JP2006093493A - Printed wiring board with built-in part and method of manufacturing the same - Google Patents

Printed wiring board with built-in part and method of manufacturing the same Download PDF

Info

Publication number
JP2006093493A
JP2006093493A JP2004278720A JP2004278720A JP2006093493A JP 2006093493 A JP2006093493 A JP 2006093493A JP 2004278720 A JP2004278720 A JP 2004278720A JP 2004278720 A JP2004278720 A JP 2004278720A JP 2006093493 A JP2006093493 A JP 2006093493A
Authority
JP
Japan
Prior art keywords
printed wiring
component
wiring board
protective film
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004278720A
Other languages
Japanese (ja)
Inventor
Naokazu Uchida
直和 内田
Tomonori Oishi
友紀 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2004278720A priority Critical patent/JP2006093493A/en
Publication of JP2006093493A publication Critical patent/JP2006093493A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that soldering paste is liable to fly off or bleed out when parts are installed inside a printed wiring board so as to provide a built-in part mounted printed wiring board which is excellent in interlayer adhesion when the parts installed inside are sealed up with an insulating material. <P>SOLUTION: A protective film equipped with an opening through which, at least, a part of a part mounting pad appears is formed between the insulating board of the printed wiring board with the built-in parts and the insulating material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、部品をプリント配線板の内層部に設けた部品内蔵型のプリント配線板及びその製造方法に関する。   The present invention relates to a component built-in type printed wiring board in which components are provided in an inner layer portion of the printed wiring board, and a method for manufacturing the same.

近年、プリント配線板の小型化、軽量化、高密度化が求められる中で、従来はプリント配線板の表面に実装されていたチップ部品をプリント配線板の内部に導入することによって得られる部品内蔵型のプリント配線板に関する技術がある。この部品内蔵型のプリント配線板は、チップ部品がプリント配線板の内部に導入することが構造的に可能であるため、表面実装部の省スペース化や高密度化に対応でき、前記、プリント配線板のさらなる発展に大きく寄与することが可能になる。   In recent years, there is a need for miniaturization, weight reduction, and high density of printed wiring boards. Built-in components obtained by introducing chip parts mounted on the surface of printed wiring boards into the printed wiring board. There is technology related to printed wiring boards of molds. Since this component built-in type printed wiring board can structurally enable chip components to be introduced into the printed wiring board, it can cope with space saving and high density of the surface mounting portion. It will be possible to greatly contribute to the further development of the board.

加えて、部品内蔵型のプリント配線板は電気的な配線構造が、従来の平面的な表面実装部から、プリント配線板の内層部分を使用することで、例えば、LSI直下に受動部品を配置する構造などの立体的な配置が可能になり、その結果、LSIの高速動作に対応するため信号配線を最適化にする際に有効であるなどの利点が存在する。このような技術的な背景の中、チップ部品などをプリント配線板の内部に導入するための要素技術は重要である。   In addition, the component built-in type printed wiring board has an electrical wiring structure that uses the inner layer portion of the printed wiring board from the conventional planar surface mounting portion, for example, to place passive components directly under the LSI. The structure and the like can be arranged in three dimensions, and as a result, there is an advantage that it is effective in optimizing the signal wiring in order to cope with the high-speed operation of the LSI. In such a technical background, elemental technology for introducing chip parts and the like into the printed wiring board is important.

一方、従来の部品内蔵型のプリント配線板としては、例えば図4に示される構造のものが既に報告されている(特許文献1参照)。すなわち、図4(a)のようにプリント配線板の内層部にあたる銅張積層板1に部品5を実装し、次いで、当該部品5を有する銅張積層板1を内層方向になるように配置した後に、絶縁基材6の上下両面側より前記部品5搭載後の銅張積層板1を積層して得られる部品内蔵型のプリント配線板(図4(b))である。   On the other hand, as a conventional component built-in type printed wiring board, for example, a structure shown in FIG. 4 has already been reported (see Patent Document 1). That is, as shown in FIG. 4A, the component 5 is mounted on the copper clad laminate 1 corresponding to the inner layer portion of the printed wiring board, and then the copper clad laminate 1 having the component 5 is arranged in the inner layer direction. A component built-in type printed wiring board (FIG. 4B) obtained by laminating the copper-clad laminate 1 after mounting the component 5 from the upper and lower surfaces of the insulating base 6 later.

しかしながら、前記部品を銅張積層板などに予め実装し、積層工程を経て、プリント配線板の内部に導入される部品内蔵プリント配線板とした場合には、部品の実装工程及び積層後のプリント配線板としての信頼性分野における技術的な課題が多い。すなわち、次のような問題点が挙げられる。   However, if the component is mounted in advance on a copper-clad laminate, etc., and the printed circuit board with built-in component is introduced into the printed wiring board through the lamination process, the component mounting process and the printed wiring after lamination There are many technical issues in the field of reliability as plates. That is, there are the following problems.

初めに、部品実装時の問題点としては、例えば図1(c)に示されるような、内層のプリント配線板に部品を実装する際に、はんだペーストなどを使用して部品を所定の場所に搭載するが、その実装工程において、リフローの熱間時にはんだペーストの飛び散りやニジミなどが生じることが度々ある。この不具合状態は従来の技術である部品の表面実装の際にも生じるものであったが、前記はんだペーストの飛び散りやニジミなどが生じた場合には、実装パッド間に付着することが問題となり、電気的なショートの原因となる。したがって、品質の良い部品内蔵基板を形成する際には電気的なショートを抑制できる保護膜の形成が課題となる。   First, as a problem at the time of component mounting, for example, when mounting a component on an inner printed wiring board as shown in FIG. 1C, the component is placed in a predetermined place by using a solder paste or the like. Although it is mounted, solder paste splattering or blurring often occur during the reflow process during the mounting process. This fault state occurred even when the surface mounting of the component which is a conventional technique, but when the solder paste splatters or blurring occurs, it becomes a problem that it adheres between the mounting pads, Cause electrical short. Therefore, when forming a high-quality component-embedded substrate, it is necessary to form a protective film that can suppress an electrical short circuit.

また、前記部品実装の際に、はんだ付けを促進させるためにニッケル/金めっき処理を施すために部品実装パッド以外にも前記保護膜を設ける必要がある。   In addition, when the component is mounted, it is necessary to provide the protective film in addition to the component mounting pad in order to perform nickel / gold plating processing in order to promote soldering.

