JP2006049436A - 記憶素子及びメモリ - Google Patents

記憶素子及びメモリ Download PDF

Info

Publication number
JP2006049436A
JP2006049436A JP2004225836A JP2004225836A JP2006049436A JP 2006049436 A JP2006049436 A JP 2006049436A JP 2004225836 A JP2004225836 A JP 2004225836A JP 2004225836 A JP2004225836 A JP 2004225836A JP 2006049436 A JP2006049436 A JP 2006049436A
Authority
JP
Japan
Prior art keywords
magnetization
layer
layers
storage
magnetization fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004225836A
Other languages
English (en)
Inventor
Masakatsu Hosomi
政功 細見
Hiroshi Kano
博司 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004225836A priority Critical patent/JP2006049436A/ja
Publication of JP2006049436A publication Critical patent/JP2006049436A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】 情報の書き込みに要する電流値のばらつきが少なく、安定に動作すると共に、書き込みに要する電流値を低減することができる記憶素子を提供する。
【解決手段】 情報を磁性体の磁化状態により保持する記憶層17の上下に中間層16,18を介して磁化固定層31,32が設けられ、磁化固定層31,32がいずれも非磁性層を介して積層された複数層の強磁性層から成り、反強磁性結合により磁化固定層31,32の各強磁性層の磁化の向きが互い違いになっており、上下の磁化固定層31,32のそれぞれ記憶層17に最も近い強磁性層15,19の磁化M15,M19の向きが互いに反対向きであり、積層方向に電流を流すことにより記憶層17の磁化M1の向きが変化して、記憶層17に情報が記録される記憶素子3を構成する。
【選択図】 図2

