JP2006041256A - Semiconductor device and its manufacturing process - Google Patents

Semiconductor device and its manufacturing process Download PDF

Info

Publication number
JP2006041256A
JP2006041256A JP2004220303A JP2004220303A JP2006041256A JP 2006041256 A JP2006041256 A JP 2006041256A JP 2004220303 A JP2004220303 A JP 2004220303A JP 2004220303 A JP2004220303 A JP 2004220303A JP 2006041256 A JP2006041256 A JP 2006041256A
Authority
JP
Japan
Prior art keywords
plate
circuit metal
metal plate
brazing material
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004220303A
Other languages
Japanese (ja)
Inventor
Ryuta Yamaguchi
隆太 山口
Masanori Yamagiwa
正憲 山際
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004220303A priority Critical patent/JP2006041256A/en
Publication of JP2006041256A publication Critical patent/JP2006041256A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device exhibiting excellent reliability by preventing fatigue fracture without increasing power consumption and without increasing manufacturing cost due to increase in man-hour. <P>SOLUTION: The semiconductor device 1 comprises a semiconductor element 2, a circuit metal plate 5 and an insulating plate 7 wherein the semiconductor element 2 is bonded to one major surface of the circuit metal plate 5 through braze filler, the insulating plate 7 is bonded to the other major surface of the circuit metal plate 5 through braze filler, a first braze filler layer 4 is formed between the semiconductor element 2 and the circuit metal plate 5, and a second braze filler layer 6 is formed between the circuit metal plate 5 and the insulating plate 7. Furthermore, a rigid plate 3 having an opening 3a capable of surrounding the semiconductor element 2 is provided and bonded to one major surface of the circuit metal plate 5 through braze filler while surrounding the semiconductor element 2 by the opening 3a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体素子が回路金属板の一方の主面に鑞付けされていると共に、当該回路金属板の他方の主面に絶縁板が鑞付けされた半導体装置及び該半導体装置の製造方法に関する。   The present invention relates to a semiconductor device in which a semiconductor element is brazed to one main surface of a circuit metal plate and an insulating plate is brazed to the other main surface of the circuit metal plate, and a method for manufacturing the semiconductor device. .

従来の半導体素子は数mA程度の電流を信号として制御することに用いられていたが、近年では、数百Aの電流を制御する高速スイッチとしての役割を担うようになっている。これに伴って、半導体素子の発熱量が増加し、半導体素子と回路金属板との接合部等に印加される熱応力も増加する傾向にある。そして、この熱応力が繰り返し印加されることにより半導体装置の疲労破壊が発生し易くなっている。   Conventional semiconductor elements have been used to control a current of about several mA as a signal, but in recent years, they have played a role as a high-speed switch that controls a current of several hundred A. As a result, the amount of heat generated by the semiconductor element increases, and the thermal stress applied to the junction between the semiconductor element and the circuit metal plate tends to increase. And it is easy to generate | occur | produce the fatigue failure of a semiconductor device by applying this thermal stress repeatedly.

このような熱応力が発生する原因としては、半導体素子の熱膨張係数と、当該素子を接合する鑞材の熱膨張係数や当該素子が接合される回路金属板の熱膨張係数と、に大きな差が存在するためである。具体的には、半導体素子の熱膨張係数としては、例えばシリコン(Si)半導体が2.6ppm/K、炭化ケイ素(SiC)半導体が3.5ppm/Kであるのに対して、鑞材の熱膨張係数としては、例えばPb−63Snハンダ合金が24.7ppm/K、回路金属板の熱膨張係数としては、例えば銅(Cu)が17ppm/K、アルミニウム(Al)が24ppm/Kとなっている。   The cause of such thermal stress is that there is a large difference between the thermal expansion coefficient of the semiconductor element and the thermal expansion coefficient of the brazing material to which the element is bonded and the thermal expansion coefficient of the circuit metal plate to which the element is bonded. This is because there exists. Specifically, the thermal expansion coefficient of the semiconductor element is 2.6 ppm / K for a silicon (Si) semiconductor and 3.5 ppm / K for a silicon carbide (SiC) semiconductor, for example. As the expansion coefficient, for example, Pb-63Sn solder alloy is 24.7 ppm / K, and as the thermal expansion coefficient of the circuit metal plate, for example, copper (Cu) is 17 ppm / K and aluminum (Al) is 24 ppm / K. .

このような熱膨張に伴う熱応力を緩和するために、半導体素子と回路金属板との中間の熱膨張係数を持つ例えばFe−Ni合金、モリブデン(Mo)、タングステン(W)等の低い熱膨張係数の金属材料で構成した応力緩衝板を、半導体素子と回路金属板との間に挟んで接合する技術や、半導体装置の放熱能力を向上させて素子周辺の温度上昇を抑制する技術が知られている。   In order to relieve the thermal stress accompanying such thermal expansion, low thermal expansion such as Fe-Ni alloy, molybdenum (Mo), tungsten (W), etc. having an intermediate thermal expansion coefficient between the semiconductor element and the circuit metal plate There are known technologies for joining a stress buffer plate made of a metal material with a coefficient between a semiconductor element and a circuit metal plate and for suppressing the temperature rise around the element by improving the heat dissipation capability of the semiconductor device. ing.

