JP2006059952A - Manufacturing method of printed wiring board with built-in component - Google Patents

Manufacturing method of printed wiring board with built-in component Download PDF

Info

Publication number
JP2006059952A
JP2006059952A JP2004239187A JP2004239187A JP2006059952A JP 2006059952 A JP2006059952 A JP 2006059952A JP 2004239187 A JP2004239187 A JP 2004239187A JP 2004239187 A JP2004239187 A JP 2004239187A JP 2006059952 A JP2006059952 A JP 2006059952A
Authority
JP
Japan
Prior art keywords
component
printed wiring
wiring board
base material
insulating base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004239187A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sukehiro
俊之 助広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2004239187A priority Critical patent/JP2006059952A/en
Publication of JP2006059952A publication Critical patent/JP2006059952A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board with built-in components which are not affected by a voluminal protruding part of a component and superior in smoothness of an inner layer core of the printed wiring board and also in electrical connection stability of it. <P>SOLUTION: At least one layer of insulating base material and conductor base material are alternately laminated on both surfaces of the inner layer substrate, where a component is mounted on a component mounting pad, with the component sealed up with the insulating base material, at the same time, when laminating. A through hole of a size substantially the same as that of a mounting component is provided, in advance, on both the insulating base materials laminated on both surfaces of the inner layer substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、部品をプリント配線板の内層部に設けた部品内蔵型のプリント配線板の製造方法に関する。   The present invention relates to a method of manufacturing a component built-in type printed wiring board in which components are provided in an inner layer portion of the printed wiring board.

近年、プリント配線板の小型化、軽量化、高密度化が求められる中で、従来はプリント配線板の表面に実装されていたチップ部品をプリント配線板の内部に導入することによって得られる部品内蔵型のプリント配線板に関する技術がある(例えば、特許文献1参照)。この部品内蔵型のプリント配線板は、チップ部品がプリント配線板の内部に導入することが構造的に可能であるため、表面実装部の小スペース化や高密度化に対応でき、前記、プリント配線板のさらなる発展に大きく寄与することが可能になる。   In recent years, there is a need for miniaturization, weight reduction, and high density of printed wiring boards. Built-in components obtained by introducing chip parts mounted on the surface of printed wiring boards into the printed wiring board. There is a technique related to a printed wiring board of a mold (see, for example, Patent Document 1). Since this component built-in type printed wiring board can structurally enable chip components to be introduced into the printed wiring board, it can cope with a reduction in space and density of the surface mounting portion. It will be possible to greatly contribute to the further development of the board.

加えて、部品内蔵型のプリント配線板は電気的な配線構造が、従来の平面的な表面実装部から、プリント配線板の内層部分を使用することで、例えば、LSI直下に受動部品を配置する構造などの立体的な配置が可能になり、その結果、LSIの高速動作に対応するため信号配線を最適化にする際に有効であるなどの利点が存在する。このような技術的な背景の中、チップ部品などをプリント配線板の内部に導入するための要素技術は重要であり、従来のプリント配線板の製造方法においていくつか存在する課題や問題点に対する研究や開発が急務とされている。   In addition, the component built-in type printed wiring board has an electrical wiring structure that uses the inner layer portion of the printed wiring board from the conventional planar surface mounting portion, for example, to place passive components directly under the LSI. The structure and the like can be arranged in three dimensions, and as a result, there is an advantage that it is effective in optimizing the signal wiring in order to cope with the high-speed operation of the LSI. In such a technical background, elemental technology for introducing chip parts and the like into printed wiring boards is important, and research on some existing problems and problems in conventional printed wiring board manufacturing methods Development is urgently needed.

部品内蔵型プリント配線板の製造方法における技術的課題の一つに、プリント配線板の内層コア部の平滑性が損なわれる問題点が挙げられる。これは、当該部品がプリント配線板の内部に導入されることで、その部品の導入位置において、内層のコア部が緩やかに湾曲するなどといった状態より生じるものである。   One of the technical problems in the method for manufacturing a component built-in type printed wiring board is that the smoothness of the inner core part of the printed wiring board is impaired. This is caused by a state in which the core portion of the inner layer is gently curved at the position where the component is introduced by introducing the component into the printed wiring board.

斯かる従来の部品内蔵型プリント配線板の製造方法の問題点を、図3を用いて説明する。図3(a)は、プリント配線板の内層部になる銅張積層板1を用意し、チップ部品5が搭載される部品実装パッド2を回路形成にて行なった後、部品実装パッド2とチップ部品5とを電気的に接続する目的で、スクリーン印刷法などを使用するはんだペースト接続方法や導電性接着剤などを使用した接続方法により、チップ部品5を部品実装パッド2に搭載したものである。   Problems of such a conventional method of manufacturing a component-embedded printed wiring board will be described with reference to FIG. FIG. 3A shows a copper-clad laminate 1 serving as an inner layer portion of a printed wiring board. After component mounting pads 2 on which chip components 5 are mounted are formed by circuit formation, the component mounting pads 2 and the chips are formed. For the purpose of electrically connecting the component 5, the chip component 5 is mounted on the component mounting pad 2 by a solder paste connecting method using a screen printing method or a connecting method using a conductive adhesive or the like. .

次いで、チップ部品5がプリント配線板の内層部に位置し、かつ部品を保護するなどの目的のために、Bステージ状態の絶縁基材6に貫通穴7を設け、前記チップ部品5の上面より積層し(図3(b))、前記チップ部品5が絶縁基材6の内部に位置するように形成し、次いで、求めるプリント配線板の構造に基づき、回路形成を行ない部品内蔵型のプリント配線板を得る。   Next, the chip component 5 is located in the inner layer portion of the printed wiring board, and for the purpose of protecting the component, a through-hole 7 is provided in the insulating base material 6 in the B stage state, and from the upper surface of the chip component 5 Stacked (FIG. 3B), the chip component 5 is formed so as to be positioned inside the insulating base 6, and then a circuit is formed based on the desired printed wiring board structure, and the component built-in type printed wiring Get a board.

