JP2006074305A - 階調再現方法、画像形成装置及びプリンタドライバ - Google Patents
階調再現方法、画像形成装置及びプリンタドライバ Download PDFInfo
- Publication number
- JP2006074305A JP2006074305A JP2004253768A JP2004253768A JP2006074305A JP 2006074305 A JP2006074305 A JP 2006074305A JP 2004253768 A JP2004253768 A JP 2004253768A JP 2004253768 A JP2004253768 A JP 2004253768A JP 2006074305 A JP2006074305 A JP 2006074305A
- Authority
- JP
- Japan
- Prior art keywords
- image
- gradation
- image data
- dot
- conversion curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/405—Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/407—Control or modification of tonal gradation or of extreme levels, e.g. background level
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Image Processing (AREA)
- Color, Gradation (AREA)
- Facsimile Image Signal Circuits (AREA)
- Color Image Communication Systems (AREA)
Abstract
【課題】 γ補正の入力画像データ数と中間調処理による階調再現数とが同じ場合、理想的な入出力特性から少しでも曲線を持って上下に膨らんでいると、再現できる階調数が低下し画像品質が低下する。
【解決手段】 多値画像データを少値の画像データに変換しながら階調を再現するとき、単位面積当たりのドット面積率の変化が濃度変換曲線の特性と同じになるようにドット数やドットサイズを制御する閾値を設定したディザマトリクスを用いて変換処理を行なうことで、入出力特性が一対一の関係になるようして階調数低下を防止する。
【選択図】図34
【解決手段】 多値画像データを少値の画像データに変換しながら階調を再現するとき、単位面積当たりのドット面積率の変化が濃度変換曲線の特性と同じになるようにドット数やドットサイズを制御する閾値を設定したディザマトリクスを用いて変換処理を行なうことで、入出力特性が一対一の関係になるようして階調数低下を防止する。
【選択図】図34
Description
本発明は階調再現方法、画像形成装置及びプリンタドライバに関する。
従来のプリンタ、ファクシミリ、複写機等の画像形成装置(画像記録装置)において、デジタル画像出力は、「1」と「0」すなわち「ON」と「OFF」で構成される2値画像が主であったが、作像エンジンの進歩と高画質画像のニーズの高まりにより、1画素で複数の階調を表現する少値(多値)画像が主になっている。
ここで、「少値」とは、一般的にいわれる「多値」、「2値」に対する比較として用いるものであり、その情報量は、「多値」≧「少値」>「2値」の関係となる。一般的に、画像処理を行う場合、入力画像データとして1画素当たり8bit(256値)程度の情報量を持った多値データが使用されるが、実際にそのデータを出力する側の装置では、1画素当たり1〜3bit程度の表現力しか持たないため、便宜上、2値以上ではあるが多値と呼ぶには情報量の少ないものについて、本発明では2値を含めて「少値」と呼ぶこととする。
一般的に使用されている2値化処理および多値化処理を適用した場合のドットパターンの一例を図37に示している。同図(a)は2値化処理を行ってドット再現を行う場合の例、同図(b)は濃度変調を行ってドット再現を行う場合の例、同図(c)はドットサイズ変調を行ってドット再現を行う場合の例である。
このようなドットによる階調表現では、基本的に制御可能なドットサイズで情報量が決定する。制御できる段階が多ければ多い程情報量が増え、原画像データに近い高品質な出力画像が得られるが、上述したようにインクジェット記録装置等では、1〜3段階(0を含めて4段階)程度の制御しかできないものがほとんどである。濃度変調方式との組み合わせである程度の改善は図れるが、その分、色剤や記録ユニットの占める割合が増えるため、コストや装置のサイズから来る制約により、倍程度にしか改善することができない。
このような1画素当たりの情報量不足を補うために、単位面積当たりのドット数を制御することで階調表現を行う手法として、一般的には中間調処理と呼ばれる擬似階調表現が用いられる。擬似階調表現は、配置されたドットの数を濃度として表現し、点の密度を変化させて多くの階調を表現する。
擬似階調表現には、ディザ法が広く用いられ、代表的なものとして組織的ディザ法とランダムディザ法がある。組織的ディザ法はn×n個の閾値からなるサブマトリクス(これを「ディザマトリクス」又は「閾値マトリクス」という。)を設定し、このディザマトリクスを入力画像に重ね合わせ、対応する各画素の濃淡レベルと閾値を比較し、入力画像の値の方が大きい場合は1(白)、小さい場合は0(黒)として2値表示する。n×n画素の処理が済んだら、順次ディザマトリクスを次のn×n画素の位置に移動し、同じ処理を繰り返して画像を形成する。
例えば、図38(a)に示すように入力された多階調画像データに対して、同図(b)に示すような所定の方法で作成されたn×nの閾値マトリクスであるディザマトリクスとの比較を行い、同図(c)に示すように、その閾値以上(あるいは以下)の値を示す画素のみをドットに置き換える手法である。
同図ではON/OFFのみの2値について示しているが、それ以上の組み合わせを持つ多値については、図39に示すように再現可能階調領域を例えば小ドット、中ドット、大ドットに区分し、図40(a)〜(c)に示すように、それぞれのドットサイズに応じた閾値マトリクスを適用し、それぞれを入力画像データと比較することで対応したドットへの置き換えを行うことになる。
また、ランダムディザ法とは、入力画像の各画素に対して乱数を発生させ、その値を閾値とする方法であるが、ランダムディザ法による場合、一般に形成した画像はざらついた画像となり、組織的ディザ法に比べ画質向上には不向きである。
一方、擬似階調表現には誤差拡散法もあるが、誤差拡散法はディザ法と比べるとかなり複雑な処理となる。図41は2値誤差拡散の手順について示したものであるが、画素毎に閾値処理を行い、その際の誤差を保持しつつ後の計算に所定の比率で反映させている。これにより、ディザ処理では強制的に切り捨てられてしまう分の情報をも出力画像にフィードバックさせることができ、解像力等の面でディザ画像を上回る品質を得ることができる。
また、従来の階調再現方法としては、特許文献1に開示されているように、ディザマトリクスにより多階調画像が一部の濃度において閾値化されたときに、所定方向のライン基調に形成され、かつ基調以外の部分においてはハイパスフィルター特性を持つ構成としたものがある。
特開2004−080065号公報
ところで、上記のような中間調処理方法を用いてデジタル画像の階調再現を行う場合において、複数の画像形成装置で同じように像を形成しても、画像形成装置が有しているメカ的ばらつき、又はエレキ的ばらつき等の影響により、ドットサイズや着弾位置のずれ等が生じ、結果的に同等の出力結果を得られない場合がある。
そこで、一般に、画像形成装置の入出力特性に応じて画像データの濃度を補正するためにγ補正が用いられる。このγ補正では、画像を印刷出力する画像形成装置が入力に対して出力結果が小さくなるような入出力特性を有する場合には、出力画像が濃くなるようにより高い階調を出力するように補正し、逆に、入力に対して出力結果が大きくなるような特性を有する場合には、出力画像が薄くなるようにより低い階調を出力するように補正する。このようなγ補正において用いる入力階調に対する出力階調の関係を示す濃度変換曲線の特性をγカーブと称する。
そして、一般には、入力される多階調画像データに対するγ補正を行った後に得られる多値画像データに対して例えば前述したようなディザマトリクスを用いた中間調処理(階調再現処理)を行って少値画像データに変換する。
ところが、γ補正の結果として得られる入力画像データ数(256値)と中間調処理による再現可能な階調再現数(256値)とが同じ場合、理想的な入出力特性(直線となる。)に対してγ補正で用いる濃度変換曲線の特性(γカーブ)は曲線を持って上又は下に膨らんでいるために、再現できる階調数が低下し、特に、極端なγカーブであると、中間調処理を行ったときに階調変化のない低品質な画像となってしまうという課題がある。
本発明は上記の課題に鑑みてなされたものであり、高品質な画像が得られる階調再現方法及び画像形成装置、プリンタドライバを提供することを目的とする。
上記課題を解決するために、本発明に係る階調再現方法は、多値画像データをこの多値よりも情報量の少ない少値の画像データに変換しながら多値画像データの階調を再現するとき、濃度変換曲線の特性を有する手段を用いて変換処理を行う構成としたものである。
