JP2006050568A - 画像処理装置、プログラム及び画像処理方法 - Google Patents

画像処理装置、プログラム及び画像処理方法 Download PDF

Info

Publication number
JP2006050568A
JP2006050568A JP2005176584A JP2005176584A JP2006050568A JP 2006050568 A JP2006050568 A JP 2006050568A JP 2005176584 A JP2005176584 A JP 2005176584A JP 2005176584 A JP2005176584 A JP 2005176584A JP 2006050568 A JP2006050568 A JP 2006050568A
Authority
JP
Japan
Prior art keywords
image
gradation
value
conversion
gradation conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005176584A
Other languages
English (en)
Inventor
Koji Hayashi
浩司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005176584A priority Critical patent/JP2006050568A/ja
Priority to US11/174,565 priority patent/US7450280B2/en
Publication of JP2006050568A publication Critical patent/JP2006050568A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6027Correction or control of colour gradation or colour contrast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/90Dynamic range modification of images or parts thereof
    • G06T5/92Dynamic range modification of images or parts thereof based on global image properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10008Still image; Photographic image from scanner, fax or copier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20192Edge enhancement; Edge preservation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

【課題】特徴量の抽出結果から階調変換のパラメーターの影響を低減させ、画像上の不具合の発生を抑制できるようにする。
【解決手段】第1の階調変換手段409で用いた階調変換パラメーターにより特徴量抽出閾値を階調変換し、特徴量抽出手段410では、階調変換された特徴量抽出閾値に基づいて第1の階調変換手段による階調変換後の画像データから特徴量を抽出する。これにより、特徴量の抽出結果から階調変換のパラメーターの影響を低減させることができ、画像上の不具合の発生を抑制することができる。
【選択図】 図19