しかしながら、このような積層工法における部品内蔵型のプリント配線板の製造方法においては、当該貫通穴7が部品搭載した側の片方の絶縁基材にのみ存在するために、積層工程において、絶縁基材6が溶融すると溶融樹脂中に存在する内層コア部は、絶縁基材6の穴あけの有無に起因する表裏からの圧力差が発生し、その結果として内層コア部が湾曲してしまい、そのまま形成されてしまう。つまり、部品搭載部付近で積層圧力の不均一さを生じ、結果として図3(c)のように内層コア部が緩やかに湾曲するといった問題点を生じる。   However, in such a method for manufacturing a component built-in type printed wiring board in the laminating method, since the through hole 7 exists only in one insulating substrate on the side where the component is mounted, the insulating substrate When 6 melts, the inner layer core portion existing in the molten resin generates a pressure difference from the front and back due to the presence or absence of drilling of the insulating base 6, and as a result, the inner layer core portion is bent and formed as it is. End up. That is, non-uniformity in the stacking pressure occurs in the vicinity of the component mounting portion, resulting in a problem that the inner layer core portion is gently curved as shown in FIG.

また、その構造的なコア部材の湾曲問題は、チップ部品5と部品実装パッド部2の接合部に応力を発生させ、チップ部品5と部品実装パッド部2の導通抵抗値の上昇もしくは断線などの不具合を生じさせる。   Further, the bending problem of the structural core member causes stress at the joint between the chip component 5 and the component mounting pad portion 2, and increases the conduction resistance value between the chip component 5 and the component mounting pad portion 2 or breaks the wire. Cause a defect.

さらに、プリント配線板に内蔵するチップ部品5は、0603と称呼されているような小型サイズの使用が要求され、また薄い構造体になっているために、内層コア部の平坦性を得るために、積層圧力をさらに強くするようなことをした場合には、強い物理的圧力下で簡単にチップ部品5が損傷し、破損するといった不具合を生じる。つまり、チップ部品内蔵基板の製造の際に、積層プレス圧力によりチップが破損するといった問題点を有する。   Further, the chip component 5 incorporated in the printed wiring board is required to use a small size called 0603 and has a thin structure, so that the flatness of the inner core portion is obtained. When the stacking pressure is further increased, the chip component 5 is easily damaged and broken under a strong physical pressure. That is, there is a problem that the chip is damaged by the laminating press pressure when manufacturing the chip component built-in substrate.

従って、求められる絶縁基材の積層工法における部品内蔵型のプリント配線板の製造方法としては、部品の有する体積的な凸部構造に影響を受けずに、絶縁基材6がチップ部品5を封止し易い構造体が必要であり、その技術は、チップ部品5の電気的な接合の安定性及び部品内蔵型プリント配線板の品質の向上に大きく寄与するものである。
特開2001−119147号公報
Therefore, as a manufacturing method of a component built-in type printed wiring board in the required insulating base material laminating method, the insulating base material 6 seals the chip part 5 without being affected by the volumetric convex structure of the part. A structure that is easy to stop is required, and this technology greatly contributes to the improvement of the stability of the electrical connection of the chip component 5 and the quality of the printed wiring board with a built-in component.
JP 2001-119147 A

以上のような背景に基づき本発明が解決しようとする課題は、プリント配線板の内層部に設置した部品を絶縁基材で積層する際に、部品の有する体積的な凸部構造に影響を受けず、内層コア部の平滑性に優れ、しかも部品とプリント配線板の電気的な接続安定性に優れた部品内蔵型のプリント配線板を得ることにある。   The problem to be solved by the present invention based on the background as described above is influenced by the volumetric convex structure of the component when the component installed on the inner layer portion of the printed wiring board is laminated with the insulating base material. An object is to obtain a printed wiring board with a built-in component that is excellent in smoothness of the inner core portion and excellent in electrical connection stability between the component and the printed wiring board.

本発明者は上記課題を解決するために種々研究を重ねた。その結果、チップ部品が搭載された箇所の上下位置に、予め貫通穴をあけたプリプレグのような絶縁基材を積層すれば、部品実装部付近の積層圧力を均一化し得ることに着眼した。具体的には、プリント配線板の内層に設置された部品の上位置になる絶縁基材及び下位置になる絶縁基材にそれぞれに貫通穴を設け、当該上下両方の貫通穴をチップ部品の垂直方向に配置し、積層すれば、積層圧力の均一化に有効であることを見出して発明を完成するに至った。   The present inventor has made various studies in order to solve the above problems. As a result, the inventors have focused on the fact that the lamination pressure in the vicinity of the component mounting portion can be made uniform by laminating an insulating base material such as a prepreg having a through hole in advance at the upper and lower positions of the place where the chip component is mounted. Specifically, a through hole is provided in each of the insulating base material located above and below the component installed in the inner layer of the printed wiring board, and both the upper and lower through holes are formed perpendicular to the chip component. It has been found that if it is arranged in the direction and laminated, it is effective for making the lamination pressure uniform, and the present invention has been completed.

すなわち、本発明は、部品実装パッドに部品を実装した内層基板の両面に、少なくとも一層の絶縁基材と導体基材とを交互に積層し、該積層と同時に絶縁基材にて部品を封止する部品内蔵型プリント配線板の製造方法において、当該内層基板の両面に積層する絶縁基材の双方に予め実装部品とほぼ同じ大きさの貫通穴を設けることを特徴とする部品内蔵型プリント配線板の製造方法により上記課題を解決したものである。   That is, according to the present invention, at least one insulating base material and a conductive base material are alternately laminated on both surfaces of an inner layer substrate in which a component is mounted on a component mounting pad, and the component is sealed with the insulating base material simultaneously with the lamination. In the method for manufacturing a component built-in type printed wiring board, a through hole having a size substantially the same as that of a mounted component is provided in advance on both of the insulating base materials laminated on both surfaces of the inner substrate. The above-mentioned problem is solved by this manufacturing method.

斯かる構成を採用したことにより、内蔵された部品の周りに絶縁基材の樹脂が充填されるため、絶縁性が向上する。   By adopting such a configuration, since the resin of the insulating base material is filled around the built-in component, the insulating property is improved.