ここで、濃度変換曲線の特性を有する手段がブラック用の濃度変換曲線の特性を有している構成、あるいは、濃度変換曲線の特性を有する手段がカラー用の濃度変換曲線の特性を有している構成、さらに、カラー用の濃度変換曲線の特性が色成分単位の濃度変換曲線の特性である構成とすることができる。
また、濃度変換曲線の特性を有する手段がディザマトリクスであることが好ましく、この場合、ディザマトリクスはドットサイズ変調及び単位面積当たりのドット面積率の少なくともいずれかで濃度変換曲線の特性が持たされていることが好ましい。
本発明に係る画像形成装置は、本発明に係る階調再現方法を実行する手段を含む構成としたものである。
本発明に係るプリンタドライバは、本発明に係る階調再現方法をコンピュータに実行させるプログラムを含む構成としたものである。
本発明に係る階調再現方法及びこれを実行する画像形成装置、コンピュータに実行させるプリンタドライバによれば、多値画像データをこの多値画像データよりも情報量の少ない少値画像データに変換するとき、濃度変換曲線の特性を有する手段を用いて変換処理を行うので、階調数の低下がない高品質な画像を得ることができるようになる。
以下、本発明の実施の形態について添付図面を参照して説明する。まず、本発明に係る階調再現方法を適用して得られる印刷データを印刷する画像形成装置としてのインクジェット記録装置の一例について説明する。図1は同インクジェット記録装置の機構部の概略斜視説明図、図2は同機構部の側面説明図である。
このインクジェット記録装置は、記録装置本体1の内部に主走査方向に移動可能なキャリッジ、キャリッジに搭載したインクジェットヘッドからなる記録ヘッド、記録ヘッドへのインクを供給するインクカートリッジ等で構成される印字機構部2等を収納し、給紙カセット4或いは手差しトレイ5から給送される用紙3を取り込み、印字機構部2によって所要の画像を記録した後、後面側に装着された排紙トレイ6に排紙する。
印字機構部2は、図示しない左右の側板に横架したガイド部材である主ガイドロッド11と従ガイドロッド12とでキャリッジ13を主走査方向(図1で紙面垂直方向)に摺動自在に保持し、このキャリッジ13にはイエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(Bk)の各色のインク滴を吐出するインクジェットヘッドからなるヘッド14をインク滴吐出方向を下方に向けて装着し、キャリッジ13の上側にはヘッド14に各色のインクを供給するための各インクタンク(インクカートリッジ)15を交換可能に装着している。
インクカートリッジ15は上方に大気と連通する大気口、下方にはインクジェットヘッド14へインクを供給する供給口を、内部にはインクが充填された多孔質体を有しており、多孔質体の毛管力によりインクジェットヘッド14へ供給されるインクをわずかな負圧に維持している。このインクカートリッジ15からインクをヘッド14内に供給する。
ここで、キャリッジ13は後方側(用紙搬送方向下流側)を主ガイドロッド11に摺動自在に嵌装し、前方側(用紙搬送方向上流側)を従ガイドロッド12に摺動自在に載置している。そして、このキャリッジ13を主走査方向に移動走査するため、主走査モータ17で回転駆動される駆動プーリ18と従動プーリ19との間にタイミングベルト20を張装し、このタイミングベルト20をキャリッジ13に固定しており、主走査モータ17の正逆回転によりキャリッジ13が往復駆動される。
また、記録ヘッドとしてここでは各色のヘッド14を用いているが、各色のインク滴を吐出するノズルを有する1個のヘッドでもよい。さらに、ヘッド14としては、後述するように、インク流路の壁面の少なくとも一部を形成する振動板と、この振動板を圧電素子(圧電素子)で変形させるピエゾ型インクジェットヘッドを用いている。
ただし、これに限るものではなく、例えば、インク流路の壁面の少なくとも一部を形成する振動板とこれに対向する電極とを備え、静電力で振動板を変形変位させてインクを加圧する静電型ヘッド、圧電素子を用いるものであって振動板の座屈変形を用いるもの、或いは、発熱抵抗体を用いてインク流路内でインクを加熱して気泡を発生させることによる圧力でインク滴を吐出させるいわゆるサーマル型のものなどを用いることもできる。
一方、給紙カセット4にセットした用紙3をヘッド14の下方側に搬送するために、給紙カセット4から用紙3を分離給装する給紙ローラ21及びフリクションパッド22と、用紙3を案内するガイド部材23と、給紙された用紙3を反転させて搬送する搬送ローラ24と、この搬送ローラ24の周面に押し付けられる搬送コロ25及び搬送ローラ24からの用紙3の送り出し角度を規定する先端コロ26とを設けている。搬送ローラ24は副走査モータ27によってギヤ列を介して回転駆動される。
そして、キャリッジ13の主走査方向の移動範囲に対応して搬送ローラ24から送り出された用紙3を記録ヘッド14の下方側で案内する用紙ガイド部材である印写受け部材29を設けている。この印写受け部材29の用紙搬送方向下流側には、用紙3を排紙方向へ送り出すために回転駆動される搬送コロ31、拍車32を設け、さらに用紙3を排紙トレイ6に送り出す排紙ローラ33及び拍車34と、排紙経路を形成するガイド部材35、36とを配設している。
記録時には、キャリッジ13を移動させながら画像信号に応じて記録ヘッド14を駆動することにより、停止している用紙3にインクを吐出して1行分を記録し、用紙3を所定量搬送後次の行の記録を行う。記録終了信号、又は用紙3の後端が記録領域に到達した信号を受けることにより、記録動作を終了させ用紙3を排紙する。
また、キャリッジ13の移動方向右端側の記録領域を外れた位置には、ヘッド14の吐出不良を回復するための回復装置37を配置している。回復装置37は、キャップ手段と吸引手段とクリーニング手段を有している。キャリッジ13は印字待機中にはこの回復装置37側に移動されてキャッピング手段でヘッド14をキャッピングされ、吐出口部(ノズル孔)を湿潤状態に保つことによりインク乾燥による吐出不良を防止する。また、記録途中などに記録と関係しないインクを吐出する(パージする)ことにより、全ての吐出口のインク粘度を一定にし、安定した吐出性能を維持する。
吐出不良が発生した場合等には、キャッピング手段でヘッド14の吐出口(ノズル)を密封し、チューブを通して吸引手段で吐出口からインクとともに気泡等を吸い出し、吐出口面に付着したインクやゴミ等はクリーニング手段により除去され吐出不良が回復される。また、吸引されたインクは、本体下部に設置された廃インク溜(不図示)に排出され、廃インク溜内部のインク吸収体に吸収保持される。
次に、このインクジェット記録装置の記録ヘッド14を構成するインクジェットヘッドについて図3ないし図7を参照して説明する。なお、図3は同ヘッドの分解斜視説明図、図4は同ヘッドの液室長手方向に沿う断面説明図、図5は図4の要部拡大説明図、図6は同ヘッドの液室短手方向に沿う断面説明図、図7は同ヘッドのノズル板の平面説明図である。
このインクジェットヘッドは、単結晶シリコン基板で形成した流路形成基板(流路形成部材)41と、この流路形成基板41の下面に接合した振動板42と、流路形成基板41の上面に接合したノズル板43とを有し、これらによって液滴であるインク滴を吐出するノズル45が連通するインク流路である加圧室46、加圧室46に流体抵抗部となるインク供給路47を介してインクを供給する共通液室48を形成し、これらの流路形成基板41のインクに接する面となる加圧室46、インク供給路47、共通液室48を各壁面には有機樹脂膜からなる耐液性薄膜50を成膜している。
そして、振動板42の外面側(液室と反対面側)に各加圧室46に対応して積層型圧電素子52を接合し、この積層型圧電素子52はベース基板53に接合して固定し、この圧電素子52の列の周囲にはスペーサ部材54をベース基板53に接合している。
この圧電素子52は、図5にも示すように、圧電材料55と内部電極56とを交互に積層したものである。この圧電常数がd33である圧電素子52の伸縮により加圧室46を収縮、膨張させるようになっている。圧電素子52に駆動信号が印加され充電が行われると伸長し、また圧電素子52に充電された電荷が放電すると反対方向に収縮するようになっている。ベース基板53及びスペーサ部材54には共通液室48に外部からインクを供給するためのインク供給口49を形成する貫通穴を形成している。
また、流路形成基板41の外周部及び振動板42の下面側外縁部をエポキシ系樹脂或いはポリフェニレンサルファイトで射出成形により形成したヘッドフレーム57に接着接合し、このヘッドフレーム57とベース基板53とは図示しない部分で接着剤などで相互に固定している。さらに、圧電素子52には駆動信号を与えるために半田接合又はACF(異方導電性膜)接合若しくはワイヤボンディングでFPCケーブル58を接続し、このFPCケーブル58には各圧電素子52に選択的に駆動波形を印加するための駆動回路(ドライバIC)59を実装している。
ここで、流路形成基板51は、結晶面方位(110)の単結晶シリコン基板を水酸化カリウム水溶液(KOH)などのアルカリ性エッチング液を用いて異方性エッチングすることで、各加圧室56となる貫通穴、インク供給路57となる溝部、共通液室58となる貫通穴をそれぞれ形成している。