Description

本発明は、強磁性層の磁化状態を情報として記憶する記憶層と、磁化の向きが固定された磁化固定層とから成り、電流を流すことにより記憶層の磁化の向きを変化させる記憶素子及びこの記憶素子を備えたメモリに係わり、不揮発メモリに適用して好適なものである。
コンピュータ等の情報機器では、ランダム・アクセス・メモリとして、動作が高速で、高密度なDRAMが広く使われている。
しかし、DRAMは電源を切ると情報が消えてしまう揮発性メモリであるため、情報が消えない不揮発のメモリが望まれている。
そして、不揮発メモリの候補として、磁性体の磁化で情報を記録する磁気ランダム・アクセス・メモリ(MRAM)が注目され、開発が進められている(例えば非特許文献1参照)。
MRAMは、ほぼ直交する2種類のアドレス配線(ワード線、ビット線)にそれぞれ電流を流して、各アドレス配線から発生する電流磁場によって、アドレス配線の交点にある磁気記憶素子の磁性層の磁化を反転して情報の記録を行うものである。
一般的なMRAMの模式図(斜視図)を、図6に示す。
シリコン基板等の半導体基体110の素子分離層102により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域108、ソース領域107、並びにゲート電極101が、それぞれ形成されている。
また、ゲート電極101の上方には、図中前後方向に延びるワード線105が設けられている。
ドレイン領域108は、図中左右の選択用トランジスタに共通して形成されており、このドレイン領域108には、配線109が接続されている。
そして、ワード線105と、上方に配置された、図中左右方向に延びるビット線106との間に、磁化の向きが反転する記憶層を有する磁気記憶素子103が配置されている。この磁気記憶素子103は、例えば磁気トンネル接合素子(MTJ素子)により構成される。
さらに、磁気記憶素子103は、水平方向のバイパス線111及び上下方向のコンタクト層104を介して、ソース領域107に電気的に接続されている。
ワード線105及びビット線106にそれぞれ電流を流すことにより、電流磁界を磁気記憶素子103に印加して、これにより磁気記憶素子103の記憶層の磁化の向きを反転させて、情報の記録を行うことができる。
そして、MRAM等の磁気メモリにおいて、記録した情報を安定に保持するためには、情報を記録する磁性層(記憶層)が、一定の保磁力を有していることが必要である。
一方、記録された情報を書き換えるためには、アドレス配線にある程度の電流を流さなければならない。
ところが、MRAMを構成する素子の微細化に従い、アドレス配線も細くなるため、充分な電流が流せなくなってくる。
そこで、より少ない電流で磁化反転が可能な構成として、スピン注入による磁化反転を利用する構成のメモリが注目されている(例えば、特許文献1参照)。
スピン注入による磁化反転とは、磁性体の中を通過してスピン偏極した電子を、他の磁性体に注入することにより、他の磁性体において磁化反転を起こさせるものである。
例えば、巨大磁気抵抗効果素子(GMR素子)や磁気トンネル接合素子(MTJ素子)に対して、その膜面に垂直な方向に電流を流すことにより、これらの素子の少なくとも一部の磁性層の磁化の向きを反転させることができる。
そして、スピン注入による磁化反転は、素子が微細化されても、電流を増やさずに磁化反転を実現することができる利点を有している。
上述したスピン注入による磁化反転を利用する構成のメモリの模式図を図4及び図5に示す。図4は斜視図、図5は断面図である。
シリコン基板等の半導体基体60の素子分離層52により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域58、ソース領域57、並びにゲート電極51が、それぞれ形成されている。このうち、ゲート電極51は、図5中前後方向に延びるワード線を兼ねている。
ドレイン領域58は、図4中左右の選択用トランジスタに共通して形成されており、このドレイン領域58には、配線59が接続されている。
そして、ソース領域57と、上方に配置された、図4中左右方向に延びるビット線56との間に、スピン注入により磁化の向きが反転する記憶層を有する記憶素子53が配置されている。
この記憶素子53は、例えば磁気トンネル接合素子(MTJ素子)により構成される。図中61及び62は磁性層を示しており、2層の磁性層61,62のうち、一方の磁性層を磁化の向きが固定された磁化固定層として、他方の磁性層を磁化の向きが変化する磁化自由層即ち記憶層とする。
また、記憶素子53は、ビット線56と、ソース領域57とに、それぞれ上下のコンタクト層54を介して接続されている。これにより、記憶素子53に電流を流して、スピン注入により記憶層の磁化の向きを反転させることができる。
このようなスピン注入による磁化反転を利用する構成のメモリの場合、図6に示した一般的なMRAMと比較して、デバイス構造を単純化することができる、という特徴も有している。
また、スピン注入による磁化反転を利用することにより、外部磁界により磁化反転を行う一般的なMRAMと比較して、素子の微細化が進んでも、書き込みの電流が増大しないという利点がある。
このスピン注入による磁化反転を利用する構成のメモリにおいて、消費電力をさらに抑制するためには、スピン注入効率を改善して、入力する電流を減らす必要がある。
また、読み出し信号を大きくするためには、大きな磁気抵抗変化率を確保する必要があり、そのためには記憶層の両側に接している中間層をトンネルバリア層にすることが効果的である。
この場合、バリア層の耐電圧の制限が生じるため、この点からも、スピン注入時の電流を抑制する必要がある。
そこで、スピン注入時の電流を抑制するための解決策として、記憶素子を磁化固定層/中間層/記憶層/中間層/磁化固定層の積層構造として、記憶層の上下に設けた磁化固定層の磁化の向きを反対向きにした構成が提案されている(特許文献2参照)。
この構成によれば、上下の磁化固定層の磁化の向きを互いに反対向きにすることにより、スピン注入効率を倍増させることが可能である。
日経エレクトロニクス 2001.2.12号(第164頁−171頁) 特開2003−17782号公報 米国特許公開第2004/0027853号明細書
スピン注入による磁化反転を利用するには、記憶層の磁化量に対応するスピントルクを与える必要があること、発熱や耐圧の観点から流せる電流量に制限があること、また現実的にスピントルクは素子面積が十分に小さくないとはっきりと認められないことから、記憶素子を小さくする必要がある。
しかしながら、このように記憶素子を小さくした場合には、記憶層の体積が小さくなるため、磁化固定層が記憶層に及ぼす静磁結合磁界の影響が非常に大きいものになってしまう。
その結果、スピン注入によって記憶層の磁化の向きを、一方の向きから他方の向きに反転させるための電流と、他方の向きから一方の向きに反転させるための電流とが、大きく違ってくることになる。これにより、記憶層に情報を書き込むための電流の非対称性が非常に大きくなり、書き込み電流の低減に対して、逆効果となってしまう。
また、上述した特許文献2では、例えば、ブロッキング温度の異なる2種類の反強磁性材料を用いて、磁場中で2段階熱処理を行うことにより、記憶層の上下の磁化固定層の磁化の向きを互いに反対向きに固定している。
また、例えば、一方の磁化固定層を反強磁性層/強磁性層/中間層/強磁性層の積層フェリ構造にすることにより、記憶層の上下の磁化固定層の磁化の向きを互いに反対向きに固定している。
しかしながら、上記特許文献2には、磁化固定層から生じる静磁結合磁界が記憶層に影響を及ぼす、という問題については、何ら考慮されていない。そのため、記憶層の上下の磁化固定層のうち、一方の磁化固定層が単層の強磁性層によって構成されている。
このように単層の強磁性層により磁化固定層を構成すると、磁化固定層から生じる漏れ磁束による静磁結合磁界が大きくなり、この静磁結合磁界が記憶層に及ぼす影響が大きくなってしまうため、記憶層の磁化の向きを反転させる動作が不安定になり、反転電流値が大きくばらついてしまう。
また、記憶層の上層にある磁化固定層からの漏れ磁界と、記憶層の下層にある磁化固定層からの漏れ磁界とを、互いにキャンセルさせることにより、記憶層に到達する漏れ磁界の和をゼロにすることも可能であるが、そのように構成した場合も、理由は不明であるが、記憶層の磁化の向きを反転させる動作が不安定になり、反転電流値が大きくばらつく結果となる。
上述した問題の解決のために、本発明においては、情報の書き込みに要する電流値のばらつきが少なく、安定に動作すると共に、書き込みに要する電流値を低減することができる記憶素子、並びにこの記憶素子を有するメモリを提供するものである。
本発明の記憶素子は、情報を磁性体の磁化状態により保持する記憶層を有し、この記憶層の上下にそれぞれ中間層を介して磁化固定層が設けられ、磁化固定層がいずれも非磁性層を介して積層された複数層の強磁性層から成り、それぞれの磁化固定層において、反強磁性結合により、積層された各強磁性層の磁化の向きが互い違いになっており、記憶層の上下の磁化固定層において、それぞれ記憶層に最も近い強磁性層の磁化の向きが互いに反対向きであり、積層方向に電流を流すことにより、記憶層の磁化の向きが変化して、記憶層に対して情報の記録が行われるものである。
本発明のメモリは、情報を磁性体の磁化状態により保持する記憶層を有する記憶素子と、互いに交差する2種類の配線とを備え、記憶素子は、記憶層の上下にそれぞれ中間層を介して磁化固定層が設けられ、この磁化固定層がいずれも非磁性層を介して積層された複数層の強磁性層から成り、それぞれの磁化固定層において、反強磁性結合により積層された各強磁性層の磁化の向きが互い違いになっており、記憶層の上下の磁化固定層において、それぞれ記憶層に最も近い強磁性層の磁化の向きが互いに反対向きであり、積層方向の電流を流すことにより、記憶層の磁化の向きが変化して、記憶層に対して情報の記録が行われる構成であり、2種類の配線の交点付近かつ2種類の配線の間に記憶素子が配置され、これら2種類の配線を通じて記憶素子に積層方向の電流が流れるものである。
