet
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape
JP2011228399A (en) * 2010-04-16 2011-11-10 Nitto Denko Corp Thermo-setting die-bonding film, dicing/die-bonding film, and method of manufacturing semiconductor device
JP2013145902A (en) * 2007-12-03 2013-07-25 Lg Chem Ltd Dicing die bonding film and dicing method
US8513088B2 (en) 2011-02-04 2013-08-20 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2014007330A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
JP2014007331A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
JP2014007332A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
JP2014007333A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
WO2016136774A1 (en) * 2015-02-24 2016-09-01 リンテック株式会社 Film-like adhesive agent, adhesive sheet, and method for manufacturing semiconductor device
JP2017208390A (en) * 2016-05-16 2017-11-24 株式会社ディスコ Expanded sheet
US9969909B2 (en) 2007-11-08 2018-05-15 Hitachi Chemical Company, Ltd. Adhesive sheet for semiconductor, and dicing tape integrated adhesive sheet for semiconductor
JP2020047875A (en) * 2018-09-21 2020-03-26 株式会社ディスコ Processing method of wafer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206267A (en) * 1992-01-29 1993-08-13 Fujitsu Ltd Manufacture of semiconductor device
JPH1167697A (en) * 1997-08-19 1999-03-09 Nec Corp Dicing method for semiconductor wafer
JPH11219962A (en) * 1998-01-30 1999-08-10 Hitachi Chem Co Ltd Manufacture of semiconductor device
JP2002118081A (en) * 2000-10-10 2002-04-19 Toshiba Corp Method of manufacturing semiconductor device
JP2002158276A (en) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd Adhesive sheet for sticking wafer and semiconductor device
JP2002161255A (en) * 2000-11-27 2002-06-04 Hitachi Chem Co Ltd Adhesive sheet, method for using the same and semiconductor device
JP2003338467A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Method for cutting semiconductor substrate
JP2004319829A (en) * 2003-04-17 2004-11-11 Disco Abrasive Syst Ltd Manufacturing method of semiconductor chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206267A (en) * 1992-01-29 1993-08-13 Fujitsu Ltd Manufacture of semiconductor device
JPH1167697A (en) * 1997-08-19 1999-03-09 Nec Corp Dicing method for semiconductor wafer
JPH11219962A (en) * 1998-01-30 1999-08-10 Hitachi Chem Co Ltd Manufacture of semiconductor device
JP2002118081A (en) * 2000-10-10 2002-04-19 Toshiba Corp Method of manufacturing semiconductor device
JP2002158276A (en) * 2000-11-20 2002-05-31 Hitachi Chem Co Ltd Adhesive sheet for sticking wafer and semiconductor device
JP2002161255A (en) * 2000-11-27 2002-06-04 Hitachi Chem Co Ltd Adhesive sheet, method for using the same and semiconductor device
JP2003338467A (en) * 2002-03-12 2003-11-28 Hamamatsu Photonics Kk Method for cutting semiconductor substrate
JP2004319829A (en) * 2003-04-17 2004-11-11 Disco Abrasive Syst Ltd Manufacturing method of semiconductor chip