しかしながら、応力緩衝板を用いる技術では、当該緩衝板を構成する低熱膨張係数の金属材料自体の電気抵抗が高いため、半導体素子で消費される電力が増加する。また、モリブデンやタングステンはそれ自身が高価であるので、量産性に適していないという問題もある。   However, in the technique using the stress buffer plate, the electric power consumed by the semiconductor element increases because the electric resistance of the low thermal expansion coefficient metal material itself constituting the buffer plate is high. In addition, since molybdenum and tungsten are expensive themselves, there is a problem that they are not suitable for mass production.

一方、放熱能力を向上させる具体的な技術として、半導体装置の金属支持板の素子直下の部分を高熱伝導性の金属材料で構成すると共にその他の部分を剛性の高い別の金属材料で構成する方法が知られている(例えば、特許文献1参照)。しかしながら、この方法では、金属支持板に2種類以上の金属部材を用いているため、それらを接合する工数が必要となり生産コストが上昇する。
特開平9−82858号公報
On the other hand, as a specific technique for improving the heat dissipation capability, a method in which the portion immediately below the element of the metal support plate of the semiconductor device is made of a metal material having high thermal conductivity and the other portion is made of another metal material having high rigidity. Is known (see, for example, Patent Document 1). However, in this method, since two or more kinds of metal members are used for the metal support plate, man-hours for joining them are required, and the production cost increases.
JP-A-9-82858

本発明は、消費電力を増加させたり、工数増加により生産コストを上昇させることなく、疲労破壊を防止して信頼性に優れた半導体装置及び該半導体装置の製造方法を提供することを目的とする。
上記目的を達成するために、本発明によれば、半導体素子、回路金属板及び絶縁板を有し、前記半導体素子が前記回路金属板の一方の主面に鑞材により接合され、前記回路金属板の他方の主面に前記絶縁板が鑞材により接合された半導体装置であって、前記半導体素子の周囲を囲むことが可能な形状を持つ開口が形成された剛性板をさらに有し、前記剛性板は、前記開口により前記半導体素子の周囲を囲みながら、前記回路金属板の一方の主面に鑞材により接合された半導体装置が提供される。
An object of the present invention is to provide a semiconductor device excellent in reliability by preventing fatigue failure without increasing power consumption or increasing production costs due to an increase in man-hours, and a method for manufacturing the semiconductor device. .
In order to achieve the above object, according to the present invention, there is provided a semiconductor element, a circuit metal plate, and an insulating plate, and the semiconductor element is joined to one main surface of the circuit metal plate by a brazing material, A semiconductor device in which the insulating plate is joined to the other main surface of the plate by a brazing material, and further includes a rigid plate in which an opening having a shape capable of surrounding the periphery of the semiconductor element is formed, The rigid plate is provided with a semiconductor device joined to one main surface of the circuit metal plate by a brazing material while surrounding the periphery of the semiconductor element by the opening.

本発明では、半導体素子の周囲を囲むことが可能な形状の開口を具備した剛性板を回路金属板に鑞材により接合し、当該剛性板と絶縁板との間に回路金属板を挟み込むことにより、鑞材から成る鑞材層及び回路金属板を機械的に拘束する。これにより、回路金属板及び鑞材層の熱膨張が抑制され、熱膨張に起因する応力集中が緩和されるので、半導体装置の疲労破壊が防止され信頼性が向上する。   In the present invention, a rigid plate having an opening that can surround the periphery of a semiconductor element is joined to a circuit metal plate with a brazing material, and the circuit metal plate is sandwiched between the rigid plate and the insulating plate. , Mechanically constrain the brazing material layer made of the brazing material and the circuit metal plate. As a result, the thermal expansion of the circuit metal plate and the brazing material layer is suppressed, and the stress concentration caused by the thermal expansion is alleviated, so that fatigue breakdown of the semiconductor device is prevented and the reliability is improved.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1実施形態]
図1は本発明の第1実施形態に係る半導体装置を示す上部平面図、図2は図1のII-II線に沿った断面図である。
[First Embodiment]
FIG. 1 is a top plan view showing a semiconductor device according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line II-II in FIG.

本発明の第1実施形態に係る半導体装置1は、図1及び図2に示すように、例えばトランジスタ素子やダイオード素子等の半導体素子2と、半導体素子2が一方の主面に鑞材により接合された回路金属板5と、当該回路金属板5の他方の主面に鑞材により接合された絶縁板7と、絶縁板7の回路金属板5に接合された面の反対面に接合されたヒートシンク9と、を有しており、半導体素子2と回路金属板5との間に第1の鑞材層4が形成され、回路金属板5と絶縁板7との間に第2の鑞材層6が形成され、さらに、絶縁板7とヒートシンク9との間に第3の鑞材層8が形成されている。   As shown in FIGS. 1 and 2, the semiconductor device 1 according to the first embodiment of the present invention has a semiconductor element 2 such as a transistor element or a diode element, and the semiconductor element 2 joined to one main surface with a brazing material. The circuit metal plate 5, the insulating plate 7 joined to the other main surface of the circuit metal plate 5 with a brazing material, and the surface opposite to the surface joined to the circuit metal plate 5 of the insulating plate 7. A first heat sink material layer 4 between the semiconductor element 2 and the circuit metal plate 5, and a second heat sink material between the circuit metal plate 5 and the insulating plate 7. A layer 6 is formed, and a third brazing material layer 8 is formed between the insulating plate 7 and the heat sink 9.