振動板42はニッケルの金属プレートから形成したもので、エレクトロフォーミング法で製造している。この振動板42は加圧室46に対応する部分に変形を容易にするための薄肉部61及び圧電素子52と接合するための厚肉部62を形成するとともに、液室間隔壁に対応する部分にも厚肉部23を形成し、平坦面側を流路形成基板41に接着剤接合し、厚肉部をフレーム17に接着剤接合している。この振動板42の液室間隔壁に対応する厚肉部63とベース基板53との間には支柱部64を介設している。この支柱部64は圧電素子52と同じ構成である。
ノズル板43は各加圧液室46に対応して直径10〜30μmのノズル45を形成し、流路形成基板41に接着剤接合している。ここで、複数のノズル45が複数のドット形成手段を構成しており、図7に示すように、ノズル45の列(ノズル列)を主走査方向に対して直交させて配置し、ノズル45、45間のピッチは2×Pnである。また、1つのヘッドにはノズル列を距離Lを隔てて2列、各ノズル列を副走査方向にピッチPnだけずらして千鳥状に配置している。したがって、ピッチPnの画像を1回の主走査及び副走査で形成することができる。
このノズル板43としては、ステンレス、ニッケルなどの金属、金属とポリイミド樹脂フィルムなどの樹脂との組み合せ、シリコン、及びそれらの組み合わせからなるものを用いることができる。また、ノズル面(吐出方向の表面:吐出面)には、インクとの撥水性を確保するため、メッキ被膜、あるいは撥水剤コーティングなどの周知の方法で撥水膜を形成している。
このように構成したインクジェットヘッドにおいては、圧電素子52に対して選択的に20〜50Vの駆動パルス電圧を印加することによって、パルス電圧が印加された圧電素子52が積層方向に変位して振動板42をノズル45方向に変形させ、加圧液室46の容積/体積変化によって加圧液室46内のインクが加圧され、ノズル45からインク滴が吐出(噴射)される。
そして、インク滴の吐出に伴って加圧液室46内の液圧力が低下し、このときのインク流れの慣性によって加圧液室46内には若干の負圧が発生する。この状態の下において、圧電素子52への電圧の印加をオフ状態にすることによって、振動板42が元の位置に戻って加圧液室46が元の形状になるため、さらに負圧が発生する。このとき、インク供給口49から共通液室48、流体抵抗部であるインク供給路47を経て加圧液室46内にインクが充填される。そこで、ノズル45のインクメニスカス面の振動が減衰して安定した後、次のインク滴吐出のために圧電素子52にパルス電圧を印加しインク滴を吐出させる。
次に、このインクジェット記録装置の制御部の概要について図8を参照して説明する。
この制御部は、この記録装置全体の制御を司るマイクロコンピュータ(以下、「CPU」と称する。)80と、所要の固定情報を格納したROM81と、ワーキングメモリ等として使用するRAM82と、ホスト側から転送される画像データ(ドットデータ或いはドットパターンデータと称する。)を格納する画像メモリ(ラスデータメモリ)83と、パラレル入出力(PIO)ポート84と、入力バッファ85と、パラレル入出力(PIO)ポート86と、波形生成回路87と、ヘッド駆動回路88及びドライバ89等を備えている。
この制御部は、この記録装置全体の制御を司るマイクロコンピュータ(以下、「CPU」と称する。)80と、所要の固定情報を格納したROM81と、ワーキングメモリ等として使用するRAM82と、ホスト側から転送される画像データ(ドットデータ或いはドットパターンデータと称する。)を格納する画像メモリ(ラスデータメモリ)83と、パラレル入出力(PIO)ポート84と、入力バッファ85と、パラレル入出力(PIO)ポート86と、波形生成回路87と、ヘッド駆動回路88及びドライバ89等を備えている。
ここで、PIOポート84にはホスト100のプリンタドライバ101側から転送される画像データなどの各種情報及びデータ、各種センサからの検知信号等が入力され、またこのPIOポート84を介してホスト側や操作パネル側に対して所要の情報が送出される。
また、波形生成回路87は、記録ヘッド14の圧電素子52に対して印加する駆動波形を生成出力する。この波形生成回路87としては、後述するように、CPU80からの駆動波形データをD/A変換するD/A変換器を用いることで、簡単な構成で所要の駆動波形を生成出力することができる。
ヘッド駆動回路88は、PIOポート86を介して与えられる各種データ及び信号に基づいて、記録ヘッド14の選択されたチャンネルの圧電素子52に対して波形生成回路87からの駆動波形を印加する。さらに、ドライバ89は、PIOポート86を介して与えられる駆動データに応じて主走査モータ17及び副走査モータ27を各々駆動制御することで、キャリッジ13を主走査方向に移動走査し、搬送ローラ24を回転させて用紙3を所定量搬送させる。
この制御部のうちのヘッド駆動制御に係わる部分について図9ないし図11を参照して説明する。なお、図9は同駆動制御に係わる部分のブロック説明図、図10はヘッド駆動回路の一例を示すブロック図、図11は同ヘッド駆動制御に係わる部分の作用説明に供する説明図である。
主制御部91は、ホスト側から送られてくる印字データとしてのフォントデータ(ドットデータ)を処理して、ヘッドの並びに対応した縦横変換を行い、また、インク滴を大滴、小滴、非印字の3値を打ち分けるために必要な2ビットの駆動データSDを生成してヘッド駆動回路(ドライバIC)88に出力する。また、ドライバIC88に対しては、この他、クロック信号CLK、ラッチ信号LAT、駆動波形として画像ドットを形成するサイズのドット(大滴)に対応した駆動波形、小滴に対応した駆動波形を選択するための駆動波形選択信号M1〜M3を出力する。さらに、この主制御部91は内部ROM81に格納した駆動波形データを読み出して駆動波形生成回路87に与える。
駆動波形生成回路87は、主制御部91から与えられる駆動波形データをD/A変換してアナログ信号として出力するD/Aコンバータ92と、D/Aコンバータ92からのアナログ信号を実際の駆動電圧まで増幅する増幅器93と、増幅出力をヘッドの駆動による電流を十分供給できるように増幅する電流増幅器94とを含み、例えば、図11に示すような1駆動周期内に複数の駆動パルスを含む駆動波形Pvを生成してドライバIC88に与える。
このドライバIC(ヘッド駆動回路)88は、図10に示すように、主制御部91からのクロック信号CKによって駆動データSDを取り込むシフトレジスタ95と、シフトレジスタ95のレジスト値をラッチ信号LATでラッチするラッチ回路96と、ラッチ回路96にラッチされた2ビットの駆動データによって駆動波形選択信号M1〜M3(ロジック信号)を選択するデータセレクタ97と、データセレクタ97の出力(ロジック信号)を駆動電圧レベルに変換するレベルシフタ98と、このレベルシフタ98の出力でオン/オフが制御されるトランスミッションゲート99とからなる。このトランスミッションゲート99は、駆動波形生成回路87からの駆動波形Pvが与えられ、記録ヘッド(インクジェットヘッド)14の各ノズルに対応する圧電素子52に接続されている。
したがって、このヘッド駆動回路88は、駆動データSDに応じてデータセレクタ97により、駆動波形選択信号M1〜M3の1つが選択され、ロジック信号である選択した駆動波形選択信号M1〜M3をレベルシフタ98により駆動電圧レベルに変換し、トランスミッションゲート99のゲートに与える。
これにより、トランスミッションゲート99は選択された駆動波形選択信号M1〜M3の長さに応じてスイッチングされるので、トランスミッションゲート99が開状態になっているチャンネルに対して駆動波形Pvを構成する駆動パルスが印加される。
例えば、図11(a)に示すような複数の駆動パルスを含む駆動波形Pvが与えられているとき、期間T0〜T1の間だけ開状態になるトランスミッションゲート99からは同図(b)に示すように1個の駆動パルスが出力されて圧電素子52に印加されるので、吐出される滴の大きさは小滴となる。同様に、期間T0〜T2の間だけ開状態になるトランスミッションゲート99からは同図(c)に示すように2個の駆動パルスが出力されて圧電素子52に印加されるので、吐出される滴の大きさは中滴となる。さらに同様に、期間T0〜T3の間開状態になるトランスミッションゲート99からは同図(d)に示すように5個の駆動パルスが出力されて圧電素子52に印加されるので、吐出される滴の大きさは大滴となる。
このように、複数の駆動パルスを含む駆動波形を生成して、圧電素子に印加する駆動パルス数を選択することで、1つの駆動波形から小滴用、中滴用、大滴用の各波形を生成しているので、駆動波形を供給する回路、信号線が1つでよく、コスト低減、回路基板、伝送線の小型化を図ることができる。
次に、このインクジェット記録装置に画像データ等を転送する、プリンタドライバを搭載する画像処理装置であるホスト側について図12を参照して説明する。
上述したように、上記の記録装置では、装置内に画像の描画又は文字のプリント命令を受けて実際に記録するドットパターンを発生する機能を持たない構成としているので、画像処理装置としてのホスト側の階調再現方法を実行する閾値マトリクスを用いたプリンタドライバでドットパターンのデータを作成してインクジェット記録装置側に転送する。
すなわち、プリンタドライバ101は、ホストコンピュータで実行されるアプリケーションソフトなどから画像データをCMM処理部102、BG/UCR部103及びズーミング処理部104で処理した後、閾値マトリクス(テーブル)105を用いて多階調画像データを2値又は多値の画像データであるドットパターンに置換して出力する。