Description

本発明は、画像処理装置、プログラム及び画像処理方法に関する。
特許文献1には、濃度を変換するためのγ変換テーブルを複数有し、該γ変換テーブルのうち少なくとも1つは他のγ変換テーブルよりも広い低濃度域のデータを再現させない特性を有し、γ変換テーブルの切替えは、画像データの特徴を多値で表す特徴量抽出手段から得られる情報と閾値に応じてテーブルを選択することで行なう技術が開示されている。
特開2002−325179号公報
カラー複写機において、スキャナーからのRGB画像データを画像の特徴量(第1の特徴量)に応じて、文字、網点、写真などのいずれの画像であるか否かを判断し、この判断結果に基づいて、色補正後のYMCK画像データに対して、文字と判定された画素に対しては文字画像用の階調変換テーブルを使用して階調変換を行い、写真もしくは網点と判定された画素に対しては写真画像用の階調変換テーブルを使用して階調変換を行うようにした技術が知られている。この場合、例えば、文字画像用の階調変換テーブルは、階調性よりも文字の再現性を重視して高コントラスト階調特性とし、写真画像用の階調変換テーブルは階調性を重視した低コントラストな階調特性などにしている。
更に、画質を向上させることを目的として、YMCK画像データから第2の特徴量を抽出し、文字、網点、写真であるかを判定し、それぞれに応じた第2の階調変換を行い、誤差拡散を行う場合がある。たとえば、第2の特徴量で文字と判定された画素に対しては誤差拡散の固定閾値を使用し、第2の特徴量で文字以外の領域、すなわち写真、網点などと判断された画像データに対して周期的に振動する量子化閾値を使用する。これにより、それぞれ文字の再現性、網点を重視した再現性、写真画像の階調再現性を重視した階調処理などを行うことができる。
上記の技術では、第1の特徴量の抽出結果に基づいて第1の階調変換手段の特性を、文字画像か写真又は網点かで切り替えて第1の階調変換を行い、更に、第2の特徴量の抽出結果から文字、網点、写真の判定を行なって第2の階調変換を行い、更に、量子化閾値の振動の振幅を切り替えて誤差拡散処理を行なっている。
しかしながら、このような処理では、写真モードの時においては、文字部分のトナーが散ることによって文字のぼけが生じ、くっきりとした文字にならないという画像上の不具合が発生することがある。これは、特徴量の抽出処理において第1の階調変換における階調変換テーブル(プリンタγテーブル)による変更の影響を受けてしまうからである。
本発明の目的は、特徴量の抽出結果から階調変換のパラメーターの影響を低減させ、画像上の不具合の発生を抑制できるようにすることである。
本発明は、画像データに基づいて画像形成する際の画質モードの選択を受け付ける画質モード受付手段と、この画質モード受付手段により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第1の階調変換手段と、この第1の階調変換手段で用いた前記階調変換パラメーターにより特徴量抽出閾値を階調変換し、階調変換された特徴量抽出閾値に基づいて前記第1の階調変換手段による階調変換後の画像データから特徴量を抽出する特徴量抽出手段と、この特徴量抽出手段による特徴量抽出結果及び前記画質モード受付手段により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第2の階調変換手段と、を備えている画像処理装置である。
本発明によれば、第1の階調変換手段で用いた階調変換パラメーターにより特徴量抽出閾値を階調変換し、階調変換された特徴量抽出閾値に基づいて第1の階調変換手段による階調変換後の画像データから特徴量を抽出することにより、特徴量の抽出結果から階調変換のパラメーターの影響を低減させることができ、画像上の不具合の発生を抑制することができる。
本発明を実施するための最良の一形態について説明する。
以下は、本発明の画像処理装置を実施する電子写真複写機(以下、単に複写機と言う)に関する実施の形態である。まず、図1に示す機構図によって本実施の形態である複写機本体101の機構の概略を説明する。図1において、本発明の画像形成装置を実施する複写機本体101のほぼ中央部に4つ並んで配置された像担持体としての有機感光体(OPC)ドラム102a〜102dの周囲には、該感光体ドラム102a〜102dの表面を帯電する帯電チャージャー103a〜103d、一様帯電された感光体ドラム102a〜102dの表面上に半導体レーザ光を照射して静電潜像を形成するレーザ光学系104a〜104d、静電潜像に各色トナーを供給して現像し、色毎にトナー像を得る黒現像装置105及びイエローY、マゼンタM,シアンCの3つのカラー現像装置106,107,108、感光体ドラム102a〜102d上に形成された色毎のトナー像を順次転写する中間転写ベルト109、上記中間転写ベルト109に転写電圧を印加するバイアスローラ110a〜110d、転写後の感光体ドラム102の表面に残留するトナーを除去するクリーニング装置111a〜111d、転写後の感光体ドラム102a〜102dの表面に残留する電荷を除去する除電部112a〜112dなどが順次配列されている。また、上記中間転写ベルト109には、転写されたトナー像を転写材に転写する電圧を印加するための転写バイアスローラ113及び転写材に転写後に残留したトナー像をクリーニングするためのベルトクリーニング装置114が配設されている。
中間転写ベルト109から剥離された転写材を搬送する搬送ベルト115の出口側端部には、トナー像を加熱及び加圧して定着させる定着装置116が配置されているとともに、この定着装置116の出口部には、排紙トレイ117が取り付けられている。
レーザ光学系104の上部には、複写機本体101の上部に配置された原稿載置台としてのコンタクトガラス118、このコンタクトガラス118上の原稿に走査光を照射する露光ランプ119、原稿からの反射光を反射ミラー121によって結像レンズ122に導き、光電変換素子であるCCD(Charge Coupled Device)のイメージセンサレイ123に入光させる。CCDのイメージセンサレイ123で電気信号に変換された画像信号は図示しない画像処理装置を経て、レーザ光学系104中の半導体レーザのレーザ発振を制御する。
次に、複写機に内蔵される制御系について説明する。図2に示すように、この制御系は、メイン制御部(CPU(Central Processing Unit))130を備え、このメイン制御部130に対して所定のROM(Read Only Memory)132、RAM(Random Access Memory)131、NV−RAM(不揮発RAM)183、フラッシュメモリ184が付設されている。NV−RAM183には各種パラメーターを記憶し、フラッシュメモリ184には制御プログラムを記憶させている。更に上記メイン制御部130には、インターフェースI/O133を介してレーザ光学系制御部134、電源回路135、YMCK各作像部に設置された光学センサ136、YMCK各現像装置内に設置されたトナー濃度センサ137、環境センサ138、感光体表面電位センサ139a〜139d、トナー補給部140、中間転写ベルト駆動部141、操作部142、がそれぞれ接続されている。上記レーザ光学系制御部134は、前記レーザ光学系104a〜104dのレーザ出力を調整するものであり、また上記電源回路135は、前記帯電チャージャー113a〜113dに対して所定の帯電用放電電圧を与えると共に、現像装置105,106,107,108に対して所定電圧の現像バイアスを与え、かつ、バイアスローラ110a〜110dおよび転写バイアスローラ113a〜113dに対して所定の転写電圧を与えるものである。
なお、光学センサ136は、それぞれ感光体102a〜102dに対向させ、感光体102a〜102d上のトナー付着量を検知するための光学センサ136a、転写ベルト109に対向させ、転写ベルト109上のトナー付着量を検知するための光学センサ136b、搬送ベルト115に対向させ、搬送ベルト115上のトナー付着量を検知するための光学センサ136cを図示した。なお、実用上は光学センサ136a〜136cのいずれか1カ所で検知すれば良い。
光学センサ136a〜136cは、前記感光体ドラム102a〜102dの転写後の領域に近接配置される発光ダイオードなどの発光素子とフォトセンサなどの受光素子とからなり、感光体ドラム102上に形成される検知パターン潜像のトナー像におけるトナー付着量及び地肌部におけるトナー付着量が色毎にそれぞれ検知されるとともに、感光体除電後のいわゆる残留電位が検知されるようになっている。
この光電センサ136a〜136cからの検知出力信号は、図示を省略した光電センサ制御部に印加される。光電センサ制御部は、検知パターントナー像に於けるトナー付着量と地肌部におけるトナー付着量との比率を求め、その比率値を基準値と比較して画像濃度の変動を検知し、YMCK各色のトナー濃度センサ137の制御値の補正を行なう。
更に、トナー濃度センサ137は、現像装置105〜108には、現像装置105から108内に存在する現像剤の透磁率変化に基づいてトナー濃度を検知する。トナー濃度センサ137は、検知されたトナー濃度値と基準値と比較し、トナー濃度が一定値を下回ってトナー不足状態になった場合に、その不足分に対応した大きさのトナー補給信号をトナー補給部140に印加する機能を備えている。電位センサ139は、像担持体である感光体102a〜102dのそれぞれの表面電位を検知し、中間転写ベルト駆動部141は、中間転写ベルトの駆動を制御する。
次に、図3のブロック図に基づいて複写機における画像処理部について説明する。
図3において、符号420はスキャナー、符号401はシェーディング補正部、符号402はスキャナーγ変換部、符号403は画像分離部、符号404はMTFフィルタ、符号405は色変換UCR処理部、符号424は色相判定部、符号406は画像メモリ、符号407は変倍部、符号408は画像加工(クリエイト)部、符号409は第1のプリンタγ変換処理部(プリンタγ変換1)、符号410〜412は画像処理プロセッサ415内で行う処理のブロックで、符号410は特徴量抽出処理、符号411は第2のプリンタγ変換処理(プリンタγ変換2)、符号412は階調処理、符号413は第3のプリンタγ変換部(プリンタγ変換3)、符号414はプリンタエンジンとなるプリンタである。符号415は画像処理装置を制御するCPU(Central Processing Unit)、符号417はROM(Read Only Memory)、416はRAM(Random Access Memory)である。この画像処理装置のスキャナー420側の装置は、スキャナー・IPU制御部418に設けられている。
複写すべき原稿は、スキャナー420によりR、G、Bに色分解されて、一例として、10ビット信号で読み取られる。読み取られた画像信号は、シェーディング補正部401により、主走査方向のムラが補正され、8ビット信号で出力される。
スキャナーγ変換部402では、スキャナー420からの読み取り信号が反射率データから明度データに変換される。画像分離部403では、画像中の文字部分と写真部分の判定、及び有彩色・無彩色の判定を行う。
MTFフィルタ404では、シャープな画像やソフトな画像など、使用者の好みに応じてエッジ強調や平滑化等、画像信号の周波数特性を変更する処理に加えて、画像信号のエッジ度に応じたエッジ強調処理(適応エッジ強調処理)を行う。例えば、文字エッジにはエッジ強調を行い、網点画像にはエッジ強調を行わないという、所謂、適応エッジ強調をR、G、B信号それぞれに対して行う。
図4に、MTFフィルタ404で適応エッジ強調を行う回路の例を示す。スキャナーγ変換402によって反射率リニアから明度リニアに変換された画像信号は、図4の平滑化フィルタ部1101によって平滑化する。平滑化には、一例として、表1の係数を使用する。
Figure 2006050568
次に、次段の3×3のラプラシアンフィルタ1102によって画像データの微分成分が抽出される。ラプラシアンフィルタの具体例は、表2のとおりである。
Figure 2006050568
スキャナーγ変換によるγ変換をされない10ビットの画像信号のうち、上位8ビット(一例である)成分が、エッジ量検出フィルタ1103により、エッジ量検出がなされる。エッジ量検出フィルタ1103の具体例を図5に示す。
エッジ量検出フィルタ1103により得られたエッジ量のうち、最大値がエッジ度として使用される。すなわち、エッジ度は、必要に応じて後段の平滑化フィルタ1104により平滑化される。これにより、スキャナーの偶数画素と奇数画素の感度差の影響を軽減する。
一例として、表3のような係数を使用する。
Figure 2006050568
そして、テーブル変換部1105により、求められたエッジ度をテーブル変換する。このテーブルの値により、線や点の濃さ(コントラスト、濃度を含む)および網点部分の滑らかさを指定する。このテーブルにおける画像のエッジ度とフィルタ係数の関係の例を図6に示す。エッジ度は、白地に黒い線や点などで最も大きくなり、印刷の細かい網点や、銀塩写真や熱転写原稿などのように画素の境界が滑らかなものになるほど小さくなる。
図4のテーブル変換部1105によって変換されたエッジ度(画像信号C)と、ラプラシアンフィルタ1102の出力値(画像信号B)との積(画像信号D)が、平滑処理後の画像信号(画像信号A)に加算され、画像信号EとしてMTFフィルタ404後段の回路に伝達される。
色変換UCR処理部405では、入力系の色分解特性と出力系の色材の分光特性の違いを補正し、忠実な色再現に必要な色材Y,M,Cの量を計算する色補正処理と、Y,M,Cの3色が重なる部分をBk(ブラック)に置き換えるためのUCR処理を行なう。色補正処理は下式のようなマトリクス演算をすることにより実現できる。
Figure 2006050568
ここで、s(R),s(G),s(B)は、スキャナーγ変換処理後のスキャナー400のR,G,B信号を表す。hueは、White,Black,Yellow,Red,Magenta,Blue,Cyan,Greenなどの各色相を表す。この色相の分割は一例であり、もっと細かく分割しても良い。マトリクス係数aij(hue)は入力系と出力系(色材)の分光特性によって前述した色相毎に決まる。ここでは、1次マスキング方程式を例に挙げたが、s(B)×s(B),s(B)×s(G)のような2次項、あるいは、さらに高次の項を用いることにより、より精度良く色補正することができる。また、ノイゲバウアー方程式を用いるようにしても良い。何れの方法にしても、Y,M,Cは、s(B),s(G),s(R)の値から求めることができる。
色相の判定は、一例として以下のように行う。
スキャナー400の読み取り値と測色値との関係は、所定の係数bij(i,j=1,2,3)を用いて、
Figure 2006050568
と表される。
測色値の定義から、
Figure 2006050568
などと関係づけられるので、スキャナー400のR,G,B信号から読み取った原稿のある画素がどの色相に相当するかを判定することができる。図7に色相の一例を図示した。図7の色相については、一般に良く知られているので概略のみを説明する。上部の同心円の中心は、L*a*b*表色系で、a*=b*=0で無彩色の軸である。円の中心から放射方向への距離は、彩度c*で、a*>0かつb*=0の直線からある点までの角度は色相角h*である。Yellow,Red,Magenta,Blue,Cyan,Greenの各色相は、彩度のある基準値c0*に対し、彩度c*≧c0*となる彩度を有し、かつ、色相角がそれぞれ、
Yellow:H1*≦h*<H6*
Red:H2*≦h*<H1*
Magenta:H3*≦h*<0および0≦h*<H2*
Blue:H4*≦h*<H3*
Cyan:H5*≦h*<H4*
Green:H6*≦h*<H5*
などと定義する(一例である)。
図7の下の図の縦軸は、L*(明度)を表し、彩度c*が、c*≦c0*であり、
White:L=100
Black:L=0
などと定義する。
また、簡易的には、s(B),s(G),s(R)の各信号の比s(B):s(G):s(R)と絶対値から、色相を判定することも可能である。
一方、UCR処理は次式を用いて演算することにより行うことができる。
Y'=Y−α・min(Y,M,C)
M'=M−α・min(Y,M,C)
C'=C−α・min(Y,M,C)
Bk=α・min(Y,M,C)
上式において、αはUCRの量を決める係数で、α=1の時100%UCR処理となる。αは一定値でも良い。例えば、高濃度部では、αは1に近く、ハイライト部(低画像濃度部)では、0に近くすることにより、画像のハイライト部での画像を滑らかにすることができる。上記の色補正係数は、RGBYMCの6色相をそれぞれ更に2分割した12色相に、更に黒および白の14色相毎に異なる。
図3の色相判定部424は、読み取った画像データがどの色相に判別するかを判定する。そして、判定した結果に基づいて、色相毎の色補正係数を選択する。
画像メモリ406は色変換UCR処理後のYMCK画像信号、もしくは、色変換UCR
処理を行わないRGB信号を記憶する。
変倍部407は、画像の縦横変倍を行い、画像加工(クリエイト)部408は、リピート処理などを行なう。
プリンタγ変換部409及び画像処理プロセッサ415内で行われるプリンタγ変換部411に設定する階調変換パラメーターは、複写機の操作部142でユーザーが選択した画質モードに応じて変更する。
特徴量抽出部410は、後述する特徴量抽出処理によって、原稿画像の文字部分、網点部分、文字周囲、文字の中、それ以外の写真領域などの判定を行う。
図8の4元チャートに基づいて、プリンタγ変換部409及び画像処理プロセッサ415のプリンタγ変換部411に設定する階調変換パラメーターの文字モードの場合の設定例を説明する。