更に、積層後のプリント配線板としての信頼性分野における問題点としては層間接着性が挙げられる。つまり、前記のように部品がはんだ接合などによりプリント配線板の内層部に実装されるため、実装時に実装する回路表面上に保護膜を形成して、実装する回路表面の保護が必要となるが、実装する回路表面上に保護膜を形成することにより、絶縁基材を重ねて積層プレスして多層板を製造する際に、保護膜と絶縁樹脂との界面では十分な密着強度が得られない。加えて、保護膜と絶縁樹脂との界面で十分な密着強度が得られないために、プリント配線板の信頼性試験としての耐熱試験では保護膜と絶縁樹脂との界面で層間剥離不具合が生じる問題点がある。
特開2001−119147号公報
Furthermore, interlayer adhesiveness is mentioned as a problem in the reliability field as a printed wiring board after lamination. In other words, as described above, since the component is mounted on the inner layer portion of the printed wiring board by soldering or the like, it is necessary to protect the circuit surface to be mounted by forming a protective film on the circuit surface to be mounted at the time of mounting. , By forming a protective film on the circuit surface to be mounted, when a multilayer board is produced by stacking and pressing the insulating base material, sufficient adhesion strength cannot be obtained at the interface between the protective film and the insulating resin. . In addition, since sufficient adhesion strength cannot be obtained at the interface between the protective film and the insulating resin, the delamination failure occurs at the interface between the protective film and the insulating resin in the heat resistance test as a reliability test of the printed wiring board. There is a point.
JP 2001-119147 A

以上のような背景に基づき本発明が解決しようとする課題は、部品内蔵型のプリント配線板を作成する際に、内層部へ部品を設置する際に生じるはんだペーストの飛び散りやニジミの問題を解消し、加えて絶縁基材にて内層部に搭載された部品を封止する際の層間接着性が耐熱性試験などの信頼性試験に耐えうる部品内蔵型のプリント配線板を得ることにある。   The problem to be solved by the present invention based on the background as described above is to eliminate the problem of solder paste scattering and blurring that occurs when components are installed in the inner layer when creating a component built-in type printed wiring board. In addition, another object is to obtain a component-embedded printed wiring board whose interlayer adhesion when sealing a component mounted on an inner layer portion with an insulating base material can withstand a reliability test such as a heat resistance test.

本発明者らは上記課題を解決するために種々研究を重ねた。その結果、プリント配線板の内層部に部品を設置する際に、予め保護膜を形成すること及び当該保護膜を耐熱性試験などの信頼性試験に耐えうるために表面粗化処理することが有効であることを見出して本発明を完成するに至った。   The present inventors have made various studies in order to solve the above problems. As a result, when installing components on the inner layer of printed wiring boards, it is effective to form a protective film in advance and to roughen the surface to withstand reliability tests such as heat resistance tests. As a result, the present invention was completed.

すなわち、本発明は、少なくとも一方の面に部品実装パッドと配線回路を設けた絶縁基板の当該部品実装パッドにチップ部品を実装すると共に、前記絶縁基板のチップ部品実装面に、絶縁基材を積層した部品内蔵型プリント配線板であって、前記絶縁基板と絶縁基材との間に、部品実装パッドの少なくとも一部を露出せしめる開口を有する保護膜が設けられていることを特徴とする部品内蔵型プリント配線板により上記課題を解決したものである。   That is, the present invention mounts a chip component on the component mounting pad of the insulating substrate provided with the component mounting pad and the wiring circuit on at least one surface, and laminates the insulating base material on the chip component mounting surface of the insulating substrate. A component built-in type printed wiring board, wherein a protective film having an opening exposing at least a part of a component mounting pad is provided between the insulating substrate and the insulating base. The above-mentioned problem is solved by a mold printed wiring board.

また、本発明は、前記部品内蔵型プリント配線板において、部品実装パッドにニッケル/金めっきが施されていることを特徴とする。   In the component-embedded printed wiring board, the component mounting pad is nickel / gold plated.

また、本発明は、前記部品内蔵型プリント配線板において、保護膜が粗化されていることを特徴とする。   Further, the present invention is characterized in that the protective film is roughened in the component built-in printed wiring board.

また、本発明は、前記部品内蔵型プリント配線板において、保護膜が、露光及び現像をするエポキシアクリレート樹脂であることを特徴とする。   In the component-embedded printed wiring board, the protective film is an epoxy acrylate resin that is exposed and developed.

また、本発明は、絶縁基板の少なくとも一方の面に部品実装パッドと配線回路を形成する工程と、前記絶縁基板に部品実装パッドの少なくとも一部を露出せしめる開口を有する保護膜を形成する工程と、当該部品実装パッドにチップ部品を実装する工程と、前記絶縁基板に絶縁基材を積層し、該絶縁基材でチップ部品を封止する工程とを有することを特徴とする部品内蔵型プリント配線板の製造方法である。   The present invention also includes a step of forming a component mounting pad and a wiring circuit on at least one surface of the insulating substrate, and a step of forming a protective film having an opening that exposes at least a part of the component mounting pad on the insulating substrate. A component built-in type printed wiring comprising: mounting a chip component on the component mounting pad; and laminating an insulating base material on the insulating substrate, and sealing the chip component with the insulating base material. It is a manufacturing method of a board.

また、本発明は、前記部品内蔵型プリント配線板の製造方法において、更に、部品実装パッドにニッケル/金めっきを施す工程を有することを特徴とする。   Further, the present invention is characterized in that the method for manufacturing a component built-in printed wiring board further includes a step of performing nickel / gold plating on a component mounting pad.

また、本発明は、前記部品内蔵型プリント配線板の製造方法において、更に、保護膜を粗化する工程を有することを特徴とする。   Moreover, the present invention is characterized in that the method for manufacturing a component built-in type printed wiring board further includes a step of roughening the protective film.

また、本発明は、前記保護膜の粗化を、ウエットブラスト又はバフ研磨を使用して行なうことを特徴とする。   In addition, the present invention is characterized in that the protective film is roughened using wet blasting or buffing.

本発明によれば、内層部へ部品を設置する際に生じるはんだペーストの飛び散りやニジミの問題を解決でき、従ってまた回路間ショートなどが生じない電気的な安定性に優れた、しかも絶縁基材にて内層部に搭載された部品を封止する際の層間接着性に優れ、耐熱性試験などの信頼性試験に耐えうる部品内蔵型のプリント配線板を得ることができる。   According to the present invention, it is possible to solve the problem of solder paste splattering and blurring that occurs when components are installed in the inner layer portion. Thus, it is possible to obtain a component built-in type printed wiring board that has excellent interlayer adhesion when sealing a component mounted on the inner layer portion and can withstand a reliability test such as a heat resistance test.