そこで、まず、所定のライン基調で階調再現を行うための閾値マトリクスの作成方法について図13以降を参照して説明する。
画像処理において、形成される画像の解像度が人間の目の分解能を超える程の高解像度化が実現できれば、どのような処理を用いても理論上画質に影響は無いが、逆に、人間の視覚で判別できる程度の解像度では、処理そのものに起因する不具合が目に付く可能性が生じてくる。
画像処理において、形成される画像の解像度が人間の目の分解能を超える程の高解像度化が実現できれば、どのような処理を用いても理論上画質に影響は無いが、逆に、人間の視覚で判別できる程度の解像度では、処理そのものに起因する不具合が目に付く可能性が生じてくる。
図13は300dpi程度の低解像度記録で一般的に使用される中間調処理法について、実際に形成されるドットパターンの一例を示したものであり、同図(a)の入力画像データに対して、Bayer型ディザ処理を施した場合の出力画像は同図(b)に示すようになり、誤差拡散処理を施した場合の出力画像は同図(c)に示すようになる。
このように、本来1画素で多値表現すべきデータを、より表現力の少ない記録装置で再現するためには、同図のように単位面積当たりのドット個数、すなわちドット面積率にて疑似階調表現を行うことになる。
これらの例として挙げた2種類の中間調処理方法は、単に階調レベルと面積率の整合を取っているだけではなく、ドットの配置に偏りが生ないようにほぼ均等に配置され、配置パターンそのものも目に留まりにくい高周波特性を持つように調整されている。これらの処理を600dpi、1200dpiといった高解像度記録に適用すると、ドットの配置パターンが殆ど目に付かず、ドットの分布にムラも無い非常に良好な画像品質を得ることができるようになる。
これに対して、150dpi、300dpiといった低解像度記録を行うと、高周波特性を持つように調整された処理であっても、さすがにドットの配置パターンそのものが目に付くようになってくる。本来、原画像データでは1画素で表現しているところを、複数の画素を用いて表現しているため、元々の原画像にはないテクスチャーパターンが出力画像上に形成されることになる。
図13(b)に示す例もそれであるが、図14(a)に示すような入力画像データを実寸で72dpiという相当に粗い画像で出力した場合により明確になるように、同図(b)に示すように、Bayer型ディザ処理特有のテクスチャーが生じ変化している部分、またドットが綺麗に整列してテクスチャーの全く無い部分が入り交じり、非常に汚い画像となる。
これに対し、誤差拡散処理では、一見ランダムにも見える配置でドットが形成されている。全ての階調レベルにおいて、このドット配置のランダム性が維持されるため、図13(c)に示すように、階調レベルによってテクスチャーが切り替わるということもなく、定型のテクスチャーそのものが存在しない。定型のテクスチャーが存在しないことで、記録装置における機械的な変動に対する干渉が発生し難く、またドット配置にある程度の自由度が得られるため、Bayer型、ディザ等に比べて高い解像特性が得られる。
ところが、誤差拡散処理では、図15に示すように、Bayer型、ディザ等と比較してみると粒状度の点では大きく差が付いてしまうことがある。なお、同図は300dpiで記録した場合の比較である。このように、数々の利点をもたらすはずのランダム性が、低解像度では、逆に、目についた時に汚いノイズ成分として認識され易く、官能評価ではBayer型ディザの様に整然と揃ったテクスチャーが発生する方が良好に受け取られる傾向にある。
これらのことから、ドットの配置によって形成されるテクスチャーパターンの善し悪しが画質に大きく作用することが分かる。例にあげた上記2種類の処理方法から、低解像度で良好な画像品質を得るには、整列性の良いドット配置パターンを形成し、それを各階調レベルに渡って変化させない(もしくは、変化を感じさせない)ことが必要である。
そこで、閾値マトリクスは、ドット配置パターンのみですべての中間調レベルにおいて常に所定のライン基調(整列性を持ったドット配置パターン)を維持したドット再現を行うマトリクス構成としている。これにより、低解像度で1〜3bit程度の少値表現を行う記録装置で記録する場合の画像品質を向上することができる。中でも、上述したドット径変調が可能なインクジェット記録装置に好適な印字データを得ることができるようになる。
ここで、整列性を持ったドット配置パターン(以下、「基調」という。)を考える場合、上述したように記録装置の機械的な変動との相関を常に考慮しなければならない。すなわち、上述したインクジェット記録装置でもそうであるが、図16に示すように、用紙3の送りに合わせて小型のヘッド14及びキャリッジ13等を含む記録ユニットが主走査方向移動しながら記録を行っていく。このとき、副走査方向の紙送り精度や主走査方向のヘッド移動速度にムラが発生すると、ドットの基調と干渉して、縦横のスジとして認識されてしまうおそれがある。
例えば、図17(b)は同図(a)に示すBayer型ディザの一階調パターンを用いて出力した場合の干渉について示しているが、垂直・水平に基調が揃うと、主走査・副走査の変動A、Bと同期しやすくなってしまうことが分かる。特に人間の目は0°や90°(180°や270°)方向に対して感度が高いので、垂直・水平に揃いやすい基調は避ける方が良い。しかし、誤差拡散で述べたように、最も干渉を起こしにくいランダム型は、低解像度ではノイズ成分が強調して認識されてしまうために好ましくない。
そこで、ここでは、図18に示すように斜め基調のドット配置となるようにしている。特に、同図(a)に示す特に45°斜め基調や135°斜め基調などの万線基調とすることによって、主走査方向及び副走査方向のいずれの変動に対しても等しい効果が得られる。さらに、人間の視覚は斜め方向に対してはやや感度が鈍くなるため、垂直・水平の基調よりも目立ち難いという特徴もある。ここでは、あくまでも基調を揃えることが主眼であり、本来は不具合である干渉を目立たせることが主眼ではないので、この特性は利点となる。
なお、図18の万線基調は「万線型ディザ」として電子写真記録で用いられてきている。この電子写真記録では、帯電した光半導体上にレーザーで潜像を形成し、トナーを付着・転写させることで記録を行うので、レーザーのパワー変調によりドットのサイズを何段階にも制御できる反面、トナーの付着・転写不良が発生し易いため、あまり小さいドットによる階調表現は適していないことから、できるだけドットを集中させて徐々に大きなドットを形成していく面積変調方式のディザ(AMディザ)が一般的に採用されている。
万線型ディザは、このAMディザの一種であり、指向性はあるものの、ドットを渦巻き状に成長させる「集中型ディザ」よりも記録密度(線数)を高められるという利点がある。
しかしながら、この電子写真用万線ディザをそのままインクジェット記録装置やその他の記録方式に適用しても基調が揃うことにはならない。すなわち、電子写真では、図19(a)に示すように、ドットサイズだけでなくドット形成位置をずらすことも可能であるため、同図(b)に示すようにドットをいくら配置しても、つまり階調レベルが変化しても斜線形状を崩すことなく階調を表現することができる。
これに対して、インクジェット記録装置の場合、図20(a)に示すように、ドット形成位置はあくまでも記録解像度によって決まるピッチに固定されてしまう。そのため、同図(b)に示すように、僅か数ドット増えただけで基調が変わってしまうことになり、目的の基調変化しない(もしくは目立たない)処理法からは外れてしまうことになる。
特に、一般的なディザ処理では、処理機構の単純化(高速化と低コスト化のため)を目指して、同じマスクが正方形状にタイリングされて使用されるため、例え1ドットの増加であっても、タイリングの周期で垂直・水平に揃ったパターンとして認識されることとなる。
例えば、図21(a)に示すような4×4のマスクを用いて同図(b)に示すようにタイリングを行った場合、全体として見ると垂直・水平にドットが揃うことになるため、同図(c)に示すように、基調としては格子状の基調になってしまう。
そこで、上記万線基調を維持するために、まずこのタイリングによる基調変化を回避するため、1階調レベル当たり3ドット以上を同時に発生させるようにしている。
すなわち、斜め万線基調で再現を行う場合、図22(a)に示すように1階調レベル当たり1ドットのマスクを同図(b)に示すようにタイリングすると、同図(c)に示すように垂直・水平の格子基調となる。また、図23(a)に示すように1階調レベル当たり2ドットのマスク(これ自体は斜めにドットが配置されている)を同図(b)に示すようにタイリングすると、同図(c)に示すように斜め基調となるものの、45°と135°が交わった基調となってしまう。
これに対して、図24(a)に示すように、1階調レベル当たりのドット数を3ドット以上とすることで、同図(b)に示すようにタイリングを行っても、同図(c)に示すように、一方向の斜め基調のみとなる。
