JP5368357B2 - Electrode member and semiconductor device using the same - Google Patents

Electrode member and semiconductor device using the same Download PDF

Info

Publication number
JP5368357B2
JP5368357B2 JP2010085083A JP2010085083A JP5368357B2 JP 5368357 B2 JP5368357 B2 JP 5368357B2 JP 2010085083 A JP2010085083 A JP 2010085083A JP 2010085083 A JP2010085083 A JP 2010085083A JP 5368357 B2 JP5368357 B2 JP 5368357B2
Authority
JP
Japan
Prior art keywords
semiconductor element
metal plate
linear expansion
expansion coefficient
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010085083A
Other languages
Japanese (ja)
Other versions
JP2011216766A (en
Inventor
耕 佐野
利彰 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010085083A priority Critical patent/JP5368357B2/en
Publication of JP2011216766A publication Critical patent/JP2011216766A/en
Application granted granted Critical
Publication of JP5368357B2 publication Critical patent/JP5368357B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48476Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area
    • H01L2224/48491Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball between the wire connector and the bonding area being an additional member attached to the bonding area through an adhesive or solder, e.g. buffer pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48799Principal constituent of the connecting portion of the wire connector being Copper (Cu)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01043Technetium [Tc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01065Terbium [Tb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、半導体装置の構成のうちの、半導体素子と配線部材との電気接続をおこなうための電極部材の構造に関し、とくに大電流を扱う電力用半導体装置に適した構成に関する。   The present invention relates to a structure of an electrode member for performing electrical connection between a semiconductor element and a wiring member, and particularly to a configuration suitable for a power semiconductor device that handles a large current.

半導体装置の中でも電力用半導体装置は、鉄道車両、ハイブリッドカー、電気自動車等の車両、家電機器、産業用機械等において、比較的大きな電力を制御、整流するために利用されている。従って、電力用半導体装置に使用される半導体素子は100A/cmを超える高い電流密度で通電することが求められる。そのため、近年はシリコン(Si)に代わる半導体材料としてワイドバンドギャップ半導体材料である炭化珪素(SiC)が注目されており、SiCからなる半導体素子は500A/cmを超える電流密度での動作が可能である。また、SiCは150℃〜300℃の高温状態でも安定動作が可能であり、高電流密度動作と高温動作の両立が可能な半導体材料として期待されている。 Among semiconductor devices, power semiconductor devices are used to control and rectify relatively large power in vehicles such as railway vehicles, hybrid cars, and electric vehicles, home appliances, and industrial machines. Therefore, a semiconductor element used for a power semiconductor device is required to be energized at a high current density exceeding 100 A / cm 2 . Therefore, in recent years, silicon carbide (SiC), which is a wide band gap semiconductor material, has attracted attention as a semiconductor material that replaces silicon (Si), and a semiconductor element made of SiC can operate at a current density exceeding 500 A / cm 2. It is. Further, SiC is capable of stable operation even at a high temperature of 150 ° C. to 300 ° C., and is expected as a semiconductor material capable of achieving both high current density operation and high temperature operation.

一方、電力用を含め半導体装置では、半導体素子の下面の電極面を絶縁基板上の回路パターンにはんだ接合し、上面の電極面にアルミニウムのワイヤを超音波接合して半導体素子の給電経路を形成することが一般的に行われてきた。しかし、アルミニウムの線膨張係数は22ppm/K程度であり、半導体素子として使用されるSiやSiCなどの線膨張係数が3〜5ppm/Kと較べて大きく異なるので、繰り返しの温度変化に伴う熱応力によって、ワイヤ内部に亀裂が進展し、やがて破断に到ることが知られている。これは、パワーサイクル試験と呼ばれる断続的なパルス電流負荷を与えることで破断に対する耐久性を評価することが出来ることから、以降パワーサイクル寿命と称することにする。   On the other hand, in semiconductor devices including those for electric power, the lower electrode surface of the semiconductor element is solder-bonded to the circuit pattern on the insulating substrate, and an aluminum wire is ultrasonically bonded to the upper electrode surface to form a power supply path for the semiconductor element. It has generally been done. However, since the linear expansion coefficient of aluminum is about 22 ppm / K and the linear expansion coefficient of Si, SiC, etc. used as a semiconductor element is greatly different from 3-5 ppm / K, thermal stress accompanying repeated temperature changes. As a result, it is known that a crack develops inside the wire and eventually breaks. This is hereinafter referred to as a power cycle life because durability against breakage can be evaluated by applying an intermittent pulse current load called a power cycle test.