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630692B2 (en) * 2005-03-07 2011-02-09 株式会社ディスコ Laser processing method
JP2006245467A (en) * 2005-03-07 2006-09-14 Disco Abrasive Syst Ltd Laser-machining method and laser-machining apparatus
JP2007335643A (en) * 2006-06-15 2007-12-27 Nitto Denko Corp Method of manufacturing semiconductor device
JP2008098215A (en) * 2006-10-06 2008-04-24 Nippon Steel Chem Co Ltd Process for manufacturing semiconductor element with adhesive, and film with adhesive for use in that manufacturing process
JP2008227470A (en) * 2007-02-13 2008-09-25 Disco Abrasive Syst Ltd Dividing method of wafer and laser beam machine
JP2008226982A (en) * 2007-03-09 2008-09-25 Disco Abrasive Syst Ltd Manufacturing method of device
JP2008235650A (en) * 2007-03-22 2008-10-02 Disco Abrasive Syst Ltd Method of manufacturing device
JP2008235723A (en) * 2007-03-22 2008-10-02 Zycube:Kk Wafer body structure and manufacturing method thereof
JP2009065047A (en) * 2007-09-07 2009-03-26 Sekisui Chem Co Ltd Method of peeling protection sheet off and method of manufacturing semiconductor chip with die-bonding film
US9969909B2 (en) 2007-11-08 2018-05-15 Hitachi Chemical Company, Ltd. Adhesive sheet for semiconductor, and dicing tape integrated adhesive sheet for semiconductor
JP2013145902A (en) * 2007-12-03 2013-07-25 Lg Chem Ltd Dicing die bonding film and dicing method
JP2009238770A (en) * 2008-03-25 2009-10-15 Hitachi Chem Co Ltd Dicing tape, dicing tape integrated type adhesive sheet, and manufacturing method of semiconductor device
JP2009260211A (en) * 2008-03-26 2009-11-05 Hitachi Chem Co Ltd Method of manufacturing semiconductor device
JP2009260226A (en) * 2008-03-27 2009-11-05 Hitachi Chem Co Ltd Method of manufacturing semiconductor device
JP2010074129A (en) * 2008-08-20 2010-04-02 Hitachi Chem Co Ltd Method of manufacturing semiconductor device and semiconductor device manufactured by the same, and dicing-tape integral type adhesive sheet
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape
JP2011228399A (en) * 2010-04-16 2011-11-10 Nitto Denko Corp Thermo-setting die-bonding film, dicing/die-bonding film, and method of manufacturing semiconductor device
US8513088B2 (en) 2011-02-04 2013-08-20 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
JP2014007330A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
JP2014007331A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
JP2014007332A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
JP2014007333A (en) * 2012-06-26 2014-01-16 Disco Abrasive Syst Ltd Method for processing wafer
WO2016136774A1 (en) * 2015-02-24 2016-09-01 リンテック株式会社 Film-like adhesive agent, adhesive sheet, and method for manufacturing semiconductor device
JPWO2016136774A1 (en) * 2015-02-24 2017-11-30 リンテック株式会社 Film adhesive, adhesive sheet, and method for manufacturing semiconductor device
JP2020098918A (en) * 2015-02-24 2020-06-25 リンテック株式会社 Film glue, adhesive sheet and manufacturing method for semiconductor device
JP2017208390A (en) * 2016-05-16 2017-11-24 株式会社ディスコ Expanded sheet
CN107442943A (en) * 2016-05-16 2017-12-08 株式会社迪思科 Extend piece
JP2020047875A (en) * 2018-09-21 2020-03-26 株式会社ディスコ Processing method of wafer
CN110943039A (en) * 2018-09-21 2020-03-31 株式会社迪思科 Method for processing wafer

Also Published As

Publication number Publication date
JP4923398B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4923398B2 (en) Manufacturing method of semiconductor element with adhesive layer
JP4770126B2 (en) Adhesive sheet
JP5206769B2 (en) Adhesive sheet
JP5017861B2 (en) Adhesive sheet and dicing tape integrated adhesive sheet
JP5353702B2 (en) Manufacturing method of semiconductor chip with adhesive film, adhesive film for semiconductor used in manufacturing method, and manufacturing method of semiconductor device
JP5556070B2 (en) Manufacturing method of semiconductor device using adhesive sheet integrated with dicing tape
JP2009283925A (en) Dicing-tape-integrated type bonding sheet, manufacturing method thereof, and manufacturing method of semiconductor device
JP5613982B2 (en) Semiconductor chip manufacturing method and dicing tape
JP6977588B2 (en) Manufacturing method of semiconductor devices and adhesive film
JP2006080142A (en) Adhesion sheet, manufacturing method of semiconductor device therewith and adhesion sheet integral with dicing tape
JP2009238770A (en) Dicing tape, dicing tape integrated type adhesive sheet, and manufacturing method of semiconductor device
JP2005255909A (en) Adhesive sheet, manufacturing method of semiconductor device using the same, and semiconductor device
JP2004256695A (en) Adhesive sheet, semiconductor device using the same and method for producing the same
JP2010001453A (en) Adhesive film, adhesive sheet, semiconductor device and method of producing semiconductor device
JP5589500B2 (en) Adhesive film, dicing tape integrated adhesive film, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4923398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350