図8の第1象現の横軸は、プリンタγ変換後の目標値で原稿濃度に対応し、縦軸は出力値もしくは出力する画像濃度に対応する。グラフa1)は、文字画像に最適な処理を行なうモードである文字モードにおいて文字部分以外で目標とする特性で、グラフa4)は、文字モードにおける文字部分での目標とする階調特性である。目標とする階調特性は、後述する自動階調補正(ACC)により決定する(後述)。文字モードにおいて、文字部分と文字部分以外の写真部分とで目標とする階調特性をグラフa1)とa4)のように異ならせる理由は、文字部分などの高い空間周波数の潜像が感光体102上に形成された場合、現像時のいわゆるエッジ効果などにより、文字部分に付着したトナー量が必要以上に多くなり、文字の濃度が上がりすぎたり、文字部分に付着したトナーが文字周辺に散ったりするような不具合の発生を抑制するために、出力値をトップ濃度、すなわちFFhよりやや低めに設定するためである。
第2象現は、プリンタγ変換部409に設定するプリンタγテーブル1を表し、横軸はプリンタγテーブルへの入力である。グラフb1)〜b3)は、第3象現のグラフc1)〜c3)のそれぞれに対応している。
第3象現は、操作部142の操作により、ユーザーもしくはサービスエンジニアが画像濃度調整のために選択可能なマニュアルγ調整テーブルを表し、縦軸はγ変換後の出力値である。グラフc1)〜c3)はマニュアルγ調整テーブルの特性の変更例を表している。
第2象現のグラフb1)〜b3)と第3象現のグラフc1)〜c3)との関係は、ユーザーもしくはサービスマンがグラフc1)〜c3)のような特性を選んだ場合には、プリンタγ変換部409の設定パラメーターが、それぞれグラフb1)〜b3)のようなパラメーターになることを表す。例えば、グラフc1)に対し、グラフc2)では全体に第1象現の目標濃度a1)に対して、より出力画像濃度を下げるようなパラメーターとなり、一方、グラフc3)の設定は原稿濃度の薄い領域e)の出力濃度が目標濃度a1)よりも高くなるようなパラメーターb3)がプリンタγ変換部409に設定される。
第4象現は、第2のプリンタγ変換テーブルに設定する階調変換パラメータ(プリンタγテーブル2)を表す。グラフd1),d4)は、それぞれ第1象現のグラフa1),a4)に対応している。
なお、図9に第3象現に示したマニュアルγ調整の選択画面(操作部142のタッチパネルに表示される)の例を示した。
次に、図8の4元チャートに基づいて、プリンタγ変換部409及び画像処理プロセッサ415のプリンタγ変換部411に設定する階調変換パラメーターの写真モードの場合の設定例を説明する。
写真画像に最適な処理を行なうモードである写真モードの場合には、文字モードの場合と同様に、プリンタγテーブル1およびプリンタγテーブル2にパラメーターを割り当てる。
第1象現のグラフa1)は写真モードの文字部分以外の目標階調特性、グラフa4)は文字部分の目標階調特性となる。
第2象現のグラフb1)〜b3)は、第3象現のグラフc1)〜c3)のマニュアルγ調整テーブルに対応するプリンタγ変換部409に設定するプリンタγテーブル1のパラメーターである。
第4象現のグラフは、画像処理プロセッサ415で行うプリンタγ変換部411に設定するプリンタγテーブル2のパラメーターを示し、グラフd1)は、第1象現のグラフa1)の文字部分以外の目標階調特性に対応するプリンタγテーブル2として設定するパラメーター、グラフd4)は、第1象現のグラフa4)の文字部分の目標階調特性に対応するプリンタγテーブル2として設定するパラメーターである。
以上のように、特徴量抽出部(特徴量抽出手段)410は、所定の特徴量閾値に基づいて画像データから特徴量を抽出する。プリンタγ変換部(第1の階調変換手段)409は、画像データを対象に画像から抽出される特徴量によらず所定の階調変換テーブルに基づいて階調変換する。この階調変換処理後の画像データを対象にプリンタγ変換部(第2の階調変換手段)411は、特徴量抽出部410で抽出する特徴量の抽出結果に応じて階調変換する。そして、画質モード受付手段となる操作部142は、画像データに基づいてプリンタ414で画像形成する際の、文字モード、写真モードといった画質モードの選択を受け付ける。
そこで、CPU415は、図8を参照して説明したように、複数の階調変換特性から所望の階調特性を選択してプリンタγ変換部409,411に反映するか否かを、操作部142で受け付けた画質モードの選択に応じて切り替える(階調特性選択手段)。
このように、プリンタγ変換部409においては画像の特徴量によらない写真用(もしくは文字用)の階調変換を行い、プリンタγ変換部411では特徴量抽出部410による画像の特徴量抽出結果に応じた階調変換処理を行う。
これにより、プリンタγ変換部409での階調変換前の画像分離部403による文字部分の判定結果と、特徴量抽出部410における文字部分の判定結果とにずれが生じても画像上の不具合の発生を抑制することができる。
次に、文字、写真が混在した画像に最適な画質モードである文字・写真モードを選択したときのプリンタγテーブル1,2の例を、図10を参照して説明する。
図10の第1象現のグラフa1)=a2)=a3)は、文字・写真モードの文字部分での目標とする階調特性で、a4)は文字以外の領域(写真部分)の目標とする階調特性である。
第2象現のグラフb1)〜b4)は、プリンタγ変換部409に設定するプリンタγテーブル1で、このテーブルは文字部分と写真部分でも同様に変換される。
第3象現のグラフはマニュアルγ調整テーブルで、前述した図8の場合と同様で、グラフc1)及びc4)は階調特性の変更を行わない写真部分用もしくは文字部分用のスルーの階調変換特性、グラフc2)は低濃度域から高濃度域にかけて全体の画像濃度特性が低くなるように調整した文字部分用の階調テーブルの例、グラフc3)は低画像濃度域の画像濃度が若干高めになるように設定した文字部分用のマニュアルγ調整テーブルの例である。
第4象現のグラフd1)は画像処理プロセッサ415内で行われるプリンタγ変換部411に設定する階調変換パラメーターであって、第1象現のグラフa1)の目標特性で、かつ、プリンタγ変換部409に設定するプリンタγテーブル1の特性がグラフb1)で表され、かつ、第3象現に示すマニュアルγ調整テーブルがスルーc1)である場合の階調特性の例である。同様に、グラフd2)は、第3象現のマニュアルγ調整テーブルがグラフc2)である場合に設定する第2のプリンタγ変換部411に設定する階調変換パラメーターである。グラフd3)は第3象現のマニュアルγ調整テーブルがc3)である場合に設定する第2のプリンタγ変換部411に設定する階調変換パラメーターであり、グラフd4)は、画像処理プロセッサ415内で行われる第2のプリンタγ変換部411に設定する階調変換パラメーターで、第1象現のグラフa4)の目標特性であって、かつ、プリンタγ変換部409に設定するプリンタγテーブル1の特性がグラフb1)で表され、かつ、第3象現に示すマニュアルγ調整テーブルがスルーc1)である場合の階調特性を示した。
表4に、画質モードと、マニュアルγ調整テーブルを、プリンタγテーブル1ないしプリンタγテーブル2のどちらに反映するかの関係を示した。
Figure 2006050568
前述したように、文字モードもしくは写真モードでは、マニュアルγ調整テーブルをプリンタγテーブル1に反映し、文字・写真モードでは、写真用をプリンタγテーブル1に反映し、文字用をプリンタγテーブル2に反映する、などのように画質モードに応じて切り替える(画質モード受付手段)。
このように、操作部142のマニュアル操作により画質モードに応じて切り替えを行なうことで、ユーザーの好みを応じて、画像の文字部分、写真部分(網点部分を含む)の画像濃度を調整することができる。
また、前述のように、プリンタγ変換部(第2の階調変換手段)411は、折れ線近似によって作成された諧調変換特性を使用するので、後述のように逐次処理を用いずに画像処理プロセッサ415で処理を行うことができ、また写真部分に要求されるほどの階調変換を行うことができる。
前述の画像処理プロセッサ415は、SIMD型のプロセッサで実現することができる。そこで、以下では、SIMD型のプロセッサについて説明する。
図11は、SIMD型プロセッサ1506の概略構成を示す説明図である。SIMD(Single Instruction-stream Multiple Data-stream)型プロセッサ1506は、複数のデータに対し単一の命令を並列に実行させるもので、複数のPE(プロセッサ・エレメント)より構成される。それぞれのPEはデータを格納するレジスタ(Reg)2001、他のPEのレジスタをアクセスするためのマルチプレクサ(MUX)2002、バレルシフター(ShiftExpand)2003、論理演算器(ALU)2004、論理結果を格納するアキュムレーター(A)2005、アキュムレーターの内容を一時的に退避させるテンポラリー・レジスタ(F)2006から構成される。
各レジスタ2001は、アドレスバスおよびデータバス(リード線およびワード線)に接続されており、処理を規定する命令コード、処理の対象となるデータを格納する。レジスタ2001の内容は論理演算器2004に入力され、演算処理結果はアキュムレーター2005に格納される。結果をPE外部に取り出すために、テンポラリー・レジスタ2006に一旦退避させる。テンポラリー・レジスタ2006の内容を取り出すことにより、対象データに対する処理結果が得られる。
命令コードは各PEに同一内容で与え、処理の対象データをPEごとに異なる状態で与え、隣接PEのレジスタ2001の内容をマルチプレクサ2002において参照することで、演算結果は並列処理され、各アキュムレーター2005に出力される。
たとえば、画像データ1ラインの内容を画素ごとにPEに配置し、同一の命令コードで演算処理させれば、1画素ずつ逐次処理するよりも短時間で1ライン分の処理結果が得られる。特に、空間フィルタ処理はPEごとの命令コードは演算式そのもので、PE全てに共通に処理を実施することができる。
次に、図3の画像処理装置に用いるSIMD型の画像データ処理と逐次型の画像データ処理とで実現する場合のハードウェア構成について説明する。図12は、SIMD型の画像データ処理を実行するSIMD型画像データ処理部1500と、逐次型の画像データ処理を実行する逐次型画像データ処理部1507との構成についてハードウェア説明するブロック図である。本実施の形態では、まず、SIMD型画像データ処理部1500について説明し、続いて逐次型画像データ処理部1507について説明する。
SIMD型画像データ処理部1500と逐次型画像データ処理部1507とは、一方向に配列された複数の画素で構成される複数の画素ラインとして画像を処理するものである。図13は、画素ラインを説明するための図であり、画素ラインa〜dの4本の画素ラインを示している。また、図中に斜線を付して示した画素は、今回処理される注目画素である。
本実施の形態では、注目画素の誤差拡散処理に当たり、注目画素に対して周囲の画素の影響を、同一の画素ラインに含まれる画素、異なる画素ラインに含まれる画素の両方について考慮している。そして、注目画素とは異なる画素ラインに含まれる画素との間の誤差拡散処理をSIMD型画像データ処理部1500で行ない、注目画素と同一の画素ラインに含まれる画素(図中に丸付き数字の1,2,3を付して示した画素)との間の誤差拡散処理を逐次型画像データ処理部1507で行なう。
SIMD型画像データ処理部1500は、SIMD型プロセッサ1506と、SIMD型画像データ処理部1500に画像データおよび制御信号を入力する5つのデータ入出力用バス1501a〜1501eと、データ入出力用バス1501a〜1501eをスイッチングしてSIMD型プロセッサ1506に入力する画像データおよび制御信号を切り替えるとともに、接続されたバスのバス幅を切り替えるバススイッチ1502a〜1502cと、入力した画像データの処理に使用されるデータを記憶する20個のRAM1503と、各々対応するRAM1503を制御するメモリコントローラ1505a、メモリコントローラ1505b、メモリコントローラ1505aまたはメモリコントローラ1505bの制御にしたがってRAM1503をスイッチングする4つのメモリスイッチ1504a〜1504dを有している。
なお、以上の構成では、バススイッチ1502a〜1502cによって制御されるメモリコントローラをメモリコントローラ1505bとし、バススイッチ1502a〜1502cの制御をうけないメモリコントローラをメモリコントローラ1505aとして区別した。
上記したSIMD型プロセッサ1506は、レジスタ0(R0)〜レジスタ23(R23)を備えている。R0〜R23の各々は、SIMD型プロセッサ1506にあるPEとメモリコントローラ1505a,1505bとのデータインターフェースとして機能する。バススイッチ1502aは、R0〜R3に接続されたメモリコントローラ1505bを切り替えてSIMD型プロセッサに制御信号を入力する。
また、バススイッチ1502bは、R4,R5に接続されたメモリコントローラ1505を切り替えてSIMD型プロセッサ1506に制御信号を入力する。また、バススイッチ1502cは、R6〜R9に接続されたメモリコントローラ1505を切り替えてSIMD型プロセッサ1506に制御信号を入力する。そして、バススイッチ1502cは、R6〜R9に接続されたメモリコントローラ1505bを切り替えてSIMD型プロセッサ1506に制御信号を入力する。
メモリスイッチ1504aは、R0〜R5に接続されたメモリコントローラ1505bを使用してSIMD型プロセッサ1506内部のPEとRAM1503との間で画像データを授受している。また、メモリスイッチ1504bは、R6,R7に接続されたメモリコントローラ1505bを使用してSIMD型プロセッサ1506内部のPEとRAM1503との間で画像データを授受している。また、メモリスイッチ1504cは、R8〜R13に接続されたメモリコントローラ1505aまたはメモリコントローラ1505bを使用してSIMD型プロセッサ1506内部のPEとRAM1503との間で画像データを授受している。
そして、メモリスイッチ1504dは、R14〜R19に接続されたメモリコントローラ1505aを使用してSIMD型プロセッサ1506内部のPEとRAM1503との間で画像データを授受している。
画像データ制御部1203は、画像データとともに画像データを処理するための制御信号を、データ入出力用バス1501a〜1501eを介してバススイッチ1502a〜1502cに入力する。バススイッチ1502a〜1502cは、制御信号に基づいて接続されているバスのバス幅を切り替える。また、間接的に、あるいは直接接続されたメモリコントローラ1505bを制御し、画像データの処理に必要なデータをRAM1503から取り出すようにメモリスイッチ1504a〜1504cをスイッチングさせる。
SIMD型画像データ処理部1500は、誤差拡散処理を行なう場合、画像データ制御部1203(図14参照)を介して画像データを入力する。そして、注目画素が含まれる画素ライン(現画素ライン)よりも前に処理された画素ライン(前画素ライン)に含まれる画素の画素データと所定の閾値との差である誤差データと注目画素の画素データとを加算する。
SIMD型画像データ処理部1500では、SIMD型プロセッサ1506を用い、誤差データとの加算を複数の注目画素について並列的に実行する。このため、SIMD型プロセッサ1506に接続されているRAM1503のいずれかには、SIMD型プロセッサ1506で一括して処理される画素の数に対応する複数の誤差データが保存されている。本実施の形態では、SIMD型プロセッサ1506において1画素ライン分の加算処理を一括して行なうものとし、RAM1503に1画素ライン分の誤差データを保存するものとした。
SIMD型プロセッサ1506で一括して処理された1画素ライン分の画像データと誤差データとの加算値は、R20,R21,R23,R22の少なくとも2つから逐次型画像データ処理部1507に一つずつ出力される。また、以上の処理に使用される誤差データは、後述する逐次型画像データ処理部1507によって算出され、SIMD型プロセッサ1506に入力されるものである。
一方、逐次型画像データ処理部1507a,1507bは、コンピュータプログラムの制御によらず稼動するハードウェアである。なお、図4では、逐次型画像データ処理部1507をSIMD型プロセッサ1506に2個接続するものとしているが、本実施の形態の画像処理部では、このうちの1507bを逐次行なう誤差拡散処理専用に使用するものとし、もう一つの逐次型画像データ処理部1507は、γ変換などのテーブル変換用として用いるように機能特化している。
図3の画像処理部を構成する画像処理プロセッサ1204のハードウェア構成について説明する。図14は、本画像処理プロセッサ1204の内部構成を示すブロック図である。図14のブロック図において、画像処理プロセッサ1204は、外部とのデータ入出力に関し、複数個の入出力ポート1401を備え、それぞれデータの入力および出力を任意に設定することができる。
また、入出力ポート1401と接続するように内部にバススイッチ/ローカル・メモリ群1402を備え、使用するメモリ領域、データバスの経路をメモリ制御部1403において制御する。入力されたデータおよび出力のためのデータは、バススイッチ/ローカル・メモリ群1402をバッファー・メモリとして割り当て、それぞれに格納し、外部とのI/Fを制御される。
バススイッチ/ローカル・メモリ群1402に格納された画像データに対してプロセッサ・アレー部1404において各種処理を行ない、出力結果(処理された画像データ)を再度バススイッチ/ローカル・メモリ群1402に格納する。プロセッサ・アレー部1404における処理手順、処理のためのパラメーター等は、プログラムRAM1405およびデータRAM1406との間でやりとりが行なわれる。
プログラムRAM1405、データRAM1406の記録データは、シリアルI/F1408を通じて、プロセス・コントローラ211からホスト・バッファー1407にダウンロードされる。また、プロセス・コントローラ211がデータRAM1406の内容を読み出して、処理の経過を監視する。