パワーサイクル寿命は、熱応力に起因した亀裂に関する現象であることから、半導体素子の温度変化量に大きく依存する。また、半導体素子の最高到達温度が高くなるとパワーサイクル寿命は短い傾向となる。上述したように、ワイドバンドギャップ半導体においては、高温での動作が期待されるため、Siデバイスと比較すると、高い最高到達温度と大きな温度変化量に耐えうる配線構造が必須となる。これは、たとえば従来のSi半導体に対して最高到達温度を125℃、温度変化量を80Kと設定して設けられた配線構造を、ワイドバンドギャップ半導体における動作条件である最高到達温度が175℃、温度変化量が130Kの条件で使用すると、パワーサイクル寿命が1/10以下まで低下することになる。つまり、電力用半導体装置においてワイドバンドギャップ半導体の機能を発揮できるような厳しい温度条件に対しては、従来のSi半導体に対して用いられてきたアルミニウムワイヤの超音波接合のような配線構造では十分な寿命を得ることができなかった。   Since the power cycle life is a phenomenon related to cracks caused by thermal stress, it greatly depends on the temperature change amount of the semiconductor element. In addition, the power cycle life tends to be short as the maximum temperature of the semiconductor element increases. As described above, since a wide band gap semiconductor is expected to operate at a high temperature, a wiring structure that can withstand a high maximum temperature and a large amount of temperature change is essential as compared with a Si device. This is because, for example, a wiring structure provided with a maximum temperature of 125 ° C. and a temperature change of 80 K with respect to a conventional Si semiconductor has a maximum temperature of 175 ° C., which is an operating condition in a wide band gap semiconductor. When the temperature change amount is 130K, the power cycle life is reduced to 1/10 or less. In other words, a wiring structure such as ultrasonic bonding of aluminum wires that has been used for conventional Si semiconductors is sufficient for severe temperature conditions that enable the function of a wide bandgap semiconductor in a power semiconductor device. A long life could not be obtained.

そこで、ワイヤに代わって平板状のリード部材と半導体素子との接合部に半導体素子の線膨張係数に近い緩衝板を挿入し、熱サイクル時の接合部に生じる熱応力を緩和する半導体装置が提案されている(例えば、特許文献1または特許文献2参照。)。また、ワイヤを接合するための電極を弾性率の低い導電性樹脂を介して半導体素子上に配置し、半導体素子と電極間にかかる熱応力を緩和するようにしたパワー半導体モジュールが提案されている(例えば、特許文献3参照。)。   Therefore, a semiconductor device has been proposed in which a buffer plate close to the linear expansion coefficient of the semiconductor element is inserted in the joint between the flat lead member and the semiconductor element instead of the wire, and the thermal stress generated in the joint during thermal cycling is alleviated. (For example, see Patent Document 1 or Patent Document 2). Further, a power semiconductor module has been proposed in which an electrode for bonding a wire is arranged on a semiconductor element via a conductive resin having a low elastic modulus so as to relieve thermal stress applied between the semiconductor element and the electrode. (For example, refer to Patent Document 3).

特開平11−163045号公報(段落0034、図2)Japanese Patent Laid-Open No. 11-163045 (paragraph 0034, FIG. 2) 特開2000−332067号公報(段落0007、0012〜0014、図1)JP 2000-332067 (paragraphs 0007, 0012 to 0014, FIG. 1) 特開平11−163045号公報(段落0018〜0019、図1)Japanese Patent Laid-Open No. 11-163045 (paragraphs 0018 to 0019, FIG. 1)