上述の本発明の記憶素子の構成によれば、情報を磁性体の磁化状態により保持する記憶層を有し、この記憶層の上下にそれぞれ中間層を介して磁化固定層が設けられており、積層方向に電流を流すことにより、記憶層の磁化の向きが変化して、記憶層に対して情報の記録が行われるので、積層方向に電流を流してスピン注入による情報の記録を行うことができる。
また、記憶層の上下の磁化固定層において、それぞれ記憶層に最も近い強磁性層の磁化の向きが互いに反対向きであることによって、スピン注入効率を大幅に増大させることが可能になる。これにより、スピン注入により記憶層の磁化の向きを反転させるために必要な電流量(閾値電流)を低減することができる。
さらに、磁化固定層がいずれも非磁性層を介して積層された複数層の強磁性層から成り、それぞれの磁化固定層において、反強磁性結合によって、積層された各強磁性層の磁化の向きが互い違いになっていることにより、それぞれの磁化固定層が所謂積層フェリ構造を有しており、磁化の向きが互いに反対である各強磁性層からの磁束が、互いに打ち消される。これにより、磁化固定層により形成されその側面から漏れる磁界を小さくすることができ、磁化固定層から漏れる磁界による、記憶層に対する影響を低減することができる。従って、記憶層の磁化の向きを反転させるために必要な電流量(閾値電流)を、両極性の電流において非対称性を抑えて、ほぼ対称に近づけることが可能になる。また、閾値電流のばらつきも抑制することができる。
上述の本発明のメモリの構成によれば、情報を磁性体の磁化状態により保持する記憶層を有する記憶素子と、互いに交差する2種類の配線とを備え、記憶素子が上記本発明の記憶素子の構成であり、2種類の配線の交点付近かつ2種類の配線の間に記憶素子が配置され、これら2種類の配線を通じて記憶素子に積層方向の電流が流れるものであることにより、2種類の配線を通じて記憶素子の積層方向に電流を流してスピン注入による情報の記録を行うことができる。
また、スピン注入により記憶素子の記憶層の磁化の向きを反転させるために必要な電流量(閾値電流)を低減することができる。
さらに、記憶素子の記憶層の磁化の向きを反転させるために必要な電流量(閾値電流)を、両極性の電流において非対称性を抑えて、ほぼ対称に近づけることが可能になる。また閾値電流のばらつきも抑制することができる。
上記本発明の記憶素子及び上記本発明のメモリにおいて、記憶層の上下の磁化固定層のうち、一方の磁化固定層が奇数層の強磁性層から成り、他方の磁化固定層が偶数層の強磁性層から成り、それぞれの磁化固定層に対して記憶層の反対側に反強磁性層が設けられている構成とすることも可能である。
このように構成したときには、反強磁性層を配向するように磁場中熱処理を行えば、それぞれの磁化固定層の最も反強磁性層側の強磁性層の磁化の向きが、磁場の向きに合わせて同じ向きになる。そして、一方の磁化固定層が奇数層の強磁性層から成るので、この一方の磁化固定層の最も記憶層側の強磁性層の磁化の向きは、最も反強磁性層側の強磁性層の磁化の向きと同じになる。他方の磁化固定層が偶数層の強磁性層から成るので、この他方の磁化固定層の最も記憶層側の強磁性層の磁化の向きは、最も反強磁性層側の強磁性層の磁化の向きとは反対になる。これにより、一方の磁化固定層と他方の磁化固定層において、それぞれの最も記憶層側の強磁性層の磁化の向きが反対となる。即ち、反強磁性層を配向するように磁場中熱処理を行うことにより、容易に本発明の構成の記憶素子を製造することが可能になる。
上記本発明の記憶素子及び上記本発明のメモリにおいて、それぞれの磁化固定層における、磁化の向きが互いに反対である各強磁性層の飽和磁化と膜厚との積の和が、ほぼ等しい関係を有している構成とすることも可能である。
このように構成したときには、磁化の向きが互いに反対である各強磁性層の飽和磁化と膜厚との積の和がほぼ等しいので、磁化の向きが互いに反対である各強磁性層からの磁束が相殺される。即ち、磁化固定層全体の合成磁化がほぼゼロになる。
これにより、磁化固定層により形成される磁界が、磁化固定層側面からほとんど外部に漏れなくなり、記憶層に影響を与えなくなる。
従って、記憶層の磁化の向きを反転させるために必要な電流量を、両極性の電流においてほぼ対称とすることが可能になる。
上述の本発明によれば、記憶層の磁化の向きを反転させるために必要となる電流量(閾値電流)の、非対称性とばらつきとを抑制することができるため、情報の記録に必要な電流量を低減することができる。
これにより、記憶素子に対して電流を流して情報を記録する、動作領域を拡大することが可能になり、動作のマージンを広く確保し、記憶素子を安定して動作させることができる。
従って、安定して動作する信頼性の高いメモリを実現することができる。
また、メモリ全体の消費電力を低減することが可能になる。
まず、本発明の具体的な実施の形態の説明に先立ち、本発明の概要について説明する。
本発明は、前述したスピン注入により、記憶素子の記憶層の磁化の向きを反転させて、情報の記録を行うものである。記憶層は、強磁性層等の磁性体により構成され、情報を磁性体の磁化状態(磁化の向き)により保持するものである。
スピン注入により磁性層の磁化の向きを反転させる基本的な動作は、巨大磁気抵抗効果素子(GMR素子)もしくはトンネル磁気抵抗効果素子(MTJ素子)から成る記憶素子に対して、その膜面に垂直な方向に、ある閾値以上の電流を流すものである。このとき、電流の極性(向き)は、反転させる磁化の向きに依存する。
この閾値よりも絶対値が小さい電流を流した場合には、磁化反転を生じない。
スピン注入によって、磁性層の磁化の向きを反転させるときに、必要となる電流の閾値Icは、現象論的に、下記数1により表される(例えば、F.J.Albert他著、Appl.Phys.Lett.,77,p.3809,2000年、等を参照)。
Figure 2006049436
本発明では、式(1)で表されるように、電流の閾値が、磁性層の体積V、磁性層の飽和磁化M、実効的な磁気異方性の大きさを制御することにより、任意に設定することが可能であることを利用する。
そして、磁化状態により情報を保持することができる磁性層(記憶層)と、磁化の向きが固定された磁化固定層とを有する記憶素子を構成する。
記憶層の磁化状態を変化させる電流の閾値は、実際には、例えば記憶層の厚さが2nmであり、平面パターンが120〜130nm×100nmの略楕円形の巨大磁気抵抗効果素子(GMR素子)において、+側の閾値+Ic=+0.6mAであり、−側の閾値−Ic=−0.2mAであり、その際の電流密度は約6×10A・cmである。これらは、上記の式(1)にほぼ一致する(屋上他著,日本応用磁気学会誌,Vol.28,No.2,p.149,2004年参照)。
一方、電流磁場により磁化反転を行う通常のMRAMでは、書き込み電流が数mA以上必要となる。
これに対して、スピン注入により磁化反転を行う場合には、上述のように、書き込み電流の閾値が充分に小さくなるため、集積回路の消費電力を低減させるために有効であることがわかる。
また、通常のMRAMで必要とされる、電流磁界発生用の配線(図6の105)が不要となるため、集積度においても通常のMRAMに比較して有利である。
ところで、例えば記憶層と磁化固定層から成る記憶素子において、複数層の強磁性層が非磁性層を介して積層された積層フェリ構造によって磁化固定層を構成した場合には、磁化固定層の各強磁性層の磁化の向きが上下に互い違いになる。これにより、磁化の向きが反対の上下の強磁性層からの磁束が互いに相殺されるため、記憶層が受ける漏れ磁束の大きさは、磁化固定層を構成する複数層の強磁性層の飽和磁化Msと膜厚tとの積の差になる。なお、厳密には、各強磁性層から記憶層に加わる磁界の大きさが記憶層からの距離に反比例するので、記憶層からの距離の影響もあるが、概ね飽和磁化Msと膜厚tとの積の差になると考えてよい。
これに対して、磁化固定層を単層の強磁性層により構成した場合には、強磁性層からの磁束が相殺されないため、磁化固定層からの漏れ磁束が非常に大きくなる。例えば前述のMRAMにおいて磁化固定層を単層の強磁性層により構成し、外部磁界の印加により記憶層の磁化の向きを反転させて抵抗―磁界曲線を求めると、得られる曲線は外部磁界ゼロの原点に対して非対称になる。
同様のことが、スピン注入を用いた記憶素子においては、記憶層の磁化の向きを反転させるために必要となる電流値の非対称性として、現れることになる。
従って、スピン注入を用いた記憶素子においても、磁化固定層を積層フェリ構造とすることにより、磁化固定層から記憶層に加わる漏れ磁束を非常に小さくすることが可能になる。
また、記憶層に対して、上下にそれぞれ磁化固定層を設けて、さらに上下の磁化固定層の磁化の向きを反対向きとした構成とすることにより、前記特許文献2に示されているように、スピン注入効率を向上して、スピン注入時の電流を低減することができる。
しかし、前記特許文献2に記載された構成では、一方の磁化固定層が単層の強磁性層から構成されているため、この一方の磁化固定層から記憶層に加わる漏れ磁束が、例えば100Oe以上の大きい値となり、記憶層の磁化の向きを反転する際に、動作が不安定になり、反転電流値が大きくばらつく結果となる。
従って、上下2つの磁化固定層から記憶層への漏れ磁界のベクトルの和を充分に小さくする必要がある。
さらに、正負両極性の反転電流値が、電流ゼロに対して対称であることが必要である。
正負両極性の反転電流値が、電流ゼロに対して非対称であると、書き込み電流値を絶対値が大きい方の反転電流値に合わせて大きく設定しなければならないため、消費電力低減に逆効果となる。
そこで、本発明では、記憶層の上下の磁化固定層が共に、複数層の強磁性層が反強磁性結合した積層フェリ構造を有し、それぞれの磁化固定層内で各強磁性層からの磁束が相殺される関係にあると共に、上下2つの磁化固定層の、それぞれ記憶層に最も近い強磁性層の磁化の向きが、互いに反平行の関係になっている構成とする。