絶縁基材としては、ガラス織布やアラミド織布あるいはガラス不織布やアラミド不織布に樹脂を含浸せしめたものが好適に使用される。すなわち、絶縁基材に織布あるいは不織布による補強材料を入れることで反りの防止が可能になり、また強度も増す。   As the insulating substrate, a glass woven fabric, an aramid woven fabric, a glass nonwoven fabric or an aramid nonwoven fabric impregnated with a resin is preferably used. In other words, warping can be prevented and strength can be increased by adding a reinforcing material made of woven or non-woven fabric to the insulating base.

また、本発明においては、前記貫通穴が、絶縁基材の積層時に封止されるように行なわれる。   In the present invention, the through hole is sealed when the insulating base material is laminated.

本発明によれば、部品の体積的な凸部の影響を受けず、プリント配線板の内層コア部の平滑性に優れ、しかも部品とプリント配線板の電気的接続安定性に優れた部品内蔵型のプリント配線板を提供することができる。   According to the present invention, a component built-in type that is not affected by the volumetric convex portion of the component, has excellent smoothness of the inner core portion of the printed wiring board, and has excellent electrical connection stability between the component and the printed wiring board. A printed wiring board can be provided.

以下本発明の実施の形態を、図を使用して説明する。
また、本発明において特に重要なポイントを以下に示し、その優位点を順に説明する。
ポイント1):内層コア部の平滑性について
ポイント2):内蔵部品の接続信頼性について
ポイント3):貫通穴の封止
ポイント4):構造の説明
Embodiments of the present invention will be described below with reference to the drawings.
In addition, particularly important points in the present invention are shown below, and their advantages are described in order.
Point 1): Smoothness of inner layer core part Point 2): Connection reliability of built-in parts Point 3): Sealing of through hole Point 4): Explanation of structure

本発明における部品内蔵型プリント配線板の製造方法の全体について図1及び図2を用いて説明する。まず図1(a)に示したように、両面銅張積層板1を用い、該銅張積層板1の銅箔粗化を処理した後、部品実装パッド2を始めとする回路形成を行なう(図1(b))。次に、回路形成後の基板に耐金めっきレジストを貼付け、無電解金めっき処理を行ない、部品実装パッド2の表面に、ニッケル/金めっきを行なう。次に、目的とするチップ部品5を、はんだペースト4を介して上記で得られたプリント配線板の所定の箇所にマウンターで搭載し、図1(d)に示した構造体を得る。   An overall method for manufacturing a component built-in type printed wiring board according to the present invention will be described with reference to FIGS. First, as shown in FIG. 1A, a double-sided copper-clad laminate 1 is used, and after copper foil roughening of the copper-clad laminate 1 is processed, circuit formation including component mounting pads 2 is performed ( FIG. 1 (b)). Next, a gold-resistant plating resist is attached to the circuit-formed substrate, electroless gold plating is performed, and nickel / gold plating is performed on the surface of the component mounting pad 2. Next, the target chip component 5 is mounted on a predetermined portion of the printed wiring board obtained above via the solder paste 4 with a mounter to obtain the structure shown in FIG.

次に、上記チップ部品5の搭載を行なった構造体(図2(a))へ、貫通穴7a,7bを設けたプリプレグを絶縁基材6a,6bとして使用し、積層による部品内蔵基板の形成を行う。すなわち、図2(b)に示したように、当該構造体をプリント配線板のコア部として中央に置き、その上下面より貫通穴7a,7bを有する絶縁基材(プリプレグ)6a,6bを当該貫通穴7a,7bがチップ部品5の位置になるように設置し、更に、絶縁基材(プリプレグ)6の外側に銅箔3を設置し、積層加圧を行ない図2(c)に示した部品内蔵型プリント配線板を得る。以下、求められるプリント配線板の構造にて、銅箔部3の回路形成を行ない、次いでプリント配線板の必要とされる構造に従い、前記積層条件で絶縁基材と導体基材とを交互に積層して部品内蔵型多層プリント配線板を得る。   Next, the prepreg provided with the through holes 7a and 7b is used as the insulating bases 6a and 6b on the structure (FIG. 2A) on which the chip component 5 is mounted to form a component-embedded substrate by stacking. I do. That is, as shown in FIG. 2 (b), the structure is placed in the center as a core portion of a printed wiring board, and insulating bases (prepregs) 6a and 6b having through holes 7a and 7b from the upper and lower surfaces thereof are attached to the structure. The through-holes 7a and 7b are placed so as to be positioned at the chip component 5, and the copper foil 3 is placed outside the insulating base material (prepreg) 6 to perform lamination and pressurization, as shown in FIG. Obtain a component built-in printed wiring board. In the following, the circuit formation of the copper foil portion 3 is performed in the required printed wiring board structure, and then the insulating base material and the conductive base material are alternately laminated under the above-mentioned lamination conditions according to the required structure of the printed wiring board. Thus, a component built-in type multilayer printed wiring board is obtained.

ポイント1):内層コア部の平滑性について
図2(b)におけるチップ部品5搭載後のコア部に対し、部品搭載側に積層される貫通穴7aを有する絶縁基材(プリプレグ)6a及び部品搭載基板の反対側に積層される貫通穴7bを有する絶縁基材(プリプレグ)6bを使用する本発明方法は、内層コア部の表面平滑性に優れた機能的な役割を示す。以下それについて説明する。
Point 1): Smoothness of inner layer core portion Insulating base material (prepreg) 6a having a through hole 7a stacked on the component mounting side and component mounting with respect to the core portion after chip component 5 mounting in FIG. The method of the present invention using the insulating base material (prepreg) 6b having the through hole 7b laminated on the opposite side of the substrate exhibits a functional role excellent in the surface smoothness of the inner layer core portion. This will be described below.