処理の内容を変えたり、システムで要求される処理形態が変更になる場合は、プロセッサ・アレー部1404が参照するプログラムRAM1405およびデータRAM1406の内容を更新して対応する。以上述べた構成のうち、プロセッサ・アレー部1404が、前述のSIMD型画像データ処理部1500と逐次型画像データ処理部1507とに相当する。
図15は、逐次型画像データ処理部1507を説明するためのブロック図である。図示の逐次型画像データ処理部1507bは、誤差データ算出部1801と、誤差データ算出部1801が算出した誤差データから一つを選択するマルチプレクサ1807と、マルチプレクサ1807によって選択された誤差データを加工してSIMD型画像データ処理部1500から入力したデータに加算する誤差データ加算部1808とを備えている。
また、逐次型画像データ処理部1507bは、誤差データの選択に必要な信号をマルチプレクサ1807に入力するデコーダ1806と、逐次型画像データ処理部1507に対し、あらかじめ設定されている誤差拡散のモード(2値誤差拡散、3値誤差拡散、4値誤差拡散)のうちのいずれによって誤差拡散を実行するか、あるいは誤差拡散処理に使用される演算係数を設定できる誤差拡散処理ハードウェアレジスタ群1805を備えている。さらに、逐次型画像データ処理部1507bは、ブルーノイズ信号発生部1809を備え、誤差拡散処理にブルーノイズを使用するか否かをも誤差拡散処理ハードウェアレジスタ群1805の設定によって選択可能に構成されている。
誤差データ算出部1801は、現画素ラインに含まれる画素の画素データと所定の閾値との差である誤差データを算出する構成である。誤差データ算出手段1801は、3つの量子化基準値保存部1803a〜1803cと、3つのコンパレータ1804a〜1804cと、3つのマルチプレクサ1802a〜1802cのそれぞれに接続したしきい値テーブル群1810a〜1810cを備えている。
しきい値テーブル群1810a〜1810cは、一例としてそれぞれ6つのしきい値テーブルTHxA〜THxF(x=0,1,2)が接続している。これは、誤差拡散処理ハードウェアレジスタ群1805の設定によって選択可能であり、本実施例における階調処理では、MagentaおよびCyanの画像データの階調処理に用いる画像処理プロセッサと、YellowおよびBlackの画像データを階調処理する画像処理プロセッサの2つの画像処理プロセッサを使用する。
以下は、例としてMagentaおよびCyanの画像データ処理用の画像処理プロセッサについて説明する。Magenta用にTHxA〜THxC(x=0,1,2)を、Cyan用にTHxD〜THxF(x=0,1,2)を使用する。Magenta用として用いるTHxA〜THxC(x=0,1,2)は、文字、写真、中間などの画像の特徴量による抽出結果に応じて、それぞれどのしきい値テーブルが選択されるように選択可能としておくことができる。文字部分では主走査もしくは副走査の位置によらない固定しきい値を設定した単純な誤差拡散、写真部分では線数が低いディザしきい値を設定した誤差拡散、中間部分では写真部より高線数のしきい値を設定した誤差拡散を行うことができ、より好ましい画像を形成することができる。TH0A〜TH2Aは、同じ特徴量に判定された画素に対するしきい値である。Cyan用についても同様である。また、YellowおよびBlackの画像データを処理するプロセッサについては、上の説明のMagentaをYellowに、CyanをBlackに読み替えたものと同様である。
本実施の形態では、量子化基準値保存部1803a、コンパレータ1804a、閾値テーブル群1810aが接続したマルチプレクサ1802aが1組となって動作する。また、量子化基準値保存部1803b、コンパレータ1804b、閾値テーブル群1810bが接続したマルチプレクサ1802bが1組となって動作し、量子化基準値保存部1803c、コンパレータ1804c、閾値テーブル群1810cに接続したマルチプレクサ1802cが1組となって動作する。
逐次型画像データ処理部1507は、画像データと誤差データとの加算値(加算値データ)をSIMD型プロセッサ1506から入力する。この画像データは、今回処理される注目画素の画像データであり、誤差データは、注目画素以前に処理された画素の誤差データである。
入力した加算値データは、以前に処理された画素の誤差データに基づいて誤差データ加算部1808が算出した値を加算され、演算誤差低減のために16または32で除算される。さらに、除算された加算値データは、誤差データ算出部1801の3つのコンパレータ1804a〜1804cのすべてに入力する。なお、誤差データ加算部1808が以前に処理された画素の誤差データに基づいて算出した値については、後述する。
コンパレータ1804a〜1804cは、それぞれ接続された閾値テーブル群に接続したマルチプレクサ1802a〜1802cから閾値を入力する。そして、入力した加算値データから閾値を差し引き、画像データを作成する。また、加算値データからそれぞれの量子化基準値保存部1803a〜1803cに保存されている量子化基準値を差し引いた値を誤差データとしてマルチプレクサ1807に出力する。この結果、マルチプレクサ1807には、合計3つの誤差データが同時に入力することになる。なお、誤差拡散処理にブルーノイズを使用する場合には、ブルーノイズ信号発生部709がブルーノイズデータを比較的高周期でオン、オフしてブルーノイズを発生する。閾値は、コンパレータ1804a〜1804cに入力する以前にブルーノイズから差し引かれる。ブルーノイズを用いた処理により、閾値に適当なばらつきを持たせて画像に独特のテクスチャーが発生することを防ぐことができる。
閾値テーブル1802a〜1802cには、それぞれ異なる値の閾値が保存されている。本実施の形態では、閾値テーブル1802a〜1802cのうち、閾値テーブル1802aが最も大きい閾値を保存し、次いで閾値テーブル1802b、閾値テーブル1802cの順序で保存される閾値が小さくなるものとした。また、量子化標準値保存部1804a〜1804cは、接続された閾値テーブル1802a〜1802cに応じて保存する量子化基準値が設定されている。たとえば、画像データが0〜255の256値で表される場合、量子化基準値保存部1803aには255が、また、量子化基準値保存部1803bには170が、量子化基準値保存部1803cには85が保存される。
コンパレータ1804a〜1804cは、作成した画像データをデコーダ1806に出力する。デコーダ1806は、このうちから注目画素の画像データを選択してマルチプレクサ1807に入力する。マルチプレクサ1807は、入力した画像データに応じて3つの誤差データのうちのいずれかを注目画素の誤差データとして選択する。選択された誤差データは、SIMD型プロセッサ1506のPEを介してRAM1503のいずれかに入力する。
さらに、デコーダ1806が出力した画像データは、マルチプレクサ1807に入力する以前に分岐され、SIMD型プロセッサ1506のPEのいずれかに入力する。本実施の形態では、画像データを上位ビット、下位ビットの2ビットで表されるデータとした。このため、この処理では、コンパレータ1804aは使用されていない。なお、本実施の形態では、以降、注目画素の画像データを画素データと称する。
選択された誤差データは、誤差データ加算部1808に入力する。誤差データ加算部1808は、図13に丸付き数字の1,2,3を付して示した画素、つまり注目画素に対して3つ前に処理された画素の誤差データ(図15中に誤差データ3と記す)、2つ前に処理された画素の誤差データ(図15中に誤差データ2と記す)、一つ前に処理された画素の誤差データ(図15中に誤差データ1と記す)を保存している。
誤差データ加算部1808は、誤差データ3に演算係数である0または1を乗じる。また、誤差データ2に演算係数である1または2を乗じ、誤差データ1に演算係数である2または4を乗じる。そして、3つの乗算値を足し合わせ、この値(重み付け誤差データ)をSIMD型プロセッサ1506から次に入力した加算値データと足し合わせる。この結果、注目画素に近い位置にある画素ほど注目画素の誤差拡散処理に大きい影響を及ぼすことになり、画素の誤差を適切に拡散し、元画像のイメージに近い画像を形成することができる。
以上述べた逐次型画像データ処理部1507における画像データの作成は、一般的にI
IR型フィルタシステムと呼ばれる構成を用いて行なわれている。IIR型フィルタシス
テムで用いられる演算式は、図16に示すように、
ODn=(1−K)×ODn-1+K・IDn …… (1)
(但し、ODn:演算後の画素濃度、ODn-1:一つ前の画素データを用いての演算結果、IDn:現画素データ、K:重み係数)
と表すことができる。
式(1)および図16から明らかなように、演算後の濃度ODnは、一つ前の画素データを用いての演算結果ODn-1と現画素データIDnの値から求められる。一般的にIIR型フィルタシステムは、現画素より以前に処理された画素を用いた演算結果を使用して現画素についての演算を行なう、いわゆる逐次変換を行なうための専用の回路である。本実施の形態にかかる画像処理装置の逐次型画像データ処理部1507は、図17に図示するような処理(後述)によらず、図16に示したような逐次変換の全般に使用することができる。
以上のように、逐次処理を実行する手段を有するSIMD処理を行う画像処理プロセッサ1204を用いることにより、画像の特徴量の抽出と、この抽出結果に基づいて量子化閾値を選択し誤差拡散処理を行う画像処理装置を作成することができ、装置の製造コストを提言することができる。
次に、図3に示すプリンタγ変換部409、特徴量抽出部410、プリンタγ変換部411、階調処理部412を、図17に基づいて説明する。プリンタγ変換部411は、プリンタγ選択部1701とプリンタγ変換部1706からなる。また、階調処理部412は、閾値選択部1702、閾値処理部1703、誤差積算マトリクス1704、誤差バッファ1705からなる。
プリンタγ選択部1701は、特徴量抽出部410の特徴量抽出結果に基づいて、プリンタγ変換部411で使用するプリンタγテーブルを選択し、画素毎に切り替える。
入力した画像データは、特徴量抽出部410で文字寄りの画像信号であるか、文字中であるか、写真寄りの画像信号であるかを判定する。閾値選択部1702では、特徴量抽出部410の抽出結果に基づいて、閾値を選択する。閾値処理部1703では、閾値選択部1702で選択された閾値、閾値に対応した量子化値、画像データと量子化値の差、選択画像データとの誤差を計算し、誤差積算マトリクス1704の出力結果から出力値を求める。誤差積算マトリクス1704は、誤差バッファ1705から注目画素(図18に示す誤差拡散マトリクスの*の画素)、周囲の画素の誤差を読み出し、所定の係数(図18のa〜lの画素)に基づいて積算する。
特徴量抽出部410の構成について図19に基づいて説明する。図19の特徴量抽出部410は、一次微分フィルタ1711、絶対値算出部1712、一次微分結果の最大値選択部1713、一次エッジ判定部1714、高濃度判定部1715、二次微分フィルタ部1716、二次微分フィルタの最大値選択部1717、二次エッジ判定部1718からなる。一次微分フィルタ1711は、一次微分フィルタ係数(図5(a)〜(d)の4種類)にフィルタ処理を行う。
絶対値算出部1712は、一次微分フィルタ1711の処理結果の絶対値を得る。一次微分結果の最大値選択部1713は、絶対値算出部1712で絶対値算出された4種類の一次微分フィルタ処理結果の最大値を得る。一次エッジ判定部1714では、絶対値算出部1712の結果に1/8倍した値を、3つの量子化閾値により4段階(2ビット)エッジ度に量子化する。高濃度判定部1715は、入力画像データを高濃度判定閾値により判定する。二次微分フィルタ部1716は、4種類の二次微分フィルタ係数によりフィルタ処理を行う。二次微分フィルタの最大値選択部1717では、二次微分フィルタ部1716のフィルタ処理結果の最大値の選択を行う。二次エッジ判定部1718は、二次微分フィルタの最大値選択部1717の結果に1/8倍した値を二次エッジ判定閾値に基づいて判定する。
特徴量抽出部410の機能を図20に基づいて説明する。ここでは、上記の特徴量抽出の機能を説明する。図20は、(a)〜(e)のグラフからなり、横軸は一次元の画素の位置を表し、縦軸はそれぞれのユニットの出力値の相対値を表す。
図20(a)は,特徴量抽出部410への入力画像データで、ハッチングは高濃度判定部1715による高濃度閾値による判定領域が真となる領域を表す。
図20(b)において、実線は一次微分フィルタ1711の出力結果で、破線は一次微分フィルタ1711の出力結果のうち、負の値の部分を絶対値算出部1712により絶対値化した結果を示す。
図20(c)は、一次微分結果の最大値選択部1713の選択結果で一次エッジ判定部1714により量子化する閾値との関係を図示した。ハッチングは一次微分判定閾値1が真となる領域であって、かつ高濃度判定閾値が真となる領域を図示した。なお、図20(b)の結果はすでに最大値を得るフィルタの処理結果としたので、図20(c)の絶対値を取った結果のグラフの形状と変わらない。
図20(d)は、二次微分フィルタ部1716による二次微分算出結果をその最大値選択部1717で選択した結果を表す。ハッチングは、二次エッジ判定部1718で行われる二次微分判定閾値による判定が真となる領域を表している。
図20(e)は、入力画像データで、ハッチングは一次微分判定閾値、高濃度判定領域+二次微分判定閾値による判定領域を表す。
特徴量抽出結果と、誤差拡散の量子化閾値との関係を表5に示す。
Figure 2006050568
表5の縦の項目は、画像の種類、横の項目は特徴量抽出結果及び選択される量子化閾値の振幅である。写真画像や原稿の地肌部分などでは、振幅が大きな誤差拡散量子化閾値を選択する。地図原稿などに出現頻度が高い網点状の文字では、振幅が小さいか、もしくは振幅が中程度の量子化閾値を選択する。文字画像に対しては、量子化閾値の振幅が無い固定閾値の誤差拡散か、もしくは振幅が小さい誤差拡散を行う。
振幅が大きな量子化閾値とは、図21〜図26に記載した量子化閾値である。この閾値の例は、600dpiでそれぞれ168線、144線(図25、図26)相当である。
一方、振幅が無い量子化閾値の例は、図27のth2、th3(それぞれ閾値2,3)に示したように、画素の位置に依らず固定した閾値としたものである。振幅(小)とは、図27のth1のように線数も600dpiで300線相当と図21〜図25の168線相当から線数を上げた場合や、図28のth1に示すように閾値の振幅幅を小さくした場合を含む。
前掲した特徴量抽出に用いる特徴量抽出閾値のパラメーターは、高濃度閾値、一次微分判定閾値1〜3、二次微分判定閾値であり、それぞれを画像処理用プリンタγ409に設定したプリンタγテーブルにより階調変換し、この変換後の値をそれぞれ高濃度判定部1715,一次エッジ判定部1714,二次エッジ判定部1718に設定する。
すなわち、特徴量抽出閾値のパラメーターをプリンタγテーブルにより階調変換することにより、特徴量の抽出処理においてプリンタγテーブルによりの変更の影響を受けにくくすることができる。
また、特徴量抽出のパラメーターは、1次微分フィルタの抽出閾値、2次微分フィルタの抽出閾値、高濃度閾値のいずれかに、プリンタγテーブルのパラメーターを用いた処理を行うことにより、特徴量の抽出結果から階調変換のパラメーターの影響を低減することが可能となる。
表6は、特徴量抽出閾値のBlackの例で、Black,Cyan,Magenta,Yellowの色毎に最適な値を設定する。基準値に対する設定値を記載した。
Figure 2006050568
表6中の高濃度閾値については、表7のプリンタγテーブルへの入力値40hに対する出力値は50hであるので、表6の高濃度閾値のプリンタγテーブルによる変換後の設定値50hを設定した。
Figure 2006050568
一次微分判定閾値1〜3については、一次微分の値であるために、変換前の閾値をプリンタγテーブルの入力値に当てはめて出力値を得ることは必ずしも適切ではない。しかしながら、一次微分判定閾値1,2については、白地上の文字のように、原稿の下地が白(YMCK=(0,0,0,0))で文字が黒(YMCK=(0,0,0,k))などの場合では、一次微分結果が、(k−0)に比例するので、プリンタγテーブルへの入力値E0hに対する出力値D0hを変換後の設定値とした。一方、一次微分判定閾値3については、網点中の文字などのように文字周囲の画素が白地でない場合も含むので、プリンタγテーブルでは変換しない基準値を設定する。プリンタγテーブルによる数値の変換の概念図を図29に示した。グラフの横軸は入力値、縦軸は出力値で、横軸に入力した値をグラフで変換して出力値を決定する。
二次微分判定閾値については、プリンタγテーブルの二次の変化量に関係し、プリンタγテーブルの値の大小から一意には影響を受けないので、プリンタγテーブルによる変換を行わずに設定値とする。
上記の処理を、図30のフローチャートに基づいて説明する。まず、閾値を設定する色(表8)ならびに画質モード(表9)に応じてメモリから読み出す(ステップS301)。そして、プリンタγテーブルで変換する閾値かどうかを判定し(ステップS302)、一次微分判定閾値1,2、高濃度閾値の場合には、プリンタγテーブルで変換する閾値なので(ステップS302のY)、プリンタγテーブルで変換し(ステップS303)、一次微分判定閾値1,2、高濃度閾値の変換後の値を閾値判定部に設定する(ステップS304)。一次微分判定閾値3、二次微分判定閾値の場合には、プリンタγテーブルで変換する必要がないので(ステップS302のN)、プリンタγテーブルで変換せずに設定する(ステップS304)。これらの設定をY,M,C,Kの各色について実行し(ステップS305のN)、この各色について終了したときは(ステップS305のY)、エリア処理などで画像の領域毎に複数の画質モードの設定を行う場合では(ステップS306のY)、ステップS301に戻り、使用される画質モードに応じて繰り返す。