これにより、上下の磁化固定層がいずれも積層フェリ構造であり、それぞれの積層フェリ構造の磁化固定層内で各強磁性層からの磁束が相殺される関係にあるため、いずれの磁化固定層からも記憶層に加わる漏れ磁界が非常に小さくなる。また、上下2つの磁化固定層の、それぞれ記憶層に最も近い強磁性層の磁化の向きが、互いに反平行の関係になっていることにより、スピン注入効率を向上して、スピン注入時の電流を低減することができる。
そして、より好ましくは、2つの磁化固定層が、一方は奇数層の強磁性層から成り、他方は偶数層の強磁性層から成り、それぞれの磁化固定層に対して記憶層の反対側に反強磁性層が設けられている構成とする。例えば、2つの磁化固定層が、一方は2層の強磁性層から成り、他方は3層の強磁性層から成る構成とする。
このようにすれば、反強磁性層を配向するように磁場中熱処理を行うことにより、容易に製造できる利点を有する。
この理由を詳細に説明する。
反強磁性層を配向するように磁場中熱処理を行えば、それぞれの磁化固定層の最も反強磁性層側の強磁性層の磁化の向きが、磁場の向きに合わせて同じ向きになる。
そして、一方の磁化固定層が奇数層の強磁性層から成るので、この一方の磁化固定層の最も記憶層側の強磁性層の磁化の向きは、最も反強磁性層側の強磁性層の磁化の向きと同じになる。
また、他方の磁化固定層が偶数層の強磁性層から成るので、この他方の磁化固定層の最も記憶層側の強磁性層の磁化の向きは、最も反強磁性層側の強磁性層の磁化の向きとは反対になる。
これにより、一方の磁化固定層と他方の磁化固定層において、それぞれの最も記憶層側の強磁性層の磁化の向きが反対となる。即ち、本発明の構成の記憶素子を製造することができる。
上述のように、2層の強磁性層が反強磁性結合した積層フェリ構造の磁化固定層と、3層の強磁性層が反強磁性結合した積層フェリ構造の磁化固定層とを、共に用いて構成した例はこれまでにない。
例えば、磁気ヘッド用の磁気抵抗効果素子として、磁化の向きを変化させることが可能な磁化自由層を中心に、上下を磁化固定層で挟んだ構造が提案されている。
この提案されている構成では、両側の磁化固定層が共に2層の強磁性層による積層フェリ構造であり、磁化固定層を構成する各強磁性層の磁化の向きを磁化自由層から見て対称になるようにしているため、両側の磁化固定層の磁化自由層に最も近い強磁性層の磁化の向きが同じになっている。
この磁気ヘッド用の磁気抵抗効果素子の構成を、スピン注入を用いた記憶素子に採用した場合には、上下それぞれの磁化固定層からの漏れ磁界は、積層フェリ構造によりキャンセルすることが可能であるが、両側の磁化固定層の磁化自由層に最も近い強磁性層の磁化の向きが同じになっているために、スピン注入の効率を向上することはできない。
なお、記憶素子の記憶層に記録された情報を読み出す方法としては、記憶素子の記憶層に薄い絶縁膜を介して、情報の基準となる磁性層を設けて、絶縁層を介して流れる強磁性トンネル電流によって読み出してもよいし、磁気抵抗効果により読み出してもよい。
また、本発明の記憶素子の構成において、磁化固定層の強磁性層の組み合わせを種々検討し、漏れ磁界を調整する試行錯誤を行った結果、各磁化固定層からの漏れ磁界の大きさが15Oe以上の場合には、記憶素子の外周近傍に局所的な磁場分布が形成され、同一の記憶素子を繰り返し測定した場合でも反転電流のばらつきσ(標準偏差)が20%以上になる。
一方、各磁化固定層からの漏れ磁界の大きさを15Oe以下にすると、反転電流のばらつきは抑制される。
従って、各磁化固定層からの漏れ磁界が15Oe以下になるように、磁化固定層の膜構成を設定することが望ましい。
また、記憶層の磁化の向きを、小さい電流で容易に反転できるように、記憶素子を小さくすることが望ましい。
従って、好ましくは、記憶素子の面積を0.04μm以下とする。
なお、磁化固定層からの漏れ磁界の大きさは、記憶層とその一方に磁化固定層を設けた磁気抵抗効果素子(GMR素子やMTJ素子)を、サイズを異ならせて複数個作製し、各磁気抵抗効果素子について、印加する外部磁場の大きさを変化させて抵抗を測定して、得られる磁場−抵抗曲線における、外部磁界ゼロの原点からのずれ量から見積もることができる。
磁場−抵抗曲線の原点からのずれ量は、漏れ磁界とネール磁界(膜面ラフネスにより微視的磁極が形成されて、発生する面内磁界)との和で示されるので、サイズの異なる複数個の磁気抵抗効果素子を作製してそれぞれの測定を行うことにより、無限大サイズでのずれ量を外挿することができる。この無限大サイズでのずれ量がネール磁界に相当するので、その分を差し引き、磁化固定層から情報記録層への漏れ磁界を求めることができる。
通常、ネール磁界は3Oe以下程度である。
続いて、本発明の実施の形態を説明する。
本発明の一実施の形態として、メモリの概略構成図(斜視図)を図1に示す。
このメモリは、互いに直交する2種類のアドレス配線(例えばワード線とビット線)の交点付近に、磁化状態で情報を保持することができる記憶素子が配置されて成る。
即ち、シリコン基板等の半導体基体10の素子分離層2により分離された部分に、各メモリセルを選択するための選択用トランジスタを構成する、ドレイン領域8、ソース領域7、並びにゲート電極1が、それぞれ形成されている。このうち、ゲート電極1は、図中前後方向に延びる一方のアドレス配線(例えばワード線)を兼ねている。
ドレイン領域8は、図中左右の選択用トランジスタに共通して形成されており、このドレイン領域8には、配線9が接続されている。
そして、ソース領域7と、上方に配置された、図中左右方向に延びる他方のアドレス配線(例えばビット線)6との間に、記憶素子3が配置されている。この記憶素子3は、スピン注入により磁化の向きが反転する強磁性層から成る記憶層を有する。
また、この記憶素子3は、2種類のアドレス配線1,6の交点付近に配置されている。
この記憶素子3は、ビット線6と、ソース領域7とに、それぞれ上下のコンタクト層4を介して接続されている。
これにより、2種類のアドレス配線1,6を通じて、記憶素子3に上下方向の電流を流して、スピン注入により記憶層の磁化の向きを反転させることができる。
また、本実施の形態のメモリの記憶素子3の断面図を図2に示す。
図2に示すように、この記憶素子3は、スピン注入により磁化M1の向きが反転する記憶層17に対して、下層に第1の磁化固定層31を設け、上層に第2の磁化固定層32を設けている。即ち、記憶層17に対して、上下2つの磁化固定層31,32を設けた構成である。
第1の磁化固定層31の下に反強磁性層12が設けられ、この反強磁性層12により、第1の磁化固定層31の磁化の向きが固定される。また、第2の磁化固定層32の上に反強磁性層24が設けられ、この反強磁性層24により、第2の磁化固定層32の磁化の向きが固定される。
記憶層17と下層の第1の磁化固定層31との間には、トンネルバリア層(トンネル絶縁層)となる絶縁層16が設けられ、記憶層17と第1の磁化固定層31とにより、MTJ素子が構成されている。
記憶層17と上層の第2の磁化固定層32との間には、導電性の非磁性スペーサ層18が設けられ、記憶層17と第2の磁化固定層32とにより、GMR素子が構成されている。
また、反強磁性層12の下には下地層11が形成され、反強磁性層24の上にはキャップ層25が形成されている。
本実施の形態においては、特に、記憶素子3の第1の磁化固定層31及び第2の磁化固定層32が、いずれも積層フェリ構造となっている。
具体的には、第1の磁化固定層31は、2層の強磁性層13,15が、非磁性層14を介して積層されて反強磁性結合した構成であり、第2の磁化固定層32は、3層の強磁性層19,21,23が、非磁性層20,22を介して積層されて反強磁性結合した構成である。
磁化固定層31,32を構成する各強磁性層13,15,19,21,23からの漏れ磁束の大きさは、それぞれの強磁性層13,15,19,21,23の飽和磁化と膜厚との積に比例する。
そして、第1の磁化固定層31の各強磁性層13,15が積層フェリ構造となっているため、強磁性層13の磁化M13が右向き、強磁性層15の磁化M15が左向きとなっており、互いに反対向きになっている。
これにより、第1の磁化固定層31の各強磁性層13,15から漏れる磁束が、互いに打ち消し合う。
同様に、第2の磁化固定層32の各強磁性層19,21,23が積層フェリ構造となっているため、強磁性層19の磁化M19が右向き、強磁性層21の磁化M21が左向き、強磁性層23の磁化M23が右向きとなっており、互いに上下層で反対の向き(互い違いの向き)になっている。
これにより、第2の磁化固定層32の各強磁性層19,21,23から漏れる磁束が、互いに打ち消し合う。
また、第1の磁化固定層31内及び第2の磁化固定層32内の、それぞれの各強磁性層からの磁束が相殺される関係にある。
具体的には、第1の磁化固定層31及び第2の磁化固定層32のそれぞれにおいて、合成磁化がほぼゼロとなるように、互いに磁化が反対の向きの強磁性層の飽和磁化と膜厚との積の和が等しいこと、即ち以下の関係が成り立つことが望ましい。
Ms13・t13=Ms15・t15
Ms19・t19+Ms23・t23=Ms21・t21
(ただし、Ms13,Ms15,Ms19,Ms21,Ms23は、それぞれ強磁性層13,15,19,21,23の飽和磁化であり、t13,t15,t19,t21,t23は、それぞれ強磁性層13,15,19,21,23の膜厚である。)
そして、磁化固定層31,32を構成する各強磁性層13,15,19,21,23の素子断面から磁束が漏れて、記憶層17に磁界が加わるが、上述のようにそれぞれの磁化固定層31,32で各強磁性層から漏れる磁束が、磁化の向きが反対の強磁性層で打ち消し合い互いに相殺されるため、記憶層17に加わる磁界の大きさを、ゼロもしくは非常に小さくすることができる。
さらに、本実施の形態においては、さらに、第1の磁化固定層31のうち記憶層17に最も近い強磁性層15の磁化M15が左向きであり、第2の磁化固定層32のうち記憶層17に最も近い強磁性層19の磁化M19が右向きであり、これらが互いに反対の向きになっている。
