JP2006058795A - 光ビーム走査装置及び画像形成装置 - Google Patents

光ビーム走査装置及び画像形成装置 Download PDF

Info

Publication number
JP2006058795A
JP2006058795A JP2004242955A JP2004242955A JP2006058795A JP 2006058795 A JP2006058795 A JP 2006058795A JP 2004242955 A JP2004242955 A JP 2004242955A JP 2004242955 A JP2004242955 A JP 2004242955A JP 2006058795 A JP2006058795 A JP 2006058795A
Authority
JP
Japan
Prior art keywords
line
light beam
signal
detection
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004242955A
Other languages
English (en)
Inventor
Minoru Aoki
稔 青木
Nobuyuki Sato
信行 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004242955A priority Critical patent/JP2006058795A/ja
Publication of JP2006058795A publication Critical patent/JP2006058795A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fax Reproducing Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】 2本の光ビームの書き込み開始位置の各画素間隔(繋ぎ目)を確実、且つ、容易に調整する。
【解決手段】 各光ビ−ムに対応して光ビームの走査ライン基準位置を検出する同期検知手段と、同期検知手段による同期検知信号に基づいて画像開始位置までの主走査方向の距離を変更する第1の変更手段と、副走査方向の画像位置を変更する第2の変更手段と、感光体上に主走査方向及び副走査方向の各々に複数の顕像ラインを形成する顕像ライン形成手段と、顕像ラインを検知する顕像ライン検知手段と、この顕像ライン検知手段の検知信号により前記顕像ラインが検知範囲内か否かを判定し、検知信号に含まれる特定信号の位置又は間隔を算出して前記主走査方向、及び副走査方向の夫々のライン画像位置又は間隔を特定するための信号処理を行う信号処理手段と、光ビームの画像書込開始位置を変更することにより、複数本のライン画像の位置又は間隔を予め定め設定された目標値に追従させるように制御する制御手段とを備える。
【選択図】 図1

Description

本発明は、複数の光ビームを繋ぎ合わせて使用する光ビームの位置調整装置に関わり、特に、レーザ書き込み部を備えるプリンタ、複写機、FAX装置などの画像形成装置に好適なものである。
複写機のデジタル化が進む中で、A1、A0等の広幅用紙に対応した複写機においてもデジタル化が進む傾向にあり、さらなる高画質化が要求されている。現在A1、A0等の広幅用紙に対応のデジタル複写機の光書き込み装置は、LEDアレイを用いて書き込む方式が主流であるが、これはレーザ光(光ビーム)をポリゴンミラー等で偏向走査して書き込む方式に比較してコスト高であり、画質的にも劣ることは否めない。ただし、A0幅でのレーザ光走査による書き込みを考えた場合、光路長の長さ、レンズの大型化、反射ミラーの長尺化等からユニットの大型化、コスト高が課題となる。そこで、従来からレーザ光の主走査方向に2つの書き込み系を繋ぎあわせて広幅の走査幅を得る方法が種々提案されている。
例えば、光ビームの主走査方向に複数の部分露光範囲を持ち、各部分露光範囲は別の光ビームによって露光する分割走査を行う。そして、隣り合う部分露光範囲が重なりあっている重複露光範囲を有し、その重複部分の現像後の濃度を検出することにより、光ビームの位置関係を判断し、所望の位置関係となるよう制御する技術が開示されている(特許文献1)。
また同期センサ、光ビーム位置センサを有し、主走査ライン方向に複数の光ビームを繋ぐにあたり、光ビーム位置センサの信号に応じて光ビームの点灯位置を変更するようにした技術なども各種提案されている(特許文献2〜特許文献4)。
また、1つのポリゴンで2つの書き込み系の光ビームを走査し、画像のほぼ中央部から光ビ−ム走査を開始し、主走査方向に光ビ−ムを繋ぎ合わせる方式により低コストで、コンパクトな広幅対応の書き込み系を達成するようにした技術も提案されている(特許文献5)。
特許第3287289号 特開平10−10221号公報 特開2000−235155公報 特開2000−267027公報 特開2000−187171公報
しかしながら、主走査方向に2つの書き込み系を繋ぎあわせて広幅の走査幅を得る場合には、温度変動によって生じる走査線の副走査方向へのズレ、即ちハウジングやレンズ系の熱膨張によって光路が微妙に変化するという欠点があった。このような2本の繋ぎ目のズレを調整するにあたっては、2本の光ビームの書き込み開始位置を正確に検出し、その調整を容易に行うことが求められている。
そこで、本発明は2本の光ビームの書き込み開始位置の各画素間隔(繋ぎ目)を確実、且つ、容易に調整することができる光ビーム走査装置、及びそのような光ビーム走査装置を備えた画像形成装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、感光体上で少なくとも複数本の光ビームの走査ラインを繋げて主走査方向を分割して走査する画像形成装置において、各光ビ−ムに対応して光ビームの走査ライン基準位置を検出する同期検知手段と、前記同期検知手段による同期検知信号に基づいて画像開始位置までの主走査方向の距離を変更する第1の変更手段と、副走査方向の画像位置を変更する第2の変更手段と、前記感光体上に主走査方向及び副走査方向の各々に複数の顕像ラインを形成する顕像ライン形成手段と、前記顕像ラインを検知する顕像ライン検知手段と、該顕像ライン検知手段の検知信号により前記顕像ラインが検知範囲内か否かを判定し、前記検知信号に含まれる特定信号の位置又は間隔を算出して前記主走査方向、及び副走査方向の夫々のライン画像の位置又は間隔を特定するための信号処理を行う信号処理手段と、前記光ビームの画像書込開始位置を変更することにより、複数本のライン画像位置又は間隔を予め設定された目標値に追従させるように制御する制御手段と、を備えることを特徴とする。