なお、図2には特に図示しないが、半導体素子2、後述する剛性板3、回路金属板5、絶縁板7及びヒートシンク9における鑞材との接合界面であって鑞材との接合が弱い面については、必要に応じて、蒸着処理やメッキ処理、スパッタリング等の手法によりメタライズ処理されている。   Although not particularly shown in FIG. 2, it is a bonding interface between the semiconductor element 2, a rigid plate 3, a circuit metal plate 5, an insulating plate 7, and a heat sink 9, which will be described later, and is weakly bonded to the brazing material. Is subjected to metallization treatment by a technique such as vapor deposition, plating or sputtering, as necessary.

回路金属板5は、例えば銅、アルミニウム、鉄若しくは銀等の金属やこれらのうちの少なくとも一つの金属を含有した合金等の電気抵抗の少ない材料で構成されている。   The circuit metal plate 5 is made of a material having low electrical resistance, such as a metal such as copper, aluminum, iron or silver, or an alloy containing at least one of these metals.

ヒートシンク9は、半導体素子2を放熱するために、例えば鉄、銅、アルミニウム若しくは銀等の金属やこれらのうち少なくとも一つの金属を含有した合金等の熱伝導性に優れた材料で構成されている。   In order to dissipate heat from the semiconductor element 2, the heat sink 9 is made of a material having excellent thermal conductivity such as a metal such as iron, copper, aluminum, or silver, or an alloy containing at least one of these metals. .

これに対し、絶縁板7は、導電性の回路金属板5とヒートシンク9とを絶縁するために、例えば酸化アルミニウム(Al)、窒化アルミニウム(AlN)若しくは炭化ケイ素(SiC)等やこれらを含む複合材料等の電気絶縁性に優れた材料で構成されている。 On the other hand, the insulating plate 7 is made of, for example, aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), or the like in order to insulate the conductive circuit metal plate 5 from the heat sink 9. It is comprised with the material excellent in electrical insulation, such as a composite material containing.

さらに、本実施形態に係る半導体装置1は、図1及び図2に示すような剛性板3を有している。この剛性板3は、同図に示すように、当該半導体素子2の周囲を囲むことが可能な形状を持つ開口3aが形成された平板状の部材である。この剛性板3は、開口3aにより半導体素子2の周囲を囲みながら、回路金属板5の一方の主面に鑞材により接合されており、当該剛性板3と回路金属板5との間に、上述の第1の鑞材層4が広がって形成されている。なお、この開口3aの形状は、半導体素子2の周囲を囲むことが可能な形状であれば特に限定されず、図1に示すように、円形状(図1上部の開口3a参照)であっても、矩形形状(図1下部の開口3a参照)であっても良い。   Furthermore, the semiconductor device 1 according to the present embodiment has a rigid plate 3 as shown in FIGS. As shown in the figure, the rigid plate 3 is a flat plate member in which an opening 3 a having a shape capable of surrounding the periphery of the semiconductor element 2 is formed. The rigid plate 3 is joined to one main surface of the circuit metal plate 5 by a brazing material while surrounding the periphery of the semiconductor element 2 by the opening 3a, and between the rigid plate 3 and the circuit metal plate 5, The above-mentioned first brazing material layer 4 is formed so as to spread. The shape of the opening 3a is not particularly limited as long as it can surround the periphery of the semiconductor element 2, and is circular (see the opening 3a at the top of FIG. 1) as shown in FIG. Alternatively, it may have a rectangular shape (see the opening 3a in the lower part of FIG. 1).

このように、本実施形態では、剛性板3と絶縁板7との間に回路金属板5を挟み込むことにより、第1の鑞材層4、回路金属板5及び第2の鑞材層6が機械的に拘束され、回路金属板5及び鑞材層4、6の熱膨張が抑制されるので、半導体装置1の疲労破壊が防止される。   Thus, in the present embodiment, the first metal layer 4, the circuit metal plate 5, and the second metal layer 6 are formed by sandwiching the circuit metal plate 5 between the rigid plate 3 and the insulating plate 7. Since it is mechanically restrained and thermal expansion of the circuit metal plate 5 and the brazing material layers 4 and 6 is suppressed, fatigue failure of the semiconductor device 1 is prevented.

この剛性板3は、例えば酸化アルミニウム(Al)、窒化アルミニウム(AlN)若しくは炭化ケイ素(SiC)等やこれらを含む複合材料等の絶縁板7と同じ材料で構成されている。剛性板3を絶縁板7と同じ材料で構成することにより、剛性板3を構成する材料の熱膨張係数と、絶縁板7を構成する材料の熱膨張係数との差によって生じる反りの発生を抑制することが出来る。なお、この剛性板3には絶縁板7のような電気絶縁性は要求されないので、例えばFe−Ni系合金のような導電性材料で構成しても良い。 The rigid plate 3 is made of the same material as the insulating plate 7 such as aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), silicon carbide (SiC), or a composite material containing them. By configuring the rigid plate 3 with the same material as the insulating plate 7, the occurrence of warpage caused by the difference between the thermal expansion coefficient of the material constituting the rigid plate 3 and the thermal expansion coefficient of the material constituting the insulating plate 7 is suppressed. I can do it. Note that the rigid plate 3 is not required to have electrical insulation like the insulating plate 7, and may be made of a conductive material such as an Fe-Ni alloy.