ステップS304の設定をY,M,C,Kの各色について実行するのは(ステップS305のN)、次の理由による。すなわち、階調処理の前段のプリンタγテーブルや色補正処理により、原稿濃度と階調処理への入力値の関係が異なったり、また、トナーの色味によって出力濃度と階調処理への入力値の関係が異なるので、YMCKに共通のパラメーターでは、画質が必ずしも最適であるとはいえない場合がある。そこで、特徴量抽出のパラメーターを、色毎に設定可能とすれば、使用者にとって好適な画像を得ることができる。
また、印刷原稿、銀塩写真原稿、地図原稿、インクジェット原稿など、原稿種に応じた出力画像を得たり、文字モードや写真モードなど使用者にとって好ましい出力画像に得ることを可能としたい。そこで、特徴量抽出のパラメーターを、印刷原稿、銀塩写真原稿、地図原稿、インクジェット原稿など、原稿種に応じた出力画像を得たり、文字モードや写真モードなど使用者にとって好ましい出力画像を得るために、エリア処理などで画像の領域毎に複数の画質モードの設定を行う場合では(ステップS306のY)、ステップS301に戻り、使用される画質モードに応じて繰り返すようにする。
Figure 2006050568
Figure 2006050568
図31は、誤差拡散処理ハードウェアレジスタ群1805に設定するレジスタを説明するための説明図である。本実施の形態にかかる画像処理装置は、図示したレジスタの設定によって2値誤差拡散で誤差拡散処理を行なうモード(2値誤差拡散モード)、3値誤差拡散で誤差拡散処理を行なうモード(3値誤差拡散モード)、4値誤差拡散で誤差拡散処理を行なうモード(4値誤差拡散モード)のいずれで誤差拡散処理を行なうか選択することができる。また、誤差データ加算部1808で使用される演算係数を設定することができる。さらに、誤差拡散処理にブルーノイズを使用するか否かを選択することもできる。
図31に示した誤差拡散処理ハードウェアレジスタ群1805は、量子化基準値保存部1803aの量子化基準値0を設定するレジスタ3001、量子化基準値保存部1803bの量子化基準値1を設定するレジスタ3002、量子化基準値保存部1803cの量子化基準値2を設定するレジスタ2003を備えている。
また、誤差拡散処理ハードウェアレジスタ群1805は、閾値テーブル1802cに設定される閾値0を設定するレジスタ3004、閾値テーブル1802bに設定される閾値10〜17を設定するレジスタ3005、閾値テーブル802aに設定される閾値20〜27を設定するレジスタ3006、ブルーノイズ値を設定するレジスタ3007、誤差拡散処理ハードウェアコントロールレジスタ3008を有している。各レジスタには、それぞれ8ビットが割り当てられていて、レジスタ全体は、64ビットのデータ量を持っている。
2値誤差拡散モードは、レジスタ3001、レジスタ3002、レジスタ3003のすべてに同一の値を設定する。そして、レジスタ3004、レジスタ3005にFFhを設定することによって実現できる。また、3値誤差拡散モードは、レジスタ3001、レジスタ3002に同一の値を設定し、レジスタ3004にFFhを設定する。さらに、2値誤差拡散モード、3値誤差拡散モードでは、レジスタ3005、レジスタ3006に同一の値を設定するか、異なる値を設定するかによって固定閾値誤差拡散処理と変動閾値誤差拡散処理とを切り替えることができる。
誤差拡散処理にブルーノイズを用いる場合は、レジスタ3007にブルーノイズを使用することを示す値を設定する。そして、レジスタ3005にブルーノイズデータのオンオフを示すスイッチングデータを設定する。スイッチングデータが1の場合にはブルーノイズ値を各閾値に加算し、スイッチングデータが0の場合には閾値をそのまま使用する。さらに、誤差データ加算部1808で使用される演算係数は、誤差拡散処理ハードウェアコントロールレジスタの設定値を変更することによって選択できる。
次に、図32のフローチャートを参照して、SIMD型プロセッサ1506で実行される誤差拡散処理について説明する。SIMD型プロセッサ1506は、まず、現画像データが1ライン目かどうかを判断し(ステップS2101)、1ライン目である場合には(ステップS2101のY)、前2ライン分の誤差加算値を初期化する(ステップS2101)。そして、今回の誤差拡散演算する画像データが1SIMD目であるかどうかを判断し(ステップS2103)、1SIMD目(現ラインの先頭部分の画像データ)である場合には(ステップS2103のY)、誤差加算値を初期化する(ステップS2105)。1SIMD目でない場合には(ステップS2103のN)、前のSIMDで誤差拡散演算後の誤差データが、現在演算している画像データと同じ色かどうかを判断し(ステップS2106)、異なる色の場合には(ステップS2106のN)、前SIMDの演算結果を前ラインの違う色として保存し(ステップS2107、図33の処理A2)、ブルーノイズテーブルの参照位置も保存する(ステップS2109)、同じ色の前回誤差拡散演算時のブルーノイズ参照位置を呼び出す(ステップS2110)。同じ色である場合には(ステップS2106のY)、同じ色の前ラインの1SIMDの演算結果として保存する(ステップS2108、図33の処理A1)。同じ色かどうかの判断は、例として、これから誤差拡散演算に使用しようとするのが、Magenta色の版の画像データである場合には、違う色の画像データとは、Cyan版の画像データである場合には、違う色として判断し、Magenta版である場合には、同じ色として判断する。
2ライン前の誤差加算値データを前SIMDの1ライン前のデータとして保存し(ステップS2111、図33の処理B)、現SIMDの2ライン前分のデータをメモリから呼び出す(ステップS2112、図33の処理D,E)。現SIMDのデータを現ラインから呼び出した(図33の処理C)後、誤差加算値を演算する(ステップS2113)。その後、逐次型画像データ処理部1507bにより誤差拡散処理の演算を行う(ステップS2114)。
一方、逐次型画像データ処理部1507は、図34のフローチャートに示すように、ステップS2102においてSIMD型プロセッサ1506が出力した加算値データを入力する(ステップS2201)。そして、入力した加算値データに誤差データ加算部1808で生成された重み付け誤差データを加算する(ステップS2202)。重み付け誤差データが加算された加算値データは、16または32で除算され(ステップS2203)、誤差データ算出部1801に入力する。誤差データ算出部1801は、入力したデータに基づいて誤差データおよび画素データを生成し(ステップS2204)、誤差データをマルチプレクサ1807に入力する。また、画素データを、デコーダ1806およびSIMD型プロセッサ1506に入力する。
マルチプレクサ1807は、デコーダ1806から入力した画像データに応じて誤差データを一つ選択する(ステップS2205)。そして、選択した誤差データをSIMD型プロセッサ1506および誤差データ加算部1808に出力する(ステップS2206)。誤差データを入力した誤差データ加算部1808は、誤差データに基づいて重み付け誤差データを算出する(ステップS2207)。逐次型画像データ処理部1507は、入力してくる加算値データに対して逐次的に以上の処理を繰り返し実行する。
本例においては、図15に示す逐次型画像データ処理部1507bを有するSIMDプロセッサ1506を2つ使用し、YMCKの画像データに対して、Y(Yellow)の画像データとK(Black)の画像データで1つの逐次型画像データ処理部1507bを有するSIMD型プロセッサ1506を使用し、C画像信号Mの画像データの2組の画像データをもう1つの逐次型画像データ処理部1507aを有するSIMD型プロセッサ1506を用いて階調処理を行う。そのため、SIMD型プロセッサ1506に入力する階調処理前の2つの画像データ(YKもしくはCM)と、SIMD型プロセッサ1506から2つの画像データ(YKもしくはCM)を出力する、2入力2出力の画像データを処理する。
誤差拡散処理を行う場合には、入力した2つの画像データに対して、SIMD処理可能
な画像データ数毎に、1つ逐次型画像データ処理部を有するSIMD型プロセッサ1506を切り替えて処理を行う。
次に、図35に示す画像処理プロセッサの状態遷移図に基づいて説明する。図35に示すように、画像処理プロセッサは、コマンド→メイン1(Magenta/Yellow画像データの処理)→メイン2(Cyan/Blackの画像データの処理)→コマンド→メイン1…と、処理状態がループしている。
図36のフローチャートに基づいて、2入力2出力時の画像処理プロセッサの動作を説明する。メイン処理1では、MagentaもしくはYellowの画像データの処理を行い、メイン処理2では、Cyanもしくは、Blackの画像データの処理を行う。
SIMD型プロセッサ1506に対して、Magenta(Yellow)の入力をデータ入出力用バス1501aを用いて入力し、データ入出力用バス1501cを用いて出力する。同様に、Cyan(Black)の画像データの入力を、データ入出力用バス1501bを用いて入力し、データ入出力用バス1501dを用いて出力する。データ入出力用バス1501cはデバッグ用の出力などに用いる。
メイン処理1にて、SIMD型プロセッサ1506へのデータ入力が有る場合には(ステップS2301のY)、画像データをメモリ1503への取り込み処理を開始する(ステップS2302)。1ライン取り込みが終了した場合には(ステップS2303のY)、SIMD型プロセッサ1506が処理できる画像データの単位で階調処理(ここでは誤差拡散処理)を開始する(ステップS2305)。1ライン処理が終了したら(ステップS2305のY)、1ライン出力を開始する(ステップS2306)。ステップS2302,S2306などの画像データのメモリ取り込み、出力開始処理は、各メモリコントローラ1505a〜1505bへの処理開始コマンドをレジスタに設定し、SIMD型プロセッサ1506は次の制御へ移行(状態遷移)する。階調処理(誤差拡散処理)の開始(ステップS2305)は、逐次型画像データ処理部1507bへの開始処理コマンドを誤差拡散処理ハードウェアコントロールレジスタ3008の開始コマンドに相当する所定の設定値を書き込むことにより行う。
メイン処理2についても同様である(よって、詳細な説明を省略する)。
コマンド処理は、SIMD型プロセッサ1506に対する、制御用のCPUからのコマンドの受付処理を行う。
階調処理部412で処理後の画像データは、プリンタγ変換部413(プロセス・コントロールγ)により、プリンタ414の経時変動に応じた補正処理が行われ、プリンタ414側に出力される。
次に、前述の画像濃度(階調性)の自動階調補正(ACC: Auto Color Calibration)の機能を選択するための操作画面について説明する。
図37に示すように、操作部142のタッチパネルの操作により、自動階調補正(ACC)メニュー呼び出すと、図38の画面が表示され、コピー使用時、あるいはプリンタ使用時用の自動階調補正の[実行]を選択すると、図39の画面が表示される。図38の画面で「コピー用」を選択した場合には、コピー使用時に使用する階調補正テーブルが、「プリンタ用」を選択すると、プリンタ使用時の階調補正テーブルが参照データに基づいて変更される。図39の画面で変更後の階調補正テーブルを用いてテストパターンの画像形成を行った結果が、望ましくない場合には、処理前の階調補正テーブルを選択することができるように、[元の値に戻す]キーが図38の画面中に表示されている。
画像濃度(階調性)の自動階調補正(ACC)の動作を図41のフローチャートに基づいて説明する。
図38の画面で、コピー用、あるいはプリンタ用の自動階調補正の[実行]を選択すると、図39の画面が表示される。
図39の画面中の印刷スタートキーを押下すると、図40に示すような、YMCK各色、及び文字、写真の各画質モードに対応した、複数の濃度階調パターン(トナーパターン2012)を転写材2011上に形成する(ステップS1)。
このトナーパターン2012は、あらかじめROM417などに記憶、設定がなされている。トナーパターン2012の書込み値は、16進数表示で、00h,11h,22h,…,EEh,FFhの16パターンである。図40では、原稿の地肌部を除いて5階調分のパッチを表示しているが、00h〜FFh8ビット信号の内、任意の値を選択することができる。写真モード用のトナーパターン2012(第1の階調パターン)は、周期的に振幅する2ビット(一例である)の量子化閾値を使用した誤差拡散処理により形成され、文字モード用のトナーパターン2012(第2の階調パターン)では、2ビット(一例である)用の固定量子化閾値か、もしくは写真モード用のトナーパターン2012を形成するために用いられた量子化閾値よりも振幅が小さいか、もしくは周波数の小さい量子化閾値を使用した誤差拡散処理を行って形成する(パターン形成手段)。
転写材2011にトナーパターン2012が画像形成された後、転写材2011をコンタクトガラス118上に載置するように、操作部142のタッチパネル上には、図42の画面が表示される。この画面の指示に従い、トナーパターン2012が形成された転写材2011をコンタクトガラス118に載置して(ステップS2)、図42の画面で"読み取りスタート"を選択するか、または"キャンセルを選択する(ステップS3)。
"キャンセル"を選択した場合には終了し、"読み取りスタート"を選択すると、スキャナー420が走行し、YMCK濃度パターンのRGBデータを読み取る(画像読取手段)(ステップS4)。この際、トナーパターン2012の画像データと転写材2011の地肌部分の画像データを読み取る。
そして、トナーパターン2012の画像が正常に読み取られたかの判断を行う(ステップS5)。正常に読み取られない場合には(ステップS5のN)、再び図42の画面が表示される。2回正常に読み取られない場合には処理を終了する(ステップS6)。
トナーパターン2012の画像データが正常に読み取られた場合には(ステップS5のY)、スキャナー0420の読み取り信号の比を補正し(ステップS7)、読み取りデータに対する地肌データ処理を行う(ステップS8)。更に、参照データに対する高画像濃度部の処理を行った後(ステップS9)、階調補正テーブルを作成、選択する(補正手段)(ステップS10)。これにより、プリンタγ変換部409,411における最適なパラメーターを容易に設定できる。
上記の処理をYMCKの各色について行い(ステップS11のN)、更に、写真モード、文字モードの画質モード毎に行う(ステップS12のN)。
処理終了後の階調補正テーブルで画像形成を行った結果が、望ましくない場合には、処理前の階調補正テーブルを選択することができるように、[元に戻す]キーが図38の画面中に表示されている。
次に、原稿の地肌部分の補正処理について説明する。
この原稿の地肌の補正処理の目的は2つある。
理由の1つは次のようなものである。ACCの実行時に使用される転写材2011の白色度を補正することである。これは、同一の複写機で、同じ時点で画像を形成しても、使用する転写材2011の白色度によって、スキャナー420で読み取られる値が異なるためである。これは補正しない場合の不具合としては、例えば、白色度が低い、再生紙などをこのACCに用いた場合、再生紙は一般にイエロー成分が多いために、イエローの階調補正テーブルを作成した場合に、イエロー成分が少なくなるように補正するが、この状態で、次に、白色度が高いアート紙などでコピーをした場合には、イエロー成分が少ない画像となって望ましい色再現が得られない場合がある。
もう一つの理由は次のようなものである。ACCの実行時に用いた転写材2011の厚さ(紙厚)が薄い場合には、転写材2011を押さえつける圧板などの色が透けてスキャナー420に読み取られてしまう。例えば、圧板の代わりにADF(Auto Document Feeder)と呼ばれる原稿自動送り装置を装着している場合には、原稿の搬送用にベルトを用いているが、これが使用しているゴム系の材質により、白色度が低く、若干の灰色味がある。そのため、読み取られた画像信号も、見かけ上、全体に高くなった画像信号として読み取られるために、階調補正テーブルを作成する際に、その分薄くなるように作成する。この状態で、今度は紙厚が厚く、透過性が悪い転写紙を用いた場合には、全体の濃度が薄い画像として再現されるため、必ずしも望ましい画像が得られない。
そして、このような不具合を防ぐために、原稿の地肌部分の読み取り画像信号により、トナーパターン2012の読み取り画像信号の補正を行っている。
しかし、上記の補正を行わない場合にも利点はあり、常に再生紙のように、イエロー成分が多い転写材2011を用いる場合には、補正をしない方がイエロー成分の入った色に対しては色再現が良くなる場合ができる。また、常に、紙厚が薄い転写紙のみしか用いない場合には、薄い紙に合わせた状態に階調補正テーブルが作成されるという利点もある。
上記のように、ユーザーの状況と好みとに応じて、地肌部分の補正を実行し、あるいは実行しないようにすることができる。
次に、自動階調補正(ACC)の動作及び処理について説明する。
転写材2011に形成したトナーパターン2012の書込み値を"LD[i](i=0,1,…,9)"、形成されたトナーパターン2012のスキャナー420での読み取り値をベクトル型式で "v[t][i]≡(r[t][i],g[t][i],b[t][i])(t=Y,M,C,K,i=0,1,…,9)"とする。
なお、(r,g,b)の代わりに、明度、彩度、色相角(L*,c*,h*)、あるいは、明度、赤み、青み(L*,a*,b*)などで表してもよい。
そして、あらかじめROM416又はRAM417中に記憶してある基準となる白の読み取り値を(r[W],g[W],b[W])とする。
ある画像濃度のパターンの番号をk番目とした時[例えば、画像濃度が最も高いパターンなどを選択する]、YMCK各トナーに対して、パターンの読み取り値の大きさ(Δr[t][k],Δg[t][k],Δb[t][k])をRGB信号の読み取り値(r[t][i],g[t][i],b[t][i])から以下のように求める。