以下本発明の実施の形態を、図を使用して説明する。
また、本発明において特に重要なポイントを以下に示し、その優位点を順に説明する。
ポイント1):部品搭載時の保護膜の利点について
ポイント2):層間の密着信頼性について
ポイント3):保護膜の粗化方法について
Embodiments of the present invention will be described below with reference to the drawings.
In addition, particularly important points in the present invention are shown below, and their advantages are described in order.
Point 1): Advantages of protective film when mounting components Point 2): Adhesion reliability between layers Point 3): Roughening method of protective film

本発明における部品内蔵型プリント配線板の製造方法の全体について図1及び図2を用いて説明する。まず、図1(a)に示したように、両面の銅張積層板1を用い、当該銅張積層板1の銅箔粗化を処理した後、図1(b)に示したように、部品実装パッド2を始めとする配線回路8を形成し、次いで、保護膜3を形成した後に、図1(c)に示したように、当該保護膜3の表面をウェットブラスト、バフ等で粗化し、回路形成後の基板に耐金めっきレジストを貼付け、無電解金めっき処理を行ない、部品実装パッド2の表面に、ニッケル/金めっきを行なう。次に、目的とするチップ部品5を、はんだペースト4を介して上記で得られたプリント配線板の所定の部品実装パッド部2に、マウンターで搭載し、図1(d)に示した構造体を得る。   An overall method for manufacturing a component built-in type printed wiring board according to the present invention will be described with reference to FIGS. First, as shown in FIG. 1 (a), after processing the copper foil roughening of the copper-clad laminate 1 using the copper-clad laminate 1 on both sides, as shown in FIG. 1 (b), After the wiring circuit 8 including the component mounting pad 2 is formed and then the protective film 3 is formed, the surface of the protective film 3 is roughened by wet blasting, buffing or the like as shown in FIG. Then, a gold-resistant plating resist is attached to the circuit-formed substrate, electroless gold plating is performed, and nickel / gold plating is performed on the surface of the component mounting pad 2. Next, the target chip component 5 is mounted with a mounter on the predetermined component mounting pad portion 2 of the printed wiring board obtained above via the solder paste 4, and the structure shown in FIG. Get.

次に、上記チップ部品5の搭載を行なった構造体(図1(d))へ、プリプレグを絶縁基材6として使用し、積層による部品内蔵基板の形成を行なう。すなわち、図2(a)に示したように、チップ部品5が実装された面側を中央側(絶縁基材6側)に向け、絶縁基材(プリプレグ)6を前記部品実装後の基板で挟み込むように設置し、積層加圧を行ない、図2(b)に示した構造体を得る。以下、求められるプリント配線基板の構造にて、最外層の銅箔部の回路形成を行なって、図2(c)に示した構造体を得、次いでプリント配線板の必要とされる構造に従い、前記積層条件で絶縁基材と導体基材とを交互に積層する。   Next, the component-embedded substrate is formed by stacking the structure (FIG. 1D) on which the chip component 5 is mounted, using the prepreg as the insulating base 6. That is, as shown in FIG. 2A, the surface side on which the chip component 5 is mounted is directed to the center side (insulating base material 6 side), and the insulating base material (prepreg) 6 is the substrate after mounting the component. It installs so that it may pinch | interpose and performs lamination | stacking pressurization and obtains the structure shown in FIG.2 (b). Hereinafter, in the structure of the required printed wiring board, the circuit formation of the copper foil portion of the outermost layer is performed to obtain the structure shown in FIG. 2 (c), and then according to the required structure of the printed wiring board, Insulating base materials and conductor base materials are alternately laminated under the above-mentioned lamination conditions.

ポイント1):部品搭載時の保護膜の利点について
図1(c)から図1(d)ではチップ部品5実装の際に、はんだペースト4を使用して部品を所定の場所に搭載するが、その実装工程において、リフローの熱間時にはんだペースト4の飛び散りやニジミなどが生じることが度々ある。斯かるはんだペースト4の飛び散りやニジミなどが生じた場合には、部品実装パッド2間に付着することが問題となり、電気的なショートの原因となる。したがって、品質の良い部品内蔵基板を形成する際には課題とすべき点となる。このような背景において、本発明の保護膜3は、露光及び現像をするエポキシアクリレート樹脂からなるため、精度良く部品実装パッド2が形成され、余分なところにニッケル/金めっき処理をしないですむ利点を有する。なお、保護膜3はフィルムタイプ、液状タイプの何れでも良いが、膜厚が均一である点でフィルムタイプの方が好ましい。
Point 1): Advantages of protective film when mounting components In FIGS. 1 (c) to 1 (d), when mounting the chip component 5, the solder paste 4 is used to mount the component at a predetermined location. In the mounting process, the solder paste 4 is often scattered or smeared during reflow. When such solder paste 4 splatters or blurs, it becomes a problem that it adheres between the component mounting pads 2 and causes an electrical short circuit. Therefore, when forming a high-quality component-embedded substrate, this is a problem to be solved. In such a background, the protective film 3 of the present invention is composed of an epoxy acrylate resin that is exposed and developed, so that the component mounting pad 2 is formed with high accuracy, and there is no need to perform nickel / gold plating processing on an extra portion. Have The protective film 3 may be either a film type or a liquid type, but the film type is preferred from the viewpoint that the film thickness is uniform.

また、本発明においては、使用する保護膜3は求められるプリント配線板の構造に従い、例えば図3に示すように配置することが可能である。因に、図3(a)は部品実装パッド2及び部品実装パッド2間に保護膜3が被覆されない構造、図3(b)は部品実装パッド2に保護膜3が被覆されないが、部品実装パッド2間の一部には保護膜3が被覆される構造、図3(c)は部品実装パッド2及び部品実装パッド2間に保護膜3が一部被覆される構造、図3(d)は部品実装パッド2に保護膜3が一部被覆され、かつ部品実装パッド2間にも保護膜3が被覆される構造をそれぞれ示している。   In the present invention, the protective film 3 to be used can be arranged as shown in FIG. 3, for example, according to the required structure of the printed wiring board. 3A shows a structure in which the protective film 3 is not covered between the component mounting pad 2 and the component mounting pad 2, and FIG. 3B shows a structure in which the protective film 3 is not covered on the component mounting pad 2. 3 is a structure in which the protective film 3 is partially covered, FIG. 3C is a structure in which the protective film 3 is partially covered between the component mounting pad 2 and the component mounting pad 2, and FIG. The structure in which the protective film 3 is partially covered on the component mounting pads 2 and the protective film 3 is also covered between the component mounting pads 2 is shown.