また、剛性板3は、上述のように、回路金属板5及び鑞材層4、6を絶縁板7との間に挟み込むことにより熱膨張を抑える機能を備えているので、回路金属板5や第1及び第2の鑞材層4、6より大きなヤング率を持つと共に、回路金属板5や第1及び第2の鑞材層4、6より小さな熱膨張係数を持つことが好ましい。   In addition, the rigid plate 3 has a function of suppressing thermal expansion by sandwiching the circuit metal plate 5 and the brazing material layers 4 and 6 between the insulating plate 7 as described above. It is preferable that the Young's modulus is greater than that of the first and second brazing material layers 4 and 6 and that the coefficient of thermal expansion is smaller than that of the circuit metal plate 5 and the first and second brazing material layers 4 and 6.

本実施形態では、図2に示すように、半導体素子2の周囲が剛性板3で囲われているので、回路金属板5の一方の主面と剛性板3とを接合している第1の鑞材層4のうち、剛性板3に接触してない非接触部分4aの厚さを、剛性板3に接触している接触部分4bの厚さに対して相対的に厚くすることが可能となっている。   In the present embodiment, as shown in FIG. 2, since the periphery of the semiconductor element 2 is surrounded by the rigid plate 3, the first main surface of the circuit metal plate 5 and the rigid plate 3 are joined together. The thickness of the non-contact portion 4 a that is not in contact with the rigid plate 3 in the saddle material layer 4 can be relatively increased with respect to the thickness of the contact portion 4 b that is in contact with the rigid plate 3. It has become.

これにより、回路金属板5に接合された剛性板3の開口3aにより半導体素子2の直下及びその周囲に位置する第1の鑞材層4の非接触部分4aが、剛性板3の開口3aで囲われているので、当該非接触部分4aの熱膨張が抑制され、熱膨張に起因する応力集中が緩和される。   As a result, the non-contact portion 4a of the first brazing material layer 4 located immediately below and around the semiconductor element 2 by the opening 3a of the rigid plate 3 joined to the circuit metal plate 5 is formed by the opening 3a of the rigid plate 3. Since it is enclosed, thermal expansion of the non-contact portion 4a is suppressed, and stress concentration caused by thermal expansion is alleviated.

また、一般的に鑞材層は厚くするほどその応力緩衝作用が高まるので、本実施形態では、第1の鑞材層4の非接触部分4aを接触部分4bより厚くすることにより、第1の鑞材層4の応力緩衝作用が高まるので、温度変化により回路金属板5に熱膨張や反り等が生じた場合であっても、半導体素子2や第1の鑞材層4の非接触部分4aへの応力集中が緩和される。なお、このように非接触部分4aの厚さを厚くしても、半導体素子2の密度が鑞材の密度より大きくしかも濡れ性に劣るので、鑞付け時に半導体素子2が鑞材中に埋もれることなく鑞材の表面で浮かんだ状態で回路金属板5に接合される。   Further, since the stress buffering action generally increases as the thickness of the brazing material layer increases, in the present embodiment, the first contact layer 4a of the first brazing material layer 4 is made thicker than the contact portion 4b. Since the stress buffering action of the brazing material layer 4 is enhanced, the non-contact portion 4a of the semiconductor element 2 or the first brazing material layer 4 even when the circuit metal plate 5 is thermally expanded or warped due to a temperature change. The stress concentration on is relaxed. Even if the thickness of the non-contact portion 4a is increased in this way, the density of the semiconductor element 2 is larger than the density of the brazing material and is inferior in wettability, so that the semiconductor element 2 is buried in the brazing material during brazing. And is joined to the circuit metal plate 5 in a state of floating on the surface of the brazing material.

さらに、本実施形態では、半導体素子2の作動温度内において、第1の鑞材層4の非接触部分4aの厚さが、剛性板3の板厚に対して相対的に小さくなるように設定されている。具体的には、第1の鑞材層4aの厚さと、剛性板3の板厚とが、下記の式(1)を満たすように設定されている。   Furthermore, in the present embodiment, the thickness of the non-contact portion 4 a of the first brazing material layer 4 is set to be relatively small with respect to the thickness of the rigid plate 3 within the operating temperature of the semiconductor element 2. Has been. Specifically, the thickness of the first brazing material layer 4a and the thickness of the rigid plate 3 are set so as to satisfy the following formula (1).

max・(α・L−α・L)<(L−L) … 式(1)
但し、上記の式(1)において、Tmaxは半導体素子2の最高作動温度、Lは常温での第1の鑞材層4の非接触部分4aの厚さ、αは鑞材の熱膨張係数、Lは常温での剛性板3の板厚、αは剛性板3の熱膨張係数である。
T max · (α r · L r −α g · L g ) <(L g −L r ) (1)
However, in the above formula (1), T max is the maximum operating temperature of the semiconductor element 2, L r is a non-contact portion 4a of the first brazing filler metal layer 4 at room temperature thick, alpha r is the brazing filler metal heat The expansion coefficient, L g is the thickness of the rigid plate 3 at normal temperature, and α g is the thermal expansion coefficient of the rigid plate 3.