Δr[t][k]=r[W]−r[t][k],
Δg[t][k]=g[W]−g[t][k],
Δb[t][k]=b[W]−b[t][k]
一方、RAM417中には、YMCKトナーのそれぞれに対し、パターンの読み取り値のRGB成分の大きさの割合、"k[s][t] {s=R,G,orB;t=Y,M,C,K|k[s][t]≒1}"が記憶されている。式のk[s][t]は、近辺の小数をとることを意味しているが、複写機内部では以下のように、整数データとして保持している。
k[s][t]=k1[s][t]/2n(k1[s][t]は、k1[s][t]≒2nの整数)
ここで、例えば、n=10、2n=1024などである。
ACCの実行時にプリンタγ変換部409、プリンタγ変換部411で行われる階調変換テーブル(LUT)の生成方法について説明する。
トナーパターン2012の読み取り値"v[t][i]≡(r[t][i],g[t][i],b[t][i])"において、YMCトナーの各補色の画像信号はそれぞれ、b[t][i],g[t][i],r[t][i]であるので、それぞれの補色の画像信号のみを用いる。ここでは、話しを簡単にするために、"a[t][i](i=0,1,2,…,9;t=C,M,Y,K)"を用いて表す。階調変換テーブルを作成すると処理が簡単である。なお、ブラックトナーについては、RGBのいずれの画像信号を用いても十分な精度が得られるが、ここでは、G(グリーン)成分を用いる。
参照データは、スキャナー420の読み取り値"v0[t][i]≡(r0[t][i], g0[t][i],b0[t][i])"、及び対応するレーザの書込み値"LD[i](i=1,2,…,m)"の組によって与えられる。同様に、YMCの補色画像信号のみを用いて、話しを簡単にするために、
"A[t][n[i]](0≦n[i]≦255;i=1,2,…,m;t=Y,M,C,K)"と表す。なお、mは参照データの数である。
ステップS7の処理(機差補正)で用いる機差補正値の一例を表10に示す。表10の値は、White,Black,Yellow,Red,Magenta,Blue,Cyan,Greenの各色相に対応する機差補正値で、スキャナー420のCCDの色成分であるRed(R),Green(G),Blue(B)の信号に対する機差補正値の一例を示す。tをYMCKトナーのいずれかを表すとし、k(c,ccd)を機差補正値とすると、補正後のACCの参照データの値を"A1[t][n[i]](t=C,M,Y,K,;i=0,1,2,〜,1023)"として、この値を用いて参照データA[t][n[i]]を次のように補正する。
A1[t][n[i]]=A[t][n[i]]
+(k(t,r)−k(t,White))×n[i]/1023+k(t,White)
……(2)
ただし、rは、t=Cyan,Magenta,Yellowのときは、それぞれの色の補色であるRed,Green,Yellowであり、t=Blackのときは、Greenを表す。
Figure 2006050568
上記の関数を表した例を図43に示す。表10の補正値は、複写機の製造時に設定され、複写機内に保持されている。また、操作部142のタッチパネルの操作により設定することが可能である。
なお、以下では、(2)式のA1[t][n[i]]を、新たにA[t][n[i]]として使用する。この値を用いて、スキャナー420での読み取り値"v[t][i]≡(r[t][i],g[t][i],b[t][i])(t=Y,M,C,K;i=0,1,…,9)"を以下のように補正する。
ここでは、一例として、t=C(シアン)の場合について説明する。シアントナーの読み取り値のRGB成分は、
r1[C][i]=r[C][0]−Δr[t][k]×k[r][t]
g1[C][i]=g[C][0]−Δg[t][k]×k[g][t]
b1[C][i]=b[C][0]−Δb[t][k]×k[b][t]
と補正し、これを新たな(r[t][i], g[t][i], b[t][i])として、以下で用いる。
階調変換テーブルは、前述したa[LD]とROM416中に記憶されている参照データA[n]とを比較することによって得られる。ここで、nは、階調変換テーブルへの入力値で、参照データA[n]は、入力値nを階調変換した後のレーザ書込み値LD[i]で出力したYMCのトナーパターン2012を、スキャナー420で読み取った読み取り画像信号の目標値である。ここで、参照データは、プリンタ414の出力可能な画像濃度に応じて補正を行う参照値A[n]と補正を行わない参照値A[n]との2種類の値からなる。補正を行うか否かの判断は、予めROM417またはRAM416中に記憶されている後述する判断用のデータにより判断される。この補正については後述する。
前述したa[LD]から、A[n]に対応するLDを求めることにより、階調変換テーブルへの入力値nに対応するレーザ出力値LD[n]を求める。
これを、入力値 i=0,1,…,255(8bit信号の場合)に対して求めることにより、階調変換テーブルを求めることができる。
その際、階調変換テーブルに対する入力値"n=00h,01h,…,FFh(16進数)"に対するすべての値に対して、上記の処理を行う代わりに、"ni=0,11h,22h,…,FFh"のようなとびとびの値について上記の処理を行い、それ以外の点については、スプライン関数などで補間を行うか、あるいは、予めROM416中に記憶されているγ補正テーブルの内、上記の処理で求めた(0, LD[0]),(11h, LD[11h]),(22h, LD[22h]),…,(FFh,LD[FFh])の組を通る、最も近いテーブルを選択する。
上記の処理を図44に基づいて説明すると、図44の第1象現(a)の横軸は、階調変換テーブルへの入力値n、縦軸は、スキャナー420の読み取り値(処理後)で、前述した参照データA[i]を表す。スキャナー420の読み取り値(処理後)は、トナーパターン2012をスキャナー420で読み取った値に対し、RGBγ変換(ここでは変換を行っていない)、トナーパターン2012内の数ヶ所の読み取りデータの平均処理及び加算処理後の値であり、演算精度向上のために、ここでは、12ビットデータ信号として処理する。
図44の第2象現(b)の横軸は、縦軸と同じく、スキャナー420の読み取り値(処理後)を表す。
第3象現(c)の縦軸は、レーザ光(LD)の書込み値を表す。このデータa[LD]は、プリンタ414の特性を表す。また、実際に形成するトナーパターン2012のLDの書込み値は、00h(地肌),11h,22h,…,EEh,FFhの16点であり、飛び飛びの値を示すが、ここでは、検知点の間を補間し、連続的なグラフとして扱う。
第4象現のグラフ(d)は、階調変換テーブルLD[i]で、このテーブルを求めることが目的である。
グラフ(f)の縦軸・横軸は、グラフ(d)の縦軸・横軸と同じである。検知用の階調パターンを形成する場合には、グラフ(f)に示した階調変換テーブル(g)を用いる。
グラフ(e)の横軸は、第3象現(c)と同じであり、階調パターン作成時のLDの書込み値とトナーパターン2012のスキャナー420の読み取り値(処理後)との関係を表すための、便宜上の線形変換を表す。
ある入力値nに対して参照データA[n]が求められ、A[n]を得るためのLDの出力LD[n]を階調パターンの読み取り値a[LD]を用いて、図中の矢印(l)に沿って求める。
次に、ACCの演算手順を図45のフローチャートに基づいて説明する。
RGBγ変換を行った場合で、のグラフと比較すると、第3象現のプリンタ特性のグラフは一致しているが、第2象現のRGBγ変換テーブルの特性が異なっている。これに応じて、第1象現の参照データを変更する必要があるが、最終的な結果であるYMCK階調変換テーブルLD[n]の特性は、一致している。
上記のように、RGBγ変換テーブルによる処理を行うか、行わないかに応じて参照データを変更することにより、対応する。
本実施例で使用したRGBγ変換テーブルの例を示した。
まず、γ補正テーブルを求めるために必要な入力値を決める(ステップS101)。
ここでは、"n[i]=11(h)×i(i=0,1,…,imax=15)"とした。
次に、機差補正を行う(ステップS102)。この処理は前述した通りである。
参照データA[n]を、プリンタの出力可能な画像濃度に応じて補正を行う(ステップS103)。すなさち、プリンタ414で作成可能な最大画像濃度を得られるレーザの書込み値を、FFh(16進数表示)であるとし、この時のパターンの読み取り値m[FFh]をmmaxとする。低画像濃度側から中間画像濃度側にかけて補正を行わない参照データを"A[i](i=0,1,…,i1)"、高画像濃度側の補正を行わない参照データを"A[i](i=i2+1,…,imax−1)(i1≦i2,i2≦imax−1)"、補正を行う参照データ"A[i](i=i1+1,…,i2)"とする。
以下では、RGBγ変換を行わない、原稿反射率に比例した画像信号として仮定して、具体的な計算方法を述べる。補正を行わない参照データの内、高画像濃度部の最も画像濃度が低い参照データA[i2+1]と、低画像濃度部の最も画像濃度が低い参照データA[i1]とから、そのデータの差ΔRefを求める。すなわち、
ΔRef=A[i1]−A[i2+1]
である。ここで、反転処理であるRGBγ変換を行わない反射率リニアあるいは明度リニアの場合には、"ΔRef>0"である。
一方、プリンタ414で作成可能な最大画像濃度を得られるパターンの読み取り値mmaxから、同様に差Δdetを求める。すなわち、
Δdet=A[i1]−mmax
とする。
これにより、高濃度部の補正を行った参照データA[i](i=i1+1,…,i2)を、
A[i]=A[i1]+(A[i]−A[i1])×(Δdet/ΔRef)
(i=i1+1,i1+2,…,i2−1,i2)
とする。
なお、第1象現の参照データは、周期的に振動する量子化閾値を用いた誤差拡散を行った写真モード用のパターンと、文字モード用のパターンに対する目標値と、更に写真モード、文字モードのそれぞれの画質モードに対して、それぞれ文字部用の目標濃度と、写真部用の2つの目標濃度の4種類の目標濃度からなり、それぞれに対応した第4象現のYMCK4色分の計16種類の階調変換テーブルが作成される。これからの16種類の階調変換テーブルは、前述したように、文字モードや写真モードなどに応じて第1のプリンタγテーブル、第2のプリンタγ変換テーブルに割り振られて使用される。
このように、諧調変換に用いるパラメーターの目標値を、画質モード毎に備えるのは以下の理由による。
すなわち、画像の文字部分(線画部分)の目標濃度と写真部分(ベタ部分)の目標濃度を合わせた場合、例えば、エッジ効果により文字部分へのトナー付着量がベタ部分へのトナー付着量よりも高くなり、画像濃度が上がるので、ベタ部分(写真部分)用の画像濃度を達成するための諧調変換テーブルで文字部分を作像すると、文字部分へのトナー付着量が高くなり、文字チリが発生したりする場合がある。逆に、文字部分の目標画像濃度を達成するための諧調変換テーブルにより、写真部分(ベタ部分)を作像するとベタ部分の濃度が低くなるなどの不具合が生じる場合がある。
そこで、画質モード毎に、文字部分用、写真部分用の目標濃度を設定しておき、それぞれの目標濃度を達成するための、階調変換テーブルを作成する。これにより、文字部分(線画部分)のトナー濃度を確保しながら、トナーチリの発生を抑制し、写真部分(ベタ部分)の目標濃度を確保することができる。
次に、n[i]に対応するスキャナーの読み取り画像信号m[i]を参照データA[n]から求める(ステップS104)。
実際には、飛び飛びのn[j]に対応する参照データ"A[n[j]](0≦n[j]≦255,j=0,1,…,jmax、n[j]≦n[k]for j≦k)"を次のようにする。
まず、"n[j]≦n[i]<n[j+1]"となる"j(0≦j≦jmax)"を求める。
8bitの画像信号の場合、"n[0]=0,n[jmax]=255、n[jmax+1]=n[jmax]+1、A[jmax+1]=A[jmax]"として参照データを求めておくと計算が簡単になる。
また、参照データの間隔は、n[j]はできるだけ小さい間隔である方が、最終的に求めるγ補正テーブルの精度が高くなる。
次に、上記のようにして求めたjから、m[i]を次式から求める(ステップS105)。
m[i]=A[j]+(A[j+1]−A[i])・(n[i]−n[j])/(n[j+1]−n[j])
なお、ここでは、一次式により補間したが、高次関数やスプライン関数などで補間を行ってもよい。その場合には、"m[i]=f(n[i])"とする。k次関数の場合には、
Figure 2006050568
などとする。
そして、m[i]を得るためのLDの書込み値LD[i]を、前述と同様な手順によって求める(ステップS106)。
まず、RGBγ変換を行っていない画像信号データを処理する場合には、LDの値が大きくなるに応じて、a[LD]が小さくなる。すなわち、
LD[k]<LD[k+1]に対して、a[LD[k]]≧a[LD[k+1]]
となる。
ここで、パターン形成時の値を"LD[k]=00h,11h,22h,…,66h,88h,AAh,FFh,(k=0,1,…,9)"の10値とした。これは、トナー付着量が少ない画像濃度では、トナー付着量に対するスキャナーの読み取り値の変化が大きいため、パターンの書込み値LD[k]の間隔を密にし、トナー付着量が多い画像濃度では、トナー付着量に対するスキャナーの読み取り値の変化が小さいために、間隔を広げて読み込む。
これによるメリットとしては、"LD[k]=00h,11h,22h,…,EEh,FFh"(計16点)などとパターンの数を増やす場合に比べて、トナー消費を抑えられること、また、高画像濃度領域では、LDの書込み値に対する変化が少ないこと、感光体上の電位ムラ、トナーの付着ムラ、定着ムラ、電位ムラなどの影響で、読み取り値が逆転したりしやすいため、LDの書込み値の間隔を狭めても必ずしも精度の向上に有効ではないことなどから、上記のようなLDの書込み値でパターンを形成する。
"a[LD[k]]≧m[i]>a[LD[k+1]]"となるLD[k]に対して、
LD[i]=LD[k]+(LD[k+1]−LD[k])・(m(i)−a[LD[k]])/(a[LD[k+1]]−a[LD[k]])
とする。
"0≦k≦kmax(kmax>0)"としたとき、"a[LD[kmax]]>m[i]"の場合(参照データから求めた目標値の画像濃度が高い場合)には、
LD[i]=LD[k]+(LD[kmax]−LD[kmax−1])・(m[i]−a[LD[kmax−1]])/(a[LD[kmax]]−a[LD[kmax−1]])
として、1次式で外挿を行うことによって予測する。これは、1次式のほか、対数を取るなどして他の方法で外挿を行ってもよい。
これにより、γ補正テーブルへの入力値n[i]と出力値LD[i]の組"(n[i],LD[i])(i=0,1,…,15)"が求められる。
この求められた"(n[i],LD[i])(i=0,1,…,15)"に基づいて、スプライン関数などで内挿を行うか、あるいは、ROM417中に有しているγ補正テーブルを選択する。
なお、本実施の形態の複写機では、画像処理が、デジタル回路構成のハードウェア資源であるスキャナー・IPU制御部418によって実行される例を示したが、これに限るものではなく、そのような画像処理を、複写機のハードウェア資源(例えば、フラッシュメモリ184など)にインストールされたコンピュータプログラムによってメイン制御部(CPU)130を動作させて実行するようにしても良い。
本発明の一実施の形態である複写機全体の構成図である。 複写機の制御系のブロック図である。 複写機における画像処理部の全体構成を示すブロック図である。 適応型エッジ強調回路の一例を示すブロック図である。 一次微分エッジ量検出フィルタの説明図である。 適応型エッジ強調フィルタテーブルの説明図である。 色相について説明する説明図である。 プリンタγテーブルを示す4元チャートである。 マニュアルによるγ調整の選択画面の例を示す説明図である。 プリンタγテーブルを示す4元チャートである。 SIMD型プロセッサの構成について説明する説明図である。 SIMD型画像データ処理部と逐次型画像データ処理部の構成を示すブロック図である。 画素の位置関係について説明する説明図である。 画像処理プロセッサの内部構成の説明図である。 逐次型画像データ処理部を説明するブロック図である。 IIRフィルタシステムの構成図である。 階調処理部の説明図である。 誤差拡散マトリクスの説明図である。 特徴量抽出部の説明図である。 特徴量抽出部の説明図である。 量子化閾値の説明図である。 低画像濃度の例の説明図である。 中画像濃度の例の説明図である。 高画像濃度の例の説明図である。 量子化閾値の説明図である。 量子化閾値の説明図である。 量子化閾値の説明図である。 量子化閾値の説明図である。 特徴量抽出閾値をプリンタγテーブルで変換する処理の概念図である。 特徴量抽出閾値を変換する処理のフローチャートである。 誤差拡散ハードウェアレジスタの説明図である。 SIMD型プロセッサで実行される誤差拡散処理を説明するフローチャートである。 ラインシフトを説明する説明図である。 逐次型画像データ処理部で実行される誤差拡散処理の手順を説明するフローチャートである。 画像処理プロセッサの状態遷移図である。 画像処理プロセッサのフローチャートである。 ACCの実行を問い合わせる画面の説明図である。 ACCの実行を選択する画面の説明図である。 ACCの実行中に表示される画面の説明図である。 ACCの実行の際に印刷出力するトナーパターンが形成されている転写紙の平面図である。 ACCの実行を説明するフローチャートである。 ACCの実行中に表示される画面の説明図である。 機差補正について説明する説明図である。 ACCの演算方法について説明する4元チャートである。 ACCの演算方法について説明するフローチャートである。
符号の説明
101 画像処理装置
415 画像処理プロセッサ