このように記憶層17を挟む磁化固定層31,32において、それぞれ記憶層17に最も近い強磁性層15,19の磁化M15,M19が互いに反対の向きになっていることにより、スピン注入効率を増大させることができるため、スピン注入により記憶層17の磁化M1の向きを反転させるために必要な電流量を低減することができる。
記憶層17の材料としては、特に限定はないが、鉄、ニッケル、コバルトの1種もしくは2種以上からなる合金材料を用いることができる。さらにNb、Zr等の遷移金属元素やB等の軽元素を含有させることもできる。また、例えばCoFe/NiFe/CoFeの積層膜といったように、材料が異なる複数の膜を直接(非磁性層を介さずに)積層して、記憶層17を構成してもよい。
磁化固定層31,32の強磁性層13,15,19,21,23の材料としては、特に限定はないが、鉄、ニッケル、コバルトの1種もしくは2種以上からなる合金材料を用いることができる。さらにNb、Zr等の遷移金属元素やB等の軽元素を含有させることもできる。
磁化固定層31,32の積層フェリを構成する非磁性層14,20,22の材料としては、ルテニウム、銅、クロム、金、銀等が使用できる。非磁性層14,20,22の膜厚は、材料によって変動するが、好ましくは、ほぼ0.5nmから2.5nmの範囲で使用する。
反強磁性層12,24の材料としては、鉄、ニッケル、白金、イリジウム、ロジウム等の金属元素とマンガンとの合金、コバルトやニッケルの酸化物等が使用できる。
磁化固定層31,32の強磁性層13,15,19,21,23の飽和磁化Msの値は、一般に、400emu/cc以上2000emu/cc以下の範囲が適当である。
第2の磁化固定層32の真ん中の強磁性層21の膜厚t21は、2nm以上6nm以下が適当であり、その他の強磁性層13,15,19,23の膜厚t13,t15,t19,t23は、1nm以上4nm以下が適当である。
また、第1の磁化固定層31及び第2の磁化固定層32から記憶層17への漏れ磁界が各々15Oe以下になるように、磁化固定層31,32の各層の材料・膜厚を選定することが望ましい。
本実施の形態の記憶素子3は、下地層11からキャップ層25までを真空装置内で連続的に形成して、その後エッチング等の加工により記憶素子3のパターンを形成することにより、製造することができる。
上述の本実施の形態によれば、記憶素子3の記憶層17に対して、下層に第1の磁化固定層31が設けられ、上層に第2の磁化固定層32が設けられ、第1の磁化固定層31が2層の強磁性層13,15から成る積層フェリ構造となっており、第2の磁化固定層32が3層の強磁性層19,21,23から成る積層フェリ構造となっているため、磁化固定層31,32を構成する強磁性層の磁化の向きが、上下の強磁性層で互い違いになっている。これにより、磁化固定層31,32を構成する各強磁性層から漏れる磁束が互いに打ち消し合う。
さらに、第1の磁化固定層31内及び第2の磁化固定層32内の、それぞれの各強磁性層からの磁束が相殺される関係にあることにより、各磁化固定層31,32から記憶層17に加わる磁束の大きさを小さくすることができ、ゼロもしくは非常に小さくすることも可能である。
従って、記憶層17に及ぶ磁界の影響を低減させることができるため、記憶層17の磁化M1の向きを反転させる際に必要な電流量(閾値電流)を、電流の両極性で対称にする(絶対値を等しくする)ことが可能になり、また電流量のばらつきも低減することが可能になる。
これにより、記憶素子3に対して電流を流して情報を記録する、動作領域を拡大することが可能になり、動作のマージンを広く確保し、記憶素子3を安定して動作させることができる。
従って、安定して動作する信頼性の高いメモリを実現することができる。
また、本実施の形態によれば、記憶素子3の記憶層17を挟む磁化固定層31,32において、それぞれ記憶層17に最も近い強磁性層15,19の磁化M15,M19が互いに反対の向きになっていることにより、スピン注入効率を増大させることができる。これにより、スピン注入によって記憶層17の磁化M1の向きを反転させるために必要な電流量を、低減することができる。
従って、記憶素子3を備えたメモリにおいて、消費電力を低減することができる。
次に、本発明の他の実施の形態として、メモリを構成する記憶素子の断面図を図3に示す。
この記憶素子30は、第1の磁化固定層31及び第2の磁化固定層32が、いずれも積層フェリ構造となっているが、各磁化固定層31,32の構成が図2に示した記憶素子3とは異なっている。
具体的には、第1の磁化固定層31は、3層の強磁性層33,35,37が、非磁性層34,36を介して積層されて反強磁性結合した構成であり、第2の磁化固定層32は、2層の強磁性層38,40が、非磁性層39を介して積層されて反強磁性結合した構成である。
そして、第1の磁化固定層31の各強磁性層33,35,37が積層フェリ構造となっているため、強磁性層33の磁化M33が右向き、強磁性層35の磁化M35が左向き、強磁性層37の磁化M37が右向きとなっており、互いに上下層で反対の向きになっている。
これにより、第1の磁化固定層31の各強磁性層33,35,37から漏れる磁束が、互いに打ち消し合う。
同様に、第2の磁化固定層32の各強磁性層38,40が積層フェリ構造となっているため、強磁性層38の磁化M38が左向き、強磁性層40の磁化M40が右向きとなっており、互いに反対向きになっている。
これにより、第2の磁化固定層32の各強磁性層38,40から漏れる磁束が、互いに打ち消し合う。
また、第1の磁化固定層31内及び第2の磁化固定層32内の、それぞれの各強磁性層からの磁束が相殺される関係にある。
具体的には、第1の磁化固定層31及び第2の磁化固定層32のそれぞれにおいて、合成磁化がほぼゼロとなるように、互いに磁化が反対の向きの強磁性層の飽和磁化と膜厚との積の和が等しいこと、即ち以下の関係が成り立つことが望ましい。
Ms33・t33+Ms37・t37=Ms35・t35
Ms38・t38=Ms40・t40
(ただし、Ms33,Ms35,Ms37,Ms38,Ms40は、それぞれ強磁性層33,35,37,38,40の飽和磁化であり、t33,t35,t37,t38,t40は、それぞれ強磁性層33,35,37,38,40の膜厚である。)
そして、磁化固定層31,32を構成する各強磁性層33,35,37,38,40の素子断面から磁束が漏れて、記憶層17に磁界が加わるが、上述のようにそれぞれの磁化固定層31,32で各強磁性層から漏れる磁束が、磁化の向きが反対の強磁性層で打ち消し合い互いに相殺されるため、記憶層17に加わる磁界の大きさを、ゼロもしくは非常に小さくすることができる。
さらに、本実施の形態においては、さらに、第1の磁化固定層31のうち記憶層17に最も近い強磁性層37の磁化M37が右向きであり、第2の磁化固定層32のうち記憶層17に最も近い強磁性層38の磁化M38が左向きであり、これらが互いに反対の向きになっている。
このように記憶層17を挟む磁化固定層31,32において、それぞれ記憶層17に最も近い強磁性層37,38の磁化M37,M38が互いに反対の向きになっていることにより、スピン注入効率を増大させることができるため、スピン注入により記憶層17の磁化の向きを反転させるために必要な電流量を低減することができる。
その他の構成は、図2に示した記憶素子3と同様であるので、同一符号を付して重複説明を省略する。
また、本実施の形態の記憶素子30を用いて、図1に示したメモリと同様の構成のメモリを構成することができる。
即ち、記憶素子30を2種類のアドレス配線の交点付近に配置してメモリを構成し、2種類のアドレス配線を通じて記憶素子30に上下方向(積層方向)の電流を流して、スピン注入により記憶層17の磁化の向きを反転させて、記憶素子30に情報の記録を行うことができる。
上述の本実施の形態によれば、記憶素子30の記憶層17に対して、下層に第1の磁化固定層31が設けられ、上層に第2の磁化固定層32が設けられ、第1の磁化固定層31が3層の強磁性層33,35,37から成る積層フェリ構造となっており、第2の磁化固定層32が2層の強磁性層38,40から成る積層フェリ構造となっているため、磁化固定層31,32を構成する強磁性層の磁化の向きが、上下の強磁性層で互い違いになっている。これにより、磁化固定層31,32を構成する各強磁性層から漏れる磁束が互いに打ち消し合う。
さらに、第1の磁化固定層31内及び第2の磁化固定層32内の、それぞれの各強磁性層からの磁束が相殺される関係にあることにより、各磁化固定層31,32から記憶層17に加わる磁束の大きさを小さくすることができ、ゼロもしくは非常に小さくすることも可能である。
従って、記憶層17に及ぶ磁界の影響を低減させることができるため、記憶層17の磁化M1の向きを反転させる際に必要な電流量(閾値電流)を、電流の両極性で対称にする(絶対値を等しくする)ことが可能になり、また電流量のばらつきも低減することが可能になる。
これにより、記憶素子30に対して電流を流して情報を記録する、動作領域を拡大することが可能になり、動作のマージンを広く確保し、記憶素子30を安定して動作させることができる。
従って、安定して動作する信頼性の高いメモリを実現することができる。
また、本実施の形態によれば、記憶素子30の記憶層17を挟む磁化固定層31,32において、それぞれ記憶層17に最も近い強磁性層37,38の磁化M37,M38が互いに反対の向きになっていることにより、スピン注入効率を増大させることができる。これにより、スピン注入によって記憶層17の磁化M1の向きを反転させるために必要な電流量を、低減することができる。
従って、記憶素子30を備えたメモリにおいて、消費電力を低減することができる。
(実施例)
ここで、本発明の記憶素子の構成において、具体的に各層の材料や膜厚等を選定して、特性を調べた。
実際には、メモリには、図1や図4に示したように、記憶素子以外にもスイッチング用の半導体回路等が存在するが、ここでは、記憶層の磁気抵抗特性を調べる目的で、記憶素子のみを形成したウエハにより検討を行った。
(実施例1)