ポイント2):層間の密着信頼性について
本発明では、保護膜3と絶縁基材(プリプレグ)6との層間での密着性を向上させる手段として、被覆した保護膜3の表面をウエットブラストやバフ等によって粗化している。
Point 2): Interlayer Adhesion Reliability In the present invention, as a means for improving the adhesion between the protective film 3 and the insulating base material (prepreg) 6, the surface of the coated protective film 3 is wet-blasted or buffed. It is roughened by etc.

技術的な背景の説明としては、内蔵される部品がはんだ接合により内層に実装されるため、実装時に実装する回路表面上に保護膜3を形成して、実装する回路表面の保護が必要となる。しかし、実装する回路表面上に保護膜3を形成することにより、絶縁基材6を重ねて積層プレスして多層板を製造する際に、内層に形成した保護膜3の表面は平滑性や撥水性などがあり、保護膜3と絶縁基材6との界面では十分な密着強度が得られない。また、保護膜3と絶縁基材6との界面で十分な密着強度が得られないために、プリント配線板の信頼性試験としての耐熱試験では保護膜3と絶縁基材6との界面で層間剥離不具合が生じる。更に、部品内蔵された多層プリント配線板の最外層部へ各種部品を実装するときに加わるリフローの熱負荷の際にも、同様に界面で層間剥離が生じ、プリント配線板の耐熱性が十分確保できないこととなる。   As an explanation of the technical background, since a built-in component is mounted on the inner layer by solder bonding, it is necessary to protect the circuit surface to be mounted by forming the protective film 3 on the circuit surface to be mounted at the time of mounting. . However, when the protective film 3 is formed on the circuit surface to be mounted, the surface of the protective film 3 formed on the inner layer is smooth and repellent when a multilayer board is manufactured by laminating and pressing the insulating base 6. There is water or the like, and sufficient adhesion strength cannot be obtained at the interface between the protective film 3 and the insulating substrate 6. In addition, since sufficient adhesion strength cannot be obtained at the interface between the protective film 3 and the insulating base material 6, an interlayer is formed at the interface between the protective film 3 and the insulating base material 6 in a heat resistance test as a reliability test of the printed wiring board. A peeling defect occurs. In addition, delamination occurs at the interface in the same way during the heat flow of reflow applied when various components are mounted on the outermost layer of the multilayer printed wiring board with built-in components, ensuring sufficient heat resistance of the printed wiring board. It will not be possible.

一方、保護膜3の表面上を粗化することでその接触面に形成される絶縁基材6との接着性は向上する。保護膜3の表面の粗化方法には、物理研磨としてバフ研磨、ウエットブラスト、プラズマ処理及び化学研磨としてデスミアについて検討を行なったところ、生産効率、ランニングコスト、密着有効性などから判断して、ウエットブラスト又はバフ研磨による粗化方法が有効であり、保護膜3の表面撥水性の除去を目的の一つとして表面の粗化をすることが可能になり、前記絶縁基材6との接着性の向上が得られ、部品内蔵基板の耐熱性向上が得られる。   On the other hand, roughening the surface of the protective film 3 improves the adhesion with the insulating substrate 6 formed on the contact surface. The surface roughening method of the protective film 3 was examined for buffing, wet blasting, plasma treatment, and chemical polishing as desmearing as physical polishing, judging from production efficiency, running cost, adhesion effectiveness, etc. A roughening method by wet blasting or buffing is effective, and it is possible to roughen the surface for the purpose of removing the surface water repellency of the protective film 3, and adhesion to the insulating substrate 6. The heat resistance of the component built-in substrate can be improved.

ポイント3):保護膜の粗化方法について
本発明における保護膜3の粗化方法としては、上記の如く、ウエットブラストやバフ研磨が使用される。その中でも、ウエットブラストによる表面粗化は、粗化状態に方向性が無く、粗化状態に不均一なムラができないことから特に好ましい。ウエットブラストの特徴は研磨剤(♯800〜2000)と水と空気を十分に混合し、ブラストガンと呼ばれる噴出口からエアー圧力0.1〜0.3MPaでシャワーのようにプリント基板に吹きつける工法である。この際、研磨剤が保護膜3の表面に叩き付けられて、結果として保護膜3の表面を均一に細かく粗化することができる。また、プリント配線板がコンベアにより搬送され、プリント配線板に対してウエットブラストの研磨剤が垂直方向に当たるため、例えば若干の反りが発生したプリント配線板においても研磨剤が十分に当たり良好に粗化される。
Point 3): Roughening method of protective film As described above, wet blasting or buffing is used as a roughening method of the protective film 3 in the present invention. Among these, surface roughening by wet blasting is particularly preferable because the roughened state has no directionality and unevenness in the roughened state cannot be produced. A feature of wet blasting is a method of thoroughly mixing an abrasive (# 800-2000), water and air, and then spraying it onto a printed circuit board like a shower at an air pressure of 0.1-0.3 MPa from a jet port called a blast gun. It is. At this time, the abrasive is struck against the surface of the protective film 3, and as a result, the surface of the protective film 3 can be uniformly and finely roughened. In addition, since the printed wiring board is transported by a conveyor and the wet blasting abrasive hits the vertical direction against the printed wiring board, for example, even on a printed wiring board where a slight warp has occurred, the abrasive is sufficiently hit and roughened well. The

ウエットブラストは、例えばプリント配線板に対して垂直方向に吹き付けられる水平式装置としてマコー株式会社製の「Physical Fine Etcher:FR-663、 Wet Blasting System」を使用し、処理速度:0.3〜2.7M/分、エアー消費量:8.0〜12.0m3/分、エアー圧力0.1〜0.3MPa、研磨剤:♯800〜2000を標準条件として行なうのが好ましい。この場合、水と研磨剤(スラリー液)と圧縮空気を混合し、ブラストガンと呼ばれる噴射口から被加工物に投射する方法が特に望ましい。この条件にて粗化されたプリント配線板の表面粗化状態は、表面粗さ平均(Ra)値が0.3〜0.8μmであり、またこの粗化状態は積層工程にてプリプレグのような絶縁基材6との密着性を向上させる。 The wet blasting uses, for example, “Physical Fine Etcher: FR-663, Wet Blasting System” manufactured by Macau Corporation as a horizontal device that is sprayed in a vertical direction with respect to a printed wiring board, and processing speed: 0.3-2 It is preferable to carry out under the standard conditions of 0.7 M / min, air consumption: 8.0 to 12.0 m 3 / min, air pressure of 0.1 to 0.3 MPa, and abrasive: # 800 to 2000. In this case, a method in which water, an abrasive (slurry liquid), and compressed air are mixed and projected onto a workpiece from an injection port called a blast gun is particularly desirable. The surface roughened state of the printed wiring board roughened under these conditions has a surface roughness average (Ra) value of 0.3 to 0.8 μm, and this roughened state is like a prepreg in the laminating process. Adhesion with the insulating base 6 is improved.