Claims (9)

  1. 画像データに基づいて画像形成する際の画質モードの選択を受け付ける画質モード受付手段と、
    この画質モード受付手段により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第1の階調変換手段と、
    この第1の階調変換手段で用いた前記階調変換パラメーターにより特徴量抽出閾値を階調変換し、階調変換された特徴量抽出閾値に基づいて前記第1の階調変換手段による階調変換後の画像データから特徴量を抽出する特徴量抽出手段と、
    この特徴量抽出手段による特徴量抽出結果及び前記画質モード受付手段により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第2の階調変換手段と、
    を備えている画像処理装置。
  2. 前記特徴量抽出閾値は、一次微分フィルタの抽出閾値、二次微分フィルタの抽出閾値、高濃度閾値のいずれかを含む、請求項1に記載の画像処理装置。
  3. 前記第1の階調変換手段及び前記第2の階調変換手段で設定する前記階調変換パラメーターは、目標とする階調特性値を前記画質モードごとに有する、請求項1または2に記載の画像処理装置。
  4. 前記第2の階調変換手段は、折れ線近似によって作成された階調変換特性を使用する、請求項1ないし3のいずれかの一に記載の画像処理装置。
  5. 画像の文字部分用の濃度調整には前記第2の階調変換手段の文字部分用の前記階調変換パラメーターを変更し、画像の写真部分用の濃度調整には前記第1の階調変換手段の前記階調変換パラメーターと前記第2の階調変換手段の画像の網点部分の前記階調変換パラメーターを変更する、請求項1ないし4のいずれかの一に記載の画像処理装置。
  6. 周期的に振動する量子化閾値を用いて誤差拡散を行った第1の階調パターン、及び、この第1の階調パターンと振幅もしくは周期が異なる周期的に振動する量子化閾値、又は、固定の量子化閾値を用いて誤差拡散を行った第2の階調パターンを、画像濃度を変えて複数形成するパターン形成手段と、
    前記第1及び第2の階調パターンを読み取る画像読取手段と、
    前記第1及び第2の階調パターンの読み取り結果に基づいて、前記第1の階調変換手段及び前記第2の階調変換手段に設定する前記階調変換パラメーターを補正する補正手段と、
    をさらに備えている請求項1に記載の画像処理装置。
  7. 逐次処理を実行する手段を有するプログラマブルな画像処理プロセッサを備え、
    前記特徴量抽出手段及び前記第2の階調変換手段が行なう処理は前記画像処理プロセッサが実行する処理により実現する、請求項1ないし6のいずれかの一に記載の画像処理装置。
  8. 画像データに基づいて画像形成する際の画質モードの選択を受け付ける画質モード受付機能と、
    この画質モード受付機能により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第1の階調変換機能と、
    この第1の階調変換機能で用いた前記階調変換パラメーターにより特徴量抽出閾値を階調変換し、階調変換された特徴量抽出閾値に基づいて前記第1の階調変換機能による階調変換後の画像データから特徴量を抽出する特徴量抽出機能と、
    この特徴量抽出機能による特徴量抽出結果及び前記画質モード受付機能により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第2の階調変換機能と、
    をコンピュータに実行させるプログラム。
  9. 画像データに基づいて画像形成する際の画質モードの選択を受け付ける画質モード受付工程と、
    この画質モード受付工程により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第1の階調変換工程と、
    この第1の階調変換工程で用いた前記階調変換パラメーターにより特徴量抽出閾値を階調変換し、階調変換された特徴量抽出閾値に基づいて前記第1の階調変換工程による階調変換後の画像データから特徴量を抽出する特徴量抽出工程と、
    この特徴量抽出工程による特徴量抽出結果及び前記画質モード受付工程により受け付けた前記画質モードに従って階調変換パラメーターを設定して階調変換する第2の階調変換工程と、
    を含む画像処理方法。
JP2005176584A 2004-07-06 2005-06-16 画像処理装置、プログラム及び画像処理方法 Pending JP2006050568A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005176584A JP2006050568A (ja) 2004-07-06 2005-06-16 画像処理装置、プログラム及び画像処理方法
US11/174,565 US7450280B2 (en) 2004-07-06 2005-07-06 Image processing apparatus, computer product, and image processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004199064 2004-07-06
JP2005176584A JP2006050568A (ja) 2004-07-06 2005-06-16 画像処理装置、プログラム及び画像処理方法