しかしながら、緩衝部材の線膨張係数を半導体素子に近づければ、半導体素子と緩衝部材と接合部の繰り返し熱応力に対する寿命は長くなるが、緩衝部材とリード部材との熱応力を抑制することは困難となる。逆に、緩衝部材の線膨張係数をリード部材に近づけるとリード部材接合部の繰り返し熱応力寿命は長くなるが、半導体素子と緩衝部材との熱応力を抑制することは困難となる。つまり、パワーサイクル寿命を最適化するには、このトレードオフ関係から両者の寿命がほぼ等しくなる点を選ぶ必要がある。これはすなわち、パワーサイクル寿命が線膨張係数のトレードオフによって限界点を持っていることを意味している。このような状況にあっては、ワイドバンドギャップ半導体における高温動作で必要な、10倍以上のパワーサイクル性能を得ることは不可能であった。また、弾性率の低い導電性樹脂を挿入する場合、樹脂は高温で劣化しやすいので信頼性が低下するとともに、金属部材と比較して抵抗が高いために電力ロスが発生して効率が低下するという問題があった。   However, if the linear expansion coefficient of the buffer member is close to that of the semiconductor element, the life against repeated thermal stresses of the semiconductor element, the buffer member, and the joint is increased, but it is difficult to suppress the thermal stress between the buffer member and the lead member. It becomes. Conversely, when the linear expansion coefficient of the buffer member is made closer to the lead member, the repeated thermal stress life of the lead member joint becomes longer, but it becomes difficult to suppress the thermal stress between the semiconductor element and the buffer member. In other words, in order to optimize the power cycle life, it is necessary to select a point at which the two lifespans are almost equal from this trade-off relationship. This means that the power cycle life has a limit point due to the linear expansion coefficient trade-off. Under such circumstances, it has been impossible to obtain a power cycle performance more than 10 times that is necessary for high-temperature operation in a wide band gap semiconductor. In addition, when a conductive resin having a low elastic modulus is inserted, the resin is easily deteriorated at a high temperature, so that the reliability is lowered, and since the resistance is higher than that of the metal member, a power loss is generated and the efficiency is lowered. There was a problem.

本発明は、上記のような課題を解決するためになされたもので、最高到達温度が高く、温度変化量が大きくなっても、信頼性の高い半導体装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a highly reliable semiconductor device even when the maximum temperature reached is high and the temperature change amount is large.

本発明の電極部材は、半導体素子と配線部材とを電気接続するための電極部材であって、帯状の第1の金属板の長さ方向における一端側から所定長さの領域に第2の金属板が張り合わされた帯状材を、前記第2の金属板が張り合わされた領域よりも他端側の部分を折り曲げて前記第1の金属板が前記第2の金属板の外側に位置するU字形状となし、前記U字形状の外側となった面において、前記一端側から折り曲げ部分までの所定長さの領域に前記半導体素子との接合面が、前記他端側から前記折り曲げ部分までの所定長さの領域に前記配線部材との接合面が設けられ、前記第1の金属板の線膨張係数は、前記半導体素子の線膨張係数よりも前記配線部材の線膨張係数に近く、前記第2の金属板が張り合わされた領域における前記帯状材の線膨張係数は、前記配線部材の線膨張係数よりも前記半導体素子の線膨張係数に近い、ことを特徴とする。   The electrode member of the present invention is an electrode member for electrically connecting the semiconductor element and the wiring member, and the second metal is formed in a region having a predetermined length from one end side in the length direction of the belt-shaped first metal plate. A U-shaped member in which the first metal plate is positioned outside the second metal plate by folding the band-like material on which the plate is bonded to the other end side of the region where the second metal plate is bonded. In the surface that is the outer shape of the U-shape, the bonding surface with the semiconductor element is in a predetermined length region from the one end side to the bent portion, and the predetermined surface from the other end side to the bent portion. A joining surface with the wiring member is provided in a length region, and the linear expansion coefficient of the first metal plate is closer to the linear expansion coefficient of the wiring member than the linear expansion coefficient of the semiconductor element, and the second The strip-like material line in the region where the metal plates are bonded together Expansion coefficient is close to the linear expansion coefficient of the semiconductor element than the linear expansion coefficient of the wiring member, it is characterized.

本発明の電極部材によれば、半導体素子との接合面は半導体素子の線膨張係数に近く、配線部材との接合面は配線部材の線膨張係数に近いとともに、電極部材内の積層構造界面を通過することなく両接合面間に電流が流れるようにしたので、最高到達温度が高く、温度変化量が大きくなっても、信頼性の高い半導体装置を得ることができる。   According to the electrode member of the present invention, the bonding surface with the semiconductor element is close to the linear expansion coefficient of the semiconductor element, the bonding surface with the wiring member is close to the linear expansion coefficient of the wiring member, and the laminated structure interface in the electrode member is Since a current flows between both junction surfaces without passing through, a highly reliable semiconductor device can be obtained even when the maximum temperature reached is high and the temperature change amount is large.

本発明の実施の形態1にかかる電力用半導体装置および電極部材の構成を説明するための図である。It is a figure for demonstrating the structure of the power semiconductor device and electrode member concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電極部材を用いて電力用半導体装置を製造する方法を説明するための部分断面図である。It is a fragmentary sectional view for demonstrating the method to manufacture a power semiconductor device using the electrode member concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電極部材の第1の変形例の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the 1st modification of the electrode member concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電極部材の第2の変形例の構成および製造方法を説明するための断面図である。It is sectional drawing for demonstrating the structure and manufacturing method of the 2nd modification of the electrode member concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電極部材の第3の変形例の構成を説明するための図である。It is a figure for demonstrating the structure of the 3rd modification of the electrode member concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる電極部材の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the electrode member concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる電極部材の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the electrode member concerning Embodiment 3 of this invention.