また請求項2に記載の発明は、請求項1に記載の光ビーム走査装置において、前記信号処理手段は、前記顕像ライン検知手段の検知信号により前記顕像ラインが検知範囲内か否かの判定を行う際に、前記顕像ラインの信号レベル、ライン幅、変化率の少なくとも1つを用いて判定を行うことを特徴とする。
また請求項3に記載の発明は、請求項1または2に記載の光ビーム走査装置において、前記信号処理手段は、当該光ビーム走査装置の動作に対応した特定の期間に前記信号処理手段による判定を行うことを特徴とする。
また請求項4に記載の発明は、請求項1に記載の光ビーム走査装置において、前記信号処理手段は、前記顕像ライン検知手段により前記顕像ラインを検知したときに、前記顕像ラインを形成する複数のラインのライン幅、又はライン濃度を近似させることを特徴とする。
また請求項5に記載の発明は、請求項1に記載の光ビーム走査装置において、前記顕像ラインを前記感光体に形成する際に、その形成位置を使用条件に応じて変更し、形成位置に応じて前記顕像検知手段により検知を行う位置を変更することを特徴とする。
請求項6に記載の発明は、請求項1乃至請求項5の何れか一項に記載の光ビーム走査装置を備えている画像形成装置であることを特徴とする。
請求項1の本発明によれば、調整工程において主走査方向と副走査方向にそれぞれ複数本の顕像ラインを作成し、その顕像ラインの位置又は間隔を検知する場合に、顕像ライン検知手段の検知信号により検知タイミングを決定するようにしているので的確なタイミングで検知を行うことができるため、高精度の位置又は間隔の検知を行うことができる。
請求項2の本発明によれば、調整工程において主走査方向と副走査方向にそれぞれ複数本の顕像ラインを作成し、その顕像ラインの位置又は間隔を検知する場合に、顕像ライン検知手段の検知出力の信号レベル、ピーク値に対する比率、信号幅(時間間隔)、信号変化率を適宜利用して検知を行うようにしているので、位置又は間隔を精度よく算出することができる。
請求項3の本発明によれば、調整工程において、主走査方向と副走査方向にそれぞれ複数本の顕像ラインを作成し、その位置又は間隔を検知する際に、顕像ライン検知手段により、そのラインを検知する各タイミングを顕像ラインの感光体表面の特定部分に限定しているので誤動作を防止することができる。
請求項4の本発明によれば、調整工程において、主走査方向と副走査方向にそれぞれ複数本の顕像ラインを作成し、その位置又は間隔を検知するに際に、複数本の顕像ラインの幅、濃度を近似させているので、顕像ラインの位置又は間隔を算出するときの誤差を減少させることができる。
請求項5の本発明によれば、調整工程において、主走査方向と副走査方向にそれぞれ複数本の顕像ラインを作成し、その位置又は間隔を検知する際に、顕像ラインの形成場所を例えば感光体表面上で変更、すなわち顕像ライン検知手段が検知する位置を変更しているので、感光体上の顕像ライン検知手段の光源による光照射履歴による異常画像等の副作用を防止することができる。
請求項6記載の発明によれば、上記請求項1乃至請求項5の何れか一項に記載の光ビーム走査装置を画像形成装置に適用したことで、上記請求項1乃至請求項5の効果が得られる画像形成装置を実現することができる。
以下、本発明の実施の形態としての光ビーム走査装置の構成及び動作を、図面を参照して詳細に説明する。
図1は、本実施の形態としての光ビーム走査装置の概略構成を示す斜視図であり、デジタル複写機等の画像形成装置の光書き込み装置に用いた例を示すものである。また、以下に説明する2本の光ビームの書き込み開始位置の調整は、例えば電源投入時や所定のコピー枚数に達したときのどの任意のタイミングにおいて行うものとする。
図1に示す光ビーム走査装置(光書き込み装置)は、光ビームを出射する光源として半導体レーザ(LD)光源1−1、1−2を2つ備え、各半導体レーザ光源(以下、単に「光源」という)1−1、1−2の出射ビームに対してそれぞれコリメートレンズ2−1、2−2と、シリンドリカルレンズ3−1、3−2が配設されている。コリメートレンズ2−1、2−2、シリンドリカルレンズ3−1、3−2を介してそれぞれ導光された2つの光ビームを偏向する偏向手段として複数の偏向面を有する単一のポリゴンミラー4が設けられている。このポリゴンミラー4で偏向された2つの光ビームを被走査面である感光体ドラム10上にそれぞれ結像する結像手段としては、第1Fθレンズ5−1、5−2と第2Fθレンズ6−1、6−2がそれぞれ設けられており、さらに走査方向変更手段として、2系統の光路のそれぞれに2枚のミラー、即ち第1ミラー7−1、7−2と第2ミラー8−1、8−2が配設されている。さらにまた、結像光学系の光路上には、第1、第2ミラーにより走査方向を変更された走査光を被走査面である感光体ドラム10に導くための第3ミラー9−1、9−2が配設されている。このように図1に示す光ビーム走査装置においては、2系統の光書き込み系を備えており、ポリゴンミラー4は2系統の光書き込み系で共用される構成になっている。尚、本実施の形態ではポリゴンミラー4より左側半分の光書き込み系を第1書き込み系I、右側半分の光書き込み系を第2書き込み系IIと呼ぶものとする。
第1書き込み系Iにおいて、半導体レーザ光源1−1は、図示しない駆動装置により制御され、画像信号に応じて変調されたレーザ光を出射する。このレーザ光はコリメートレンズ2−1で平行光とされ、シリンドリカルレンズ3−1を経てポリゴンミラー4に入射される。ポリゴンミラー4は、図示しないモータにより回転されており、ポリゴンミラー4に入射されたレーザビームは偏向面で反射され偏向走査される。そしてポリゴンミラー4で偏向走査された光ビームは第1、第2Fθレンズ5−1、6−1によってそれぞれ等角速度偏向から等速偏向に変更され、第1、第2ミラー7−1、8−1により走査方向を変更された後、第3ミラー9−1によって反射されて、被走査面である感光体ドラム10の方向に導かれ、感光体ドラム10上の所定走査位置の中央から一方側の端部に向かって走査する。