また、バフによる研磨を行なう場合は、♯800番手の条件のバフを使用するのが好ましい。   In addition, when polishing by buffing, it is preferable to use a buff having a # 800 count condition.

以下実施例を挙げて本発明を更に説明する。   The following examples further illustrate the present invention.

本発明の実施例を図1及び図2と共に説明する。
まず図1(a)に示される両面銅張積層板1として日立化成社製の銅張積層板(品番:MCL−E−679F、基材厚み0.1mm、銅箔厚み12μm)を用い、当該銅張積層板1の銅箔粗化を処理した後、銅箔表面にドライフィルムエッチングレジスト(厚み:65μm)をラミネート(貼付温度:100℃)し、次いで、当該銅張積層板1の片側面のみに露光機にて紫外線露光(条件:45mJ/cm2)及び現像(条件:1.0wt%炭酸ナトリウム水溶液、30℃、スプレー圧力0.2MPa)を行ない、塩化第二鉄液(条件:40℃、スプレー圧力0.2MPa)を用いてエッチングを行なった後、ドライフィルムエッチングレジストを剥離(条件:2.2wt%水酸化ナトリウム水溶液、40℃、スプレー圧力0.18MPa)し、部品実装パッド2及び配線回路8の形成を行なった(図1(b))。
An embodiment of the present invention will be described with reference to FIGS.
First, as a double-sided copper-clad laminate 1 shown in FIG. 1 (a), a copper-clad laminate (product number: MCL-E-679F, substrate thickness 0.1 mm, copper foil thickness 12 μm) manufactured by Hitachi Chemical Co., Ltd. is used. After the copper foil roughening of the copper clad laminate 1 is processed, a dry film etching resist (thickness: 65 μm) is laminated on the copper foil surface (sticking temperature: 100 ° C.), and then one side surface of the copper clad laminate 1 Only with exposure to ultraviolet light (condition: 45 mJ / cm 2 ) and development (condition: 1.0 wt% sodium carbonate aqueous solution, 30 ° C., spray pressure 0.2 MPa), ferric chloride solution (condition: 40 Etching is performed using a spray pressure of 0.2 MPa, and the dry film etching resist is peeled off (conditions: 2.2 wt% sodium hydroxide aqueous solution, 40 ° C., spray pressure of 0.18 MPa). And wiring times The path 8 was formed (FIG. 1 (b)).

前記部品実装パッド2及び配線回路8を形成した両面銅張積層板1の表面の銅部をメック社製の銅箔表面粗化材(品番:CZ−8100/CL)にて処理した後に、保護膜3として、太陽インキ社製のフィルム型のソルダーレジスト(品番:PFR800AUS402、厚み30μm)を貼り付けた。この形成方法としては、バキュームアプリケータを使用して熱圧着(条件:60℃、60秒)した後に、ホットプレス(条件:熱板80℃、圧力4MPa、プレス時間75秒)し、ソルダーレジストをフローさせ表面を平滑にした。その後、メタルハライドランプを光源に持つ露光機にて露光(条件:430mJ/cm2)、露光後のプレヒート(条件:80℃、5分)及び現像(条件:1wt%炭酸ナトリウム水溶液、30℃、スプレー圧力0.2MPa、現像時間120秒)を順に行ない、その現像後に乾燥炉でポストベーク(条件:150℃、70分)した(図1(b))。 After the copper part on the surface of the double-sided copper-clad laminate 1 on which the component mounting pad 2 and the wiring circuit 8 are formed is treated with a copper foil surface roughening material (product number: CZ-8100 / CL) manufactured by MEC, protection is performed. As the film 3, a film type solder resist (product number: PFR800AUS402, thickness 30 μm) manufactured by Taiyo Ink Co., Ltd. was attached. As this formation method, after thermocompression bonding (conditions: 60 ° C., 60 seconds) using a vacuum applicator, hot pressing (conditions: hot plate 80 ° C., pressure 4 MPa, pressing time 75 seconds) is performed, and the solder resist is removed. Flowed to smooth the surface. Then, exposure (condition: 430 mJ / cm 2 ) with an exposure machine having a metal halide lamp as a light source, preheating after exposure (condition: 80 ° C., 5 minutes) and development (condition: 1 wt% sodium carbonate aqueous solution, 30 ° C., spray A pressure of 0.2 MPa and a development time of 120 seconds were sequentially performed, and after the development, post-baking (conditions: 150 ° C., 70 minutes) was performed in a drying furnace (FIG. 1B).

次に、保護膜3の表面の粗化方法として、ウエットブラスト研磨方法を使用した。その使用条件は、プリント基板に対して垂直方向に吹き付けられる水平式装置を使用し、処理速度:1.5M/分、エアー消費量:10.0m3/分、エアー圧力0.2MPa、研磨剤:♯800を標準的な条件とした。また、水と研磨剤(スラリー液)と圧縮空気を混合し(砥粒濃度20%)、ブラストガンと呼ばれる噴射口から被加工物に投射する方法を使用した。図における粗化状態としては、図1(b)より図1(c)に示される保護膜3の表面状態の違いにより示した。 Next, a wet blast polishing method was used as a method for roughening the surface of the protective film 3. The usage conditions are as follows: a horizontal device that is sprayed in the direction perpendicular to the printed circuit board is used, processing speed: 1.5 M / min, air consumption: 10.0 m 3 / min, air pressure 0.2 MPa, polishing agent : # 800 was a standard condition. Moreover, the method of mixing water, an abrasive | polishing agent (slurry liquid), and compressed air (abrasive grain concentration 20%), and projecting on a to-be-processed object from the injection port called a blast gun was used. The roughened state in the figure is shown by the difference in the surface state of the protective film 3 shown in FIG. 1C from FIG.