実施の形態1.
図1と図2は、本発明の実施の形態1にかかる半導体装置用電極部材および電力用半導体装置を説明するためのもので、図1は電力用半導体装置のうちの半導体装置用電極部材(以下電極部材と称する)が接合された半導体素子と、電極部材を介して半導体素子と接続された1本のボンディングワイヤ部分を示しており、図1(a)は上面図、図1(b)は図1(a)のA−A線による断面を、図1(c)は電極部材を成型する前のクラッド材の状態を示す断面図である。また、図2は本実施の形態1にかかる電力用半導体装置の製造方法として、電極部材に対してワイヤを接合する方法を説明するための図である。また、図3〜図5は、本実施の形態の変形例にかかる電極部材の構成を示す断面図である。はじめに、電力用半導体装置および電極部材の構成と動作について説明する。
Embodiment 1 FIG.
1 and 2 are diagrams for explaining a semiconductor device electrode member and a power semiconductor device according to a first embodiment of the present invention. FIG. 1 shows a semiconductor device electrode member (of a power semiconductor device). FIG. 1A is a top view, FIG. 1B shows a semiconductor element to which a semiconductor element is bonded) and a bonding wire portion connected to the semiconductor element through the electrode member. FIG. 1A is a cross-sectional view taken along the line AA of FIG. 1A, and FIG. 1C is a cross-sectional view showing a state of a clad material before molding an electrode member. FIG. 2 is a diagram for explaining a method of bonding wires to electrode members as a method of manufacturing the power semiconductor device according to the first embodiment. 3-5 is sectional drawing which shows the structure of the electrode member concerning the modification of this Embodiment. First, the configuration and operation of the power semiconductor device and the electrode member will be described.

電力用半導体装置10は、図1に示すように、窒化アルミニウム、窒化ケイ素、アルミナなどのセラミックス材料からなる絶縁基板1の回路面1f上に図示しないろう材などで接合された回路パターン2が配置されている。回路パターンは銅、アルミニウムなどの導電性材料またはそれらを主成分とする合金材料からなる。さらに、回路パターン2の表面は、酸化防止やはんだ材料の濡れ性を考慮して、ニッケルなどのめっき被膜が形成されている。また、図示しないが絶縁基板1の回路面1fの反対側の面(図では2rが形成されている面)には放熱板が形成されていても良い。   As shown in FIG. 1, the power semiconductor device 10 has a circuit pattern 2 bonded with a brazing material (not shown) on a circuit surface 1f of an insulating substrate 1 made of a ceramic material such as aluminum nitride, silicon nitride, or alumina. Has been. The circuit pattern is made of a conductive material such as copper or aluminum or an alloy material containing them as a main component. Further, the surface of the circuit pattern 2 is formed with a plating film such as nickel in consideration of oxidation prevention and wettability of the solder material. Moreover, although not shown in figure, the heat sink may be formed in the surface on the opposite side to the circuit surface 1f of the insulating substrate 1 (surface in which 2r is formed in the figure).