第2書き込み系IIは、第1書き込み系Iと同様の構成であり、第1書き込み系を、ポリゴンミラー4を中心に180°回転させた位置に配置されている。そして、LD光源1−2から出射したレーザ光はコリメートレンズ2−2で平行光とされた後、シリンドリカルレンズ3−2を経てポリゴンミラー4に入射し、ポリゴンミラー4で偏向走査され、第1、第2Fθレンズ5−2、6−2、第1、第2、第3ミラー7−2、8−2、9−2を経て感光体10に至り、感光体ドラム10上の所定走査位置の中央から、第1書き込み系Iとは逆方向の端部に向かって走査される。
なお、図1中の符号11−1、11−2はそれぞれ、第1、第2書き込み系I、IIの第1の同期検知センサで、各同期検知センサ11−1、11−2はレーザビームの走査領域外に設けられ、レーザビームの1走査毎にレーザビームの走査タイミングを検知する。また、図示しない書き込み制御回路は、第1の同期検知センサ11−1、11−2で検知されたタイミングに応じて第1、第2書き込み系I、IIのレーザビームの走査タイミングと書き込み開始位置との同期を取るように制御を行っている。
さらに、本実施の形態の光ビーム走査装置には環境変動による書き込み倍率変動を検出するための検知センサとして第2の同期検知センサ13−1、13−2と、第3ミラー9−1、9−2を回転駆動するステッピングモータ14−1、14−2が設けられている。また、ドラム10上には複数の間隔検出用ライン(顕像ライン)16−n(n=1,2,3,・・・n)がドラムの周方向に形成されており、この間隔検出用ライン16−nを検出するためのライン間隔センサ(顕像ライン検知手段)15が設けられている。
また、ドラム10にはドラムマーク17−1と、このドラムマーク17−1を検出するドラムセンサ17が設けられている。
これら第2の同期検知センサ13−1、13−2、ステッピングモータ14−1、14−2、ライン間隔センサ15、ドラムセンサ17は制御部30に接続されている。なお、制御部30については後述する。
図2は、図1に示す光ビーム走査装置を上方から見た概略平面図であり、図中のMの2点鎖線は走査光が第1、第2ミラー7−1、8−1(7−2、8−2)で反射される位置(第1、第2ミラーの反射面)を、M’の2点鎖線は走査光が第3ミラー9−1(9−2)で反射される位置(第3ミラーの反射面)をそれぞれ示しており、Qの1点鎖線は感光体ドラム10の中心線を、Rの1点鎖線は走査面上での結像光学系の光軸(走査ビームの光軸)をそれぞれ示している。また、図中の矢印13はポリゴンミラー4の回転方向を、矢印14は感光体ドラム10上で走査線が走査される方向(ビーム走査方向)を示している。また、図3、図4は図2の光ビーム走査装置をA方向から見たときの光路の概略を示す図であり、図3は第1書き込み系Iだけの光路の概略を、図4は第1書き込み系Iと第2書き込み系IIの光路の概略を示している。
尚、上記構成の光ビーム走査装置は、通常、埃等の付着を嫌うため、図示しない光学箱内部に密閉され、精度良く固定、配置されている。ただし、レーザの出射口は開放する必要があるため、光学箱にはレーザ出射口を設け、その出射口には図4に示す防塵ガラス12−1、12−2等を配置して埃等の侵入を防いでいる。
以上、本発明に係る光ビーム走査装置の一構成例を示したが、本発明の光ビーム走査装置では、同一の感光体ドラム(被走査面)10上で分割走査される2つの走査線が1つのポリゴンミラー4により偏向走査されているため、ポリゴンミラー等の偏向手段を複数使用した場合と比較して、偏向手段自体の同期を取る必要がない。このため、副走査方向で二つの走査線の書き出しタイミングを容易に揃えることができ、副走査方向の走査線の位置ズレを防止することができる。
図5は本実施の形態の光ビーム走査装置のブロック図である。
ライン間隔センサ15は、2次元の位置センサ(PSD(Position Sensing Device))を用いて構成される。PSDは、行256×列256画素(計65536画素)により構成され、各画素間隔(ピッチ)は約8μmである。
ライン間隔センサ15には、制御部30からクロックCLK、スタート信号STが与えられ、主走査方向(行)に対応した出力信号VX1、副走査方向(列)に対応した出力信号VY1とトリガ信号Trig1を出力する。
ライン間隔センサ15から出力される出力信号VX1は、オペアンプOP1、抵抗器R1、R2、R3、可変抵抗VR1からなる増幅器32−1に入力される。増幅器32−1の出力はAD変換器(ADC1)33−1によりデジタル信号DX1に変換後、制御部30に入力される。AD変換器(ADC1)33−1の入力信号取り込みはトリガ信号Trig1の立下りタイミングで開始され、立ち上がりまでにAD変換される。AD変換されたデジタル信号は次の立下りタイミングまで保持され、保持されている間に制御部30に取り込まれる。
同様に出力信号VY1はオペアンプOP2、抵抗器R4、R5、R6、可変抵抗VR2からなる増幅器32−2に入力される。その増幅器32−2の出力はAD変換器(ADC2)33−2によりデジタル信号DY1に変換後、制御部30に入力される。AD変換、制御部30への取り込みも出力信号VX1で行った処理と同様に行う。
第1の同期検知センサ11−1の同期検知信号DET1−1は、遅延回路34−1で遅延され、遅延同期検知信号DDET1となり制御部30へ入力される。遅延回路34−1は制御部30からの遅延用信号S1により1nS間隔(例えばドラム10上の主走査方向1μmに対応)により0〜256nS範囲で遅延時間を変更する。第2の同期検知センサ13−1の同期検知信号DET1−2は制御部30へ入力される。
同様に第1の同期検知センサ11−2の同期検知信号DET2−1は遅延回路34−2で遅延され、遅延同期検知信号DDET2となり制御部30へ入力される。遅延回路34−2は制御部30からの遅延用信号S2により1nS間隔で、且つ、0〜256nS範囲で遅延時間を変更する。第2の同期検知センサ13−2の同期検知信号DET2−2は制御部30へ入力される。
ライン間隔センサ15用のLED光源35からの光は、ドラム10上で反射され、図示しないエリアセンサであるライン間隔センサ15の受光部に入射される。