厚さ0.575mmのシリコン基板上に、厚さ2μmの熱酸化膜を形成し、その上に図2に示した構成の記憶素子3を形成した。
具体的には、図2に示した構成の記憶素子3において、各層の材料及び膜厚を、下地膜11を膜厚3nmのTa膜、反強磁性層12,24を膜厚20nmのPtMn膜、第1の磁化固定層31を構成する強磁性層13,15を膜厚2nmのCoFe膜、積層フェリ構造の磁化固定層31,32を構成する非磁性層14,20,22を膜厚0.8nmのRu膜、トンネル絶縁層となる絶縁層16を膜厚0.5nmのAl膜を酸化した酸化アルミニウム膜、記憶層17を膜厚1nmのCoFe膜・膜厚3nmのNiFe膜・膜厚1nmのCoFe膜の積層膜、非磁性スペーサ層18を膜厚6nmのCu膜、第2の磁化固定層32を構成する強磁性層19,23を膜厚2.5nmのCoFe膜、第2の磁化固定層32を構成する強磁性層21を膜厚5nmのCoFe膜、キャップ層25を膜厚5nmのTa膜と選定し、また下地膜11と反強磁性層12との間に図示しない膜厚100nmのCu膜(後述するワード線となるもの)を設けて、各層を形成した。
上記膜構成で、PtMn膜の組成はPt50Mn50(原子%)、CoFe膜の組成はCo90Fe10(原子%)、NiFe膜の組成はNi80Fe20(原子%)とした。
酸化アルミニウム膜から成る絶縁層16以外の各層は、DCマグネトロンスパッタ法を用いて成膜した。
酸化アルミニウム(Al−O)膜から成る絶縁層16は、まず金属Al膜をDCスパッタ法により0.5nm堆積させて、その後に酸素/アルゴンの流量比を1:1とし、チャンバーガス圧を10Torrとして、自然酸化法により金属Al層を酸化させた。酸化時間は10分とした。
さらに、記憶素子3の各層を成膜した後に、磁場中熱処理炉で、10kOe・270℃・4時間の熱処理を行い、反強磁性層12,24のPtMn膜の規則化熱処理を行った。
次に、ワード線部分をフォトリソグラフィによってマスクした後に、ワード線以外の部分の積層膜に対してArプラズマにより選択エッチングを行うことにより、ワード線(下部電極)を形成した。この際に、ワード線部分以外は、基板の深さ5nmまでエッチングされた。
その後、電子ビーム描画装置により記憶素子3のパターンのマスクを形成し、積層膜に対して選択エッチングを行い、記憶素子3を形成した。記憶素子3部分以外は、ワード線のCu層直上までエッチングした。
なお、特性評価用の記憶素子には、磁化反転に必要なスピントルクを発生させるために、記憶素子に充分な電流を流す必要があるため、トンネル絶縁層の抵抗値を抑える必要がある。そこで、記憶素子3のパターンを、短軸0.09μm×長軸0.18μmの楕円形状として、記憶素子3の面積抵抗値(Ωμm2)が10Ωμm2となるようにした。
次に、記憶素子3部分以外を、厚さ100nm程度のAlのスパッタリングによって絶縁した。
その後、フォトリソグラフィを用いて、上部電極となるビット線及び測定用のパッドを形成した。
このようにして、実施例1の試料を作製した。
(実施例2)
図3に示した記憶素子30の構成とし、第1の磁化固定層31を構成する強磁性層33,37を膜厚2nmのCoFe膜、第1の磁化固定層31を構成する強磁性層35を膜厚4nmのCoFe膜、第2の磁化固定層31を構成する強磁性層38,40を膜厚2.5nmのCoFe膜、磁化固定層31,32を構成する非磁性層34,36,39を膜厚0.8nmのRu膜と選定し、その他の構成は実施例1と同様にして、実施例2の試料を作製した。
(比較例1)
図2の記憶素子3の構成の第2の磁化固定層32の代わりに、単層の強磁性層を設け、この強磁性層を膜厚2.5nmのCoFe膜と選定し、その他の構成は実施例1と同様にして、比較例1の試料を作製した。
即ち、この比較例1の試料は、記憶層の下層の磁化固定層が2層の強磁性層から成る積層フェリ構造であり、記憶層の上層の磁化固定層が単層の強磁性層から成る構成である。
(比較例2)
図2の記憶素子3の構成において、第1の磁化固定層31を構成する強磁性層13を膜厚1.5nmのCoFe膜、強磁性層15を膜厚3.5nmのCoFe膜と選定し、その他の構成は実施例1と同様にして、比較例2の試料を作製した。
即ち、この比較例2の試料は、記憶層17の下層の第1の磁化固定層31の2層の強磁性層13,15の膜厚t13,t15が異なり、第1の磁化固定層31の合成磁化がゼロにならない(Ms13・t13<Ms15・t15)構成である。
(比較例3)
図2の記憶素子3の構成において、第2の磁化固定層32を構成する強磁性層23を膜厚5nmのCoFe膜と選定し、その他の構成は実施例1と同様にして、比較例3の試料を作製した。
即ち、この比較例3の試料は、記憶層17の上層の第2の磁化固定層32の強磁性層19,23の膜厚t19,t23が異なり、第2の磁化固定層32の合成磁化がゼロにならない(Ms19・t19+Ms23・t23>Ms21・t21)構成である。
これら各実施例及び各比較例の試料に対して、それぞれ以下のようにして特性の評価を行った。
測定に先立ち、反転電流のプラス方向とマイナス方向の値を対称になるように制御することを可能にするため、記憶素子に対して、外部から磁界を与えることができるように構成した。また、記憶素子に流す電流量が、絶縁層16が破壊しない範囲内の1mAまでとなるように設定した。
(反転電流値の測定)
記憶素子に電流を流して、その後の記憶素子の抵抗値を測定した。記憶素子の抵抗値を測定する際には、温度を室温25℃として、ワード線の端子とビット線の端子にかかるバイアス電圧が10mVとなるように調節した。さらに、記憶素子に流す電流量を変化させて、この記憶素子の抵抗値の測定を行い、測定結果から抵抗−電流曲線を得た。この抵抗−電流曲線から、抵抗値が変化する電流値を求めて、これを磁化の向きを反転させる反転電流値とした。なお、この抵抗−電流曲線を得る測定は、両極性(プラス方向及びマイナス方向)の電流について行い、両極性の反転電流値を求めた。
さらに、同一の試料に対して、抵抗−電流曲線を得る測定を50回繰り返し、反転電流値の平均値及び繰り返しばらつきσを求めた。
(非対称性の測定)
反転電流値のプラス方向とマイナス方向の非対称性を外部磁界を与えることによって補正し、プラス側とマイナス側の各反転電流値を求めた。
そして、外部磁界の大きさを変化させて、それぞれ反転電流値の測定を行い、プラス側とマイナス側の各反転電流の絶対値がほぼ一致したときの外部磁界の大きさ(Oe)を、非対称性の指標として求めた。
得られた結果をまとめて表1に示す。
Figure 2006049436
表1より、実施例1及び実施例2は、反転電流値のプラス側の値とマイナス側の値が対称であり、反転電流のばらつきσが10%以下であり、非対称性が5Oeや7Oeと小さくなることがわかる。
一方、比較例1〜比較例3は、反転電流値のプラス側の値とマイナス側の値が非対称であり、反転電流のばらつきσが10%以上であり、非対称性が60Oe〜140Oeと大きくなっていることがわかる。即ち、比較例1のように一方の磁化固定層が単層の強磁性層である構成や、比較例2及び比較例3のように一方の磁化固定層の合成磁化がゼロにならない構成とすると、反転電流のばらつきや非対称性が大きくなることがわかる。
従って、実施例1及び実施例2のように、本発明の構成とすることにより、優れた磁化反転特性が得られることがわかる。
そして、実施例1及び実施例2の構成により、0.5mA以下の比較的小さい電流値で情報の書き込みを行うことが可能な記憶素子を作製することができ、これまでにない低消費電力型の磁気メモリを実現することが可能になる。
本発明では、上述の各実施の形態で示した記憶素子3,30の膜構成に限らず、様々な膜構成を採用することが可能である。
上述の各実施の形態では、記憶素子の各磁化固定層を2層フェリ構造と3層フェリ構造の組み合わせとしているが、各磁化固定層から漏れ磁界が発生しないなら、3層フェリと4層フェリの組み合わせ、或いは4層フェリと5層フェリの組み合わせとしても問題はない。
このように、一方の磁化固定層を偶数層の強磁性層から成るフェリ構造、他方の磁化固定層を奇数層の強磁性層から成るフェリ構造とすれば、例えば上下の磁化固定層に設けられた反強磁性層を磁場中熱処理により配向させることにより、容易に製造することができる。
一方、記憶層の上下の磁化固定層を、共に偶数層の強磁性層から成るフェリ構造又は共に奇数層の強磁性層から成るフェリ構造とすることも、記憶素子の構成としては可能である。
ただし、このような構成は、上述した、磁場中熱処理により上下の反強磁性層を配向させる方法では製造が困難であるため、製造方法に工夫を要する。
反強磁性層は、その反強磁性層により磁化の向きが固定される磁化固定層から見て、記憶層とは反対側に設ける。反強磁性層が記憶層側に設けられていると、記憶層の磁化の向きを反転させることが難しくなる。
なお、磁化固定層の各強磁性層の磁化の向きがある程度固定されていれば、反強磁性層を設けなくても問題はない。
また、一方の磁化固定層に対してだけ反強磁性層が設けられていてもよい。
また、磁化固定層の積層フェリ構造の各強磁性層は、単層に限らず、実施例1及び実施例2の記憶層17のように、材料の異なる複数の強磁性膜が直接(非磁性層を介さずに)積層した積層膜であってもよい。
本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。
本発明の一実施の形態のメモリの概略構成図(斜視図)である。 図1の記憶素子の断面図である。 本発明の他の実施の形態の記憶素子の断面図である。 スピン注入による磁化反転を利用したメモリの概略構成図(斜視図)である。 図4のメモリの断面図である。 従来のMRAMの構成を模式的に示した斜視図である。
符号の説明
3,30 記憶素子、11 下地層、12,24 反強磁性層、13,15,19,21,23,33,35,37,38,40 強磁性層、14,20,22,34,36,39 非磁性層、16 絶縁層、17 記憶層、18 非磁性スペーサ層、25 キャップ層、31 第1の磁化固定層、32 第2の磁化固定層