図1では、回路パターン2a上にはんだ5bを介して半導体素子3が接続されている。半導体素子3は、シリコンウエハを基材とした一般的な素子でも良いが、本発明においては炭化ケイ素(SiC)や窒化ガリウム(GaN)、またはダイヤモンドといったシリコンと較べてバンドギャップが広い、いわゆるワイドバンドギャップ半導体材料への適用を目的としており、特に炭化ケイ素を用いた半導体素子に適用される。デバイス種類としては、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field-Effect-Transistor)のようなスイッチング素子、またはダイオードのような整流素子である。MOSFETの場合、半導体素子3の回路パターン2側の面にはドレイン電極が形成されている。そして、ドレイン電極と反対側(図で上側)の面には、ゲート電極やソース電極が、領域を分けて形成されているが、本発明の実施の形態の特徴を分かりやすくするため、上側の面には、大電流が流れるソース電極のみに着目して説明する。なお、ドレイン電極の表面にははんだ5aとの接合を良好とするための複合金属膜が形成されている。ソース電極の表面にも、図示しない厚さ数μmの薄いアルミニウムなどの電極膜やチタン、モリブデン、ニッケル、金などの薄膜層が形成されている。そして、半導体素子3の上側の面には、はんだ5aを介して電極部材6の第1の接合面6t1が接合されている。なお、はんだ5aおよびはんだ5bは、例えば銀を主成分とする焼結性フィラーやろう材といった、はんだに分類されない接合材料であっても良い。 In FIG. 1, the semiconductor element 3 is connected to the circuit pattern 2a via the solder 5b. The semiconductor element 3 may be a general element based on a silicon wafer. In the present invention, the semiconductor element 3 has a wider band gap than silicon such as silicon carbide (SiC), gallium nitride (GaN), or diamond. It is intended to be applied to a band gap semiconductor material, and is particularly applied to a semiconductor element using silicon carbide. Device types include switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal Oxide Semiconductor Field-Effect-Transistors), or rectifying elements such as diodes. In the case of a MOSFET, a drain electrode is formed on the surface of the semiconductor element 3 on the circuit pattern 2 side. The gate electrode and the source electrode are formed on the surface opposite to the drain electrode (upper side in the figure), but the upper electrode is formed in order to make the characteristics of the embodiment of the present invention easier to understand. Only the source electrode through which a large current flows will be described on the surface. Note that a composite metal film is formed on the surface of the drain electrode to improve the bonding with the solder 5a. On the surface of the source electrode, a thin electrode film such as aluminum having a thickness of several μm and a thin film layer such as titanium, molybdenum, nickel, and gold (not shown) are formed. The first joining surface 6t1 of the electrode member 6 is joined to the upper surface of the semiconductor element 3 via the solder 5a. Note that the solder 5a and the solder 5b may be a bonding material that is not classified into solder, such as a sinterable filler mainly composed of silver or a brazing material.

電極部材6は、線膨張係数の異なる少なくとも2種類の金属板を張り合わせて一体化したものであり、2種類のうち、一方の種類の金属板6MCは、半導体素子3よりもボンディングワイヤ4に線膨張係数が近い材料で、銅または銅を主成分とする良導電性材料である。もう一方の種類の金属板6MBは、ボンディングワイヤ4よりも半導体素子3に線膨張係数が近く、あるいは、半導体素子3よりも線膨張係数が低い材料で、モリブデン、ないしモリブデンを含有する合金、またはインバー合金などのいわゆる、低熱膨張材である。 The electrode member 6 is formed by bonding and integrating at least two types of metal plates having different linear expansion coefficients, and one of the two types of metal plates 6 MC is bonded to the bonding wire 4 rather than the semiconductor element 3. It is a material with a close linear expansion coefficient, and is a highly conductive material mainly composed of copper or copper. The other type of metal plate 6 MB is a material having a linear expansion coefficient closer to the semiconductor element 3 than the bonding wire 4 or lower than that of the semiconductor element 3, and molybdenum or an alloy containing molybdenum, Alternatively, it is a so-called low thermal expansion material such as Invar alloy.

電極部材6は、図1(c)に示すように、金属板6MCと金属板6MBからなる2層のクラッド材で、しかも、一端6E1側のみに金属板6MBが積層されたサイドレイクラッド材6Bを金属板6MC側が外側になるようにU字形状(またはコの字形状)に折り曲げ加工したものである。そして、電極部材6のうち、クラッド材の一端6E1側の線膨張係数の低い金属板6MBが一体化されている領域6FBにおけるU字形状の外側面である第1の接合面6t1の線膨張係数は、金属板6MBの影響により、金属板6MC自体の線膨張係数よりも半導体素子3の線膨張係数に近く、半導体素子3の線膨張係数と同程度にまで小さくなっている。つまり、電極部材6のうち、金属板6MBが一体化されている領域6FB部分は、半導体素子3に対するいわゆる緩衝部材として機能する。一方、クラッド材の他端6E2側の線膨張係数の低い金属板6MBが一体化されていない部分、別の言い方をすると良導電性の金属板6MCのみの部分におけるU字形状の外側面である第2の接合面6t2の線膨張係数は、金属板6MCの線膨張係数、つまり、ボンディングワイヤやリード部材といった配線部材と同程度の線膨張係数になり、配線部材に対する緩衝部材として機能する。 As shown in FIG. 1 (c), the electrode member 6 is a two-layer clad material composed of a metal plate 6MC and a metal plate 6MB , and the side on which the metal plate 6MB is laminated only on one end 6E1 side. The lay clad material 6B is bent into a U shape (or a U shape) so that the metal plate 6 MC side is on the outside. Of the electrode member 6, the first joint surface 6 t1 is the outer surface of the U-shape in the region 6 FB to lower metal plate 6 MB of linear expansion coefficient of the end 6 E1 side of the clad material are integrated Due to the influence of the metal plate 6 MB , the linear expansion coefficient is closer to the linear expansion coefficient of the semiconductor element 3 than the linear expansion coefficient of the metal plate 6 MC itself, and is as small as the linear expansion coefficient of the semiconductor element 3. Yes. That is, in the electrode member 6, the region 6 FB portion in which the metal plate 6 MB is integrated functions as a so-called buffer member for the semiconductor element 3. On the other hand, the metal plate 6 MB having a low coefficient of linear expansion on the other end 6 E2 side of the clad material is not integrated, in other words, the U-shaped outside of the portion having only the highly conductive metal plate 6 MC. linear expansion coefficient of the second bonding surface 6 t2 is a side, the linear expansion coefficient of the metal plate 6 MC, that is, become a linear expansion coefficient comparable to the wiring member such as a bonding wire and the lead member, the cushioning member for the wiring member Function as.