HPセンサ36−1、36−2は、第3ミラー9−1、9−2の基準位置を検出するために設けられ、これらHPセンサ36−1、36−2は走査ラインの位置を変更するために第3ミラー9−1、9−2を回転した時に基準信号を発生する。そして、基準位置を示す基準信号と制御部30の内部で発生するステッピングモータ駆動用パルスのパルス数により、制御装置30は各ミラー位置、即ち回転角度を調整できる。調整量はライン間隔センサ15の信号から得られる制御値によって決められる。
ステッピングモータ14−1、14−2は、走査ライン、換言すれば書き込み開始位置を副走査方向に移動させるように副走査方向書き込み開始位置移動手段を構成している。
なお、各ステッピングモータ14−1、14−2と第3ミラー9−1、9−2間には図示していないが減速機構が設けられており、折り返しミラーの回転角度は微小ピッチで設定できるように構成されている。
操作部37は、外部から各種情報を入力するための入力部と、表示を行うための表示部が設けられている。不揮発性メモリ38は、当該光ビーム走査装置が各種操作を実行するためのプログラムや、各種情報などが記憶されている。光ビーム点灯部39−1、39−2は、制御部30の制御に基づいて半導体レーザ光源1−1、1−2の点灯制御を行う。
以下、上記した本実施の形態の光ビーム走査装置による光ビーム(レーザビーム)位置調整について説明する。
図6は、本実施の形態の光ビーム走査装置における各部の相対位置を示した図であり、この図6には第2ミラー8−1、8−2、第3ミラー9−1、9−2、第1の同期検知センサ11−1、11−2、第2の同期検知センサ13−1、13−2、ライン間隔センサ15、ドラム10、ドラム上の間隔検知用ライン16−n(トナー顕像、複数n=1,2,3,…n)、第1、第2作像ビームの各部の相対位置と、第1の同期検知センサ11−1、11−2に至る光ビームの光路a、c、ドラム10に至る画像形成のための光路b、dが描かれている。光ビームの光路b’、d’は繋ぎ目で画像を重畳して描画できることを示している。
黒丸(光路a、b、c、dに対応)、白丸(光路b’、d’に対応)は、各第2、第3ミラー8−1、8−2、9−1、9−2上の光ビーム反射位置を示す。なお、光ビームはドラム10上でドットを形成し、その直径(主走査方向、副走査方向の幅)は40〜100μmである。
図7は、第1書込み系の第1の同期検知センサ11−1、第2の同期検知センサ13−1、第1、第2書込み系の書き込み開始位置を示した図である。なお、第2書込み系の第1の同期検知センサ11−2、第2の同期検知センサ13−2の構成は省略されている。
上記図6に示したように、第1、第2作像ビームは交差しているため、第1の同期検知センサ11−1の第1ビームドットと、第1の同期検知センサ11−2の第2ビームドットは中央の繋ぎ目を基準として左右逆になっている。
図8は、第1書込み系のLD点灯信号LDS、第1の同期検知センサ11−1の同期検知信号DET−1、遅延同期検知信号DDET、第1の同期検知センサ11−2の同期検知信号DET−2、画素クロックCLKの関係を示すタイミングチャートであり、第1、第2書込み系独立で有している(なお、ここでは代表して各一つの記号としてある)。
遅延同期検知信号DDETは、図5に示した遅延回路34−1により同期検知信号DET−1を時間TD1だけ遅延させた信号である。クロック数に換算される遅延同期検知信号DDETと同期検知信号DET−2の間隔TL1は倍率(変動)を検出する。
第1書込み系による光ビ−ムは、ポリゴンミラー4の回転によって偏向され、まず仮想感光体面(第3ミラー9−1、9−2が長手方向に十分長いと仮定して、第3ミラー9−1、9−2を反射し、ドラム(感光体面)10に達した場合の感光体面を実際上のミラー8−1、8−2を反射した光ビームの延長線上に設けた面)上に配置された同期検知センサ11に入射する。この時、半導体レーザ光源1−1、1−2は、図8(a)のLD信号LDSによって、連続点灯の状態となっていて光ビ−ムが、第1の同期検知センサ11−1に入射される。なお、第1書き込み系のLD信号はLDS1、第2書き込み系のLD信号はLDS2となるが、ここでは2つを代表してLDSとした。以降他の信号も第1、第2と同様な場合は同様な表記を用いることとする。
第1の同期検知センサ11−1に光ビ−ムが入射されると、図8(b)に示すように、光ビ−ムの水平同期をとるための同期検知信号DET−1がアサートされる。同期検知信号DET−1は、主走査方向の基準位置(タイミング)を確定するために使用される。同期検知信号DET−1がアサートされた後、光源1は一時消灯する。時間TD1を変更することにより書き込み開始位置を変更する。
また、図8(c)に示す遅延同期検知信号DDETは、遅延回路34の出力信号であり、同期検知信号DET−1に対して時間TD1遅延している。遅延時間TD1を増減させると画像領域(書き込み開始位置であるDOT1位置)が主走査方向に移動する。遅延時間TD1を増加させるとDOT1は中央(繋ぎ目)から遠ざかり、2本ラインの間隔は増加する。遅延時間D1は、後述する遅延用信号S1により変更される。
遅延用信号S1はライン間隔センサ15の信号VX1を使用し、制御部30で算出された値に基づいて制御部30から出力される。
2本ラインの間隔は、第1、第2書き込み系の遅延時間の合計TD(=TD1+TD2)により制御できる。遅延時間TD2に関しては、図示していないが遅延時間TD1と同様に決められている。各遅延時間TD1、TD2の設定は2ビームの繋ぎ目画素間隔が適正な値となっているとき(600dpiでは42.3±10μm)遅延回路34の調整範囲(例0〜256nS)の中央付近に来ているのが望ましい。
画素クロックCLKは遅延された遅延同期検知信号DDETを基準として発生し、LD点灯信号は遅延同期検知信号DDETから所定のクロック数後(本実施の形態ではNg1クロック)に書き込み開始タイミングとなり画像デ−タに基づいた変調を開始する。主走査方向ビーム調整用2本ライン描画のための第1書き込み系の画像データはNs1後にドット点灯(DOT1に対応)させる値となっている。第2書き込み系の画像データは(図示していない)Ns2後にドット点灯(DOT2に対応)させる値となっている。各ビームにDOT1、DOT2を発生させることにより、主走査方向調整用の副走査方向2本ライン(潜像)をドラム10上に形成させる。DOT1、DOT2のドット数によりライン長は決まるがライン長、数mmに対応したドット数にする。
