JP2009130095A - Part built-in wiring board, and manufacturing method for part built-in wiring board - Google Patents

Part built-in wiring board, and manufacturing method for part built-in wiring board Download PDF

Info

Publication number
JP2009130095A
JP2009130095A JP2007302883A JP2007302883A JP2009130095A JP 2009130095 A JP2009130095 A JP 2009130095A JP 2007302883 A JP2007302883 A JP 2007302883A JP 2007302883 A JP2007302883 A JP 2007302883A JP 2009130095 A JP2009130095 A JP 2009130095A
Authority
JP
Japan
Prior art keywords
insulating layer
wiring board
wiring
wiring pattern
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007302883A
Other languages
Japanese (ja)
Other versions
JP5176500B2 (en
Inventor
Kenji Sasaoka
賢司 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007302883A priority Critical patent/JP5176500B2/en
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to KR1020157002082A priority patent/KR101611804B1/en
Priority to CN200880113984.7A priority patent/CN101843181B/en
Priority to CN201210049514.7A priority patent/CN102612265B/en
Priority to US12/740,694 priority patent/US8350388B2/en
Priority to PCT/JP2008/069678 priority patent/WO2009057654A1/en
Priority to CN201210049500.5A priority patent/CN102612264B/en
Priority to KR1020107011968A priority patent/KR20100084684A/en
Priority to TW103127242A priority patent/TWI545998B/en
Priority to TW097142088A priority patent/TWI459871B/en
Publication of JP2009130095A publication Critical patent/JP2009130095A/en
Priority to US13/685,917 priority patent/US8987901B2/en
Application granted granted Critical
Publication of JP5176500B2 publication Critical patent/JP5176500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a part built-in wiring board having a semiconductor chip buried and mounted in an insulating plate by flip-chip connection, inexpensively while securing reliability of the flip-chip connection and functionalities as the wiring board. <P>SOLUTION: The part built-in wiring board includes a first insulating layer, a second insulating layer positioned in a laminated shape over the first insulating layer, a semiconductor chip buried in the second insulating layer and having a terminal pad, a wiring pattern sandwiched between the first insulating layer and the second insulating layer, including a mounting land for the semiconductor chip, and having a roughened surface on the second insulating layer side, a conductive bump disposed between a terminal pad of the semiconductor chip and the mounting land of the wiring pattern and electrically and mechanically connecting the terminal pad and mounting land to each other, and a resin provided between the semiconductor chip and first insulating layer, and the wiring pattern. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、絶縁板中に部品が埋設、実装された部品内蔵配線板に係り、特に、半導体チップがフリップ接続により埋設、実装された部品内蔵配線板に関する。   The present invention relates to a component built-in wiring board in which components are embedded and mounted in an insulating plate, and more particularly to a component built-in wiring board in which a semiconductor chip is embedded and mounted by flip connection.

半導体チップがフリップ接続により埋設、実装された部品内蔵配線板の例として、下記特開2003−197849号公報に記載のものがある。半導体チップ(ベアチップ)をフリップ接続すればその実装で生じる厚さは最小限近くに節約され、よってフリップ接続は半導体素子を配線板中に内蔵する場合の有力な方法になる。   An example of a component built-in wiring board in which a semiconductor chip is embedded and mounted by flip connection is disclosed in Japanese Unexamined Patent Application Publication No. 2003-197849. If a semiconductor chip (bare chip) is flip-connected, the thickness generated by the mounting is saved to a minimum. Therefore, the flip connection is an effective method for incorporating a semiconductor element in a wiring board.

フリップ接続は、例えば、半導体チップ上に形成された端子パッド上にさらにAuバンプを形成し、これを接着剤(アンダーフィル樹脂)を介して配線板上に形成された配線パターンに圧接することでなすことができる。ここで考慮点は、Auバンプと配線パターンとの低抵抗接続およびその接続信頼性の確保である。このため配線パターン表面には高い洗浄度が求められ、よく行われる方法として、配線パターンの表層にもAuめっき層を形成しておく。   In the flip connection, for example, an Au bump is further formed on a terminal pad formed on a semiconductor chip, and this is press-contacted to a wiring pattern formed on a wiring board via an adhesive (underfill resin). Can be made. The consideration here is the low resistance connection between the Au bump and the wiring pattern and the securing of the connection reliability. Therefore, a high degree of cleaning is required on the surface of the wiring pattern, and as a common method, an Au plating layer is also formed on the surface layer of the wiring pattern.

一般には、配線板の主面上に半導体チップをフリップ接続する場合には、配線パターンのうち接続に供する部位のみを残してはんだレジストのような保護層を形成し、そのあと、接続に供する部位にAuめっき層を形成している。これにより、安価とは言えないAuめっきを最小限の面積に留めて施すことができる。   Generally, when flip-connecting a semiconductor chip on the main surface of a wiring board, a protective layer such as a solder resist is formed, leaving only a portion of the wiring pattern to be connected, and then a portion to be connected An Au plating layer is formed on the substrate. As a result, Au plating, which is not inexpensive, can be applied with a minimum area.

半導体チップを配線板中に埋設する場合であって、これをフリップ接続する場合には、上記のような主面上への半導体チップのフリップ接続とはいくつか事情が異なってくる。まず、はんだレジストが内層の絶縁層の一部になってしまうことの影響である。一般的に、はんだレジストと配線板で使用される絶縁板材料との密着性は、絶縁板材料同士のそれほどには強くない。そこで、内層としてのはんだレジストを省略した構成を採用すると、Auめっきを広い面積で施す必要があり製造コストに影響する。Auめっき層と絶縁板材料との接着性も強いとは言えず、この点でも課題が残る。
特開2003−197849号公報
In the case of embedding a semiconductor chip in a wiring board and flip-connecting it, there are some differences from the flip-connection of the semiconductor chip on the main surface as described above. First, there is an influence of the solder resist becoming a part of the inner insulating layer. Generally, the adhesion between the solder resist and the insulating plate material used in the wiring board is not so strong between the insulating plate materials. Therefore, when a configuration in which the solder resist as the inner layer is omitted is adopted, it is necessary to perform Au plating over a wide area, which affects the manufacturing cost. It cannot be said that the adhesion between the Au plating layer and the insulating plate material is strong, and a problem remains in this respect.
JP 2003-197849 A

本発明は、上記した事情を考慮してなされたもので、絶縁板中に半導体チップがフリップ接続で埋設、実装された部品内蔵配線板において、フリップ接続の信頼性および配線板としての機能性を保全した上で、低コストで製造が可能な部品内蔵配線板およびその製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned circumstances, and in a component-embedded wiring board in which a semiconductor chip is embedded and mounted in an insulating plate by flip connection, the reliability of flip connection and functionality as a wiring board are achieved. An object of the present invention is to provide a component built-in wiring board that can be manufactured at low cost while maintaining it, and a method for manufacturing the same.

上記の課題を解決するため、本発明に係る部品内蔵配線板は、第1の絶縁層と、前記第1の絶縁層に対して積層状に位置する第2の絶縁層と、前記第2の絶縁層に埋設された、端子パッドを有する半導体チップと、前記第1の絶縁層と前記第2の絶縁層とに挟まれて設けられ、前記半導体チップ用の実装用ランドを含みかつ前記第2の絶縁層側の表面が粗化された配線パターンと、前記半導体チップの前記端子パッドと前記配線パターンの前記実装用ランドとの間に挟設され、該端子パッドと該実装用ランドとを電気的、機械的に接続する導電性バンプと、前記半導体チップと前記第1の絶縁層および前記配線パターンとの間に設けられた樹脂とを具備することを特徴とする。   In order to solve the above-described problem, a component built-in wiring board according to the present invention includes a first insulating layer, a second insulating layer positioned in a stacked manner with respect to the first insulating layer, and the second insulating layer. A semiconductor chip having a terminal pad embedded in an insulating layer, and provided between the first insulating layer and the second insulating layer, including a mounting land for the semiconductor chip, and the second The insulating layer side surface of the wiring pattern is sandwiched between the terminal pad of the semiconductor chip and the mounting land of the wiring pattern, and the terminal pad and the mounting land are electrically connected. And electrically conductive bumps, and a resin provided between the semiconductor chip and the first insulating layer and the wiring pattern.