そして、電極部材6の他端6E2側の接合面6t2と絶縁基板1上の他の回路パターン2b上とを橋架するように、アルミニウムないし銅のワイヤ4が接合され、半導体素子3のソース電極を図示しない外部回路に電気的に接続することができる。ワイヤ4は通常、電流容量を確保するため、複数本を並べて配置する。図示されていないが、ワイヤ4のループ形状の大きさを変えて、多数のワイヤを配置することも一般的に行われる。また、ワイヤに限らず、板状もしくはリボン状のリード部材を用いてもよい。 Then, an aluminum or copper wire 4 is joined so as to bridge the joint surface 6 t 2 on the other end 6 E 2 side of the electrode member 6 and the other circuit pattern 2 b on the insulating substrate 1, and the source of the semiconductor element 3 The electrode can be electrically connected to an external circuit (not shown). Usually, a plurality of wires 4 are arranged side by side to ensure current capacity. Although not shown in the drawing, a large number of wires are generally arranged by changing the size of the loop shape of the wires 4. Moreover, not only a wire but a plate-like or ribbon-like lead member may be used.

いずれの構成においても、たとえば、電極部材6に50アンペアの電流を通電する場合、金属板6MC部分に幅4mm、厚み0.3mmの銅板を用いれば、断面積は1.2mmとなって、通電による発熱に対しても十分な電流容量を確保出来る。 In any configuration, for example, when a current of 50 amperes is applied to the electrode member 6, if a copper plate having a width of 4 mm and a thickness of 0.3 mm is used for the MC portion of the metal plate 6, the cross-sectional area becomes 1.2 mm 2. Sufficient current capacity can be secured against heat generated by energization.

つぎに動作について説明する。
電力用半導体装置10を駆動させると、半導体素子3をはじめとする電力用半導体装置10内の様々な素子に電流が流れ、その際、電気抵抗分の電力ロスが熱へと変換され、発熱が生ずる。このとき、電流は時間的に大きく変化するので、発熱および熱伝導にともなう温度分布は定常的なものではなく過渡的であり、半導体素子3が最高到達温度に達している時間も短時間である。そのため、本実施の形態1にかかる電極部材6のようにワイヤ4と接合面6t2との接合部が、発熱原である半導体素子3の表面から離した構成では、半導体素子3からの熱伝導に遅れが生じ、ワイヤ4と接合面6t2との接合部の温度上昇が抑制される。このため、半導体素子の直上にワイヤ等の配線部材を接合する場合や、半導体素子上に接合された緩衝部材上に配線部材を接合する場合に較べてワイヤとの接合部の温度変化量および最高到達温度が抑制され、熱応力を低減できる。
Next, the operation will be described.
When the power semiconductor device 10 is driven, a current flows through various elements in the power semiconductor device 10 including the semiconductor element 3. At this time, a power loss corresponding to the electrical resistance is converted into heat, and heat is generated. Arise. At this time, since the current changes greatly with time, the temperature distribution accompanying heat generation and heat conduction is not steady but transient, and the time during which the semiconductor element 3 reaches the maximum temperature is also short. . Therefore, in the configuration in which the bonding portion between the wire 4 and the bonding surface 6t2 is separated from the surface of the semiconductor element 3 that is a heat generating source as in the electrode member 6 according to the first embodiment, heat conduction from the semiconductor element 3 is performed. Is delayed, and the temperature rise at the joint between the wire 4 and the joint surface 6t2 is suppressed. For this reason, compared with the case where a wiring member such as a wire is joined immediately above the semiconductor element, or the case where the wiring member is joined on the buffer member joined on the semiconductor element, the temperature change amount and the maximum at the joint with the wire Achieving temperature is suppressed and thermal stress can be reduced.