この場合、1階調レベル当たり3ドット以上を同時に形成するということは、同じ階調再現能力を得るために3×3=9倍以上のサイズのマスクサイズとなる。この9倍以上という値は大きいようにも見えるが、誤差拡散処理に必要とされるバッファメモリ等と比較すると微々たるものであり、極端に大きなマスクを基準としない限り、処理速度低下やコストアップに影響することはない、ただし、高速化のためには、マスクの縦横のサイズがコンピュータの処理し易い、すなわち、メモリ上に展開した際に端数の発生しない8の倍数になるよう設定する。
次に、マスクサイズの拡大について説明する。図25(a)に示すような斜め万線基調となる基準マスクを基準として、同図(b)に示すように4ドット同時発生時のマスクを形成し、更に同図(c)に示すように基準となるマスクの1マス1マスを、必要な階調数となる様に更に細かいサブマトリクスへと分割する。この際、分割するサブマトリクスは基準となるマスクと相似形の斜め万線型とすることで、基調を崩すパターンが発生するのを防ぐことができる。
例えば、同図(d)はサブマトリクスを3×3としたもので36階調を表現可能になる。また、同図(e)はサブマトリクス4×4としたもので64階調を表現可能になる。
このようなサブマトリクス化によって、斜め万線基調を崩すような別の基調の発生を抑制することが可能となる。
ところで、上述したような万線基調などの所定の方向のライン基調に形成される閾値マトリクス(ディザマトリクス)を使用する場合においても、一部の濃度において、低線数化、すなわち階調の連続性が途切れることによる画質低下が発生する場合がある。すなわち、所定の方向のライン基調に形成されたマトリクスパターンの一部を図26(a)、(b)に示しているが、このようなライン基調を維持することが困難になる濃度が存在する。
例えば、図27(a)に示す階調グラデーション画像のように、A部の濃度において、マトリクスパターンが同図(b)に示すように低線数化することで、階調の連続性が途切れて画質低下が発生する場合が生じる。
そこで、所定の方向のライン基調に形成されるような閾値マトリクス(ディザマトリクス)において、一部の濃度における低線数化による画質の低下を解決するため、低線数化した濃度範囲部を選定し、双方の濃度間のマトリクスのドット配置をハイパスフィルター特性及び所定方向のライン基調を持つように改めて配置する。
ハイパスフィルター特性には、空間周波数分析による人間の視覚の空間周波数特性を適用し、空間周波数特性の低いものを抽出する。図28は、人間の視覚特性を表したグラフを示したものである。人間の視覚の空間周波数特性は、網膜上の空間周波数fから次の(1)式で近似される。
図29(b)は上述したハイパスフィルター特性を持たせたマトリクスのライン基調以外の部分の一例を示すものであり、このライン基調以外の部分の特性は同図(b)に示すようなハイパスフィルター特性となっている。
また、図30は所定の方向のライン基調に形成され、かつ基調以外の部分においてハイパスフィルター特性を持つマトリクスによる階調グラデーション画像の例を示している。
すなわち、前述した図27(a)のA部の濃度部分においては、図30(a)に示すライン基調の部分と同図(b)に示すハイパスフィルター特性を持つライン基調以外の部分とを組み合わせた同図(c)に示すような本発明に係るディザマトリクスを用いることで、同図(d)に示すように濃度が連続した階調グラデーション画像が得られる。
この場合、一部の濃度間における双方のディザマトリクスを2値画像としたときに、両画像の差分画像においてハイパスフィルター特性を持つことになる。
すなわち、ディザ法では、低い濃度側で設定された閾値ドットは、高い濃度側でも必ず存在する。上述のディザマトリクスの一部の濃度間における双方において、濃度が低い側をAマスク、濃度が高い側をBマスクとすると、ディザ法の性質上、Aマスクに存在するライン基調は、Bマスクにも必ず存在する。したがって、Bマスクを2値化した画像から、Aマスクを2値化した画像の差分を求めると、ライン基調が無い画像になる。
つまり、図31(a)に示すように、Aマスクを用いるA部の濃度とBマスクを用いるB部の濃度との間において、同図(b)に示すAマスクと同図(c)に示すBマスクとの差分(B−A)を採ると、同図(d)に示す差分画像(差分パターン)が得られ、この差分画像は同図(e)に示すように前述したハイパスフィルター特性を持つことになる。
このように、低線数化を抑制したマトリクスにより所定の方向のライン基調の連続性が高まり、連続した階調表現による所望の品質の多階調画像を再現することができる。また、誤差拡散法に比べ、マスク手法を使用することにより処理が単純になり処理速度(印刷速度、画像処理速度、或いは画像形成速度)の高速化がはかれる。この場合、所定の方向のライン基調を斜め方向とする、万線基調とすることにより、斜め方向のライン基調が画像形成装置による横スジ状のノイズを低減し、より高品質な多階調画像の出力を得ることができるようになる。
そして、このような閾値マトリクス、階調再現方法を、多色画像を複数の色成分に分解し、少なくとも1つの色成分の原画像を入力画像とした多色画像の画像処理方法に適用することで、より高画質な多色画像を出力できる。
多色画像形成装置、一般にカラー印刷装置では、等和色であるシアン、マゼンダ、イエローの3つの基本色が用いられる。また、インクジェットカラー印刷装置では、明度なども加味し、所望の色彩の外観を向上させるため、これらの3色にさらにブラックを加え、4色の原色を用いて印刷を行うものが主流になっている。さらに、最近では印刷画質の向上のため、基本色を組み合わせた多次色を予め用意して、さらに多くの色を用いた印刷を行うものも多くなってきている。
これらの装置のように、複数の色成分に分解し、それぞれの色成分の原画像を入力画像とする多色画像形成方法は、色成分単位で擬似階調表現処理を行う。したがって、各色成分単位でのライン基調の連続性が高まり、結果として単色画像、多色画像において、より高画質な画像を形成することができる。
特に、マトリクスを用いて各ドット2値あるいは多値の画像データに変換する画像形成装置において、特におよそ300dpi以下の低解像度な精細度で出力する(画像形成する)場合に適用することで、画像形成速度、印刷速度の高速化と高画質化を図ることができる。
すなわち、一般に擬似階調表現処理を使用する画像形成装置は、単位当たりのドット密度すなわち解像度を上げて画質を向上させている。しかし、解像度を上げることは同時に処理する画像データ量も面積単位で大きくなるため、処理時間も多く必要とする。300dpiの解像度の画像形成装置においての擬似階調表現処理では、一般に1インチあたり最高で約150本の線を表現するのが限界とされ、高画質化が困難といわれている。
上述した所定方向のライン基調を持つディザマトリクスによる擬似階調表現処理においては、一部の濃度において人間の視覚上では低線数化が発生し、特に300dpiの解像度ではさらに線数が低くなることで、階調表現の連続性が失われ、画質低下が目立つことになる。このような画像形成装置における出力形態(低解像度での出力)で画像形成する場合に、低線数化を抑制し所定方向のライン基調の連続性が高まり、連続した階調表現による所望の品質の多階調画像を形成することができる。
次に、階調再現方法としての中間調処理方法とγ補正との関係について説明する。
前述したように、一般に、個々の画像形成装置の入出力特性に応じて出力する画像データの濃度を補正するためにγ補正が用いられ、例えば、画像形成装置が入力に対して出力結果が小さくなるような入出力特性を有する場合には、出力画像が濃くなるように高い階調を出力するように補正し、逆に、入力に対して出力結果が大きくなるような特性を有する場合には、出力画像が薄くなるように低い階調を出力するように補正する。
前述したように、一般に、個々の画像形成装置の入出力特性に応じて出力する画像データの濃度を補正するためにγ補正が用いられ、例えば、画像形成装置が入力に対して出力結果が小さくなるような入出力特性を有する場合には、出力画像が濃くなるように高い階調を出力するように補正し、逆に、入力に対して出力結果が大きくなるような特性を有する場合には、出力画像が薄くなるように低い階調を出力するように補正する。
このようなγ補正における濃度変換曲線の特性(γカーブ)は、例えば図32に実線aで示すように一対一になる理想的な入出力特性(入力階調と出力階調が同じになる。)に対し、同図に破線bで示すように上に膨らんだ曲線となったり、同じく一点鎖線cで示すように下に膨らんだ曲線となったりする。
そして、通常の画像処理では、多階調の画像データ(多値画像データ)に対してγ補正を行なって出力階調を補正した後、所要の処理を行ない、その後多値画像データに対して上述したような中間調処理を行なって少値画像データに変換するようにしている。
ところが、例えば、前述したような階調再現方法としての中間調処理方法の1つであるディザ法において、多値画像データをこの多値画像データよりも情報量の少ない少値画像データに変換するために使用するディザマトリクス(閾値マトリクス)105は、階調毎のドット増加数が一定か、或いは、最高階調に向けて明度リニアとなるように閾値が割り振られている。
そのため、例えば入力画像データが256値であり、中間調処理による階調再現数が256値であるような画像形成装置の場合、入力と出力が一対一の関係にある場合にのみ256値を再現することが可能であるが、入出力特性が曲線を持っている場合には再現できる階調数が減少することになる。つまり、例えば、図32の255階調付近を拡大した図33に示すように、実線aで示す理想的な入出力特性に対して特に破線bで示すように入出力特性が上に膨らんだ曲線となるときには、高い階調付近で入力階調が変化しても出力階調が変化しない階調領域が生じることになり、図示しないが一点鎖線bで示すように入出力特性が下に膨らんだ曲線となるときには、低い階調付近で入力階調が変化しても出力階調が変化しない階調領域が生じることになる。