次に、日立化成社製の無電解ニッケル/部分金めっき用の耐金めっきレジスト「H−8050」を図1(b)の構造体の両面にラミネート(貼付温度:120℃、ロール圧力0.5MPa)し、その後、高圧水銀灯を光源に持つ露光機にて露光(条件:140mJ/cm2)及び現像(条件:1wt%炭酸ナトリウム水溶液、30℃、スプレー圧力0.2MPa)を行ない、部品実装パッド2以外の無電解金めっき処理の望まない箇所及びソルダーレジストで被覆されていない銅露出部分に耐金めっきレジストを被覆した。また、部品が搭載されていない裏面側の銅ベタ部の全面も同様に耐金めっきレジストを被覆した。 Next, a gold-resistant plating resist “H-8050” for electroless nickel / partial gold plating manufactured by Hitachi Chemical Co., Ltd. is laminated on both surfaces of the structure shown in FIG. 1B (sticking temperature: 120 ° C., roll pressure 0. 5MPa), and then exposure (condition: 140mJ / cm 2 ) and development (condition: 1wt% sodium carbonate aqueous solution, 30 ° C, spray pressure 0.2MPa) using an exposure machine with a high-pressure mercury lamp as the light source. A portion other than the pad 2 where electroless gold plating treatment is not desired and a copper exposed portion not covered with the solder resist were coated with a gold-resistant plating resist. Further, the entire surface of the solid copper portion on the back side where no parts are mounted was similarly coated with a gold-resistant plating resist.

次に、無電解金めっき処理を行ない、部品実装パッド2の表面に、ニッケル(厚み:5μm)/金めっき(0.05μm)を行なった後に、前記耐金めっきレジストを剥離(条件:3.0±0.5wt%水酸化ナトリウム水溶液、50℃、スプレー圧力0.2MPa)した。   Next, an electroless gold plating process is performed, and after nickel (thickness: 5 μm) / gold plating (0.05 μm) is applied to the surface of the component mounting pad 2, the gold-resistant plating resist is peeled off (conditions: 3. 0 ± 0.5 wt% sodium hydroxide aqueous solution, 50 ° C., spray pressure 0.2 MPa).

次に、目的とするチップ部品5を上記で得られたプリント配線板の所定の箇所に搭載するために、始めに図1(c)に示したように、鉛フリーはんだペースト4(Sn−3.0Ag−0.5Cu)を実装材料として使用し、メタルマスクを使用したスクリーン印刷工法により、部品実装パッド部2へ塗布した。この際のメタルマスクの開口径は、該チップ部品実装パッド部2の形状と同寸法で行なった。   Next, in order to mount the target chip component 5 on a predetermined portion of the printed wiring board obtained as described above, first, as shown in FIG. 1C, lead-free solder paste 4 (Sn-3 0.0Ag-0.5Cu) as a mounting material, and applied to the component mounting pad portion 2 by a screen printing method using a metal mask. The opening diameter of the metal mask at this time was the same as the shape of the chip component mounting pad portion 2.

次に、上記部品実装パッド部2へチップ部品5をマウンターで搭載した。ここでのチップ部品は0603サイズの抵抗部品を使用した。その後、第1昇温温度150〜160℃(100秒)、第2昇温温度260℃ピークの温度プロファイルを用いてリフロー加熱を行ない、図1(d)に示した構造体を得た。   Next, the chip component 5 was mounted on the component mounting pad portion 2 with a mounter. The chip component used here was a 0603 size resistor component. Then, reflow heating was performed using a temperature profile with a first temperature rise temperature of 150 to 160 ° C. (100 seconds) and a second temperature rise temperature of 260 ° C. to obtain the structure shown in FIG.

上記チップ部品5の搭載を行なった構造体(図1(d))へ、プリプレグを絶縁基材6として使用し、積層による部品内蔵基板の形成を行なった。その製造方法について図2を使用して説明する。   A prepreg was used as the insulating base material 6 on the structure (FIG. 1D) on which the chip component 5 was mounted, and a component-embedded substrate was formed by lamination. The manufacturing method will be described with reference to FIG.

チップ部品5をプリント配線板の内層部にあたる銅張り積層板1に前記のように実装して図1(d)に示した構造体を得た。この実施例では、チップ部品5の高さが0.26mmの物を使用したため、それを積層にて封止する絶縁基材6としては、日立化成製のプリプレグ(品番:GEA679F、厚み0.15mmを2枚重ね)を使用した。   The chip component 5 was mounted on the copper-clad laminate 1 corresponding to the inner layer portion of the printed wiring board as described above to obtain the structure shown in FIG. In this example, since the chip component 5 having a height of 0.26 mm was used, the insulating base material 6 for sealing the chip component 5 by lamination was a prepreg manufactured by Hitachi Chemical (product number: GEA679F, thickness 0.15 mm). 2 layers).

次いで、図2(a)に示すように、チップ部品5が搭載された面側を絶縁基材(プリプレグ)6の方に向け、チップ部品5が搭載された基板を2枚使用して、絶縁基材(プリプレグ)6を両面より挾むように設置し、ピンラミネーション方式の積層加圧を行なった。積層加圧する際の条件としては、真空度を高めた積層機内で、ピーク温度を190℃とし、積層時の最大圧力は3MPaとして実施し、積層終了後に図2(b)に示した構造体を得た。   Next, as shown in FIG. 2A, the surface side on which the chip component 5 is mounted is directed toward the insulating base material (prepreg) 6 and the two substrates on which the chip component 5 is mounted are used for insulation. The base material (prepreg) 6 was installed so as to be sandwiched from both sides, and pin lamination lamination pressure was performed. The conditions for stacking pressurization are as follows: in a laminator with a high degree of vacuum, the peak temperature is 190 ° C., the maximum pressure during stacking is 3 MPa, and the structure shown in FIG. Obtained.

以下、求められるプリント配線板の構造にて、最外層の銅箔部の回路形成を前記の回路形成方法と同様の条件にて行ない、図2(c)に示した構造体を得た。次いで、プリント配線板の必要とされる構造に従い、前記積層条件で絶縁基材と導体基材とを更に交互に積層して、部品内蔵型多層プリント配線板(図示省略)を得た。   Thereafter, in the required printed wiring board structure, circuit formation of the outermost copper foil portion was performed under the same conditions as in the above-described circuit formation method, and the structure shown in FIG. 2C was obtained. Next, in accordance with the required structure of the printed wiring board, the insulating base material and the conductor base material were further alternately laminated under the above-mentioned lamination conditions to obtain a component built-in type multilayer printed wiring board (not shown).

試験例
本発明における保護膜3の表面の粗化形成は積層工程における絶縁基材6との密着性を良好なものとさせ、その結果、特に耐熱性を試験する際の信頼性が向上する。そこで、この粗化による効果を具体的に示すために、以下の耐熱試験を実施した。
Test Example The roughening of the surface of the protective film 3 in the present invention makes the adhesiveness with the insulating substrate 6 good in the laminating process, and as a result, the reliability particularly when testing the heat resistance is improved. Therefore, in order to specifically show the effect of the roughening, the following heat resistance test was performed.