また、半導体素子3に接合される接合面6t1の線膨張係数は、低熱膨張材6MBと良導電材6MCの厚みの比率を変えることで制御でき、たとえば、金属板6MBが一体化されている部分6FBの線膨張係数を半導体素子3の線膨張係数に近づけ、使用温度範囲内で両者の線膨張係数差が5ppm/Kを下回るようにすると、はんだの接合面に平行な方向のせん断応力が著しく低下し、接合面に平行に進展する亀裂が発生しにくくなる。その場合は、パワーサイクル負荷によってはんだが厚み方向に亀裂を生じることがあるが、厚み方向の亀裂は接合面方向と異なり、電気抵抗と熱伝導に対する影響が小さくて済む。すなわち、半導体素子の固定、通電、放熱の各機能が損なわれる割合が少ないため、最高到達温度が高く、温度変化量の大きなパワーサイクル負荷にも耐えることが可能になる。 Moreover, the linear expansion coefficient of the joint surface 6 t1 joined to the semiconductor element 3 can be controlled by changing the ratio of the thickness of the low thermal expansion material 6 MB and the good conductive material 6 MC . For example, the metal plate 6 MB is integrated. When the linear expansion coefficient of the portion 6 FB is close to the linear expansion coefficient of the semiconductor element 3 and the difference between the two linear expansion coefficients is less than 5 ppm / K within the operating temperature range, the direction parallel to the solder joint surface The shear stress of the material is remarkably reduced, and cracks that develop parallel to the joint surface are less likely to occur. In that case, the solder may crack in the thickness direction due to the power cycle load, but the crack in the thickness direction is different from the bonding surface direction, and the influence on electric resistance and heat conduction may be small. That is, since the ratios of fixing, energization, and heat dissipation of the semiconductor element are small, it is possible to withstand a power cycle load having a high maximum temperature and a large amount of temperature change.

さらに、本発明の特徴的な構成は、電極部材6のうち、低熱膨張材6MBが一体化されていない端部6E2側にワイヤ用の接合面6t2を設けた点である。以下詳細に説明する。良導電材6MCに銅を用い、酸化防止のためニッケルめっきを施して一般的なアルミワイヤを接合させると、両者の線膨張係数差は8ppm/Kを下回る。この場合の応力低減は、半導体素子3上に直接ワイヤを接合する場合に比べて40倍以上のパワーサイクル寿命を実現することが出来る。さらに、半導体素子3に対して直接超音波接合を行うのではないため、超音波エネルギーが半導体素子3に伝播することによる素子破壊現象を考慮する必要がない。したがって、超音波エネルギーの大きさを素子破壊が生じない上限値よりも大きくすることで、ワイヤを大きく変形させ、ワイヤ接合面積を拡大することが出来ることから、さらにパワーサイクル寿命を向上させることが出来る。 Moreover, the characteristic configuration of the present invention, among the electrode member 6, in that a bonding surface 6 t2 for wire end 6 E2 side low thermal expansion material 6 MB is not integrated. This will be described in detail below. When copper is used for the good conductive material 6 MC , nickel plating is applied to prevent oxidation, and a general aluminum wire is joined, the difference in linear expansion coefficient between the two is less than 8 ppm / K. The stress reduction in this case can realize a power cycle life of 40 times or more compared to the case where the wire is directly bonded onto the semiconductor element 3. Further, since ultrasonic bonding is not performed directly on the semiconductor element 3, it is not necessary to consider the element destruction phenomenon caused by propagation of ultrasonic energy to the semiconductor element 3. Therefore, by making the magnitude of the ultrasonic energy larger than the upper limit value at which element destruction does not occur, the wire can be greatly deformed and the wire bonding area can be expanded, thereby further improving the power cycle life. I can do it.