すなわち、半導体チップをその端子パッド上の導電性バンプを介して配線板にフリップ接続で良好に埋設、実装するため、配線板上のランドを含む配線パターンは表面が粗化された状態になっている。実験によれば、表面が粗化された配線パターンと導電性バンプとの電気的接続は、粗化がされていない配線パターンの場合より、顕著に低抵抗接続およびその接続信頼性の向上が実現される。表面粗化がされた配線パターンと絶縁層との接着性もよく配線板としての機能性に悪影響も生じない。   In other words, in order to satisfactorily embed and mount a semiconductor chip on a wiring board via conductive bumps on its terminal pads, the wiring pattern including the lands on the wiring board has a roughened surface. Yes. According to experiments, the electrical connection between the wiring pattern with the roughened surface and the conductive bump achieves a significantly lower resistance connection and improved connection reliability than the wiring pattern without the roughening. Is done. The adhesion between the wiring pattern with the roughened surface and the insulating layer is good, and the functionality as a wiring board is not adversely affected.

また、本発明に係る部品内蔵配線板の製造方法は、第1の絶縁板上に積層された金属箔をパターニングし、半導体チップを実装するためのランドを含む配線パターンを形成する工程と、前記ランドを含む前記配線パターンの表面上を粗化する工程と、端子パッドを有し該端子パッド上に導電性バンプが形設された半導体チップを、前記粗化がされた配線パターンの前記ランドの位置に前記導電性バンプの位置を合わせてフリップ接続する工程と、前記第1の絶縁板とは異なる第2の絶縁板中に、前記フリップ接続がされた前記半導体チップを埋め込むように、前記第1の絶縁板に積層状に前記第2の絶縁板を一体化する工程とを具備することを特徴とする。   The method of manufacturing a component built-in wiring board according to the present invention includes a step of patterning a metal foil laminated on a first insulating board and forming a wiring pattern including a land for mounting a semiconductor chip, A step of roughening the surface of the wiring pattern including lands, and a semiconductor chip having terminal pads and conductive bumps formed on the terminal pads. A step of flip-connecting the conductive bump to a position, and the second insulating plate different from the first insulating plate so as to embed the flip-connected semiconductor chip in the second insulating plate. And a step of integrating the second insulating plate in a laminated form on one insulating plate.

この製造方法は、上記の部品内蔵配線板を製造するひとつの例である。   This manufacturing method is one example of manufacturing the component built-in wiring board.

本発明によれば、絶縁板中に半導体チップがフリップ接続で埋設、実装された部品内蔵配線板において、フリップ接続の信頼性および配線板としての機能性を保全した上で、低コストで製造が可能な部品内蔵配線板およびその製造方法を提供することができる。   According to the present invention, in a component built-in wiring board in which a semiconductor chip is embedded and mounted in an insulating plate by flip connection, the reliability of flip connection and functionality as a wiring board are maintained, and manufacturing is possible at low cost. A possible component built-in wiring board and a method of manufacturing the same can be provided.

本発明の実施態様として、前記第2の絶縁層が、少なくとも2つの絶縁層の積層であり、前記少なくとも2つの絶縁層の間に挟まれて設けられた第2の配線パターンと、前記第2の絶縁層の積層方向一部を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ導電性組成物からなり、かつ積層方向に一致する軸を有し該軸の方向に径が変化している形状である層間接続体とをさらに具備する、とすることができる。   As an embodiment of the present invention, the second insulating layer is a laminate of at least two insulating layers, and a second wiring pattern provided between the at least two insulating layers, and the second An axis that penetrates part of the insulating layer in the stacking direction and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, and is made of a conductive composition and coincides with the stacking direction. And an interlayer connection body having a shape whose diameter changes in the direction of the axis.

この層間接続体は、半導体チップを埋め込んでいる第2の絶縁層の積層方向一部を貫通する層間接続体の一例であり、例えば導電性組成物のスクリーン印刷により形成された導電性バンプを由来とする層間接続体である。この層間接続体は、第2の配線パターンと配線パターンとの間に挟設されるが、配線パターンの表面が粗化されているため、この配線パターンと層間接続体との接続信頼性の向上ももたらされることになり好ましい。   This interlayer connection body is an example of an interlayer connection body that penetrates a part in the stacking direction of the second insulating layer in which the semiconductor chip is embedded. For example, the interlayer connection body is derived from conductive bumps formed by screen printing of a conductive composition. It is an interlayer connection body. This interlayer connection body is sandwiched between the second wiring pattern and the wiring pattern. However, since the surface of the wiring pattern is roughened, the connection reliability between the wiring pattern and the interlayer connection body is improved. Is also preferable.

また、実施態様として、前記配線パターンが、その材料としてCuを有し、前記導電性バンプが、その材料としてAuを有する、とすることができる。配線パターンとしてCuはもっとも一般的でローコストであり、導電性バンプがAuであるとCuとの接続相性がよく好ましい。   As an embodiment, the wiring pattern may have Cu as its material, and the conductive bump may have Au as its material. Cu is the most common and low cost wiring pattern, and if the conductive bump is Au, the connection compatibility with Cu is good and preferable.

ここで、前記配線パターンの前記表面が、十点表面粗さRzの評価で0.45μmを超える表面粗さである、とすることができる。実験によれば、配線パターンの表面粗さが0.45μmを超えると、初期導通試験で導電性バンプとの導通が不良と判定されるサンプルの発生がなくなる。   Here, the surface of the wiring pattern may have a surface roughness exceeding 0.45 μm in the evaluation of the ten-point surface roughness Rz. According to the experiment, when the surface roughness of the wiring pattern exceeds 0.45 μm, there is no occurrence of a sample that is determined to have poor conduction with the conductive bump in the initial conduction test.

また、製造方法としての実施態様として、前記第2の絶縁板が、少なくとも2つの絶縁層の積層であり、かつ、該少なくとも2つの絶縁層の間に挟まれて設けられた第2の配線パターンと、該第2の配線パターンの面に接し、かつ該第2の絶縁板の積層方向一部を貫通して頭部が露出し、かつ導電性組成物からなり、かつ積層方向に一致する軸を有し該軸の方向に径が変化している形状である層間接続体とを有し、前記第1の絶縁板に積層状に前記第2の絶縁板を一体化する前記工程が、前記第2の絶縁板の前記層間接続体の前記頭部が、前記粗化がされた前記配線パターンに接触するようになされる、とすることができる。   As an embodiment as a manufacturing method, the second insulating plate is a laminate of at least two insulating layers, and is provided between the at least two insulating layers. And an axis that is in contact with the surface of the second wiring pattern, passes through a part of the second insulating plate in the stacking direction, has a head exposed, is made of a conductive composition, and coincides with the stacking direction. And the step of integrating the second insulating plate in a laminated form with the first insulating plate, the interlayer connection body having a shape whose diameter changes in the direction of the axis, The head part of the interlayer connection body of the second insulating plate may be in contact with the roughened wiring pattern.

ここでの層間接続体は、半導体チップを埋め込んでいる第2の絶縁層の積層方向一部を貫通する層間接続体の一例であり、例えば導電性組成物のスクリーン印刷により形成された導電性バンプを由来とする層間接続体である。この層間接続体は、第2の配線パターンと配線パターンとの間に挟設されることになり、これによれば、配線パターンの表面が粗化されているため、この配線パターンと層間接続体との接続信頼性の向上ももたらされ好ましい。   The interlayer connection here is an example of an interlayer connection that penetrates a part in the stacking direction of the second insulating layer in which the semiconductor chip is embedded. For example, conductive bumps formed by screen printing of a conductive composition Is an interlayer connection body derived from This interlayer connection body is sandwiched between the second wiring pattern and the wiring pattern. According to this, since the surface of the wiring pattern is roughened, this wiring pattern and the interlayer connection body It is also preferable because the connection reliability is improved.

また、実施態様として、前記金属箔が、その材料としてCuを有し、前記導電性バンプが、その材料としてAuを有する、とすることができる。配線パターンとしてCuはもっとも一般的でローコストであり、導電性バンプがAuであるとCuとの接続相性がよく好ましい。   As an embodiment, the metal foil may have Cu as a material thereof, and the conductive bump may have Au as a material thereof. Cu is the most common and low cost wiring pattern, and if the conductive bump is Au, the connection compatibility with Cu is good and preferable.

ここで、前記粗化が、十点表面粗さRzの評価で0.45μmを超える表面粗さになるようになされる、とすることができる。実験によれば、配線パターンの表面粗さが0.45μmを超えると、初期導通試験で導電性バンプとの導通が不良と判定されるサンプルの発生がなくなる。   Here, the roughening may be performed so as to have a surface roughness exceeding 0.45 μm in the evaluation of the ten-point surface roughness Rz. According to the experiment, when the surface roughness of the wiring pattern exceeds 0.45 μm, there is no occurrence of a sample that is determined to have poor conduction with the conductive bump in the initial conduction test.