部品内蔵型プリント配線板の最良の構造体としては、Bステージである絶縁基材が積層の際に溶融し、溶融して流動性を得た樹脂部が図2(c)に示されるように、チップ部品5の周辺部の全域を覆い、封止される構造が望ましい。しかしながら、図3に示した従来方法のようにチップ部品搭載後のコア部に対し、部品搭載側に積層される貫通穴7を有する絶縁基材6のみを使用した場合には、図3(c)に示されるように内層コア部が湾曲し、表面平滑性及び部品実装パッド2とチップ部品5との接続信頼性が問題となる。   As the best structure of the component built-in type printed wiring board, as shown in FIG. 2 (c), the insulating part which is the B stage is melted at the time of lamination and melted to obtain fluidity. A structure in which the entire periphery of the chip component 5 is covered and sealed is desirable. However, when only the insulating base material 6 having the through holes 7 stacked on the component mounting side is used for the core portion after chip component mounting as in the conventional method shown in FIG. ), The inner layer core portion is curved, and surface smoothness and connection reliability between the component mounting pad 2 and the chip component 5 become problems.

この内層コア部が湾曲するなどの不具合は、図3(c)における絶縁基材6の貫通穴7が存在するために、特に絶縁基材6の積層工程において、積層により生じる部品付近での圧力不均衡により発生し得る。また、積層圧力を変化させ、低圧力にした場合はプリント配線基板の基本的な層間密着性に影響を与え、高圧力にした場合はプリント配線板の内部に内蔵されるチップ部品5の破損などの問題を生じさせる。   The inconvenience such as the bending of the inner layer core part is caused by the pressure in the vicinity of the parts caused by the lamination particularly in the lamination process of the insulation base 6 because the through hole 7 of the insulation base 6 exists in FIG. Can be caused by imbalance. In addition, when the lamination pressure is changed to a low pressure, the basic interlayer adhesion of the printed wiring board is affected. When the pressure is high, the chip component 5 built in the printed wiring board is damaged. Cause problems.

一方、本発明においては、部品搭載後のコア部に対し、その上下両方の面に、貫通穴7a,7bを設けた絶縁基材6a,6bを積層しているため、積層の際の部品付近での圧力が均衡状態となり、内層コア部が湾曲するなどの不具合は生じることはなく、また、チップ部品5とプリント配線板の部品パッド2との電気的な接続信頼性が向上することとなり、部品内蔵型プリント配線板全体の品質の向上にも大きく寄与する。しかも、本発明の部品内蔵型プリント配線板の製造方法は、従来から使用して積層の条件や設備などをそのまま使用することができるため、高品質な部品内蔵型プリント配線板を効率良く得ることが可能となる。   On the other hand, in the present invention, since the insulating bases 6a and 6b provided with the through holes 7a and 7b are laminated on both the upper and lower surfaces of the core portion after mounting the components, the vicinity of the components at the time of stacking In this case, there is no problem that the inner layer core portion is curved, and the electrical connection reliability between the chip component 5 and the component pad 2 of the printed wiring board is improved. It greatly contributes to the improvement of the quality of the entire component built-in printed wiring board. Moreover, since the method for manufacturing a component built-in type printed wiring board according to the present invention can be used as it is from the past, it is possible to efficiently obtain a high quality component built-in type printed wiring board. Is possible.

ポイント2):内蔵部品の接続信頼性について
従来方法における内層コア部の湾曲状態は、積層の工程で発生するために、部品を内蔵した基板の完成後に生じる不具合となる。従って、湾曲状態より発生する応力が、チップ部品5とプリント配線板の部品実装パッド2との界面に影響し、その結果、当該界面においてクラックもしくは剥離などの問題を生じさせ、プリント配線板の高密度化やチップ部品の小型化を背景とした場合には技術的に大きな課題となるばかりではく、特に高周波用途のプリント配線板では抵抗値の増加などの電気的な不具合に発展する。
Point 2): Connection reliability of built-in components The curved state of the inner core portion in the conventional method occurs in the laminating process, and thus becomes a defect that occurs after the completion of the substrate incorporating the components. Accordingly, the stress generated from the curved state affects the interface between the chip component 5 and the component mounting pad 2 of the printed wiring board, resulting in problems such as cracks or peeling at the interface, and the high level of the printed wiring board. In the context of increasing density and downsizing of chip parts, not only will this be a major technical issue, but in particular, printed wiring boards for high frequency applications will develop electrical problems such as increased resistance.

一方、本発明においては、内層コア部が平滑性に優れているため、チップ部品5とプリント配線板の部品実装パッド2との電気的な接続信頼性を向上させ、プリント配線板の高密度化やチップ部品の小型化に対応できる。   On the other hand, in the present invention, since the inner layer core portion is excellent in smoothness, the electrical connection reliability between the chip component 5 and the component mounting pad 2 of the printed wiring board is improved, and the density of the printed wiring board is increased. It can cope with downsizing of chip parts.

ポイント3):貫通穴の封止
本発明において、絶縁基材6a,6bに設けた貫通穴7a,7bは、積層によって封止、充填される。すなわち、図2(a)で示されるチップ部品搭載後の構造体に対して、次工程として絶縁基材6a,6bが上面と下面より積層されると、積層時の加熱により絶縁基材6a,6bの樹脂成分が流動性良く働き、貫通穴7a,7bを埋め、図2(c)に示されるように、貫通穴が封止された構造体となる。従って、貫通穴7a,7b自身がプリント配線板の中で空隙箇所となることはない。
Point 3): Sealing of through-holes In the present invention, the through-holes 7a and 7b provided in the insulating bases 6a and 6b are sealed and filled by lamination. That is, when the insulating base materials 6a and 6b are laminated from the upper surface and the lower surface as the next process with respect to the structure after mounting the chip parts shown in FIG. The resin component 6b works with good fluidity, fills the through holes 7a and 7b, and forms a structure in which the through holes are sealed as shown in FIG. Therefore, the through holes 7a and 7b themselves do not become a void portion in the printed wiring board.