上述のように第1の鑞材層4を構成する鑞材は剛性板3よりも熱膨張係数が大きいので、高温になると第1の鑞材層4の非接触部分4aの厚さが剛性板3の板厚よりも大きくなり、第1の鑞材層4の非接触部分4aが剛性板3の上面から突出する場合もある。この場合には、剛性板3の開口3aにより第1の鑞材層4の非接触部分4aが拘束されないので、当該非接触部分4aの熱膨張が抑制されない。   As described above, the brazing material constituting the first brazing material layer 4 has a larger coefficient of thermal expansion than that of the rigid plate 3, so that when the temperature becomes high, the thickness of the non-contact portion 4a of the first brazing material layer 4 is the rigid plate. In some cases, the non-contact portion 4 a of the first brazing material layer 4 protrudes from the upper surface of the rigid plate 3. In this case, since the non-contact portion 4a of the first brazing material layer 4 is not restrained by the opening 3a of the rigid plate 3, thermal expansion of the non-contact portion 4a is not suppressed.

これに対し、本実施形態では、上述のように半導体素子2の作動温度内では常に剛性板3の板厚よりも第1の鑞材層4の非接触部分4aの厚さを小さく設定することにより、剛性板3の開口3aにより非接触部分4aの鑞材を常時拘束することが可能となっているので、第1の鑞材層4の非接触部分4aの熱膨張が抑制され、その熱膨張に起因する応力集中が緩和される。   On the other hand, in the present embodiment, the thickness of the non-contact portion 4a of the first brazing material layer 4 is always set smaller than the thickness of the rigid plate 3 within the operating temperature of the semiconductor element 2 as described above. Thus, since the brazing material of the non-contact portion 4a can be always restrained by the opening 3a of the rigid plate 3, the thermal expansion of the non-contact portion 4a of the first brazing material layer 4 is suppressed, and the heat Stress concentration due to expansion is alleviated.

第1の鑞材層4の非接触部分4aの具体的な厚さは、応力緩衝作用が高まる限界である数mm程度とすることが可能であるが、鑞材の電気抵抗を考慮して数百μm〜1mm程度としても良い。   The specific thickness of the non-contact portion 4a of the first brazing material layer 4 can be set to about several millimeters, which is a limit for increasing the stress buffering effect, but is several in consideration of the electrical resistance of the brazing material. It is good also as about 100 micrometers-1 mm.

第1の鑞材層4を構成する鑞材は、例えばアルミニウム鑞や銀鑞、ハンダ等の低ヤング率、低電気抵抗且つ低熱抵抗の材料で構成されている。   The brazing material constituting the first brazing material layer 4 is made of a material having a low Young's modulus, a low electrical resistance and a low thermal resistance, such as an aluminum brazing, a silver brazing, and solder.

第2の鑞材層6を構成する鑞材は、第1の鑞材層4を構成する鑞材と同じものが好ましいが、固相温度が同程度であれば異なる物質であっても良い。これにより、後述するように、半導体装置1の製造時に、半導体素子2、剛性板3、回路金属板5及び絶縁板7を一度に同時に鑞付けすることが可能となる。   The brazing material constituting the second brazing material layer 6 is preferably the same as the brazing material constituting the first brazing material layer 4, but may be a different material as long as the solid phase temperature is approximately the same. As a result, as will be described later, the semiconductor element 2, the rigid plate 3, the circuit metal plate 5, and the insulating plate 7 can be brazed simultaneously at the time of manufacturing the semiconductor device 1.

第1の鑞材層4及び第2の鑞材層6を構成する鑞材のヤング率は、回路金属板5のヤング率以下であることが好ましい。これにより応力緩衝作用が高まるので、温度変化により回路金属板5に熱膨張や反りを生じた場合に応力集中を緩和出来る。   The Young's modulus of the brazing material constituting the first brazing material layer 4 and the second brazing material layer 6 is preferably not more than the Young's modulus of the circuit metal plate 5. As a result, the stress buffering action is enhanced, so that the stress concentration can be relaxed when the circuit metal plate 5 is thermally expanded or warped due to a temperature change.

以上に説明した半導体装置1の製造方法について説明すると、先ず、鑞付けを行う前に、半導体素子2の鑞材が接合される面の反対面にアルミニウム等で電極を予め形成すると共に、必要な場合には、蒸着処理やメッキ処理、スパッタリング等の手法により所定接合界面をメタライズ処理しておく。   The manufacturing method of the semiconductor device 1 described above will be described. First, before performing brazing, an electrode is formed in advance on the opposite surface of the surface of the semiconductor element 2 to which the brazing material is bonded, such as aluminum. In some cases, the predetermined bonding interface is metallized by a technique such as vapor deposition, plating, or sputtering.