ここで、前記粗化が、Cuを黒化還元処理することによりなされる、とすることができる。また、前記粗化が、Cuをマイクロエッチングすることによりなされる、とすることもできる。これらの粗化方法は、一般的に採用され得る粗化の方法例である。   Here, the roughening can be performed by blackening and reducing Cu. The roughening may be performed by microetching Cu. These roughening methods are examples of roughening methods that can be generally employed.

以上を踏まえ、以下では本発明の実施形態を図面を参照しながら説明する。図1は、本発明の一実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図1に示すように、この部品内蔵配線板は、絶縁層11(第1の絶縁層)、同12、同13、同14、同15(12、13、14、15で第2の絶縁層)、配線層21、同22(配線パターン)、同23(第2の配線パターン)、同24、同25、同26(=合計6層)、層間接続体31、同32、同34、同35、スルーホール導電体33、半導体チップ41、導電性バンプ42、アンダーフィル樹脂51(樹脂)を有する。   Based on the above, embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to an embodiment of the present invention. As shown in FIG. 1, this component built-in wiring board includes an insulating layer 11 (first insulating layer), 12, 12, 13, 14, and 15 (12, 13, 14, 15 second insulating layer). ), Wiring layer 21, 22 (wiring pattern), 23 (second wiring pattern), 24, 25, 26 (= 6 layers in total), interlayer connector 31, 32, 34, 35, through-hole conductor 33, semiconductor chip 41, conductive bump 42, and underfill resin 51 (resin).

半導体チップ41は、フリップ接続により導電性バンプ42を介して内層の配線層22に電気的、機械的に接続されている。この接続のため、半導体チップ41が有する端子パッド(不図示)上にあらかじめ導電性バンプ42が形設され、この導電性バンプ42に位置を合わせて配線層22には内蔵部品実装用ランドがパターン形成されている。導電性バンプ42は、材質として例えばAuであり、あらかじめ端子パッド上にスタッド状に形成されたものである。半導体チップ41と配線層22および絶縁層11との間には、フリップ接続部分の機械的および化学的な保護のためアンダーフィル樹脂51が満たされている。   The semiconductor chip 41 is electrically and mechanically connected to the inner wiring layer 22 via conductive bumps 42 by flip connection. For this connection, conductive bumps 42 are formed in advance on terminal pads (not shown) of the semiconductor chip 41, and the built-in component mounting lands are patterned on the wiring layer 22 in alignment with the conductive bumps 42. Is formed. The conductive bump 42 is made of, for example, Au, and is previously formed in a stud shape on the terminal pad. An underfill resin 51 is filled between the semiconductor chip 41 and the wiring layer 22 and the insulating layer 11 for mechanical and chemical protection of the flip connection portion.

導電性バンプ42との接続に供せられる部分を含めて配線層22の絶縁層12側の表面は、表面粗さが適度に大きくなるように処理がされた粗化表面22aになっている。粗化表面22aを設けることで、導電性バンプ42との接続の低抵抗性およびその信頼性を確保する。こうすれば、配線層22の絶縁層12側の表面の洗浄度を増すためAuめっきを施すことや、そのめっき面積をなるべく増加させないようにはんだレジスト層を形成することなどは考慮する必要がない。したがって、より低コストが実現され、また、絶縁層12とAuめっき層やはんだレジスト層との密着が不全で配線板としての機能が損なわれるおそれも回避できる。   The surface on the insulating layer 12 side of the wiring layer 22 including a portion provided for connection to the conductive bumps 42 is a roughened surface 22a that has been processed so that the surface roughness is appropriately increased. By providing the roughened surface 22a, the low resistance and the reliability of the connection with the conductive bump 42 are ensured. In this case, it is not necessary to consider the application of Au plating to increase the cleanliness of the surface of the wiring layer 22 on the insulating layer 12 side, or the formation of a solder resist layer so as not to increase the plating area as much as possible. . Therefore, a lower cost is realized, and it is also possible to avoid a possibility that the function as a wiring board is impaired due to insufficient adhesion between the insulating layer 12 and the Au plating layer or the solder resist layer.

配線層22の表面を粗化表面22aにすること以外の構造、すなわち、半導体チップ41、導電性バンプ42、配線層22および絶縁層11、アンダーフィル樹脂51がなす構造自体については、一般的に多用されているフリップ接続で得られる構造でよく、したがって大きなコスト増は生じない。粗化表面22aは、さらに、配線層22と絶縁層12との接着性の向上、および配線層22と層間接続体32との電気的接続の信頼性の向上にも貢献しており副次的にも好ましい。   Regarding the structure other than the surface of the wiring layer 22 being the roughened surface 22a, that is, the structure itself formed by the semiconductor chip 41, the conductive bump 42, the wiring layer 22, the insulating layer 11, and the underfill resin 51 is generally used. A structure obtained by a flip connection that is frequently used may be used, and therefore a large cost increase does not occur. The roughened surface 22a further contributes to improving the adhesion between the wiring layer 22 and the insulating layer 12 and improving the reliability of the electrical connection between the wiring layer 22 and the interlayer connector 32. Also preferred.

ここで、半導体チップ41と配線層22との接続部分の微細な構造について図2を参照して説明する。図2は、図1に示した部品内蔵配線板における半導体チップ41と配線層22との接続部分をやや詳細にかつ模式的に示す断面構造図である。図2において、図1中に示した構成と同一のものには同一符号を付してある。図2に示すように、微細な構造として、導電性バンプ42が配線層22に圧接された状態で配線層22の粗化表面22aの凹凸がつぶされ、これにより配線層22の新生面が露出して導電性バンプ42に接触している。したがって良好な接続が実現される。   Here, a fine structure of a connection portion between the semiconductor chip 41 and the wiring layer 22 will be described with reference to FIG. FIG. 2 is a cross-sectional structure diagram showing the connection portion between the semiconductor chip 41 and the wiring layer 22 in the component built-in wiring board shown in FIG. In FIG. 2, the same components as those shown in FIG. As shown in FIG. 2, as a fine structure, the unevenness of the roughened surface 22a of the wiring layer 22 is crushed in a state where the conductive bumps 42 are pressed against the wiring layer 22, thereby exposing the new surface of the wiring layer 22. In contact with the conductive bump 42. Therefore, a good connection is realized.

図1に戻り部品内蔵配線板としてのほかの構造について述べると、外側の配線層21、26とは別の配線層22、23、24、25はそれぞれ内層の配線層であり、順に、配線層21と配線層22の間に絶縁層11が、配線層22と配線層23の間に絶縁層12が、配線層23と配線層24との間に絶縁層13が、配線層24と配線層25との間に絶縁層14が、配線層25と配線層26との間に絶縁層15が、それぞれ位置しこれらの配線層21〜26を隔てている。各配線層21〜26は、例えばそれぞれ厚さ18μmの金属(銅)箔からなっている。   Returning to FIG. 1, the other structure as the component built-in wiring board will be described. The wiring layers 22, 23, 24 and 25 different from the outer wiring layers 21 and 26 are the inner wiring layers. The insulating layer 11 between the wiring layer 22 and the wiring layer 22, the insulating layer 12 between the wiring layer 22 and the wiring layer 23, the insulating layer 13 between the wiring layer 23 and the wiring layer 24, and the wiring layer 24 and the wiring layer. The insulating layer 14 is located between the wiring layers 25 and 26, and the insulating layer 15 is located between the wiring layers 25 and 26. Each of the wiring layers 21 to 26 is made of, for example, a metal (copper) foil having a thickness of 18 μm.

各絶縁層11〜15は、絶縁層13を除き例えばそれぞれ厚さ100μm、絶縁層13のみ例えば厚さ300μmで、それぞれ例えばガラスエポキシ樹脂からなるリジッドな素材である。特に絶縁層13は、内蔵された半導体チップ41に相当する位置部分が開口部となっており、半導体チップ41を内蔵するための空間を提供する。絶縁層12、14は、内蔵された半導体チップ41のための絶縁層13の上記開口部および絶縁層13のスルーホール導電体33内部の空間を埋めるように変形進入しており内部に空隙となる空間は存在しない。   Each of the insulating layers 11 to 15 is a rigid material made of, for example, a glass epoxy resin, each having a thickness of 100 μm, for example, only the insulating layer 13 has a thickness of, for example, 300 μm, excluding the insulating layer 13. In particular, the insulating layer 13 has an opening at a position corresponding to the built-in semiconductor chip 41, and provides a space for housing the semiconductor chip 41. The insulating layers 12 and 14 are deformed so as to fill the opening of the insulating layer 13 for the built-in semiconductor chip 41 and the space inside the through-hole conductor 33 of the insulating layer 13 and become voids inside. There is no space.