ポイント4):物の構造の説明
本発明においては、内層コアの銅張積層板1に部品実装パッド2を回路形成にて設け、部品実装後に、上下に重ねる絶縁基材6a,6bに、予め前記実装された部品とほぼ同じ大きさの貫通穴7a,7bを設けている。この貫通穴7a,7bに関しては部品に対して小さすぎるとチップ部品5と絶縁基材6a,6bとが接触し、部品と凸部構造を考慮した封止構造が得られないこととなる。一方、部品に対して大きすぎると、絶縁基材6a,6b内の樹脂成分が積層加熱時に当該開口部を充分に封止することができなくなり、空隙などの新たな問題となる。従って、本発明では絶縁基材6a,6bに予め実装された部品とほぼ同じ大きさの貫通穴7a,7bを設けている。
Point 4): Explanation of the structure of the object In the present invention, the component mounting pads 2 are provided in the circuit formation on the copper clad laminate 1 of the inner core, and the insulating bases 6a and 6b that are stacked one after the other are mounted on the insulating bases 6a and 6b in advance. Through holes 7a and 7b having substantially the same size as the mounted parts are provided. If the through holes 7a and 7b are too small relative to the component, the chip component 5 and the insulating bases 6a and 6b come into contact with each other, and a sealing structure that takes into account the component and the convex structure cannot be obtained. On the other hand, if the size is too large for the part, the resin component in the insulating bases 6a and 6b cannot sufficiently seal the opening during lamination heating, which causes new problems such as voids. Accordingly, in the present invention, the through holes 7a and 7b having substantially the same size as the parts mounted in advance on the insulating bases 6a and 6b are provided.

また、本発明において、絶縁基材6a,6bを積層することにより得られる図2(c)に示した構造体は、その内蔵されたチップ部品5の周辺には絶縁基材6a,6bのガラス織布等に含浸されていた樹脂成分が積層加熱時に溶融し、チップ部品5を封止する。これによりチップ部品5の周辺にはガラスなどを含まない樹脂成分が主に充填されるため、絶縁性が向上する効果を有する。   Further, in the present invention, the structure shown in FIG. 2C obtained by laminating the insulating bases 6a and 6b has a glass of the insulating bases 6a and 6b around the built-in chip component 5. The resin component impregnated in the woven fabric or the like is melted at the time of laminating and heating, and the chip component 5 is sealed. Thereby, since the resin component which does not contain glass etc. is mainly filled in the circumference | surroundings of the chip component 5, it has the effect of improving insulation.

さらに、ガラス織布及びアラミド織布並びにガラス不織布及びアラミド不織布を使用することで、材料自身にも補強的な要素を導入し、目的としている反り防止の一助となる。   Furthermore, by using a glass woven fabric and an aramid woven fabric, and a glass nonwoven fabric and an aramid nonwoven fabric, a reinforcing element is introduced into the material itself, which helps to prevent warping as intended.

以下実施例を挙げて本発明を更に説明する。   The following examples further illustrate the present invention.

実施例1
本発明の実施例を図1及び2と共に説明する。
図1(a)に示される両面銅張積層板1として日立化成社製の銅張積層板(品番:MCL−E−679F、基材厚み0.4mm、銅箔厚み12μm)を用い、該銅張積層板1の銅箔粗化を処理した後、該銅箔表面にドライフィルムエッチングレジスト(厚み:65μm)をラミネート(貼付温度:100℃)し、次いで、露光機にて紫外線露光(条件:45mJ/cm2)及び現像(条件:1.0wt%炭酸ナトリウム水溶液、30℃、スプレー圧力0.2MPa)を行ない、塩化第二鉄液(条件:40℃、スプレー圧力0.2MPa)を用いてエッチングを行なった後、ドライフィルムエッチングレジストを剥離(条件:2.2wt%水酸化ナトリウム水溶液、40℃、スプレー圧力0.18MPa)し、部品実装パッド2を始めとする回路形成を行なった(図1(b))。
Example 1
An embodiment of the present invention will be described with reference to FIGS.
As a double-sided copper-clad laminate 1 shown in FIG. 1 (a), a copper-clad laminate (product number: MCL-E-679F, base material thickness 0.4 mm, copper foil thickness 12 μm) manufactured by Hitachi Chemical Co., Ltd. is used. After the copper foil roughening of the tension laminate 1 is processed, a dry film etching resist (thickness: 65 μm) is laminated on the surface of the copper foil (sticking temperature: 100 ° C.), and then exposed to ultraviolet rays (conditions: 45 mJ / cm 2 ) and development (conditions: 1.0 wt% sodium carbonate aqueous solution, 30 ° C., spray pressure 0.2 MPa), using ferric chloride solution (conditions: 40 ° C., spray pressure 0.2 MPa). After etching, the dry film etching resist was peeled off (conditions: 2.2 wt% sodium hydroxide aqueous solution, 40 ° C., spray pressure 0.18 MPa), and circuit formation including component mounting pads 2 was performed (FIG. 1 (b ).

次に、上記回路形成後の基板に、日立化成社製のニッケル/金めっきのレジストフィルム「H−8050」をラミネート(貼付温度:120℃)し、その後、露光機にて紫外線露光(条件:140mJ/cm2)及び現像(条件:1wt%炭酸ナトリウム水溶液、30℃、スプレー圧力0.2MPa)を行ない、耐金めっきレジストを貼付けた。 Next, a nickel / gold plating resist film “H-8050” manufactured by Hitachi Chemical Co., Ltd. is laminated on the substrate after the circuit is formed (applying temperature: 120 ° C.), and then exposed to ultraviolet rays (conditions: 140 mJ / cm 2 ) and development (conditions: 1 wt% sodium carbonate aqueous solution, 30 ° C., spray pressure 0.2 MPa), and a gold-resistant plating resist was applied.

次に、無電解金めっき処理を行ない、部品実装パッド2の表面に、ニッケル(厚み:5μm)/金めっき(0.05μm)を行なった。   Next, electroless gold plating treatment was performed, and nickel (thickness: 5 μm) / gold plating (0.05 μm) was applied to the surface of the component mounting pad 2.