次いで、シート状の鑞材を、半導体素子2及び剛性板3と回路金属板5との間に挟み込むと共に回路金属板5と絶縁板7との間に挟み込み、絶縁板7、第2の鑞材層6、回路金属板5、第1の鑞材層4、及び、半導体素子2並びに剛性板3の順序で積層する。この際、第1の鑞材層4の非接触部分4aを厚くするために、半導体素子2の直下及びその周囲に剛性板3の開口3aの形状に対応したシート状の鑞材を予め敷いておく。   Next, the sheet-like brazing material is sandwiched between the semiconductor element 2 and the rigid plate 3 and the circuit metal plate 5 and is also sandwiched between the circuit metal plate 5 and the insulating plate 7. Layer 6, circuit metal plate 5, first brazing material layer 4, semiconductor element 2, and rigid plate 3 are laminated in this order. At this time, in order to thicken the non-contact portion 4a of the first brazing material layer 4, a sheet-like brazing material corresponding to the shape of the opening 3a of the rigid plate 3 is previously laid directly under and around the semiconductor element 2. deep.

次いで、剛性板3に対して上方から押圧力を印加して、その状態を維持したまま、第1の鑞材層4及び第2の鑞材層6の固相温度まで雰囲気温度を上昇させる。鑞材が溶融したら温度を降下させて、剛性板3に印加された押圧力を解除する。その後、シート状の鑞材を、絶縁板7とヒートシンク9との間に挟み込んで当該鑞材を溶融させ第3の鑞材層8を形成することにより半導体装置1が製造される。   Next, a pressing force is applied to the rigid plate 3 from above, and the ambient temperature is raised to the solid phase temperature of the first brazing material layer 4 and the second brazing material layer 6 while maintaining the state. When the brazing material is melted, the temperature is lowered and the pressing force applied to the rigid plate 3 is released. Thereafter, the sheet-shaped brazing material is sandwiched between the insulating plate 7 and the heat sink 9 to melt the brazing material to form the third brazing material layer 8, whereby the semiconductor device 1 is manufactured.

このように、半導体素子2及び剛性板3と回路金属板5との鑞付けと、回路金属板5と絶縁板7との鑞付けと、を同時に行うことにより、通常2回で行う鑞付けを一回に減らすことが出来るので、工数削減によるコストダウンが図れる。   Thus, the brazing of the semiconductor element 2 and the rigid plate 3 and the circuit metal plate 5 and the brazing of the circuit metal plate 5 and the insulating plate 7 are performed at the same time, so that the brazing that is normally performed twice is performed. Since it can be reduced at once, the cost can be reduced by reducing man-hours.

また、回路金属板5に対して片面ずつ鑞付けすると反りが発生するが、回路金属板5の両面を同時に鑞付けすることにより反りが低減され、この反りにより発生する応力が低減する。   Further, when the circuit metal plate 5 is brazed one side at a time, warpage occurs. However, by curling both surfaces of the circuit metal plate 5 at the same time, the warpage is reduced, and the stress generated by the warpage is reduced.

さらに、回路金属板5に実質的に直交する方向に沿って、剛性板3及び絶縁板7に対して押圧力を印加しているので、他の部分より厚い第1の鑞材層4の非接触部分4aの鑞材が接触部分4bに入り込んで当該非接触部分4aが薄くなることはない。   Further, since the pressing force is applied to the rigid plate 3 and the insulating plate 7 along the direction substantially orthogonal to the circuit metal plate 5, the thickness of the first brazing material layer 4 that is thicker than other portions is not increased. The brazing material of the contact portion 4a does not enter the contact portion 4b and the non-contact portion 4a is not thinned.

なお、ヒートシンク9は、絶縁板7に直接鑞付けされる他に、例えば絶縁板7との間に支持板等を介在させて、当該支持板にボルト締結等により機械的に固定されても良い。   In addition to being directly brazed to the insulating plate 7, the heat sink 9 may be mechanically fixed to the supporting plate by bolting or the like by interposing a supporting plate or the like between the insulating plate 7 and the like. .

[第2実施形態]
図3は本発明の第2実施形態を説明するための前記図2に対応した図であり、同一の符号のものは第1実施形態にて説明したものと同一のものを示している。
[Second Embodiment]
FIG. 3 is a view corresponding to FIG. 2 for explaining the second embodiment of the present invention, and the same reference numerals denote the same parts as those described in the first embodiment.

本実施形態においては、図3に示すように、剛性板3の第1の鑞材層4が接合される面のうち回路金属板5に実質的に平行なメタライズ面4bのみが、蒸着処理やメッキ処理、スパッタリング等の手法によりメタライズ処理されており、その他の面、特に開口3aの内壁面はメタライズ処理されていない。  In the present embodiment, as shown in FIG. 3, only the metallized surface 4 b substantially parallel to the circuit metal plate 5 among the surfaces to which the first brazing material layer 4 of the rigid plate 3 is joined is subjected to vapor deposition treatment or Metallization is performed by a technique such as plating or sputtering, and the other surfaces, particularly the inner wall surface of the opening 3a, are not metallized.