副走査方向調整用の主走査方向の2本ラインを作成するため、1主走査ライン上で(画像領域に含まれる)書き込み開始位置から数mmの間、LD1−1、1−2を連続点灯、消灯する走査をし、その後画像領域のLD1−1、1−2を消灯した走査を(ドラム上で0.5mm分)繰り返し、再度書き込み開始位置から主走査方向に数mmの間、LD1−1、1−2を連続点灯、消灯する走査を行う。各潜像ラインは図示していない静電写真プロセスによりトナーのついた顕像ラインとなる。上記主副ライン作成は、後述するような主副各2本ライン計4本の検出用ライン画像16となるようにタイミングが設定されている。
図9はライン間隔センサ15の入力信号であるクロック信号CLK、スタート信号STと主副方向の出力信号Vo、トリガ信号Trigの関係を示す図である。
スタート信号ST(LでON)がON後、アナログ出力信号Voとトリガ信号TrigがクロックCLKに同期して出力される。トリガ信号Trigはアナログ出力信号Voとも同期していて、図5に示した後段の増幅器32−1、32−2、AD変換器(ADC)33−1、33−2を経て制御部30に入力される。クロックCLK、スタート信号STはX方向(主走査方向)、Y方向(副走査方向)独立して入力させることも可能であるが、説明の図を簡略化するため、それぞれ1の信号で示す。また、出力信号もX方向(主走査方向)、Y方向(副走査方向)独立して出力されているが簡略化するためそれぞれ1つの信号で示す。
ライン間隔センサ15の各画素は、スタート信号STの1周期間TSSの受光により電荷を発生させる。その電荷は行、列ごとに蓄えられ、電圧に変換され出力される。よって1周期間TSSのアナログ出力信号、即ちセンサ(PSD)1画面分に対応する信号は位置センサ1個あたり、行方向256個の値で構成されるシリアル信号VXと列方向256個の値で構成されるシリアル信号VYの計512個のアナログ値により成る。出力信号は2次元画像の行、列方向への射影に対応した信号となっている。なお、出力信号Voの値は、出力時より1つ前の1周期間TS(蓄積時間)に対応したものである。なお、1周期間TSSは、ほぼ蓄積時間に等しい。実際は電荷転送、リセット時間を必要とするので蓄積時間はTSSより小となる。
図10の検出用ライン画像を検知したときのライン間隔センサの出力信号VX(VYも同様)を示す。なお、図10の15a(破線内)はライン間隔センサ15の検知領域を示すものであり、主副各ラインを同時に検知することが出来る事を示している。
図11(a)(c)、図12(a)(b)はライン間隔センサ15の出力Vo(VX1、VY1を代表)を示すものである。トナーラインがあるところを「+」方向にしてある。なお、破曲線(図12(b)は除く)はAD変換後、信号処理されて得られる放絡線を示す。また、図11(b)は、図11(a)の信号を微分したものであり、図11(d)は、図11(c)の信号を微分したものである。
図11(a)は、2本の顕像ラインであるトナー像ライン(間隔検知用ラインを構成している4本ラインのうちの2本。以下同様)の太さがほぼ同じ場合のライン間隔センサの出力信号を示す。なお、図11(a)の破曲線は、AD変換後、信号処理されて得られる放絡線を示す。図11(b)は、図11(a)の信号を微分したものであり、図11(a)の信号の変化率を表している。
2本のライン間隔を得るには、図11(a)の信号のピーク位置間隔を求めることにより行うようにしている。なお、別の方法として、2つの山状信号の同一レベルでかつ傾きが同じ位置の間隔を求める方法がある。さらに別の方法として、図11(b)の信号のゼロクロス点間隔を求めることにより行う方法がある。
トナー像ラインの2本の間隔を求めるいずれ方法においても、ライン間隔センサ15の検知領域に検知対象となるトナー像ラインが2本あることを前提としている。しかし、その検知対象となるトナー像ラインの2本が間欠的に検知領域に入ってくるため、検知領域内にそのライン2本が有るか否かを判定する必要がある。
検知領域内に対象となるトナー像ラインの2本が有るか否かの判別方法について説明する。
第1の判別方法としては、ライン間隔センサ15において検知領域全域に対応する1周期内の出力信号(検知信号)の信号レベルが予め設定されているレベルV1を超える部分が2箇所あり、各部分の幅(時間)がTS以上の場合は対象となるトナー像ラインの2本があるとみなす方法がある。
第2の判別方法としては、ライン間隔センサ15において検知領域全域に対応する1周期内の出力信号(検知信号)の信号レベルが、そのピーク値との比が予め設定されている値RV1を超える部分が2箇所あり、各部分の幅(時間)がTS以上の場合は対象となるトナー像ラインの2本があるとみなす方法がある。
検知対象ライン以外のトナー像による誤動作を防ぐため前述した判別方法を実施する期間は、ドラム周上の定められた検知区間のみとし、他の区間はライン間隔検知をしない方法も同時に動作させることができる。
図13は検知区間をドラム周上にn点設けたときのタイミングを示す図である。ドラムマーク17−1を検出するドラムセンサ17の信号SDにより、ドラム周上の基準位置(t0に対応)を決め、その基準値からの位置により検知区間をドラム周上に設ける。
なお、間隔検知用ライン16−nはその検知区間内に作成される。
ここで検知区間が固定していると、ライン間隔センサ15内の光源によるドラム面の照射位置も固定することになる。その場合ドラム面の照射位置に光照射の履歴が残り画像作成時斑点状の異常部分を生じさせることがある。そこで異常部分が発生する場合には、検知区間を異常部分が発生しない時間間隔で適宜ずらす方法をとることにより、照射位置が分散され光照射の履歴が無視出来るレベルとなり、異常画像発生を防止することができる。
図13は、ドラムセンサ17の信号であるドラム信号からそれぞれt1、t2・・・tn−1、tn時間後に検知区間a(各時間T1)を設け、ライン間隔センサ15で検知するタイミングを示している。その検知時、ライン間隔センサ15はこの図には示していない光源35で感光体を光照射する必要がある。タイミングを固定した場合は感光体上の同一個所にその光照射が行われることとなる。感光体の特性や光強度により、履歴が残り検知位置以外の領域と感光体の挙動が異なり画像形成時に斑点状の異常を生ずることがある。経時や感光体の使用頻度に応じて検知区間aから検知区間bに変更することにより、光照射部分を分散し履歴のレベルを減少させることにより異常画像等の副作用を防ぐようにしている。