配線層21と配線層22とは、それらのパターンの面の間に挟設されかつ絶縁層11を貫通する層間接続体31により導通し得る。同様に、配線層22と配線層23とは、それらのパターンの面の間に挟設されかつ絶縁層12を貫通する層間接続体32により導通し得る。配線層23と配線層24とは、絶縁層13を貫通して設けられたスルーホール導電体33により導通し得る。配線層24と配線層25とは、それらのパターンの面の間に挟設されかつ絶縁層14を貫通する層間絶縁体34により導通し得る。配線層25と配線層26とは、それらのパターンの面の間に挟設されかつ絶縁層15を貫通する層間接続体25により導通し得る。   The wiring layer 21 and the wiring layer 22 can be conducted by an interlayer connector 31 that is sandwiched between the surfaces of the patterns and penetrates the insulating layer 11. Similarly, the wiring layer 22 and the wiring layer 23 can be conducted by an interlayer connector 32 that is sandwiched between the surfaces of the patterns and penetrates the insulating layer 12. The wiring layer 23 and the wiring layer 24 can be conducted by a through-hole conductor 33 provided through the insulating layer 13. The wiring layer 24 and the wiring layer 25 can be conducted by an interlayer insulator 34 that is sandwiched between the surfaces of these patterns and penetrates the insulating layer 14. The wiring layer 25 and the wiring layer 26 can be conducted by an interlayer connector 25 that is sandwiched between the surfaces of these patterns and penetrates the insulating layer 15.

層間接続体31、32、34、35は、それぞれ、導電性組成物のスクリーン印刷により形成される導電性バンプを由来とするものであり、その製造工程に依拠して軸方向(図1の図示で上下の積層方向)に径が変化している。その直径は、太い側で例えば200μmである。   The interlayer connectors 31, 32, 34, and 35 are derived from conductive bumps formed by screen printing of a conductive composition, respectively, and depend on the manufacturing process in the axial direction (shown in FIG. 1). The diameter changes in the upper and lower stacking directions). The diameter is, for example, 200 μm on the thick side.

以上のように、この実施形態に係る部品内蔵配線板は、半導体チップ41をその端子パッド上に設けられた導電性バンプ42を介してフリップ接続で良好に埋設、実装するため、ランドを含む内層の配線層22の絶縁層12側の表面が粗化されていることに特徴がある。これにより、半導体チップ41と配線層22との低抵抗接続およびその接続信頼性向上がなされる。粗化表面22aを有する配線層22と絶縁層12との接着性もよく配線板としての機能性に悪影響も生じない。また、配線層22と層間接続体32との電気的接続の信頼性も向上している。   As described above, the component built-in wiring board according to this embodiment has an inner layer including a land for satisfactorily embedding and mounting the semiconductor chip 41 by flip connection via the conductive bumps 42 provided on the terminal pads. The wiring layer 22 is characterized in that the surface on the insulating layer 12 side is roughened. Thereby, the low resistance connection between the semiconductor chip 41 and the wiring layer 22 and the connection reliability thereof are improved. The adhesion between the wiring layer 22 having the roughened surface 22a and the insulating layer 12 is good, and the functionality as a wiring board is not adversely affected. Further, the reliability of electrical connection between the wiring layer 22 and the interlayer connector 32 is also improved.

次に、図1に示した部品内蔵配線板の製造工程を図3ないし図5を参照して説明する。図3ないし図5は、それぞれ、図1に示した部品内蔵配線板の製造過程の一部を模式的断面で示す工程図である。これらの図において図1中に示した構成要素と同一または同一相当のものには同一符号を付してある。   Next, the manufacturing process of the component built-in wiring board shown in FIG. 1 will be described with reference to FIGS. 3 to 5 are process diagrams schematically showing a part of the manufacturing process of the component built-in wiring board shown in FIG. In these figures, the same or equivalent components as those shown in FIG.

図3から説明する。図3は、図1中に示した各構成のうち絶縁層11を中心とした部分の製造工程を示している。まず、図3(a)に示すように、厚さ例えば18μmの金属箔(電解銅箔)22A上に例えばスクリーン印刷により、層間接続体31となるペースト状の導電性組成物をほぼ円錐形のバンプ状(底面径例えば200μm、高さ例えば160μm)に形成する。この導電性組成物は、ペースト状の樹脂中に銀、金、銅などの金属微細粒または炭素微細粒を分散させたものである。説明の都合で金属箔22Aの下面に印刷しているが上面でもよい(以下の各図も同じである)。層間接続体31の印刷後これを乾燥させて硬化させる。   It demonstrates from FIG. FIG. 3 shows a manufacturing process of a portion centering on the insulating layer 11 in each configuration shown in FIG. First, as shown in FIG. 3 (a), a paste-like conductive composition to be an interlayer connection 31 is formed on a metal foil (electrolytic copper foil) 22A having a thickness of 18 μm, for example, by screen printing. It is formed in a bump shape (bottom diameter, for example, 200 μm, height, for example, 160 μm). This conductive composition is obtained by dispersing fine metal particles such as silver, gold and copper or fine carbon particles in a paste-like resin. For convenience of explanation, printing is performed on the lower surface of the metal foil 22A, but it may be printed on the upper surface (the following drawings are also the same). After the interlayer connector 31 is printed, it is dried and cured.

次に、図3(b)に示すように、金属箔22A上に厚さ例えば公称100μmのFR−4のプリプレグ11Aを積層して層間接続体31を貫通させ、その頭部が露出するようにする。露出に際してあるいはその後その先端を塑性変形でつぶしてもよい(いずれにしても層間接続体31の形状は、積層方向に一致する軸を有しその軸方向に径が変化する形状である。)。続いて、図3(c)に示すように、プリプレグ31A上に金属箔(電解銅箔)21Aを積層配置して加圧・加熱し全体を一体化する。このとき、金属箔21Aは層間接続体31と電気的導通状態となり、プリプレグ11Aは完全に硬化して絶縁層11になる。   Next, as shown in FIG. 3B, an FR-4 prepreg 11A having a thickness of, for example, 100 μm is laminated on the metal foil 22A to penetrate the interlayer connector 31, so that the head is exposed. To do. At the time of exposure or thereafter, the tip thereof may be crushed by plastic deformation (in any case, the shape of the interlayer connection body 31 is a shape having an axis coinciding with the laminating direction and the diameter changing in the axial direction). Subsequently, as shown in FIG. 3C, a metal foil (electrolytic copper foil) 21A is laminated on the prepreg 31A, and the whole is integrated by pressing and heating. At this time, the metal foil 21A is in electrical continuity with the interlayer connector 31, and the prepreg 11A is completely cured to become the insulating layer 11.

次に、図3(d)に示すように、片側の金属箔22Aに例えば周知のフォトリソグラフィによるパターニングを施し、これを、実装用ランドを含む配線層22に加工する。そしてさらに、パターニングされた配線層22の表面を粗化処理して粗化表面22aにする。これには、具体的に、例えば、黒化還元処理やマイクロエッチング処理を採用することができる。マイクロエッチング処理としては、例えば、CZ処理(メック社商品名)やボンドフィルム処理(アトテック社商品名)がある。   Next, as shown in FIG. 3D, the metal foil 22A on one side is subjected to patterning by, for example, well-known photolithography, and processed into a wiring layer 22 including mounting lands. Further, the surface of the patterned wiring layer 22 is roughened to obtain a roughened surface 22a. Specifically, for example, a blackening reduction process or a microetching process can be employed. Examples of the micro-etching process include CZ processing (MEC product name) and bond film processing (Atotech product name).

なお、銅箔の表面を粗化する処理は、一般的に、銅箔上に積層される絶縁樹脂との密着性を向上するため行われているので、この処理と同時の処理として上記粗化処理を行うようにしてもよい。これによれば、新たな処理として上記粗化処理を行う必要がなく効率よく製造が可能である。ただし、粗化の程度についてはフリップ接続での低抵抗性およびその信頼性を考慮し適当な程度を指向すべきである(後述する)。   In addition, since the process which roughens the surface of copper foil is generally performed in order to improve adhesiveness with the insulating resin laminated | stacked on copper foil, the said roughening is carried out as a process simultaneously with this process. Processing may be performed. According to this, it is not necessary to perform the roughening process as a new process, and it is possible to manufacture efficiently. However, the degree of roughening should be directed to an appropriate level in consideration of the low resistance in flip connection and its reliability (described later).