次に、目的とするチップ部品5を上記で得られたプリント配線板の所定の箇所に搭載した。すなわち、始めに図1(c)に示したように、鉛フリーはんだペースト4(Sn-3.0Ag-0.5Cu)を実装材料として使用し、メタルマスクを使用したスクリーン印刷工法により、部品実装パッド2へ塗布した。この際のメタルマスクの開口径は、該部品実装パッド2の形状と同寸法で行なった。   Next, the target chip component 5 was mounted on a predetermined portion of the printed wiring board obtained above. That is, as shown in FIG. 1 (c), lead-free solder paste 4 (Sn-3.0Ag-0.5Cu) is used as the mounting material, and the component mounting pad 2 is obtained by screen printing using a metal mask. Applied to. The opening diameter of the metal mask at this time was the same as the shape of the component mounting pad 2.

次に、上記部品実装パッド2へチップ部品5をマウンターで搭載した。ここでのチップ部品5は0603サイズの抵抗部品を使用した。その後、第1昇温温度150〜160℃(100秒)、第2昇温温度260℃ピークの温度プロファイルを用いてリフロー加熱を行ない、図1(d)に示した構造体を得た。   Next, the chip component 5 was mounted on the component mounting pad 2 with a mounter. The chip component 5 used here was a 0603 size resistor component. Then, reflow heating was performed using a temperature profile with a first temperature rise temperature of 150 to 160 ° C. (100 seconds) and a second temperature rise temperature of 260 ° C. to obtain the structure shown in FIG.

尚、上記チップ部品5の実装の際に、0603サイズと云う特に小型な部品の故に、実装の困難さを生じるため、ソルダーレジストを部品実装パッド2周辺に設けた(図示省略)。該ソルダーレジストの形成方法としては、太陽インキ社製のフィルム製ソルダーレジスト(品番:PFR800AUS402、厚み30μm)を、パキュームアプリケータを使用して熱圧着(条件:60℃、60秒)した後に、ホットプレス(条件:熱板85℃、圧力1MPa、プレス時間60秒)し、ソルダーレジストをフローさせ表面を平滑にした。その後、露光機にて紫外線露光(条件:430mJ/cm2)及び現像(条件:1wt%炭酸ナトリウム水溶液、30℃、スプレー圧力0.2MPa)を行ない、その現像後に乾燥炉でポストベーク(条件:150℃、70分)した。 Incidentally, when mounting the chip component 5, a solder resist is provided around the component mounting pad 2 (not shown) in order to cause difficulty in mounting due to a particularly small component of 0603 size. As a method for forming the solder resist, a film solder resist (product number: PFR800AUS402, thickness 30 μm) manufactured by Taiyo Ink Co., Ltd. was subjected to thermocompression bonding (conditions: 60 ° C., 60 seconds) using a vacuum applicator, Hot pressing (conditions: hot plate 85 ° C., pressure 1 MPa, pressing time 60 seconds) was performed to flow the solder resist and smooth the surface. Thereafter, ultraviolet exposure (condition: 430 mJ / cm 2 ) and development (condition: 1 wt% sodium carbonate aqueous solution, 30 ° C., spray pressure 0.2 MPa) are performed with an exposure machine, and post-baking in a drying furnace after the development (condition: 150 ° C., 70 minutes).

次に、上記チップ部品5の搭載を行なって得た図2(a)に示した構造体へ、絶縁基材6a,6bとしてプリプレグを使用し、積層による部品内蔵基板の形成を行なった。その形成方法について図2を使用して説明する。   Next, prepregs were used as the insulating bases 6a and 6b on the structure shown in FIG. 2A obtained by mounting the chip component 5, and a component-embedded substrate was formed by stacking. The formation method will be described with reference to FIG.

この実施例においては、チップ部品5として高さが0.26mmの物を使用し、それを積層にて封止する絶縁基材6a,6bとしては、日立化成製のプリプレグ(品番:GEA679F、厚み0.3mm)を使用した。   In this embodiment, a chip component 5 having a height of 0.26 mm is used, and the insulating bases 6a and 6b for sealing the chip component 5 by lamination are prepregs (product number: GEA679F, thickness made by Hitachi Chemical). 0.3 mm) was used.

まず、図2(b)に示すように、絶縁基材(プリプレグ)6a,6bの部品搭載位置に貫通穴7a,7bを形成した。貫通穴7a,7bの形成方法としては、部品の形状や寸法を考慮し、適切な貫通穴を設けるために、ルーター加工を使用して行なった。   First, as shown in FIG.2 (b), the through-holes 7a and 7b were formed in the component mounting position of the insulation base materials (prepreg) 6a and 6b. As a method for forming the through holes 7a and 7b, in consideration of the shape and dimensions of the parts, a router process was used in order to provide appropriate through holes.

前記ルーター穴あけの条件としては、30,000rpm、ドリルビット径1.5mmを使用した加工を行なった。   As the conditions for drilling the router, processing using 30,000 rpm and a drill bit diameter of 1.5 mm was performed.

次に、図2(b)に示したように、図2(a)の構造体をプリント配線板のコア部として中央に置き、その上下面より貫通穴7a,7bを有する絶縁基材(プリプレグ)6a,6bを当該貫通穴7a,7bがチップ部品5の位置になるように設置し、更に絶縁基材(プリプレグ)6a,6bの外側に銅箔3を設置し、積層加圧を行なった。積層加圧する際の条件としては、真空度を高めた積層機内で、ピーク温度を190℃とし、積層時の最大圧力は3MPaとして実施し、積層終了後に図2(c)に示した本発明の部品内蔵型プリント配線板を得た。   Next, as shown in FIG. 2 (b), the structure of FIG. 2 (a) is placed in the center as the core of the printed wiring board, and an insulating base material (prepreg having pierced holes 7a and 7b from its upper and lower surfaces is provided. ) 6a and 6b were placed so that the through holes 7a and 7b were positioned at the chip component 5, and the copper foil 3 was placed outside the insulating bases (prepreg) 6a and 6b, and the lamination pressure was applied. . The conditions for stacking pressurization are as follows: the peak temperature is set to 190 ° C. and the maximum pressure during stacking is set to 3 MPa in the stacking machine with a high degree of vacuum, and the stacking of the present invention shown in FIG. A printed wiring board with built-in components was obtained.