次に、図11(a)の出力値のピーク値位置からライン間隔を算出方法について説明する。そのピーク値間隔(ライン間隔センサ15の画素間隔数に換算した値としてはNX)を求めることによりLXを求める。
LX=8NX(μm)
8(μm):ライン間隔センサ15の主走査方向画素間隔
なお、ここではライン間隔センサ15とドラムの倍率は1/1
LYも同様に求められる。
LY=8 NY(μm)
なお、図11(a)における2つの山状形の信号が同一レベルで且つ傾きが同じ位置の間隔から算出する方法や、図11(a)を微分した図11(b)の信号のゼロクロス点間隔から算出する方法を採用した場合も、前述したピーク値間隔を算出した方法でライン間隔を算出することができる。
ところで、図12(b)はトナーラインが近接していて、ライン間隔センサ15の出力信号のピーク位置P2、P3を検出しにくいだけでなく、そのピーク位置P2、P3がトナーライン(破線)の位置P1、P2と異なってしまいライン間隔やライン位置を検出できなくなる。トナーラインが重なっている場合、副走査方向の調整位置としては理想の状態)も当然検知できない。
そこで、本実施の形態では、ライン間隔センサ15で検知する場合に、予め設定されたビーム制御値により、トナーライン間隔を検知しやすい間隔になるよう設定して検出を行う。つまり、オフセットを設けるようにする。そのトナーライン間隔を目標値(オフセット値を含む値)に追従させる制御を行った後、オフセット分を除いたビーム制御値にする。これにより、トナーラインが近接している場合、または完全に重複している場合においても、検知制御が可能となる。
図14はドラム10がドラムの偏心等により上下動し、主走査方向の書き込み開始位置が変動することを示している。なお、上下動による副走査方向の書き込み開始位置の変動は、光ビームの延長線がドラムの回転中心に近接している場合、無視出来るレベルである。
第1書き込み系の光ビームb、第2書き込み系の光ビームdを示す。そしてドラム10が上下方向のH2において繋ぎ目が適正、即ち第1、第2書き込み系の書き込み開始ドット(位置)間のドット間隔が、42.3±10μm(600dpiの場合)となっているところを示す。ドラムがH2の位置から上方向H1、下方向H2間で上下動した場合、繋ぎ目にある各書き込み開始位置のドット間隔はLX20(適正値)を挟んでからLX10、LX30間で変動することを示している。
検出用ライン画像16−nを作成するに当たり、同期検知信号DET基準の時間で管理した同一(TD1一定)タイミングでLDを制御して作成しても、図14で説明したように上下動で書き込み開始位置が変動し、したがって、その変動量と同じだけ主走査方向のライン間隔が変動する。
その様子と補正の関係を図15に示す。間隔検出用ライン16nをライン間隔センサ15により検知することにより、そのライン間隔変動を検出する(図15のライン間隔:補正前)。各ライン間隔:補正前はドラム信号を基点にドラム一周分検出される。補正値とはライン間隔を適正値にするため(したがって書き込み開始位置のドット間隔を適正値LX2にする)ためにライン間隔をどれだけ変更すればよいかを示す値である。
図15において縦軸は主走査方向のライン間隔LX、横軸は、ドラム位置(ドラム信号を起点とした走査ライン数に置き換えられている値)、サイン波状実線はライン間隔:補正前を示す。間隔検知センサ15を使用して求めたライン間隔LXは適正値LX2を挟んで最小値LX1、最大値LX3の値を示している。
適正値LX2になっているとき、図14の繋ぎ目にある各書き込み開始位置のドット間隔LX20は42.3±10μm(600dpiの場合)となっている。以下に、図14と図15の間隔値の関係を示す(厳密には=記号とはならないが実用上=としても問題なし)。
LX1=LX10+一定値(設定値)
LX2=LX20+一定値(設定値)
LX3=LX30+一定値(設定値)
上記一定値は、0.2〜1.0mmの任意の設定値。ライン間隔センサ15の検知範囲、ラインの太さ等を考慮して設定する。
ライン間隔LXはドラム位置によって変化するので、繋ぎ目にある各書き込み開始位置のドット間隔も変化する。ライン間隔LXの適正値LX2からの偏差ΔLxmはドラム位置によって変化する。
図15においては、ドラム信号がアサート(L→H)になってからドラム周方向距離lm(主走査本数、すなわち同期検知信号の数m)の位置Pmにおける偏差をΔLxmで示してある。(位置が異なったPm’の補正値例ΔLxm’も示されている)偏差ΔLxmはドラム回転によって周期的に変化する成分ΔLxm1とドラム回転によっては変化しない(他の原因によって変動する)成分ΔLx2で構成されている。
ΔLxm=ΔLxm1+ΔLx2
この式の各値ΔLxm、ΔLxm1、ΔLx2は極性を持つ。
偏差ΔLxmの極性は、+においては間隔が適正値より広すぎることを示し、−は狭すぎることを示す。ΔLxm1は、サイン波状実線(ライン間隔:補正前)がドラム上下動中心(一点破線)より上の場合(+)とし、下の場合を−とする。ΔLx2は適正間隔が(二点破線)より上の場合に(+)とし、下の場合に(−)とする。
なお、右辺の極性説明は式の解釈をするためであり、ΔLxmを右辺の2つの成分に分解する必要はない。実際はΔLxmの極性はライン間隔LXがLX2より上の場合(+)とし、下の場合は(−)とすればよい。
この図15からドラム上の位置Pm(ドラム信号立ち上がりL→Hから主走査ラインm本目の位置)ではライン間隔の偏差ΔLxm間隔だけラインを小にすればよいことがわかる。ライン間隔センサ15によるライン間隔の検出は主走査ライン毎には行われない。ドラム周(副走査)方向において数十mm間隔で検知が行われる。
そこで、ライン間隔の検出が行われていない区間の偏差ΔLxmは実際にセンサで検出された値から補間によって求められる。ライン間隔センサ15により求められた偏差と補間により求められた偏差の偏差集合ΔLxn(1,2,3・・・n)はドラム一周分の各主走査ラインに対応させることが出来る。
偏差集合ΔLxn(1,2,3・・・n)は、図5に示した遅延回路34−1、34−2により書き込み開始位置を補正するための補正値ΔLxncを作成するために使用される。遅延回路34−1、34−2が1nS遅延で1μm書き込み開始位置が移動する場合(遅延時間と移動量の関係はシステムにより異なる。換算式のみで対応できる)は、ΔLxnの1μm以下に相当する部分を四捨五入し極性(+においては間隔が適正値より広すぎることを示し−は狭すぎる)を考慮すればよい。