そこで、本実施形態においては、多値画像データを多値の情報量より少ない少値の画像データに変換しながら階調を再現するときに使用するディザマトリクス105において、閾値の割り振りを、上述したように階調毎の一定数のドット増加、或いは、最高階調に向けて明度リニアとなるような割り振りではなく、濃度変換曲線の特性を持つようにしている。
つまり、単位面積当たりのドット面積率が濃度変換曲線の特性と同じになるようにディザマトリクス105の閾値を設定し、各階調毎のドット数又はドットサイズを制御している。言い換えれば、図34に示すように、ディザマトリクス105の閾値の設定により、入力階調に対するドット面積率の変化曲線を実線d、破線e、一点鎖線fで示すように変化させることができる。そこで、このドット面積率の変化曲線が濃度変換曲線の特性と同じになるように、閾値を設定する。
これにより、256階調数を維持しつつ、図35に示すように、入力と出力が常に一対一の関係となる入出力特性にすることができ、階調数の低下のない高品質な画像を形成することができるようになる。
このように、多値画像データをこの多値よりも情報量の少ない少値の画像データに変換しながら多値画像データの階調を再現するとき、濃度変換曲線の特性を有する手段を用いて変換処理を行うことによって、階調数の低下のない高品質の画像を形成することができる。この場合、別途、濃度変換曲線の特性によるγ補正の必要がなくなり、処理速度の向上を図ることができる。
言い換えれば、中間調処理を行なうときにγ補正の特性に従って変換を行うことによって、階調数の低下のない高品質の画像を形成することができるのであり、この結果、中間調処理の前段階で別途γ補正を行う必要がなくなって、処理速度の向上を図れるのである。
この場合、ブラック用の濃度変換曲線の特性を持たせた手段を用いれば、モノクロ画像やブラック色について階調数の低下がない高品質の画像を形成することができる。また、カラー用の濃度変換曲線の特性を持たせた手段を用いれば、カラー画像について階調数の低下がない高品質の画像を形成することができ、このとき色成分単位の濃度変換曲線の特性を持たせた手段を用いれば、カラー画像や単色カラー画像についてより階調数の低下がない高品質の画像を形成することができるようになる。
また、ホスト側のプリンタドライバに上述した階調再現方法をコンピュータに実行させるプログラムを含めることによって、階調数の低下がない高品質な画像を形成させることできるとともに、別途γ補正処理を行なわなくとも良くなって処理速度が向上し、さらに濃度変換曲線テーブルが不要になってプログラムサイズを小さくすることもできる。
なお、ディザマトリクスの閾値の割り振りを変えて単位面積当りのドット面積率を変化させる場合、前述したようにディザ法ではドット数、あるいは、ドットサイズ変調によって階調再現を行なうので、使用する方法に応じてドット数及びドットサイズの少なくともいずれかを変更することで濃度変換曲線の特性を持たせることができる。
また、上記実施形態では、ホスト側のプリンタドライバで閾値マトリクス(ディザマトリクス)をテーブルとして保持する例で説明しているが、図36に示すように、プリンタドライバ101側にはホストコンピュータで実行されるアプリケーションソフトなどから画像データを処理するCMM処理部102及びBG/UCR部103のみを有し、インクジェット記録装置200側の制御部にズーミング処理部104及び閾値マトリクス105を格納したROMなどを備えて、ドット配置への変換はインクジェット記録装置側で行うようにすることもできる。
このように複数のドットからなる画像を形成する画像形成装置側で上述した階調再現方法を実行することによって、階調数の低下がない高品質な画像を形成することができる。また、別途γ補正を行なわないでもよくなり、処理速度が向上するとともに、濃度変換曲線テーブルを用意する必要がなくなって実装するメモリ容量を低減することもできる。
また、上記実施形態では主に画像形成装置としてのインクジェット記録装置及びそのホストに適用する例で説明したが、ドットで画像を形成できる(ドット再現で画像を形成する)画像形成装置、例えば熱転写記録装置や熱エネルギーを利用するサーマルプリンタなどにも同様に適用することができる。さらに、レーザープリンタ、LEDプリンタなどの電子写真方法を用いた画像形成装置にも適用することができる。
13…キャリッジ
14…記録ヘッド
87…駆動波形生成回路
88…ヘッド駆動回路
91…主制御部
100…ホスト
101…プリンタドライバ
102…CMM処理部
103…BG/UCR部
104…ズーミング処理部
105…閾値マトリクス
14…記録ヘッド
87…駆動波形生成回路
88…ヘッド駆動回路
91…主制御部
100…ホスト
101…プリンタドライバ
102…CMM処理部
103…BG/UCR部
104…ズーミング処理部
105…閾値マトリクス
Claims (8)
- 多値画像データを多値よりも情報量の少ない少値の画像データに変換しながら前記多値画像データの階調を再現する階調再現方法において、濃度変換曲線の特性を有する手段を用いて変換処理を行うことを特徴とする階調再現方法。
- 請求項1に記載の階調再現方法において、前記濃度変換曲線の特性を有する手段がブラック用の濃度変換曲線の特性を有していることを特徴とする階調再現方法。
- 請求項1又は2に記載の階調再現方法において、前記濃度変換曲線の特性を有する手段がカラー用の濃度変換曲線の特性を有していることを特徴とする階調再現方法。
- 請求項3に記載の階調再現方法において、カラー用の濃度変換曲線の特性が色成分単位の濃度変換曲線の特性であることを特徴とする階調再現方法。
- 請求項1ないし4のいずれかに記載の階調再現方法において、前記濃度変換曲線の特性を有する手段がディザマトリクスであることを特徴とする階調再現方法。
- 請求項5に記載の階調再現方法において、ドットサイズ変調及び単位面積当たりのドット面積率の少なくともいずれかで濃度変換曲線の特性が持たされていることを特徴とする階調再現方法。
- 複数のドットからなる画像を形成する画像形成装置において、前記請求項1ないし6のいずれかに記載の階調再現方法を実行する手段を含むことを特徴とする画像形成装置。
- 複数のドットからなる画像を形成する画像形成装置用の画像データを処理するプリンタドライバにおいて、前記請求項1ないし6のいずれかに記載の階調再現方法をコンピュータに実行させるプログラムを含むことを特徴とするプリンタドライバ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253768A JP2006074305A (ja) | 2004-09-01 | 2004-09-01 | 階調再現方法、画像形成装置及びプリンタドライバ |
US11/213,890 US20060044616A1 (en) | 2004-09-01 | 2005-08-30 | Gradation reproducing method, image forming apparatus, and printer driver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253768A JP2006074305A (ja) | 2004-09-01 | 2004-09-01 | 階調再現方法、画像形成装置及びプリンタドライバ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006074305A true JP2006074305A (ja) | 2006-03-16 |
Family
ID=35942631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004253768A Pending JP2006074305A (ja) | 2004-09-01 | 2004-09-01 | 階調再現方法、画像形成装置及びプリンタドライバ |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060044616A1 (ja) |
JP (1) | JP2006074305A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008100497A (ja) * | 2006-09-19 | 2008-05-01 | Ricoh Co Ltd | 印写方法、画像形成装置、制御プログラム、当該プログラムを搭載した情報記録媒体、これらを具備する画像形成システム、印写用記録媒体、印写した記録物、及びインク |
JP2008265317A (ja) * | 2007-03-29 | 2008-11-06 | Ricoh Co Ltd | 画像形成装置及び方法 |
JP2009021711A (ja) * | 2007-07-10 | 2009-01-29 | Canon Inc | 画像形成装置 |