次に、図3(e)に示すように、半導体チップ41が実装されるべき絶縁層11上の位置に例えばディスペンサを用いて硬化前のアンダーフィル樹脂51Aを適用する。続いて、図3(f)に示すように、導電性バンプ42を伴った半導体チップ41を例えばフリップチップボンダを用いて、配線層22の実装用ランドに位置合わせし圧接する。圧接の後、その接続強度の向上のため、およびアンダーフィル樹脂51Aを硬化するため、加熱工程を行う。以上により、導電性バンプ42を介して半導体チップ41が配線層22の実装用ランド上に接続され、かつ半導体チップ41と配線層22および絶縁層11との間にアンダーフィル樹脂51が満たされた状態の配線板素材1が得られる。この配線板素材1を用いる後の工程については図5で後述する。   Next, as shown in FIG. 3E, an unfilled underfill resin 51A is applied to a position on the insulating layer 11 where the semiconductor chip 41 is to be mounted using, for example, a dispenser. Subsequently, as shown in FIG. 3F, the semiconductor chip 41 with the conductive bumps 42 is positioned and pressed against the mounting land of the wiring layer 22 using, for example, a flip chip bonder. After the pressure welding, a heating step is performed to improve the connection strength and to cure the underfill resin 51A. As described above, the semiconductor chip 41 is connected to the mounting land of the wiring layer 22 via the conductive bump 42, and the underfill resin 51 is filled between the semiconductor chip 41 and the wiring layer 22 and the insulating layer 11. A wiring board material 1 in a state is obtained. The subsequent steps using this wiring board material 1 will be described later with reference to FIG.

次に、図4を参照して説明する。図4は、図1中に示した各構成のうち絶縁層13および同12を中心とした部分の製造工程を示している。まず、図4(a)に示すように、両面に例えば厚さ18μmの金属箔(電解銅箔)23A、24Aが積層された例えば厚さ300μmのFR−4の絶縁層13を用意し、その所定位置にスルーホール導電体を形成するための貫通孔72をあけ、かつ内蔵する半導体チップ41に相当する部分に開口部71を形成する。   Next, a description will be given with reference to FIG. FIG. 4 shows a manufacturing process of a part centering on the insulating layer 13 and the same 12 in each configuration shown in FIG. First, as shown in FIG. 4A, for example, an FR-4 insulating layer 13 having a thickness of, for example, 300 μm in which metal foils (electrolytic copper foils) 23A and 24A having a thickness of 18 μm are laminated on both surfaces is prepared. A through-hole 72 for forming a through-hole conductor is formed at a predetermined position, and an opening 71 is formed in a portion corresponding to the built-in semiconductor chip 41.

次に、無電解めっきおよび電解めっきを行い、図4(b)に示すように、貫通孔72の内壁にスルーホール導電体33を形成する。このとき開口部71の内壁にも導電体が形成される。さらに、図4(c)に示すように、金属箔23A、24Aを周知のフォトリソグラフィを利用して所定にパターニングして配線層23、24を形成する。配線層23、24のパターニング形成により、開口部71の内壁に形成された導電体も除去される。   Next, electroless plating and electrolytic plating are performed, and the through-hole conductor 33 is formed on the inner wall of the through hole 72 as shown in FIG. At this time, a conductor is also formed on the inner wall of the opening 71. Further, as shown in FIG. 4C, the metal foils 23A and 24A are patterned in a predetermined manner using well-known photolithography to form wiring layers 23 and 24. By patterning the wiring layers 23 and 24, the conductor formed on the inner wall of the opening 71 is also removed.

次に、図4(d)に示すように、配線層23上の所定の位置に層間接続体32となる導電性バンプ(底面径例えば200μm、高さ例えば160μm)をペースト状導電性組成物のスクリーン印刷により形成する。続いて、図4(e)に示すように、絶縁層12とすべきFR−4のプリプレグ12A(公称厚さ例えば100μm)を配線層23側にプレス機を用い積層する。プリプレグ12Aには、絶縁層13と同様の、内蔵する半導体チップ41に相当する部分の開口部をあらかじめ設けておく。   Next, as shown in FIG. 4D, conductive bumps (bottom diameter, for example, 200 μm, height, for example, 160 μm) to be the interlayer connector 32 are formed at predetermined positions on the wiring layer 23 of the paste-like conductive composition. It is formed by screen printing. Subsequently, as shown in FIG. 4E, an FR-4 prepreg 12A (nominal thickness, for example, 100 μm) to be the insulating layer 12 is laminated on the wiring layer 23 side using a press. In the prepreg 12A, an opening corresponding to the built-in semiconductor chip 41, which is the same as the insulating layer 13, is provided in advance.

この積層工程では、層間接続体32の頭部をプリプレグ12Aに貫通させる。なお、図4(e)における層間接続体32の頭部の破線は、この段階でその頭部を塑性変形させてつぶしておく場合と塑性変形させない場合の両者あり得ることを示す。この工程により、配線層23はプリプレグ12A側に沈み込んで位置する。以上により得られた配線板素材を配線板素材2とする。   In this lamination process, the head of the interlayer connector 32 is passed through the prepreg 12A. In addition, the broken line of the head part of the interlayer connection body 32 in FIG. 4E indicates that there are both cases where the head part is plastically deformed and crushed at this stage, and when it is not plastically deformed. By this step, the wiring layer 23 is located by sinking to the prepreg 12A side. The wiring board material obtained as described above is referred to as a wiring board material 2.

なお、以上の図4に示した工程は、以下のような手順とすることも可能である。図4(a)の段階では、貫通孔72のみ形成し内蔵部品用の開口部71を形成せずに続く図4(b)から図4(d)までの工程を行う。次に、図4(e)に相当する工程として、プリプレグ12A(開口のないもの)の積層を行う。そして、絶縁層13およびプリプレグ12Aに部品内蔵用の開口部を同時に形成する、という工程である。   Note that the steps shown in FIG. 4 may be performed as follows. In the stage of FIG. 4A, only the through hole 72 is formed and the subsequent steps from FIG. 4B to FIG. 4D are performed without forming the opening 71 for the built-in component. Next, as a process corresponding to FIG. 4E, prepreg 12A (without opening) is stacked. And it is the process of forming simultaneously the opening part for components incorporation in the insulating layer 13 and the prepreg 12A.

次に、図5を参照して説明する。図5は、上記で得られた配線板素材1、2などを積層する配置関係を示す図である。   Next, a description will be given with reference to FIG. FIG. 5 is a diagram showing an arrangement relationship in which the wiring board materials 1 and 2 obtained as described above are stacked.

図5において、図示上側の配線板素材3は、下側の配線板素材1と同様な工程を適用し、かつそのあと層間接続体34およびプリプレグ14Aを図示中間の配線板素材2における層間接続体32およびプリプレグ12Aと同様にして形成し得られたものである。ただし、部品(半導体チップ41)およびこれを接続するための部位(実装用ランド)のない構成であり、さらにプリプレグ14Aには半導体チップ41用の開口部も設けない。そのほかは、金属箔(電解銅箔)26A、絶縁層15、層間接続体35、配線層25、プリプレグ14A、層間接続体34とも、それぞれ配線板素材1の金属箔21A、絶縁層11、層間接続体31、配線層22、配線板素材2のプリプレグ12A、層間接続体32と同じである。   In FIG. 5, the upper wiring board material 3 shown in FIG. 5 applies the same process as the lower wiring board material 1, and then the interlayer connection 34 and the prepreg 14 </ b> A are connected to the interlayer connection body in the intermediate wiring board material 2. 32 and the prepreg 12A. However, there is no component (semiconductor chip 41) and no part (mounting land) for connecting it, and the prepreg 14A is not provided with an opening for the semiconductor chip 41. Other than that, the metal foil (electrolytic copper foil) 26A, the insulating layer 15, the interlayer connection body 35, the wiring layer 25, the prepreg 14A, and the interlayer connection body 34 are the metal foil 21A of the wiring board material 1, the insulating layer 11, and the interlayer connection, respectively. The same as the body 31, the wiring layer 22, the prepreg 12 </ b> A of the wiring board material 2, and the interlayer connection body 32.

図5に示すような配置で各配線板素材1、2、3を積層配置してプレス機で加圧・加熱する。これにより、プリプレグ12A、14Aが完全に硬化し全体が積層・一体化する。このとき、加熱により得られるプリプレグ12A、14Aの流動性により、半導体チップ41の周りの空間およびスルーホール導電体33内部の空間にはプリプレグ12A、14Aが変形進入し空隙は発生しない。また、配線層22、24は、層間接続体32、34にそれぞれ電気的に接続される。この積層工程では、配線層22の表面に粗化表面22aが設けられていることにより、絶縁層12と配線層22の密着性が向上し、また層間接続体32と配線層22との電気的接続の信頼性が向上する。これについてはすでに述べた通りである。   The respective wiring board materials 1, 2, and 3 are laminated and arranged in the arrangement as shown in FIG. Thereby, the prepregs 12A and 14A are completely cured, and the whole is laminated and integrated. At this time, due to the fluidity of the prepregs 12 </ b> A and 14 </ b> A obtained by heating, the prepregs 12 </ b> A and 14 </ b> A are deformed into the space around the semiconductor chip 41 and the space inside the through-hole conductor 33, and no gap is generated. The wiring layers 22 and 24 are electrically connected to the interlayer connectors 32 and 34, respectively. In this laminating step, the roughened surface 22 a is provided on the surface of the wiring layer 22, thereby improving the adhesion between the insulating layer 12 and the wiring layer 22, and the electrical connection between the interlayer connector 32 and the wiring layer 22. Connection reliability is improved. This has already been described.