Claims (6)

  1. 情報を磁性体の磁化状態により保持する記憶層を有し、
    前記記憶層の上下に、それぞれ中間層を介して磁化固定層が設けられ、
    前記磁化固定層が、いずれも非磁性層を介して積層された複数層の強磁性層から成り、
    それぞれの前記磁化固定層において、反強磁性結合により、積層された各前記強磁性層の磁化の向きが互い違いになっており、
    前記記憶層の上下の前記磁化固定層において、それぞれ前記記憶層に最も近い前記強磁性層の磁化の向きが互いに反対向きであり、
    積層方向に電流を流すことにより、前記記憶層の磁化の向きが変化して、前記記憶層に対して情報の記録が行われる
    ことを特徴とする記憶素子。
  2. 前記記憶層の上下の前記磁化固定層のうち、一方の前記磁化固定層が奇数層の前記強磁性層から成り、他方の前記磁化固定層が偶数層の前記強磁性層から成り、それぞれの前記磁化固定層に対して前記記憶層の反対側に反強磁性層が設けられていることを特徴とする請求項1に記載の記憶素子。
  3. それぞれの前記磁化固定層において、磁化の向きが互いに反対である各前記強磁性層の飽和磁化と膜厚との積の和が、ほぼ等しい関係を有していることを特徴とする請求項1に記載の記憶素子。
  4. 情報を磁性体の磁化状態により保持する記憶層を有する記憶素子と、
    互いに交差する2種類の配線とを備え、
    前記記憶素子は、前記記憶層の上下に、それぞれ中間層を介して磁化固定層が設けられ、前記磁化固定層がいずれも非磁性層を介して積層された複数層の強磁性層から成り、それぞれの前記磁化固定層において、反強磁性結合により、積層された各前記強磁性層の磁化の向きが互い違いになっており、前記記憶層の上下の前記磁化固定層において、それぞれ前記記憶層に最も近い前記強磁性層の磁化の向きが互いに反対向きであり、積層方向の電流を流すことにより、前記記憶層の磁化の向きが変化して、前記記憶層に対して情報の記録が行われる構成であり、
    前記2種類の配線の交点付近かつ前記2種類の配線の間に、前記記憶素子が配置され、 前記2種類の配線を通じて、前記記憶素子に前記積層方向の電流が流れる
    ことを特徴とするメモリ。
  5. 前記記憶素子は、前記記憶層の上下の前記磁化固定層のうち、一方の前記磁化固定層が奇数層の前記強磁性層から成り、他方の前記磁化固定層が偶数層の前記強磁性層から成り、それぞれの前記磁化固定層に対して前記記憶層の反対側に反強磁性層が設けられていることを特徴とする請求項4に記載のメモリ。
  6. 前記記憶素子は、それぞれの前記磁化固定層において、磁化の向きが互いに反対である各前記強磁性層の飽和磁化と膜厚との積の和が、ほぼ等しい関係を有していることを特徴とする請求項4に記載のメモリ。
JP2004225836A 2004-08-02 2004-08-02 記憶素子及びメモリ Pending JP2006049436A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225836A JP2006049436A (ja) 2004-08-02 2004-08-02 記憶素子及びメモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225836A JP2006049436A (ja) 2004-08-02 2004-08-02 記憶素子及びメモリ