US8085437B2 (en) | 2007-03-29 | 2011-12-27 | Ricoh Company Limited | Image forming apparatus and image forming method |
US8427694B2 (en) | 2006-06-28 | 2013-04-23 | Ricoh Company, Ltd. | Image processing apparatus, image processing method and image processing program product generating processing data having consistent pixel density |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3840144B2 (ja) * | 2002-06-11 | 2006-11-01 | 株式会社リコー | 閾値マトリクス、画像処理装置、画像形成装置及びプリンタドライバ |
JP2007110690A (ja) * | 2005-09-14 | 2007-04-26 | Ricoh Co Ltd | 画像処理方法、プログラム、画像処理装置、画像形成装置及び画像形成システム |
US8186793B2 (en) | 2006-02-22 | 2012-05-29 | Ricoh Company, Ltd. | Image processing method, program, image processing apparatus, image forming apparatus, image forming system |
JP2008126453A (ja) * | 2006-11-17 | 2008-06-05 | Ricoh Co Ltd | 画像処理方法、プログラム、記憶媒体、画像処理装置、画像形成装置 |
JP2009154499A (ja) * | 2007-12-28 | 2009-07-16 | Ricoh Co Ltd | 画像形成方法、及びインクジェット記録装置 |
JP4776646B2 (ja) * | 2008-03-10 | 2011-09-21 | 株式会社リコー | 画像処理装置、画像処理方法、プログラムおよび記録媒体 |
JP5740935B2 (ja) | 2009-12-11 | 2015-07-01 | 株式会社リコー | 画像形成装置、及び、画像形成方法 |
JP5325902B2 (ja) * | 2011-01-13 | 2013-10-23 | 京セラドキュメントソリューションズ株式会社 | 画像形成装置 |
JP6127498B2 (ja) * | 2012-12-20 | 2017-05-17 | セイコーエプソン株式会社 | 印刷装置、その制御方法、その制御プログラム及び印刷物の製造方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4635078A (en) * | 1983-04-28 | 1987-01-06 | Canon Kabushiki Kaisha | Intermediate gradient image producing method |
JP2774501B2 (ja) * | 1987-11-05 | 1998-07-09 | 株式会社リコー | カラー画像の多値化階調処理方法 |
JPH02303863A (ja) * | 1989-05-19 | 1990-12-17 | Canon Inc | 画像形成装置 |
JP2748678B2 (ja) * | 1990-10-09 | 1998-05-13 | 松下電器産業株式会社 | 階調補正方法および階調補正装置 |
CA2102005C (en) * | 1992-10-30 | 1999-10-12 | Jiro Moriyama | Color ink jet recording method and apparatus using black ink and color-mixed black ink |
JP3360391B2 (ja) * | 1993-06-24 | 2002-12-24 | セイコーエプソン株式会社 | 画像処理装置および画像処理方法 |
JP3439236B2 (ja) * | 1993-07-16 | 2003-08-25 | 株式会社東芝 | 画像処理装置 |
US5987219A (en) * | 1993-09-01 | 1999-11-16 | Canon Information Systems Research Australia Pty. Ltd. | Method of producing a dither matrix by dividing an array into a plurality of regions and altering the borders of each region to have continuous irregular boundaries |
US6198545B1 (en) * | 1994-03-30 | 2001-03-06 | Victor Ostromoukhov | Method and apparatus for generating halftone images by evolutionary screen dot contours |
JP3542685B2 (ja) * | 1995-06-27 | 2004-07-14 | セイコーエプソン株式会社 | マルチトーンをもつバイナリ画像の圧縮及び復元のための装置及び方法 |
US5729625A (en) * | 1995-07-14 | 1998-03-17 | Canon Kabushiki Kaisha | Image processing method and apparatus which expand a pixel into multiple pixels, with a change in the number of gray levels |
JP3444094B2 (ja) * | 1995-10-06 | 2003-09-08 | セイコーエプソン株式会社 | 画像処理方法及びその装置 |
JP3156605B2 (ja) * | 1996-11-19 | 2001-04-16 | セイコーエプソン株式会社 | トナー転写式の印刷装置のためのパルス幅データの生成装置及び方法 |
US5898822A (en) * | 1997-03-27 | 1999-04-27 | Xerox Corporation | Using the phase information in the halftone dot structure to minimize artifacts when switching between halftone dots on a scan line |
JP3668014B2 (ja) * | 1998-03-09 | 2005-07-06 | 富士写真フイルム株式会社 | 画像処理方法及び装置 |
JPH11346311A (ja) * | 1998-06-01 | 1999-12-14 | Matsushita Electric Ind Co Ltd | 階調再現方法 |
JP3974721B2 (ja) * | 1998-12-25 | 2007-09-12 | 東芝テック株式会社 | 画像処理方法及び画像処理装置 |
TW522099B (en) * | 1999-03-31 | 2003-03-01 | Seiko Epson Corp | Printing system, printing controller, printer, method for controlling printing operations, printing method, ink box, ink provider, and recording medium |
JP2001333288A (ja) * | 2000-03-17 | 2001-11-30 | Toshiba Tec Corp | カラー画像形成装置及びカラー画像形成方法 |
JP2001292890A (ja) * | 2000-04-11 | 2001-10-23 | Nakahara Sanpodo:Kk | 複数供養壇 |
US7251060B2 (en) * | 2000-12-12 | 2007-07-31 | Ricoh Company, Ltd. | Image-processing device using quantization threshold values produced according to a dither threshold matrix and arranging dot-on pixels in a plural-pixel field according to the dither threshold matrix |
JP4002405B2 (ja) * | 2001-03-27 | 2007-10-31 | 富士フイルム株式会社 | 画像変換方法、画像変換装置、および画像変換プログラム |
US6865325B2 (en) * | 2001-04-19 | 2005-03-08 | International Business Machines Corporation | Discrete pattern, apparatus, method, and program storage device for generating and implementing the discrete pattern |