図5に示す積層工程の後、上下両面の金属箔26A、21Aを周知のフォトリソグラフィを利用して所定にパターニングし、さらにはんだレジスト61、62の層を形成することにより、図1に示したような部品内蔵配線板を得ることができる。   After the laminating step shown in FIG. 5, the upper and lower metal foils 26A and 21A are patterned in a predetermined manner using well-known photolithography, and further, layers of solder resists 61 and 62 are formed, as shown in FIG. Such a component built-in wiring board can be obtained.

変形例として、中間の絶縁層13に設けられたスルーホール導電体33については、層間接続体31や同32と同様なものとする構成も当然ながらあり得る。また、外側の配線層21、26は、最後の積層工程のあとにパターニングして得る以外に、各配線板素材1、3の段階で(例えば図3(d)の段階で)形成するようにしてもよい。   As a modification, the through-hole conductor 33 provided in the intermediate insulating layer 13 can naturally have a configuration similar to the interlayer connector 31 or 32. In addition, the outer wiring layers 21 and 26 are formed at the stage of each wiring board material 1 and 3 (for example, at the stage of FIG. 3D) other than patterning after the last lamination step. May be.

また、図5に示した積層工程において、配線板素材1、2については、プリプレグ12Aおよび層間接続体32の部分を配線板素材2の側ではなく配線板素材1の側に設けておくようにしてもよい。すなわち、層間接続体32の形成およびプリプレグ12Aの積層を、配線板素材1の配線層22上(絶縁層11上)であらかじめ行うようにする。この場合、実装された半導体チップ41が、一見、層間接続体32をスクリーン印刷で形成するときに干渉要因となるように見えるが、半導体チップ41として十分薄い部品の場合は実際上干渉要因とはならない。プリプレグ12Aの積層工程のときには、半導体チップ41の厚さを吸収できるクッション材を介在させて加圧・加熱すれば面内方向均一にプリプレグ12Aを積層できる。   Further, in the laminating process shown in FIG. 5, for the wiring board materials 1 and 2, the prepreg 12 </ b> A and the interlayer connector 32 are provided not on the wiring board material 2 side but on the wiring board material 1 side. May be. That is, the formation of the interlayer connector 32 and the lamination of the prepreg 12A are performed in advance on the wiring layer 22 (on the insulating layer 11) of the wiring board material 1. In this case, the mounted semiconductor chip 41 seems to be an interference factor when the interlayer connection body 32 is formed by screen printing at first glance, but in the case of a sufficiently thin component as the semiconductor chip 41, what is actually an interference factor? Don't be. In the step of laminating the prepreg 12A, the prepreg 12A can be uniformly laminated in the in-plane direction by pressing and heating with a cushioning material capable of absorbing the thickness of the semiconductor chip 41 interposed.

次に、図1に示した部品内蔵配線板をサンプルとして実際に製造し機能評価した結果について図6を参照して述べる。図6は、図1に示した部品内蔵配線板をサンプルとして実際に製造し機能評価した結果を示す表である。前提として図6(a)には、内蔵した半導体チップ41の諸元を示す。使用した半導体チップ41は、評価のためのテストチップであり、図6(a)に示すように、サイズとして3.0mm×3.0mm、厚さが200μm、端子数が30ピン、端子ピッチが300μmの各諸元であり、導電性バンプ42としてAuスタッドバンプが形設されたものである。   Next, the result of actually manufacturing and functionally evaluating the component built-in wiring board shown in FIG. 1 as a sample will be described with reference to FIG. FIG. 6 is a table showing the results of actually manufacturing and functionally evaluating the component built-in wiring board shown in FIG. 1 as a sample. As a premise, FIG. 6A shows the specifications of the built-in semiconductor chip 41. The used semiconductor chip 41 is a test chip for evaluation. As shown in FIG. 6A, the size is 3.0 mm × 3.0 mm, the thickness is 200 μm, the number of terminals is 30 pins, and the terminal pitch is Each specification is 300 μm, and Au stud bumps are formed as the conductive bumps 42.

図6(b)に示すように、比較のため、配線層22に粗化処理を行った場合、行わない場合、それぞれについて部品内蔵配線板として100サンプルを製造、用意し、これらのバンプごとの接続抵抗、初期導通評価、熱衝撃試験実施後の導通評価を行った。   As shown in FIG. 6B, for the purpose of comparison, when the roughening process is performed on the wiring layer 22, when not performed, 100 samples are manufactured and prepared as the component built-in wiring boards, and each of these bumps is prepared. Connection resistance, initial continuity evaluation, and continuity evaluation after the thermal shock test were performed.

バンプごとの接続抵抗としては、1バンプあたり10mΩ以上の接続抵抗のバンプを有するサンプルを導通NG(導通不良)と判定した。この結果、表に示すように、配線層22に粗化処理を行ったサンプルでは、初期導通評価でNG発生率は0%であったのに対して、粗化処理を行わないサンプルでは、15%のNG発生率であった。さらに、初期導通評価でNGと判定されなかったサンプルについて、表に示すような熱衝撃試験を行った後に同様の導通評価を行ったところ、粗化処理を行ったサンプルでは、引き続きNG発生率は0%であったのに対して、粗化処理を行わないサンプルでは、熱衝撃試験前にNGでなかった75サンプル中15サンプルがNG(NG発生率20%)になった。   As the connection resistance for each bump, a sample having a bump having a connection resistance of 10 mΩ or more per bump was determined to be conductive NG (conductivity failure). As a result, as shown in the table, in the sample in which the roughening process was performed on the wiring layer 22, the NG occurrence rate was 0% in the initial continuity evaluation, whereas in the sample in which the roughening process was not performed, 15%. % NG generation rate. Further, for the samples that were not determined to be NG in the initial continuity evaluation, the same continuity evaluation was performed after performing the thermal shock test as shown in the table. In contrast to 0%, in the sample not subjected to the roughening treatment, 15 samples out of 75 samples that were not NG before the thermal shock test became NG (NG generation rate: 20%).

したがって、配線層22表面の粗化処理は、半導体チップ41と配線層22との低抵抗接続の実現およびその接続信頼性の向上に大きく寄与していることがデータ上で確かめられた。   Therefore, it was confirmed in the data that the roughening treatment of the surface of the wiring layer 22 greatly contributes to the realization of the low resistance connection between the semiconductor chip 41 and the wiring layer 22 and the improvement of the connection reliability.

次に、図7は、図6に示した評価において、特に粗化後の表面粗さの違いによる不良発生頻度の違いの結果(初期導通評価)を示す表である。ここで表面粗さは、JISで規定された十点平均粗さRzで示している。図7におけるRz=0.2μmは、図6の粗化処理なしの場合に相当し、図7におけるRz=0.75μmは、図6の粗化処理ありの場合に相当している。図7に示すように、配線層22の粗化処理後の表面粗さRzが0.45μmまで大きくなると、初期導通評価としてほぼNG発生がなくなり、よってこの値を超えるようなRzにすることが好ましいと考えられる。Rzが2.5μmまで大きくなっても初期導通評価として問題ないことも判明した。   Next, FIG. 7 is a table showing the results (initial continuity evaluation) of the difference in the occurrence frequency of defects due to the difference in surface roughness after roughening in the evaluation shown in FIG. Here, the surface roughness is indicated by a ten-point average roughness Rz defined by JIS. Rz = 0.2 μm in FIG. 7 corresponds to the case without the roughening process in FIG. 6, and Rz = 0.75 μm in FIG. 7 corresponds to the case with the roughening process in FIG. As shown in FIG. 7, when the surface roughness Rz after the roughening treatment of the wiring layer 22 is increased to 0.45 μm, almost no NG occurs as the initial conduction evaluation, and therefore Rz exceeding this value is set. It is considered preferable. It has also been found that there is no problem in initial conduction evaluation even when Rz increases to 2.5 μm.