以下、求められるプリント配線板の構造にて、銅箔部3の回路形成を行ない、次いでプリント配線板の必要とされる構造に従い、前記積層条件で絶縁基材と導体基材とを交互に積層して部品内蔵型多層プリント配線板を得た。   In the following, the circuit formation of the copper foil portion 3 is performed in the required printed wiring board structure, and then the insulating base material and the conductive base material are alternately laminated under the above-mentioned lamination conditions according to the required structure of the printed wiring board. Thus, a component built-in type multilayer printed wiring board was obtained.

試験例
本発明は、コア部材の湾曲抑制及び表面平滑性を向上せしめる効果を有している。そこで、従来方法に比し、本発明の斯かる効果がより優れていることを具体的に示すために、チップ部品5側の絶縁基材(図4中、6a)にのみ貫通穴を設けた従来方法によって得られたプリント配線板と部品に対して上下両側の絶縁基材(図4中、6a及び6b)に貫通穴を設けた本発明方法によって得られたプリント配線板との比較を行なった。
Test Example The present invention has the effect of suppressing the curvature of the core member and improving the surface smoothness. Therefore, in order to specifically show that such an effect of the present invention is superior to the conventional method, a through hole is provided only in the insulating base material (6a in FIG. 4) on the chip component 5 side. Comparison is made between the printed wiring board obtained by the conventional method and the printed wiring board obtained by the method of the present invention in which through holes are provided in the insulating bases (6a and 6b in FIG. 4) on both the upper and lower sides. It was.

始めに、図4中、6aの絶縁基材にのみ貫通穴を設けた従来方法によって得られたプリント配線板の絶縁基材の厚みと、図4中、6a及び6bの両方に貫通穴を設けた本発明方法によって得られたプリント配線板の絶縁基材の厚みを、図4中に示した部品搭載面側A1部と、その反対面側A2部で測定した。その結果は表1のとおりであった。   First, in FIG. 4, the thickness of the insulating base material of the printed wiring board obtained by the conventional method in which the through hole is provided only in the insulating base material 6a, and through holes are provided in both 6a and 6b in FIG. The thickness of the insulating substrate of the printed wiring board obtained by the method of the present invention was measured at the component mounting surface side A1 portion shown in FIG. 4 and the opposite surface side A2 portion. The results are shown in Table 1.

Figure 2006059952
Figure 2006059952

表1から、絶縁基材の厚みは従来方法及び本発明方法共にA1部及びA2部の全てで300μmであり、目標とする絶縁基材の厚みに対して差が無く、影響を及ぼさないことが確認された。これは使用した部品が0603サイズの面積的に小さい部材を使用しており、また、貫通穴も部品サイズと同形状であるため、当該貫通穴を積層工程にて封止する絶縁基材より供給される樹脂分も少ないため、部品表裏での貫通穴の有無による絶縁基材への厚みに大きな影響は生じないことに起因する。   From Table 1, the thickness of the insulating base material is 300 μm for both the A1 part and the A2 part in both the conventional method and the method of the present invention, and there is no difference with respect to the target insulating base material thickness. confirmed. This is because the parts used are small parts of 0603 size and the through holes have the same shape as the parts size, so the through holes are supplied from the insulating base material sealed in the lamination process This is because the resin content is small, so that the thickness of the insulating substrate due to the presence or absence of through holes on the front and back of the parts does not have a great influence.

次に、図4中、6aの絶縁基材にのみ貫通穴を設けた従来方法によって得られたプリント配線板と図4中、6a及び6bの両方に貫通穴を設けた本発明方法によって得られたプリント配線板とで、特にチップ部品5実装付近でのコア部材の湾曲度合いを比較するために盛り上がり部を、図4に示した部品搭載面側B1部と、その反対面側B2部で測定した。その結果は表2のとおりであった。   Next, the printed wiring board obtained by the conventional method in which through holes are provided only in the insulating substrate 6a in FIG. 4 and the method of the present invention in which through holes are provided in both 6a and 6b in FIG. In order to compare the degree of curvature of the core member with the printed wiring board, particularly in the vicinity of the chip component 5 mounting, the bulging portion is measured at the component mounting surface side B1 portion and the opposite surface side B2 portion shown in FIG. did. The results are shown in Table 2.

Figure 2006059952
Figure 2006059952

表2から、従来方法によって得られたプリント配線板の部品搭載側の盛り上がり(B1部)は45μm、また、部品搭載反対側の盛り上がり(B2部)は44μmであり、部品側の絶縁基材(図4中、6a)にのみ貫通穴を設けた従来方法では積層圧力の影響を受け、特に実装部品付近でコア部材の湾曲が生じることが確認された。   From Table 2, the swell (B1 part) on the component mounting side of the printed wiring board obtained by the conventional method is 45 μm, and the swell (B2 part) on the opposite side of the component mounting is 44 μm. In FIG. 4, it was confirmed that the conventional method in which through holes were provided only at 6a) was affected by the stacking pressure, and the core member was bent particularly near the mounted component.

これに対し、本発明方法によって得られたプリント配線板の部品搭載側の盛り上がり(B1部)は0μm、また、部品搭載反対側の盛り上がり(B2部)も同様に0μmであり、部品に対して上下両側の絶縁基材(図4中、6a及び6b)に貫通穴を設けた本発明方法では積層圧力などの影響を受けず、特に実装部品付近で平滑性に優れたコア部が得られることが確認された。   On the other hand, the swell (B1 part) on the component mounting side of the printed wiring board obtained by the method of the present invention is 0 μm, and the swell (B2 part) on the opposite side of the component mounting is also 0 μm. In the method of the present invention in which through holes are provided in the insulating bases on both the upper and lower sides (6a and 6b in FIG. 4), a core portion excellent in smoothness can be obtained particularly near the mounted component without being affected by the lamination pressure. Was confirmed.