信頼性試験方法としては、部品実装などに使用するリフローを使用した耐熱試験とし、リフロー温度条件としては、トップピーク温度を260℃とした。また、試験基板としては、前記実施例で作成した部品内蔵基板を使用した。その結果、保護膜3表面の粗化を行なった場合には、前記リフローを4回通した状態においても剥離などの不具合が生じないことが確認された。   As a reliability test method, a heat resistance test using reflow used for component mounting and the like, and as a reflow temperature condition, a top peak temperature was set to 260 ° C. Further, as the test substrate, the component built-in substrate prepared in the above example was used. As a result, when the surface of the protective film 3 was roughened, it was confirmed that problems such as peeling did not occur even when the reflow was performed four times.

本発明の部品内蔵型プリント配線板の製造方法を示す概略断面工程説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 図1に続く、本発明の部品内蔵型プリント配線板の製造方法を示す概略断面工程説明図。FIG. 2 is a schematic cross-sectional process explanatory diagram showing the method for manufacturing the component built-in type printed wiring board of the present invention, following FIG. 保護膜の形成例を示す平面説明図。Plane explanatory drawing which shows the example of formation of a protective film. 従来の部品内蔵型プリント配線板の製造方法を示す概略断面工程説明図。Schematic cross-sectional process explanatory drawing which shows the manufacturing method of the conventional component built-in type printed wiring board.

符号の説明Explanation of symbols

1:銅張積層板
2:部品実装パッド
3:保護膜
4:はんだペースト
5:チップ部品
6:絶縁基材
7:保護膜の開口
8:配線回路
1: Copper-clad laminate 2: Component mounting pad 3: Protective film 4: Solder paste 5: Chip component 6: Insulating substrate 7: Opening of protective film 8: Wiring circuit

Claims (8)

少なくとも一方の面に部品実装パッドと配線回路を設けた絶縁基板の当該部品実装パッドにチップ部品を実装すると共に、前記絶縁基板のチップ部品実装面に、絶縁基材を積層した部品内蔵型プリント配線板であって、前記絶縁基板と絶縁基材との間に、部品実装パッドの少なくとも一部を露出せしめる開口を有する保護膜が設けられていることを特徴とする部品内蔵型プリント配線板。   A component built-in printed wiring in which a chip component is mounted on the component mounting pad of the insulating substrate provided with a component mounting pad and a wiring circuit on at least one surface, and an insulating substrate is laminated on the chip component mounting surface of the insulating substrate. A component built-in type printed wiring board, wherein a protective film having an opening exposing at least a part of a component mounting pad is provided between the insulating substrate and the insulating base. 前記部品実装パッドにニッケル/金めっきが施されていることを特徴とする請求項1に記載の部品内蔵型プリント配線板。   2. The component built-in printed wiring board according to claim 1, wherein the component mounting pad is nickel / gold plated. 前記保護膜が粗化されていることを特徴とする請求項1又は2に記載の部品内蔵型プリント配線板。   The component built-in type printed wiring board according to claim 1, wherein the protective film is roughened. 前記保護膜が露光及び現像をするエポキシアクリレート樹脂であることを特徴とする請求項1〜3の何れか1項に記載の部品内蔵型プリント配線板。   The component built-in type printed wiring board according to claim 1, wherein the protective film is an epoxy acrylate resin that performs exposure and development. 絶縁基板の少なくとも一方の面に部品実装パッドと配線回路を形成する工程と、前記絶縁基板に部品実装パッドの少なくとも一部を露出せしめる開口を有する保護膜を形成する工程と、当該部品実装パッドにチップ部品を実装する工程と、前記絶縁基板に絶縁基材を積層し、該絶縁基材でチップ部品を封止する工程とを有することを特徴とする部品内蔵型プリント配線板の製造方法。   Forming a component mounting pad and a wiring circuit on at least one surface of the insulating substrate; forming a protective film having an opening exposing at least a part of the component mounting pad on the insulating substrate; and A method of manufacturing a component-embedded printed wiring board, comprising: mounting a chip component; and laminating an insulating base material on the insulating substrate, and sealing the chip component with the insulating base material. 更に、前記部品実装パッドにニッケル/金めっきを施す工程を有することを特徴とする請求項5に記載の部品内蔵型プリント配線板の製造方法。   6. The method of manufacturing a component built-in printed wiring board according to claim 5, further comprising a step of performing nickel / gold plating on the component mounting pad. 更に、前記保護膜を粗化する工程を有することを特徴とする請求項5又は6に記載の部品内蔵型プリント配線板の製造方法。   The method of manufacturing a component built-in printed wiring board according to claim 5 or 6, further comprising a step of roughening the protective film. 前記保護膜の粗化を、ウエットブラスト又はバフ研磨を使用して行なうことを特徴とする請求項7に記載の部品内蔵型プリント配線板の製造方法。   The method of manufacturing a component built-in type printed wiring board according to claim 7, wherein the roughening of the protective film is performed using wet blasting or buffing.
JP2004278720A 2004-09-27 2004-09-27 Printed wiring board with built-in part and method of manufacturing the same Pending JP2006093493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278720A JP2006093493A (en) 2004-09-27 2004-09-27 Printed wiring board with built-in part and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278720A JP2006093493A (en) 2004-09-27 2004-09-27 Printed wiring board with built-in part and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2006093493A true JP2006093493A (en) 2006-04-06