本発明の一実施形態に係る部品内蔵配線板の構成を模式的に示す断面図。Sectional drawing which shows typically the structure of the component built-in wiring board which concerns on one Embodiment of this invention. 図1に示した部品内蔵配線板における半導体チップ41と配線層22との接続部分をやや詳細にかつ模式的に示す断面構造図。FIG. 2 is a cross-sectional structure diagram illustrating a connection portion between a semiconductor chip 41 and a wiring layer 22 in the component built-in wiring board illustrated in FIG. 図1に示した部品内蔵配線板の製造過程の一部を模式的断面で示す工程図。Process drawing which shows a part of manufacturing process of the component built-in wiring board shown in FIG. 図1に示した部品内蔵配線板の製造過程の別の一部を模式的断面で示す工程図。Process drawing which shows another part of manufacturing process of the component built-in wiring board shown in FIG. 図1に示した部品内蔵配線板の製造過程のさらに別の一部を模式的断面で示す工程図。FIG. 9 is a process diagram schematically showing still another part of the manufacturing process of the component built-in wiring board shown in FIG. 1. 図1に示した部品内蔵配線板をサンプルとして実際に製造し機能評価した結果を示す表。The table | surface which shows the result of having actually manufactured the component built-in wiring board shown in FIG. 1 as a sample, and evaluating the function. 図6に示した評価において、特に粗化後の表面粗さの違いによる不良発生頻度の違いの結果を示す表。The table | surface which shows the result of the difference in the defect occurrence frequency by the difference in the surface roughness after roughening especially in the evaluation shown in FIG.

符号の説明Explanation of symbols

1…配線板素材、2…配線板素材、3…敗戦板素材、11…絶縁層、11A…プリプレグ、12…絶縁層、12A…プリプレグ、13…絶縁層、13A…プリプレグ、14…絶縁層、14A…プリプレグ、15…絶縁層、21…配線層(配線パターン)、21A…金属箔(銅箔)、22…配線層(配線パターン)、22a…粗化表面、22A…金属箔(銅箔)、23…配線層(配線パターン)、23A…金属箔(銅箔)、24…配線層(配線パターン)、24A…金属箔(銅箔)、25…配線層(配線パターン)、26…配線層(配線パターン)、26A…金属箔(銅箔)、31、32、34、35…層間接続体(導電性組成物印刷による導電性バンプ)、33…スルーホール導電体、41…半導体チップ、42…導電性バンプ(Auスタッドバンプ)、51…アンダーフィル樹脂、51A…アンダーフィル樹脂(硬化前)、61、62…はんだレジスト、71…部品用開口部、72…貫通孔。   DESCRIPTION OF SYMBOLS 1 ... Wiring board material, 2 ... Wiring board material, 3 ... Defeat board material, 11 ... Insulating layer, 11A ... Prepreg, 12 ... Insulating layer, 12A ... Prepreg, 13 ... Insulating layer, 13A ... Prepreg, 14 ... Insulating layer, 14A ... Prepreg, 15 ... Insulating layer, 21 ... Wiring layer (wiring pattern), 21A ... Metal foil (copper foil), 22 ... Wiring layer (wiring pattern), 22a ... Roughened surface, 22A ... Metal foil (copper foil) , 23 ... wiring layer (wiring pattern), 23A ... metal foil (copper foil), 24 ... wiring layer (wiring pattern), 24A ... metal foil (copper foil), 25 ... wiring layer (wiring pattern), 26 ... wiring layer (Wiring pattern), 26A... Metal foil (copper foil), 31, 32, 34, 35... Interlayer connection body (conductive bump by conductive composition printing), 33... Through-hole conductor, 41. ... Conductive bumps (Au stack Bumps), 51 ... underfill resin, 51A ... underfill resin (uncured), 61, 62 ... solder resist, 71 ... opening parts, 72 ... through hole.

Claims (10)

第1の絶縁層と、
前記第1の絶縁層に対して積層状に位置する第2の絶縁層と、
前記第2の絶縁層に埋設された、端子パッドを有する半導体チップと、
前記第1の絶縁層と前記第2の絶縁層とに挟まれて設けられ、前記半導体チップ用の実装用ランドを含みかつ前記第2の絶縁層側の表面が粗化された配線パターンと、
前記半導体チップの前記端子パッドと前記配線パターンの前記実装用ランドとの間に挟設され、該端子パッドと該実装用ランドとを電気的、機械的に接続する導電性バンプと、
前記半導体チップと前記第1の絶縁層および前記配線パターンとの間に設けられた樹脂と
を具備することを特徴とする部品内蔵配線板。
A first insulating layer;
A second insulating layer positioned in a stack with respect to the first insulating layer;
A semiconductor chip having a terminal pad embedded in the second insulating layer;
A wiring pattern provided between the first insulating layer and the second insulating layer, including a mounting land for the semiconductor chip and having a roughened surface on the second insulating layer side;
Conductive bumps sandwiched between the terminal pads of the semiconductor chip and the mounting lands of the wiring pattern, and electrically and mechanically connecting the terminal pads and the mounting lands;
A component built-in wiring board comprising: the semiconductor chip; and a resin provided between the first insulating layer and the wiring pattern.
前記第2の絶縁層が、少なくとも2つの絶縁層の積層であり、
前記少なくとも2つの絶縁層の間に挟まれて設けられた第2の配線パターンと、
前記第2の絶縁層の積層方向一部を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ導電性組成物からなり、かつ積層方向に一致する軸を有し該軸の方向に径が変化している形状である層間接続体と
をさらに具備することを特徴とする請求項1記載の部品内蔵配線板。
The second insulating layer is a stack of at least two insulating layers;
A second wiring pattern provided between the at least two insulating layers;
The second insulating layer penetrates a part in the stacking direction and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, and is made of a conductive composition and coincides with the stacking direction. 2. The component built-in wiring board according to claim 1, further comprising: an interlayer connection body having a shaft that has a shape that changes in diameter in a direction of the shaft.
前記配線パターンが、その材料としてCuを有し、前記導電性バンプが、その材料としてAuを有することを特徴とする請求項1または2記載の部品内蔵配線板。   3. The component built-in wiring board according to claim 1, wherein the wiring pattern has Cu as a material thereof, and the conductive bump has Au as a material thereof. 前記配線パターンの前記表面が、十点表面粗さRzの評価で0.45μmを超える表面粗さであることを特徴とする請求項3記載の部品内蔵配線板。   4. The component built-in wiring board according to claim 3, wherein the surface of the wiring pattern has a surface roughness exceeding 0.45 [mu] m in evaluation of a ten-point surface roughness Rz. 第1の絶縁板上に積層された金属箔をパターニングし、半導体チップを実装するためのランドを含む配線パターンを形成する工程と、
前記ランドを含む前記配線パターンの表面上を粗化する工程と、
端子パッドを有し該端子パッド上に導電性バンプが形設された半導体チップを、前記粗化がされた配線パターンの前記ランドの位置に前記導電性バンプの位置を合わせてフリップ接続する工程と、
前記第1の絶縁板とは異なる第2の絶縁板中に、前記フリップ接続がされた前記半導体チップを埋め込むように、前記第1の絶縁板に積層状に前記第2の絶縁板を一体化する工程と
を具備することを特徴とする部品内蔵配線板の製造方法。
Patterning a metal foil laminated on the first insulating plate, forming a wiring pattern including lands for mounting a semiconductor chip; and
Roughening the surface of the wiring pattern including the lands;
Flip-connecting a semiconductor chip having a terminal pad and a conductive bump formed on the terminal pad by aligning the position of the conductive bump with the position of the land of the roughened wiring pattern; ,
The second insulating plate is integrated with the first insulating plate in a stacked manner so that the flip-connected semiconductor chip is embedded in a second insulating plate different from the first insulating plate. A process for producing a component built-in wiring board.
前記第2の絶縁板が、少なくとも2つの絶縁層の積層であり、かつ、該少なくとも2つの絶縁層の間に挟まれて設けられた第2の配線パターンと、該第2の配線パターンの面に接し、かつ該第2の絶縁板の積層方向一部を貫通して頭部が露出し、かつ導電性組成物からなり、かつ積層方向に一致する軸を有し該軸の方向に径が変化している形状である層間接続体とを有し、
前記第1の絶縁板に積層状に前記第2の絶縁板を一体化する前記工程が、前記第2の絶縁板の前記層間接続体の前記頭部が、前記粗化がされた前記配線パターンに接触するようになされること
を特徴とする請求項5記載の部品内蔵配線板の製造方法。
The second insulating plate is a laminate of at least two insulating layers, and a second wiring pattern sandwiched between the at least two insulating layers, and a surface of the second wiring pattern The head is exposed through a part of the second insulating plate in the laminating direction and is made of a conductive composition and has an axis that coincides with the laminating direction and has a diameter in the direction of the axis. An interlayer connection body having a changing shape,
The wiring pattern in which the step of integrating the second insulating plate in a laminated form with the first insulating plate includes the roughening of the head portion of the interlayer connection body of the second insulating plate. The method of manufacturing a component built-in wiring board according to claim 5, wherein the component built-in wiring board is brought into contact with the wiring board.
前記金属箔が、その材料としてCuを有し、前記導電性バンプが、その材料としてAuを有することを特徴とする請求項5または6記載の部品内蔵配線板の製造方法。   The method of manufacturing a component built-in wiring board according to claim 5 or 6, wherein the metal foil has Cu as a material thereof, and the conductive bump has Au as a material thereof. 前記粗化が、十点表面粗さRzの評価で0.45μmを超える表面粗さになるようになされることを特徴とする請求項7記載の部品内蔵配線板の製造方法。   8. The method of manufacturing a component built-in wiring board according to claim 7, wherein the roughening is performed so as to have a surface roughness exceeding 0.45 [mu] m by evaluation of a ten-point surface roughness Rz. 前記粗化が、Cuを黒化還元処理することによりなされることを特徴とする請求項7記載の部品内蔵配線板の製造方法。   8. The method of manufacturing a component built-in wiring board according to claim 7, wherein the roughening is performed by blackening and reducing Cu. 前記粗化が、Cuをマイクロエッチングすることによりなされることを特徴とする請求項7記載の部品内蔵配線板の製造方法。   8. The method of manufacturing a component built-in wiring board according to claim 7, wherein the roughening is performed by microetching Cu.
JP2007302883A 2007-11-01 2007-11-22 Component built-in wiring board, method of manufacturing component built-in wiring board Expired - Fee Related JP5176500B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2007302883A JP5176500B2 (en) 2007-11-22 2007-11-22 Component built-in wiring board, method of manufacturing component built-in wiring board
KR1020107011968A KR20100084684A (en) 2007-11-01 2008-10-29 Part built-in wiring board, and manufacturing method for the part built-in wiring board
CN201210049514.7A CN102612265B (en) 2007-11-01 2008-10-29 The manufacture method of built-in element circuit board, built-in element circuit board
US12/740,694 US8350388B2 (en) 2007-11-01 2008-10-29 Component built-in wiring board and manufacturing method of component built-in wiring board
PCT/JP2008/069678 WO2009057654A1 (en) 2007-11-01 2008-10-29 Part built-in wiring board, and manufacturing method for the part built-in wiring board
CN201210049500.5A CN102612264B (en) 2007-11-01 2008-10-29 Component built-in wiring board and manufacturing method of component built-in wiring board
KR1020157002082A KR101611804B1 (en) 2007-11-01 2008-10-29 Part built-in wiring board, and manufacturing method for the part built-in wiring board
CN200880113984.7A CN101843181B (en) 2007-11-01 2008-10-29 Part built-in wiring board, and manufacturing method for the part built-in wiring board
TW103127242A TWI545998B (en) 2007-11-01 2008-10-31 Built-in parts wiring board
TW097142088A TWI459871B (en) 2007-11-01 2008-10-31 Built-in parts wiring board, built-in parts wiring board manufacturing methods
US13/685,917 US8987901B2 (en) 2007-11-01 2012-11-27 Component built-in wiring board and manufacturing method of component built-in wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302883A JP5176500B2 (en) 2007-11-22 2007-11-22 Component built-in wiring board, method of manufacturing component built-in wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012247453A Division JP2013048290A (en) 2012-11-09 2012-11-09 Component built-in wiring board