本発明方法による部品内蔵型プリント配線板の製造例を示す概略断面工程説明図。The schematic cross-sectional process explanatory drawing which shows the manufacture example of the component built-in type printed wiring board by this invention method. 図1に続く本発明方法による部品内蔵型プリント配線板の製造例を示す概略断面工程説明図。The schematic cross-sectional process explanatory drawing which shows the manufacture example of the component built-in type printed wiring board by the method of this invention following FIG. 従来方法による部品内蔵型プリント配線板の製造例を示す概略断面工程説明図。The schematic cross-sectional process explanatory drawing which shows the manufacture example of the component built-in type printed wiring board by the conventional method. 試験例における測定箇所の説明図。Explanatory drawing of the measurement location in a test example.

符号の説明Explanation of symbols

1:銅張積層板
2:部品実装パッド
3、3a、3b:銅箔
4:はんだペースト
5:チップ部品
6、6a、6b:絶縁基材
7、7a、7b:貫通穴
8:湾曲したコア部
1: Copper-clad laminate 2: Component mounting pads 3, 3a, 3b: Copper foil 4: Solder paste 5: Chip components 6, 6a, 6b: Insulating base material 7, 7a, 7b: Through hole 8: Curved core portion

Claims (4)

部品実装パッドに部品を実装した内層基板の両面に、少なくとも一層の絶縁基材と導体基材とを交互に積層し、該積層と同時に絶縁基材にて部品を封止する部品内蔵型プリント配線板の製造方法において、当該内層基板の両面に積層する絶縁基材の双方に予め実装部品とほぼ同じ大きさの貫通穴を設けることを特徴とする部品内蔵型プリント配線板の製造方法。   Component-embedded printed wiring in which at least one insulating base material and conductor base material are alternately laminated on both sides of the inner layer substrate on which the component is mounted on the component mounting pad, and the component is sealed with the insulating base material simultaneously with the lamination. A method for producing a printed wiring board with built-in components, wherein a through hole having a size substantially the same as that of a mounted component is provided in advance on both insulating base materials laminated on both surfaces of the inner layer substrate. 前記貫通穴が、絶縁基材の積層時に封止されることを特徴とする請求項1に記載の部品内蔵型プリント配線板の製造方法。   The method of manufacturing a component built-in type printed wiring board according to claim 1, wherein the through hole is sealed when the insulating base material is laminated. 前記絶縁基材が、ガラス織布又はアラミド織布に樹脂を含浸せしめたものであることを特徴とする請求項1又は2に記載の部品内蔵型プリント配線板の製造方法。   The method for manufacturing a component built-in printed wiring board according to claim 1 or 2, wherein the insulating base material is a glass woven fabric or an aramid woven fabric impregnated with a resin. 前記絶縁基材が、ガラス不織布又はアラミド不織布に樹脂を含浸せしめたものであることを特徴とする請求項1又は2に記載の部品内蔵型プリント配線板の製造方法。   The method for producing a component built-in type printed wiring board according to claim 1 or 2, wherein the insulating base material is a glass nonwoven fabric or an aramid nonwoven fabric impregnated with a resin.
JP2004239187A 2004-08-19 2004-08-19 Manufacturing method of printed wiring board with built-in component Pending JP2006059952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004239187A JP2006059952A (en) 2004-08-19 2004-08-19 Manufacturing method of printed wiring board with built-in component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004239187A JP2006059952A (en) 2004-08-19 2004-08-19 Manufacturing method of printed wiring board with built-in component

Publications (1)

Publication Number Publication Date
JP2006059952A true JP2006059952A (en) 2006-03-02

Family

ID=36107183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004239187A Pending JP2006059952A (en) 2004-08-19 2004-08-19 Manufacturing method of printed wiring board with built-in component

Country Status (1)

Country Link
JP (1) JP2006059952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060223A (en) * 2006-08-30 2008-03-13 Hitachi Aic Inc Component built-in substrate
WO2014041659A1 (en) * 2012-09-13 2014-03-20 株式会社メイコー Method for manufacturing embedded component substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060223A (en) * 2006-08-30 2008-03-13 Hitachi Aic Inc Component built-in substrate
WO2014041659A1 (en) * 2012-09-13 2014-03-20 株式会社メイコー Method for manufacturing embedded component substrate

Similar Documents

Publication Publication Date Title
JP4427874B2 (en) Multilayer wiring board manufacturing method and multilayer wiring board
US7393580B2 (en) Layered board and electronic apparatus having the layered board
JP4973494B2 (en) Multilayer printed wiring board
CN101002511A (en) Flex-rigid wiring board and manufacturing method thereof
JP2009088469A (en) Printed circuit board and manufacturing method of same
JPH1154934A (en) Multilayered printed wiring board and its manufacture
CN102379164A (en) Printed circuit board, manufacturing method therefor, multilayer printed circuit board, and semiconductor package
TWI777958B (en) Manufacturing method of multilayer circuit board
JP2009054930A (en) Multi-layer printed wiring board having built-in parts and method of manufacturing the same
JP2006093493A (en) Printed wiring board with built-in part and method of manufacturing the same
JP6107021B2 (en) Wiring board manufacturing method
JPH1154926A (en) One-sided circuit board and its manufacture
JP2006041000A (en) Component built-in printed wiring board and its manufacturing method
JP2006059952A (en) Manufacturing method of printed wiring board with built-in component
KR101043480B1 (en) Printed circuit board and the manufacturing method thereof
JP2009130095A (en) Part built-in wiring board, and manufacturing method for part built-in wiring board
KR100832649B1 (en) Embedded Resistor Printed Circuit Board and Fabricating Method of the same
KR100771320B1 (en) Embedded chip printed circuit board and fabricating method of the same
JP2008098202A (en) Multilayer wiring circuit board, multilayer wiring circuit board structure
JP3304061B2 (en) Manufacturing method of printed wiring board
JP2004179171A (en) Wiring board
JP2005039136A (en) Circuit board and method for connection thereof
JP7430494B2 (en) Connection hole forming method for multilayer wiring board and method for manufacturing multilayer wiring board using the same
JP2011082429A (en) Multilayer wiring board having cavity portion and method of manufacturing the same
JP2004072125A (en) Manufacturing method of printed wiring board, and printed wiring board