Family

ID=36234156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278720A Pending JP2006093493A (en) 2004-09-27 2004-09-27 Printed wiring board with built-in part and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2006093493A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166534A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Thermal press method
WO2009054098A1 (en) * 2007-10-25 2009-04-30 Panasonic Corporation Wiring board with built-in component and method for manufacturing wiring board with built-in component
JP2009110992A (en) * 2007-10-26 2009-05-21 Panasonic Corp Part built-in printed wiring board, and manufacturing method of part built-in printed wiring board
JP2010098021A (en) * 2008-10-15 2010-04-30 Panasonic Corp Component built-in circuit substrate and method of producing the same
JP2010135713A (en) * 2008-12-05 2010-06-17 Samsung Electro-Mechanics Co Ltd Printed-circuit board with built-in chip and method for manufacturing the same
JP2010283031A (en) * 2009-06-02 2010-12-16 Nippon Information System:Kk Method for manufacturing multilayer printed-wiring board and multilayer printed-wiring board
US7884376B2 (en) 2005-01-18 2011-02-08 Epistar Corporation Optoelectronic semiconductor device and manufacturing method thereof
EP2355140A1 (en) * 2010-01-29 2011-08-10 Asahi Glass Company, Limited Substrate for mounting element and process for its production
US8174117B2 (en) 2007-10-12 2012-05-08 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN109587945A (en) * 2018-12-26 2019-04-05 珠海超群电子科技有限公司 A kind of FPC plate and its manufacture craft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484697A (en) * 1987-09-26 1989-03-29 Matsushita Electric Works Ltd Manufacture of multilayer circuit board
JP2001007468A (en) * 1999-06-24 2001-01-12 Nec Kansai Ltd Wiring board, multilayered wiring board, and their manufacture
JP2002111187A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board
JP2003124613A (en) * 2001-10-19 2003-04-25 Tamura Kaken Co Ltd Resist ink composition and printed wiring board
JP2003234579A (en) * 2002-02-06 2003-08-22 Cmk Corp Method of manufacturing multilayer printed wiring board with chip type resistor built therein
JP2004063842A (en) * 2002-07-30 2004-02-26 Cmk Corp Method for manufacturing multilayer printed circuit board incorporated with chip resistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484697A (en) * 1987-09-26 1989-03-29 Matsushita Electric Works Ltd Manufacture of multilayer circuit board
JP2001007468A (en) * 1999-06-24 2001-01-12 Nec Kansai Ltd Wiring board, multilayered wiring board, and their manufacture
JP2002111187A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board
JP2003124613A (en) * 2001-10-19 2003-04-25 Tamura Kaken Co Ltd Resist ink composition and printed wiring board
JP2003234579A (en) * 2002-02-06 2003-08-22 Cmk Corp Method of manufacturing multilayer printed wiring board with chip type resistor built therein
JP2004063842A (en) * 2002-07-30 2004-02-26 Cmk Corp Method for manufacturing multilayer printed circuit board incorporated with chip resistor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8860065B2 (en) 2005-01-18 2014-10-14 Epistar Corporation Optoelectronic semiconductor device
US7884376B2 (en) 2005-01-18 2011-02-08 Epistar Corporation Optoelectronic semiconductor device and manufacturing method thereof
JP2008166534A (en) * 2006-12-28 2008-07-17 Matsushita Electric Ind Co Ltd Thermal press method
US11245060B2 (en) 2007-08-27 2022-02-08 Epistar Corporation Optoelectronic semiconductor device
US8174117B2 (en) 2007-10-12 2012-05-08 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
WO2009054098A1 (en) * 2007-10-25 2009-04-30 Panasonic Corporation Wiring board with built-in component and method for manufacturing wiring board with built-in component
JP2009105302A (en) * 2007-10-25 2009-05-14 Panasonic Corp Printed wiring board with built-in component, and method of manufacturing the same
US8418358B2 (en) 2007-10-25 2013-04-16 Panasonic Corporation Wiring board with built-in component and method for manufacturing wiring board with built-in component
JP2009110992A (en) * 2007-10-26 2009-05-21 Panasonic Corp Part built-in printed wiring board, and manufacturing method of part built-in printed wiring board
JP2010098021A (en) * 2008-10-15 2010-04-30 Panasonic Corp Component built-in circuit substrate and method of producing the same
US8499998B2 (en) 2008-10-15 2013-08-06 Panasonic Corporation Component built-in circuit substrate and method of producing the same
US8893380B2 (en) 2008-12-05 2014-11-25 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing a chip embedded printed circuit board
JP2010135713A (en) * 2008-12-05 2010-06-17 Samsung Electro-Mechanics Co Ltd Printed-circuit board with built-in chip and method for manufacturing the same
JP2010283031A (en) * 2009-06-02 2010-12-16 Nippon Information System:Kk Method for manufacturing multilayer printed-wiring board and multilayer printed-wiring board
EP2355140A1 (en) * 2010-01-29 2011-08-10 Asahi Glass Company, Limited Substrate for mounting element and process for its production
US9504166B2 (en) 2010-01-29 2016-11-22 Asahi Glass Company, Limited Process for producing substrate for mounting element
CN109587945A (en) * 2018-12-26 2019-04-05 珠海超群电子科技有限公司 A kind of FPC plate and its manufacture craft
CN109587945B (en) * 2018-12-26 2024-03-01 珠海超群电子科技有限公司 FPC board and manufacturing process thereof

Similar Documents

Publication Publication Date Title
JP3941573B2 (en) Method for manufacturing flexible double-sided substrate
US7227250B2 (en) Ball grid array substrate having window and method of fabricating same
TWI392426B (en) A multilayer printed wiring board, and a multilayer printed wiring board
JP5415580B2 (en) Multilayer printed wiring board
US8101868B2 (en) Multilayered printed circuit board and method for manufacturing the same
US7802361B2 (en) Method for manufacturing the BGA package board
EP1962569A1 (en) Multilayer printed wiring plate, and method for fabricating the same
TWI392428B (en) Method for manufacturing double sided flexible printed wiring board
JP2006093493A (en) Printed wiring board with built-in part and method of manufacturing the same
JP2002361475A (en) Solder paste and multilayer printed wiring board and semiconductor chip having solder bump formed by using the solder paste
JP2009094191A (en) Manufacturing method of multilayer wiring board
JP2008252041A (en) Method for manufacturing build-up multilayer wiring board
JP2007116191A (en) Method for electrically connecting metal layers in both sides of polyimide film in laminated body having metal layers in both sides of polyimide film
JP2002204057A (en) Multilayer printed wiring board and method of manufacturing the same
KR20160146187A (en) Printed Circuit Board Using Base Film Surface-Treated and Method for Manufacturing Using the Same
JP2004072071A (en) Method of manufacturing multilayer wiring board, and multilayer wiring board
KR100645656B1 (en) Method for manufacturing semiconductor chip package board
JPH11307936A (en) Multi-layer printed circuit board
JPH11135942A (en) Manufacture of multilayer printed wiring board
KR100789528B1 (en) Grinding apparatus for printed circuit board
JPH08125295A (en) Metal base circuit board
JP2002134891A (en) Method for manufacturing printed wiring board
JP2001298258A (en) Method of manufacturing printed wiring board, and multilayer printed wiring board using it
JP2006059952A (en) Manufacturing method of printed wiring board with built-in component
JP2001358436A (en) Method for manufacturing printed wiring board and multilayered printed wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106