JP2003127438A (ja) * | 2001-10-24 | 2003-05-08 | Seiko Epson Corp | 印刷制御装置、印刷制御方法、印刷制御プログラム、印刷制御プログラムを記録した媒体、印刷装置、印刷方法 |
US7224488B2 (en) * | 2001-06-12 | 2007-05-29 | Fujifilm Corporation | Method of correcting threshold array, dot pattern data structure, method of correcting pixel layout of image, and method of determining threshold array for generating image |
JP4124580B2 (ja) * | 2001-06-12 | 2008-07-23 | 富士フイルム株式会社 | 階調画像作成用閾値配列決定方法 |
JP2003110859A (ja) * | 2001-10-01 | 2003-04-11 | Canon Inc | 画像処理方法、画像処理装置、記憶媒体及びプログラム |
JP3949931B2 (ja) * | 2001-10-30 | 2007-07-25 | 株式会社ルネサステクノロジ | 画像形成装置 |
EP1420957A4 (en) * | 2002-03-19 | 2007-12-12 | Ricoh Kk | METHOD FOR CORRECTING COLOR DIFFERENCE IN BIDIRECTIONAL PRINTING, PRINTING DEVICE, PROGRAM AND STORAGE MEDIUM |
JP2004102273A (ja) * | 2002-08-22 | 2004-04-02 | Canon Inc | 画像形成装置 |
US7246869B2 (en) * | 2003-07-03 | 2007-07-24 | Seiko Epson Corporation | Printing with varied dot-recording rate with respect to each printing region |
US7258412B2 (en) * | 2003-08-11 | 2007-08-21 | Canon Kabushiki Kaisha | Ink-jet printing method, apparatus and system |
US7341323B2 (en) * | 2004-02-13 | 2008-03-11 | Seiko Epson Corporation | Printing control device, printing control method, and printing control program recording medium |
-
2004
- 2004-09-01 JP JP2004253768A patent/JP2006074305A/ja active Pending
-
2005
- 2005-08-30 US US11/213,890 patent/US20060044616A1/en not_active Abandoned
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8427694B2 (en) | 2006-06-28 | 2013-04-23 | Ricoh Company, Ltd. | Image processing apparatus, image processing method and image processing program product generating processing data having consistent pixel density |
JP2008100497A (ja) * | 2006-09-19 | 2008-05-01 | Ricoh Co Ltd | 印写方法、画像形成装置、制御プログラム、当該プログラムを搭載した情報記録媒体、これらを具備する画像形成システム、印写用記録媒体、印写した記録物、及びインク |
JP2008265317A (ja) * | 2007-03-29 | 2008-11-06 | Ricoh Co Ltd | 画像形成装置及び方法 |
US8085437B2 (en) | 2007-03-29 | 2011-12-27 | Ricoh Company Limited | Image forming apparatus and image forming method |
JP2009021711A (ja) * | 2007-07-10 | 2009-01-29 | Canon Inc | 画像形成装置 |
US8130414B2 (en) | 2007-07-10 | 2012-03-06 | Canon Kabushiki Kaisha | Image forming apparatus using a density pattern |
Also Published As
Publication number | Publication date |
---|---|
US20060044616A1 (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3840144B2 (ja) | 閾値マトリクス、画像処理装置、画像形成装置及びプリンタドライバ | |
JP5625332B2 (ja) | 画像形成方法、画像形成装置、及びプログラム | |
JP4754936B2 (ja) | 画像処理方法、プログラム、画像処理装置、画像形成装置及び画像形成システム | |
EP1986855B1 (en) | Image processing method, recorded matter, program, image processing apparatus, image forming apparatus, image forming system and ink | |
KR100850335B1 (ko) | 화상 형성 장치 | |
EP2064063B1 (en) | Image forming apparatus, image forming process and program | |
JP5740935B2 (ja) | 画像形成装置、及び、画像形成方法 | |
JP5724350B2 (ja) | 画像形成装置及び画像処理方法 | |
JP5824828B2 (ja) | 画像形成装置、画像補正方法および画像補正プログラム | |
US20060044616A1 (en) | Gradation reproducing method, image forming apparatus, and printer driver | |
JP2012179842A (ja) | 画像形成装置、画像補正方法、画像補正プログラムおよび画像形成システム | |
JP5660269B2 (ja) | 画像形成装置および画像形成プログラム | |
JP3830038B2 (ja) | 階調再現方法、閾値マトリクス、画像処理方法、画像処理装置、画像形成装置及びプリンタドライバ | |
JP2006247840A (ja) | 画像形成装置 | |
JP2005001221A (ja) | 中間調処理用マスク作成方法およびインクジェット記録装置 | |
JP6079037B2 (ja) | 画像形成装置、画像形成方法、プログラムおよび記録媒体 | |
JP4059432B2 (ja) | 階調再現方法、閾値マトリクス、画像処理方法、画像形成装置及びプリンタドライバ | |
JP5246050B2 (ja) | 情報処理装置、画像形成装置、印刷データの生成方法、プログラム | |
JP2007336144A (ja) | 階調再現方法、閾値マトリクス、画像処理方法、画像処理装置、プリンタドライバ、画像形成装置及びインクジェット記録装置 | |
JP2010201826A (ja) | 画像形成装置 | |
JP4679478B2 (ja) | 画像形成装置、プログラム、記憶媒体、画像形成方法 | |
US7672015B2 (en) | Printing method and system for converting color tones to lighter and darker values for printing with light and dark inks | |
JP2008073852A (ja) | 画像形成装置、プログラム、記憶媒体、画像形成方法 | |
JP2012187894A (ja) | 画像形成装置、画像形成方法、プログラムおよび記録媒体 | |
JP2017100312A (ja) | 補償方法、プログラム、補償装置、及び補償システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090331 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090826 |