例えばセラミックスやFe−Ni系合金、モリブデン、タングステン等から構成される剛性板3は、接合面をメタライズ処理されていないと、アルミニウム鑞や銀鑞、ハンダ等の鑞材と接合しなかったり、たとえ接合しても剥離し易くなる。このため、開口3aの内壁面を意図的にメタライズ処理しないことにより、第1の鑞材層4の非接触部分4aが回路金属板5に対して垂直方向に沿って比較的自由に伸縮することが可能となるので、剛性板3の接合面全面をメタライズ処理している場合と比較して、第1の鑞材層4に発生する熱応力が低減される。   For example, the rigid plate 3 made of ceramics, Fe—Ni alloy, molybdenum, tungsten, or the like may not be bonded to a brazing material such as an aluminum rod, a silver plate, or solder unless the bonding surface is metallized. Even if it joins, it becomes easy to peel. For this reason, by not intentionally metallizing the inner wall surface of the opening 3a, the non-contact portion 4a of the first brazing material layer 4 expands and contracts relatively freely along the vertical direction with respect to the circuit metal plate 5. Therefore, compared with the case where the entire joining surface of the rigid plate 3 is metallized, the thermal stress generated in the first brazing material layer 4 is reduced.

[第3実施形態]
図4は本発明の第3実施形態を説明するための前記図2に対応した図であり、同一の符号のものは第1実施形態にて説明したものと同一のものを示している。
[Third Embodiment]
FIG. 4 is a view corresponding to FIG. 2 for explaining the third embodiment of the present invention, and the same reference numerals denote the same parts as those described in the first embodiment.

本実施形態では、図4に示すように、剛性板3に形成された開口3aの周縁において、回路金属板5側の周縁3cが曲面状に形成されている。剛性板3と第1の鑞材層4との接合界面に角が尖った部分があるとそこに応力が集中し易くなるが、本実施形態では、剛性板3の開口3aの周縁に曲面状の曲面部3cを形成して角部を排除することにより、応力集中が緩和される。  In the present embodiment, as shown in FIG. 4, the peripheral edge 3 c on the circuit metal plate 5 side is formed in a curved shape at the peripheral edge of the opening 3 a formed in the rigid plate 3. If there is a pointed corner at the joint interface between the rigid plate 3 and the first brazing material layer 4, stress tends to concentrate there, but in this embodiment, a curved surface is formed around the opening 3 a of the rigid plate 3. The stress concentration is relaxed by forming the curved surface portion 3c and eliminating the corner portion.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

本発明の第1実施形態に係る半導体装置を示す上部平面図である。1 is an upper plan view showing a semiconductor device according to a first embodiment of the present invention. 図1のII-II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 本発明の第2実施形態に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る半導体装置を示す断面図である。It is sectional drawing which shows the semiconductor device which concerns on 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1…半導体装置
2…半導体素子
3…剛性板
3a…開口
3b…メタライズ面
3c…曲面部
4…第1の鑞材層
4a…非接触部分
4b…接触部分
5…回路金属板
6…第2の鑞材層
7…絶縁板
8…第3の鑞材層
9…ヒートシンク
DESCRIPTION OF SYMBOLS 1 ... Semiconductor device 2 ... Semiconductor element 3 ... Rigid board 3a ... Opening 3b ... Metallized surface 3c ... Curved surface part 4 ... 1st brazing material layer 4a ... Non-contact part 4b ... Contact part 5 ... Circuit metal plate 6 ... 2nd Brazing material layer 7 ... Insulating plate 8 ... Third brazing material layer 9 ... Heat sink

Claims (8)

半導体素子、回路金属板及び絶縁板を有し、前記半導体素子が前記回路金属板の一方の主面に鑞材により接合され、前記回路金属板の他方の主面に前記絶縁板が鑞材により接合された半導体装置であって、
前記半導体素子の周囲を囲むことが可能な形状を持つ開口が形成された剛性板をさらに有し、
前記剛性板は、前記開口により前記半導体素子の周囲を囲みながら、前記回路金属板の一方の主面に鑞材により接合された半導体装置。
A semiconductor element, a circuit metal plate, and an insulating plate, wherein the semiconductor element is bonded to one main surface of the circuit metal plate with a brazing material, and the insulating plate is bonded to the other main surface of the circuit metal plate with a brazing material. A bonded semiconductor device comprising:
A rigid plate formed with an opening having a shape capable of surrounding the periphery of the semiconductor element;
The rigid plate is a semiconductor device that is joined to one main surface of the circuit metal plate by a brazing material while surrounding the periphery of the semiconductor element by the opening.
前記回路金属板の一方の主面と前記剛性板とを接合している鑞材から成る鑞材層のうち、前記剛性板に接触していない非接触部分の厚さが、前記剛性板に接触している接触部分の厚さに対して相対的に厚くなっている請求項1記載の半導体装置。   The thickness of the non-contact portion that is not in contact with the rigid plate out of the brazing material layer made of the brazing material joining the one main surface of the circuit metal plate and the rigid plate is in contact with the rigid plate. The semiconductor device according to claim 1, wherein the thickness of the contact portion is relatively large with respect to the thickness of the contact portion. 前記剛性板は、前記回路金属板より大きなヤング率を持つと共に、前記回路金属板より小さな熱膨張係数を持つ請求項1又は2記載の半導体装置。   The semiconductor device according to claim 1, wherein the rigid plate has a Young's modulus larger than that of the circuit metal plate and a thermal expansion coefficient smaller than that of the circuit metal plate. 前記半導体素子の作動温度内において、前記鑞材層の非接触部分の厚さが、前記剛性板の板厚に対して相対的に小さくなっている請求項2又は3記載の半導体装置。   4. The semiconductor device according to claim 2, wherein a thickness of a non-contact portion of the brazing material layer is relatively smaller than a thickness of the rigid plate within an operating temperature of the semiconductor element. 前記回路金属板の一方の主面と前記剛性板とを接合している鑞材、又は、前記回路金属板の他方の主面と前記絶縁板とを接合している鑞材の少なくとも一方は、前記回路金属板より小さなヤング率を持つ請求項1〜4の何れかに記載の半導体装置。   At least one of the brazing material joining one main surface of the circuit metal plate and the rigid plate, or the joining material joining the other main surface of the circuit metal plate and the insulating plate, The semiconductor device according to claim 1, which has a Young's modulus smaller than that of the circuit metal plate. 前記剛性板の前記鑞材に接合されている面のうち、前記回路金属板に実質的に平行な面のみがメタライズ処理されている請求項1〜5の何れかに記載の半導体装置。   6. The semiconductor device according to claim 1, wherein only a surface substantially parallel to the circuit metal plate among the surfaces bonded to the brazing material of the rigid plate is metallized. 前記剛性板に形成された前記開口の周縁が曲面状に形成されている請求項1〜6の何れかに記載の半導体装置。   The semiconductor device according to claim 1, wherein a periphery of the opening formed in the rigid plate is formed in a curved shape. 請求項1〜7の何れかに記載の半導体装置を製造するための半導体装置の製造方法であって、
前記回路金属板の主面に実質的に直交する方向に沿って、前記剛性板及び前記絶縁板に対して押圧力を印加しながら、前記半導体素子及び前記剛性板と前記回路金属板の一方の主面との鑞付けと、前記回路金属板の他方の主面と前記絶縁板との鑞付けと、を同時に行う半導体装置の製造方法。