補正値ΔLxncは、ドラム位置(従ってドラム信号L→Hからの主走査ライン数。ここではnにより示されている)との関係がわかるような方式で、不揮発メモリ38に保持される。その各ライン間隔の補正値ΔLxmcは必要に応じて、画像形成がなされていないタイミングで更新される。更新は間隔検知用ライン16−nを作成し、ドラム一周分のΔLxnを検知し、その値を元にした補正値ΔLxncを不揮発メモリに上書きすることにより行う。Pfはドラム上の画像開始位置を示す。装置の画像形成タイミングによりPfは(ドラム信号基準に見た場合)移動する。Psはライン間隔が適正になっている位置を示している。
コピー、プリントを行うときの画像形成に当たっては、主走査書き込み開始位置を、補正値ΔLxnをドラム信号に同期させ使用することによりドラム10上で適正にする(ライン間隔が適正値LX2となっている)。
なお、主走査書き込み開始位置の変更は、遅延回路34−1、34−2を使用して行うため、補正値ΔLxncは遅延用信号S1、S2として制御部30から出力されている。遅延用信号S1、S2を補正値ΔLxnから作成するに当たっては第1、第2書き込み系各書き込み位置移動の合計が前記偏差ΔLxmを0にするように考慮されている。
ドラム信号からの位置(第1同期検知信号がアサートされた数m)に対応した補正値ΔLxmcが用意されているので、ドラム上のどの位置でも補正が出来、設定値からの偏差の少ない書き込み開始位置調整が出来る。補正後は図15の偏差を持ったサイン波状のライン間隔:補正前の曲線はLX2の値を示している2点鎖線(直線状)となる。
間隔検出用ライン16−nの間隔を今まで説明してきた調整を、画像書き込み工程中を除いて、常時行うと間隔の偏差ΔLxmはより少なくなるが、常時制御する方法はトナー消費、電力消費、機械の損耗を伴うため得策ではない。ΔLxm≦±10μmを保持できれば十分である。
ライン間隔センサ15の検知領域は2×2mmほどであり、図10の間隔検知ラインのライン長はその検知領域の縦横長さほどの長さでよい。
次に、間隔検出用ライン16−nと副走査の方向の光ビーム調整の関係に付いて説明する。
本実施の形態では、従来、主走査方向の1ライン分を2分割し、2分割した各ラインを繋ぎ目部分で延長し、ライン間隔センサ15でその繋ぎ目部分を検知しても、各ラインが接近しているため出力信号は、図11(c)の様になりライン間隔を検知することが非常に困難となる。
そこで、間隔検出用ライン16−nを作成するに当たり、副走査方向のライン間隔をライン間隔センサ15で検出するのに都合の良い間隔(例えば約0.5mm)にする。
なお、このライン間隔は環境、経時によって変化する。このような変化をライン間隔センサ15で検知し所定の値に保持することにより繋ぎ目補正をする。その都合の良い間隔は片方の光ビームの書き込みを予め決められた走査本数(例えば12本)遅延させることにより行う。繋ぎ目補正を行った後の調整工程ではない本来の画像作成工程では、前記した予め決められた走査本数(例えば12本)遅延分を削除し光ビーム走査を行うようにすればよい。
本実施の形態としての光ビーム走査装置の概略構成を示す斜視図。 本実施の形態としての光ビーム走査装置を上方から見た概略平面図。 光ビーム走査装置の第1書き込み系だけの光路の概略図。 光ビーム走査装置の第1書き込み系と第2書き込み系の光路の概略図。 本実施の形態の光ビーム走査装置のブロック図。 本実施の形態の光ビーム走査装置における各部の相対位置を示した図。 第1書込み系の第1の同期検知センサ、第2の同期検知センサ、第1及び第2書込み系の書き込み開始位置を示した図。 各部の出力信号と画素クロックの関係を示すタイミング図。 クロック信号、スタート信号、出力信号Vo、トリガ信号Trigの関係を示す図。 検出用ライン画像を検知したときのライン間隔センサの出力信号VXを示した図。 ライン間隔センサの出力を示した図。 ライン間隔センサの出力を示した図。 検知区間をドラム周上にn点設けたときのタイミング図。 主走査方向の書き込み開始位置の変動を示した図。 主走査方向の書き込み開始位置の変動と補正の関係を示した図。
符号の説明
1 半導体レーザ(LD)光源1、2 コリメートレンズ、3 シリンドリカルレンズ、4 ポリゴンミラー、5 第1Fθレンズ、6 第2Fθレンズ、7 第1ミラー、8 第2ミラー、9 第3ミラー、10 感光体ドラム、11 第1の同期検知センサ、13 第2の同期検知センサ、14 ステッピングモータ、15 ライン間隔センサ、16 間隔検出用ライン(顕像ライン)、17 ドラムセンサ、17−1 ドラムマーク、30 制御部

Claims (6)

  1. 感光体上で少なくとも複数本の光ビームの走査ラインを繋げて主走査方向を分割して走査する画像形成装置において、各光ビ−ムに対応して光ビームの走査ライン基準位置を検出する同期検知手段と、前記同期検知手段による同期検知信号に基づいて画像開始位置までの主走査方向の距離を変更する第1の変更手段と、副走査方向の画像位置を変更する第2の変更手段と、前記感光体上に主走査方向及び副走査方向の各々に複数の顕像ラインを形成する顕像ライン形成手段と、前記顕像ラインを検知する顕像ライン検知手段と、該顕像ライン検知手段の検知信号により前記顕像ラインが検知範囲内か否かを判定し、前記検知信号に含まれる特定信号の位置又は間隔を算出して前記主走査方向、及び副走査方向の夫々のライン画像位置又は間隔を特定するための信号処理を行う信号処理手段と、前記光ビームの画像書込開始位置を変更することにより、複数本のライン画像の位置又は間隔を予め設定された目標値に追従させるように制御する制御手段と、を備えることを特徴とする光ビーム走査装置。
  2. 請求項1に記載の光ビーム走査装置において、前記信号処理手段は、前記顕像ライン検知手段の検知信号により前記顕像ラインが検知範囲内か否かの判定を行う際に、前記顕像ラインの信号レベル、ライン幅、変化率の少なくとも1つを用いて判定を行うことを特徴とする光ビーム走査装置。
  3. 請求項1または2に記載の光ビーム走査装置において、前記信号処理手段は、当該光ビーム走査装置の動作に対応した特定の期間に前記信号処理手段による判定を行うことを特徴とする光ビーム走査装置。