Publications (1)

Publication Number Publication Date
JP2006049436A true JP2006049436A (ja) 2006-02-16

Family

ID=36027670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225836A Pending JP2006049436A (ja) 2004-08-02 2004-08-02 記憶素子及びメモリ

Country Status (1)

Country Link
JP (1) JP2006049436A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196683A (ja) * 2005-01-13 2006-07-27 Tdk Corp 磁気抵抗効果素子及び磁気メモリ
JP2007081280A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 磁気抵抗効果素子及び磁気メモリ装置
JP2008306112A (ja) * 2007-06-11 2008-12-18 Hitachi Metals Ltd 磁気抵抗効果膜、磁気センサ及び回転角度検出装置
JP2009200216A (ja) * 2008-02-21 2009-09-03 Toshiba Corp 磁気記憶素子及び磁気記憶装置
US7633796B2 (en) 2007-01-19 2009-12-15 Sony Corporation Storage element and memory
JP2010021584A (ja) * 2009-10-26 2010-01-28 Sony Corp 記憶素子、メモリ
JP2012524415A (ja) * 2009-04-14 2012-10-11 クアルコム,インコーポレイテッド 磁気トンネル接合(mtj)および方法、およびこれらを使用する磁気ランダムアクセスメモリ(mram)
JP2013232692A (ja) * 2008-09-29 2013-11-14 Seagate Technology Llc 補償素子を有するstram

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158766A (ja) * 2002-11-08 2004-06-03 Toshiba Corp 磁気抵抗効果素子および磁気メモリ装置
JP2004193595A (ja) * 2002-11-26 2004-07-08 Toshiba Corp 磁気セル及び磁気メモリ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158766A (ja) * 2002-11-08 2004-06-03 Toshiba Corp 磁気抵抗効果素子および磁気メモリ装置
JP2004193595A (ja) * 2002-11-26 2004-07-08 Toshiba Corp 磁気セル及び磁気メモリ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196683A (ja) * 2005-01-13 2006-07-27 Tdk Corp 磁気抵抗効果素子及び磁気メモリ
JP2007081280A (ja) * 2005-09-16 2007-03-29 Fujitsu Ltd 磁気抵抗効果素子及び磁気メモリ装置
US7633796B2 (en) 2007-01-19 2009-12-15 Sony Corporation Storage element and memory
JP2008306112A (ja) * 2007-06-11 2008-12-18 Hitachi Metals Ltd 磁気抵抗効果膜、磁気センサ及び回転角度検出装置
JP2009200216A (ja) * 2008-02-21 2009-09-03 Toshiba Corp 磁気記憶素子及び磁気記憶装置
JP2013232692A (ja) * 2008-09-29 2013-11-14 Seagate Technology Llc 補償素子を有するstram
JP2012524415A (ja) * 2009-04-14 2012-10-11 クアルコム,インコーポレイテッド 磁気トンネル接合(mtj)および方法、およびこれらを使用する磁気ランダムアクセスメモリ(mram)
US8889431B2 (en) 2009-04-14 2014-11-18 Qualcomm Incorporated Magnetic tunnel junction (MTJ) and methods, and magnetic random access memory (MRAM) employing same
JP2010021584A (ja) * 2009-10-26 2010-01-28 Sony Corp 記憶素子、メモリ

Similar Documents

Publication Publication Date Title
JP4682998B2 (ja) 記憶素子及びメモリ
JP5104090B2 (ja) 記憶素子及びメモリ
JP5040105B2 (ja) 記憶素子、メモリ
JP4277870B2 (ja) 記憶素子及びメモリ
US8362581B2 (en) Magnetic memory element and magnetic memory device
US20070076471A1 (en) Storage element and memory
JP4661230B2 (ja) 記憶素子及びメモリ
US20060007730A1 (en) Magnetic cell and magnetic memory
JP4951858B2 (ja) メモリ
JP2006093432A (ja) 記憶素子及びメモリ
JP5504704B2 (ja) 記憶素子及びメモリ
JP2008147522A (ja) 記憶素子、メモリ
JP2007048790A (ja) 記憶素子及びメモリ
JP2007305882A (ja) 記憶素子及びメモリ
JP2009252878A (ja) 磁気記憶装置
JP2006190838A (ja) 記憶素子及びメモリ
JP2008171882A (ja) 記憶素子及びメモリ
JP2008153527A (ja) 記憶素子及びメモリ
JP2006165059A (ja) 記憶素子及びメモリ
JP2006295000A (ja) 記憶素子及びメモリ
JP2006295001A (ja) 記憶素子及びメモリ
JP5034317B2 (ja) 記憶素子及びメモリ
JP4187021B2 (ja) 記憶素子及びメモリ
JP2012074716A (ja) 記憶素子及びメモリ
JP2006165265A (ja) 記憶素子及びメモリ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524