Publications (2)

Publication Number Publication Date
JP2009130095A true JP2009130095A (en) 2009-06-11
JP5176500B2 JP5176500B2 (en) 2013-04-03

Family

ID=40820726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302883A Expired - Fee Related JP5176500B2 (en) 2007-11-01 2007-11-22 Component built-in wiring board, method of manufacturing component built-in wiring board

Country Status (1)

Country Link
JP (1) JP5176500B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051949A (en) * 2009-09-03 2011-03-17 Kuraray Co Ltd Metal complex and method for producing the same
WO2011043382A1 (en) * 2009-10-09 2011-04-14 株式会社村田製作所 Circuit substrate and method of production thereof
US20210384654A1 (en) * 2018-11-09 2021-12-09 Guangzhou Fangbang Electronics Co., Ltd. Flexible Connector and Manufacturing Method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036828A (en) * 1989-06-02 1991-01-14 Matsushita Electric Ind Co Ltd Semiconductor device
JPH07201917A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Circuit formation board and manufacture thereof
JP2000269269A (en) * 1999-03-15 2000-09-29 Toshiba Corp Semiconductor mounting substrate, semiconductor device and manufacture thereof
JP2001044642A (en) * 1999-07-26 2001-02-16 Ibiden Co Ltd Manufacture of wiring board
JP2001044641A (en) * 1999-07-30 2001-02-16 Kyocera Corp Wiring board incorporating semiconductor element and its manufacture
JP2003526937A (en) * 2000-03-10 2003-09-09 チップパック,インク. Flip chip bonding structure
JP2007266196A (en) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd Multilayer printed-wiring board and manufacturing method thereof
JP2007295008A (en) * 2007-07-30 2007-11-08 Dainippon Printing Co Ltd Manufacturing method of wiring board with built-in electronic component
JP2007305636A (en) * 2006-05-09 2007-11-22 Dainippon Printing Co Ltd Component packaging module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036828A (en) * 1989-06-02 1991-01-14 Matsushita Electric Ind Co Ltd Semiconductor device
JPH07201917A (en) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd Circuit formation board and manufacture thereof
JP2000269269A (en) * 1999-03-15 2000-09-29 Toshiba Corp Semiconductor mounting substrate, semiconductor device and manufacture thereof
JP2001044642A (en) * 1999-07-26 2001-02-16 Ibiden Co Ltd Manufacture of wiring board
JP2001044641A (en) * 1999-07-30 2001-02-16 Kyocera Corp Wiring board incorporating semiconductor element and its manufacture
JP2003526937A (en) * 2000-03-10 2003-09-09 チップパック,インク. Flip chip bonding structure
JP2007266196A (en) * 2006-03-28 2007-10-11 Dainippon Printing Co Ltd Multilayer printed-wiring board and manufacturing method thereof
JP2007305636A (en) * 2006-05-09 2007-11-22 Dainippon Printing Co Ltd Component packaging module
JP2007295008A (en) * 2007-07-30 2007-11-08 Dainippon Printing Co Ltd Manufacturing method of wiring board with built-in electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051949A (en) * 2009-09-03 2011-03-17 Kuraray Co Ltd Metal complex and method for producing the same
WO2011043382A1 (en) * 2009-10-09 2011-04-14 株式会社村田製作所 Circuit substrate and method of production thereof
JP5201271B2 (en) * 2009-10-09 2013-06-05 株式会社村田製作所 Circuit board and manufacturing method thereof
US20210384654A1 (en) * 2018-11-09 2021-12-09 Guangzhou Fangbang Electronics Co., Ltd. Flexible Connector and Manufacturing Method
US11848508B2 (en) * 2018-11-09 2023-12-19 Guangzhou Fangbang Electronics Co., Ltd. Flexible connector and manufacturing method

Also Published As

Publication number Publication date
JP5176500B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
US8987901B2 (en) Component built-in wiring board and manufacturing method of component built-in wiring board
US8177577B2 (en) Printed wiring board having a substrate with higher conductor density inserted into a recess of another substrate with lower conductor density
US8737085B2 (en) Wiring board with a built-in component and method for manufacturing the same
US7943001B2 (en) Process for producing multilayer board
JPWO2010007704A1 (en) Flex-rigid wiring board and electronic device
JPWO2007069427A1 (en) Electronic component built-in module and manufacturing method thereof
JP2009252942A (en) Component built-in wiring board, and method of manufacturing component built-in wiring board
JP5397012B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5176500B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2009147026A (en) Circuit board and manufacturing method thereof
JP5108253B2 (en) Component mounting module
JP5766387B2 (en) Electronic component built-in type two-layer wiring board and electronic component built-in type two-layer wiring board
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5323395B2 (en) Electronic module and method for manufacturing electronic module
JP2011249457A (en) Wiring board having embedded component, and manufacturing method for the same
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP5590097B2 (en) Component built-in wiring board
JP5516069B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2013048290A (en) Component built-in wiring board
JP2010062339A (en) Component built-in wiring board, and method of manufacturing component built-in wiring board
JP5601413B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2011018782A (en) Component built-in wiring board and method of manufacturing the same
JP2010258277A (en) Wiring board with built-in component
JP2010267845A (en) Component built-in wiring board and method of manufacturing the component built-in wiring board
JP5733378B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

LAPS Cancellation because of no payment of annual fees