  4. 請求項1に記載の光ビーム走査装置において、前記信号処理手段は、前記顕像ライン検知手段により前記顕像ラインを検知したときに、前記顕像ラインを形成する複数のラインのライン幅、又はライン濃度を近似させることを特徴とする光ビーム走査装置。
  5. 請求項1に記載の光ビーム走査装置において、前記顕像ラインを前記感光体に形成する際に、その形成位置を使用条件に応じて変更し、形成位置に応じて前記顕像検知手段により検知を行う位置を変更することを特徴とする光ビーム走査装置。
  6. 請求項1乃至請求項5の何れか一項に記載の光ビーム走査装置を備えていることを特徴とする画像形成装置。
JP2004242955A 2004-08-23 2004-08-23 光ビーム走査装置及び画像形成装置 Pending JP2006058795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004242955A JP2006058795A (ja) 2004-08-23 2004-08-23 光ビーム走査装置及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004242955A JP2006058795A (ja) 2004-08-23 2004-08-23 光ビーム走査装置及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2006058795A true JP2006058795A (ja) 2006-03-02

Family

ID=36106283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004242955A Pending JP2006058795A (ja) 2004-08-23 2004-08-23 光ビーム走査装置及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2006058795A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310227A (ja) * 2006-05-19 2007-11-29 Kyocera Mita Corp レーザ照射タイミング制御回路、光走査装置、画像形成装置及びbd信号変換回路
JP2008257197A (ja) * 2007-03-12 2008-10-23 Canon Inc 画像形成装置、その制御方法及びその制御プログラム
WO2016204267A1 (ja) * 2015-06-17 2016-12-22 株式会社ニコン パターン描画装置およびパターン描画方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007310227A (ja) * 2006-05-19 2007-11-29 Kyocera Mita Corp レーザ照射タイミング制御回路、光走査装置、画像形成装置及びbd信号変換回路
JP2008257197A (ja) * 2007-03-12 2008-10-23 Canon Inc 画像形成装置、その制御方法及びその制御プログラム
WO2016204267A1 (ja) * 2015-06-17 2016-12-22 株式会社ニコン パターン描画装置およびパターン描画方法
CN107735715A (zh) * 2015-06-17 2018-02-23 株式会社尼康 图案描绘装置及图案描绘方法
JPWO2016204267A1 (ja) * 2015-06-17 2018-04-12 株式会社ニコン パターン描画装置およびパターン描画方法
TWI689788B (zh) * 2015-06-17 2020-04-01 日商尼康股份有限公司 圖案描繪裝置及圖案描繪方法
CN111665686A (zh) * 2015-06-17 2020-09-15 株式会社尼康 图案描绘方法
TWI736147B (zh) * 2015-06-17 2021-08-11 日商尼康股份有限公司 圖案描繪裝置
CN111665686B (zh) * 2015-06-17 2024-01-05 株式会社尼康 图案描绘方法

Similar Documents

Publication Publication Date Title
JP4336177B2 (ja) 画素クロック生成装置、光走査装置及び画像形成装置
US20050219354A1 (en) Pixel clock generator, optical scanner, and image forming apparatus
JP6214705B2 (ja) 画像形成装置
JP2005140922A (ja) 光走査装置、画像形成装置及び位置ずれ補正方法
JP4868923B2 (ja) 光走査装置および画像形成装置
JP2011056960A (ja) 画像形成装置及び方法
JP2007156259A (ja) 光走査装置及び画像形成装置
JP2013240994A (ja) レーザ光間の位置ずれを補正する画像形成装置
JP2008089695A (ja) 画像形成装置
JP4323939B2 (ja) 画像形成装置及び画像形成方法
JP2001051214A (ja) 光ビーム走査装置および画像形成装置
JP2006058795A (ja) 光ビーム走査装置及び画像形成装置
JP6662086B2 (ja) 光書込装置及び画像形成装置
JPH10232357A (ja) 光走査装置
US6788320B2 (en) Image formation apparatus and registration method
JP2004306292A (ja) 画像形成装置
JP4697080B2 (ja) 光ビーム走査装置
JP2005088551A (ja) 画像形成装置
JP2005096114A (ja) 画像形成装置
JP2000292720A (ja) 画像形成装置
JP6758906B2 (ja) 画像形成装置
JP4425543B2 (ja) 分割走査書込装置
JP2006297630A (ja) 画像形成装置及び画像の歪み補正方法
JP2005053095A (ja) 画素クロック生成装置、画素クロック生成方法、及び、画像形成装置
JP2003266770A (ja) 画像形成装置