A method for manufacturing a semiconductor device for manufacturing the semiconductor device according to claim 1,
While applying a pressing force to the rigid plate and the insulating plate along a direction substantially perpendicular to the main surface of the circuit metal plate, one of the semiconductor element, the rigid plate, and the circuit metal plate A method for manufacturing a semiconductor device, wherein the brazing with the main surface and the brazing between the other main surface of the circuit metal plate and the insulating plate are performed simultaneously.

JP2004220303A 2004-07-28 2004-07-28 Semiconductor device and its manufacturing process Pending JP2006041256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004220303A JP2006041256A (en) 2004-07-28 2004-07-28 Semiconductor device and its manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220303A JP2006041256A (en) 2004-07-28 2004-07-28 Semiconductor device and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2006041256A true JP2006041256A (en) 2006-02-09

Family

ID=35905918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220303A Pending JP2006041256A (en) 2004-07-28 2004-07-28 Semiconductor device and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2006041256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053441A (en) * 2012-09-07 2014-03-20 Mitsubishi Electric Corp Semiconductor device
WO2015022994A1 (en) * 2013-08-16 2015-02-19 日本碍子株式会社 Heat-radiating circuit board and electronic device
WO2015022993A1 (en) * 2013-08-16 2015-02-19 日本碍子株式会社 Ceramic circuit board and electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053441A (en) * 2012-09-07 2014-03-20 Mitsubishi Electric Corp Semiconductor device
WO2015022994A1 (en) * 2013-08-16 2015-02-19 日本碍子株式会社 Heat-radiating circuit board and electronic device
WO2015022993A1 (en) * 2013-08-16 2015-02-19 日本碍子株式会社 Ceramic circuit board and electronic device
US9460984B2 (en) 2013-08-16 2016-10-04 Ngk Insulators, Ltd. Heat dissipating circuit board and electronic device
JPWO2015022993A1 (en) * 2013-08-16 2017-03-02 日本碍子株式会社 Ceramic circuit board and electronic device
JPWO2015022994A1 (en) * 2013-08-16 2017-03-02 日本碍子株式会社 Thermal circuit board and electronic device
US10147663B2 (en) 2013-08-16 2018-12-04 Ngk Insulators, Ltd. Ceramic circuit board and electronic device

Similar Documents

Publication Publication Date Title
JP5542567B2 (en) Semiconductor device
JP2008294280A (en) Semiconductor device
WO2020121680A1 (en) Semiconductor device
JP4180980B2 (en) Semiconductor device
JP2009070907A (en) Semiconductor device
JP6399738B2 (en) Semiconductor device
JP2016167502A (en) Power module substrate with heat sink and power module
JP5368357B2 (en) Electrode member and semiconductor device using the same
JP2021190505A (en) Semiconductor device
JP2006041256A (en) Semiconductor device and its manufacturing process
JP2007227762A (en) Semiconductor device and semiconductor module equipped therewith
US20230094926A1 (en) Electronic Module and Method for Producing an Electronic Module
JP6759784B2 (en) Semiconductor module
JP6524809B2 (en) Semiconductor device
JP5127617B2 (en) Semiconductor device
JP2006286897A (en) Metal-ceramic bonding substrate
JP4667723B2 (en) Power module substrate
JP4747284B2 (en) Insulated circuit board with cooling sink
JPS6281047A (en) Semiconductor device
JP2016134547A (en) Semiconductor device
JP3960192B2 (en) Radiator
JP2020064925A (en) Semiconductor device and manufacturing method of semiconductor device
JP5303936B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP4573467B2 (en) Power semiconductor device
JP5268994B2 (en) Semiconductor module and manufacturing method thereof