Publications (1)

Publication Number Publication Date
JP2006050568A true JP2006050568A (ja) 2006-02-16

Family

ID=35541005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176584A Pending JP2006050568A (ja) 2004-07-06 2005-06-16 画像処理装置、プログラム及び画像処理方法

Country Status (2)

Country Link
US (1) US7450280B2 (ja)
JP (1) JP2006050568A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068084A (ja) * 2012-09-24 2014-04-17 Kyocera Document Solutions Inc 画像形成装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348237A (ja) * 2004-06-04 2005-12-15 Brother Ind Ltd 画像濃度調整装置及びこの装置を備えた画像読取装置
KR100679046B1 (ko) * 2005-10-10 2007-02-05 삼성전자주식회사 이미지의 지역적 정보를 이용한 비트 해상도 확장 방법 및장치
JP2007215907A (ja) * 2006-02-20 2007-08-30 Pentax Corp 内視鏡プロセッサ、内視鏡システム、及びブラックバランス調整プログラム
JP2008107507A (ja) * 2006-10-25 2008-05-08 Sanyo Electric Co Ltd 映像データ変換装置および映像表示装置
US8045238B2 (en) * 2007-09-14 2011-10-25 Kabushiki Kaisha Toshiba Image processing apparatus, image processing method and image reading apparatus
JP5029284B2 (ja) * 2007-10-24 2012-09-19 セイコーエプソン株式会社 画像処理方法、そのプログラム及び画像処理装置
JP2009274273A (ja) * 2008-05-13 2009-11-26 Canon Inc 画像処理装置、画像処理方法、およびプログラム
JP5750968B2 (ja) * 2011-03-24 2015-07-22 セイコーエプソン株式会社 画像処理装置、印刷装置、画像処理方法および画像処理プログラム
JP2015002442A (ja) * 2013-06-14 2015-01-05 キヤノン株式会社 画像処理装置および方法
US9179039B2 (en) * 2014-02-12 2015-11-03 Xerox Corporation Methods and systems for processing low resolution images via error diffusion
US10049666B2 (en) 2016-01-06 2018-08-14 Google Llc Voice recognition system
JP6658032B2 (ja) * 2016-02-04 2020-03-04 株式会社リコー 画像処理装置、画像形成装置、画像処理方法およびプログラム
CN109040613B (zh) * 2017-06-09 2022-03-25 株式会社爱信 图像处理装置
JP6869848B2 (ja) * 2017-08-08 2021-05-12 キヤノン株式会社 画像処理装置および画像処理方法
US10554860B2 (en) * 2018-07-09 2020-02-04 Toshiba Tec Kabushiki Kaisha Image forming apparatus, test image, and output density adjustment method of image forming apparatus
US11460788B2 (en) * 2020-08-25 2022-10-04 Ricoh Company, Ltd. Image forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112791A (ja) * 1997-04-10 1999-04-23 Ricoh Co Ltd 画像形成装置
US6559972B1 (en) * 1998-12-17 2003-05-06 Matsushita Electric Industrial Co., Ltd. Method and apparatus for processing image data
JP4509415B2 (ja) * 2001-04-12 2010-07-21 株式会社リコー 画像処理装置
JP2002325179A (ja) 2001-04-25 2002-11-08 Ricoh Co Ltd 画像処理装置
JP2004287685A (ja) 2003-03-20 2004-10-14 Ricoh Co Ltd 画像処理装置、画像形成装置、コンピュータプログラム及び記録媒体
JP2007027967A (ja) * 2005-07-13 2007-02-01 Fujifilm Holdings Corp 撮影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068084A (ja) * 2012-09-24 2014-04-17 Kyocera Document Solutions Inc 画像形成装置

Also Published As

Publication number Publication date
US20060007465A1 (en) 2006-01-12
US7450280B2 (en) 2008-11-11

Similar Documents

Publication Publication Date Title
JP2006050568A (ja) 画像処理装置、プログラム及び画像処理方法
JP3678875B2 (ja) 画像形成装置
JP4167100B2 (ja) 画像処理装置、画像形成装置、画像処理方法、コンピュータプログラム及び記録媒体
US7679796B2 (en) Image processing apparatus and image processing method
JP2004287685A (ja) 画像処理装置、画像形成装置、コンピュータプログラム及び記録媒体
US5982947A (en) Image forming apparatus with color adjustment
JPH1169157A (ja) 画像形成装置
JPH09238261A (ja) 画像形成装置
JP4755532B2 (ja) 画像形成装置
JP6179234B2 (ja) 画像形成装置、画像形成方法およびプログラム
JP2014085379A (ja) 画像形成装置、画像形成方法、プログラムおよび記録媒体
JP2003032504A (ja) 画像形成装置
JP2007158844A (ja) 画像処理装置
JP2013246396A (ja) 画像形成装置、画像形成方法、プログラムおよび記録媒体
JP2005260399A (ja) 画像処理装置及び画像形成装置
JP3728383B2 (ja) 画像出力システム
JP6201281B2 (ja) 画像形成装置、画像形成方法、プログラムおよび記録媒体
JP2008154131A (ja) 画像形成装置
JP3594712B2 (ja) 画像形成装置
JP3963260B2 (ja) 画像処理装置および画像形成装置
JP3861109B2 (ja) 画像形成装置
JP2014027649A (ja) 画像形成装置
JP3947810B2 (ja) 画像形成装置
JP2005341417A (ja) 画像処理装置、記憶媒体、画像読取装置、画像形成装置
JP2005333499A (ja) 画像形成装置