このことは、接合時に大きな超音波エネルギーを必要とする太いワイヤの適用が可能になることを意味しており、たとえば従来、ゲート配線を有する電極面に対して適用に困難があった直径500μm以上のアルミワイヤについても十分な超音波エネルギーを用いて接合し、大電流通電を行うことが出来る。同様に、大きな超音波エネルギーを必要とする幅2mm以上、厚み200μm以上のアルミリボンを接合することも可能になる。リボン材料はアルミのほか、銅や銅とアルミのクラッド材を用いてもよい。さらに、銅製の電極部材に対して銅製のワイヤを用いれば、ワイヤ接合部は同一素材で構成できるので、劣化がほとんど生じない接合体を構成することができる。   This means that a thick wire that requires large ultrasonic energy at the time of bonding can be applied. For example, a diameter of 500 μm or more that has been difficult to apply to an electrode surface having a gate wiring in the past. The aluminum wire can be joined with sufficient ultrasonic energy to conduct a large current. Similarly, an aluminum ribbon having a width of 2 mm or more and a thickness of 200 μm or more that requires large ultrasonic energy can be bonded. In addition to aluminum, the ribbon material may be copper or a clad material of copper and aluminum. Furthermore, if a copper wire is used for the copper electrode member, the wire bonded portion can be made of the same material, so that a bonded body with little deterioration can be formed.

つぎに、本実施の形態1にかかる半導体装置10の製造方法について図2を用いて説明する。本実施の形態1にかかる電力用半導体装置10のアセンブリ工程においてポイントとなるのは、半導体素子(半導体チップ)3上に設けた電極部材6に対するワイヤ接合工程である。絶縁基板1の回路パターン2と半導体素子3、半導体素子3と電極部材6との接合には、上述したように、はんだないし銀接着剤、銀焼結体などを用いることが出来る。接合材料は、接合箇所によって変えてもよいし、同じでもよい。また、ワイヤ以外のすべての接合を同時に行ってもよいし、別々に行ってもよい。   Next, a method for manufacturing the semiconductor device 10 according to the first embodiment will be described with reference to FIG. The point in the assembly process of the power semiconductor device 10 according to the first embodiment is a wire bonding process to the electrode member 6 provided on the semiconductor element (semiconductor chip) 3. As described above, solder, a silver adhesive, a silver sintered body, or the like can be used for joining the circuit pattern 2 and the semiconductor element 3 of the insulating substrate 1 and the semiconductor element 3 and the electrode member 6. The bonding material may be changed depending on the bonding location, or may be the same. Moreover, all joining except a wire may be performed simultaneously, and you may perform separately.

半導体素子3に電極部材6の接合が完了した後、ワイヤ4の接合を行う。通常、ワイヤ接合には超音波接合が用いられており、ワイヤ接合部はワイヤボンダツールの超音波振動によって位置がずれたりしないことが必要である。本実施の形態1に示す電極部材6のうち、板材の厚みが0.5mmを超えている場合は、そのまま超音波接合が可能である。一方、例えば、半導体素子3との間のはんだ5aに対する熱応力を低減するため、あるいは電流量が少ない等の理由で、電極部材6の厚みを0.5mm以下とする場合は、超音波接合を行うには強度が不十分である。その場合は、図2に示すようなバキュームチャックテーブル7を接合面6t2の裏面6t2Rに挿入し、ワイヤ接合面6t2の裏面6t2R側から電極部材6を真空吸引して電極部材6の固定を行う。さらに固定を確実にするため、ワイヤ接合面6t2の端に押さえ爪8を用いて電極部材6を押さえつけ、バキュームチャックテーブル7と挟み込んで固定することが有効である。ワイヤ接合強度が十分であるなら、機構を簡略化するためバキュームチャックテーブル7の真空吸引機能を省いてもよい。ワイヤ接合は超音波接合を用いたワイヤボンダで行い、接合完了後にバキュームチャックテーブル7と押さえ爪8は外される。 After the joining of the electrode member 6 to the semiconductor element 3 is completed, the wire 4 is joined. Usually, ultrasonic bonding is used for wire bonding, and it is necessary that the position of the wire bonding portion does not shift due to ultrasonic vibration of the wire bonder tool. In the electrode member 6 shown in the first embodiment, when the thickness of the plate material exceeds 0.5 mm, ultrasonic bonding is possible as it is. On the other hand, for example, when the thickness of the electrode member 6 is 0.5 mm or less in order to reduce the thermal stress on the solder 5a between the semiconductor element 3 or the current amount, the ultrasonic bonding is performed. Insufficient strength to do. In that case, by inserting the vacuum chuck table 7 as shown in FIG. 2 on the rear surface 6t2R joint surface 6 t2, the fixation of the electrode member 6 from the back 6t2R side of the wire bonding surface 6 t2 by the electrode member 6 by vacuum suction Do. Furthermore, in order to ensure the fixation, it is effective to press the electrode member 6 against the end of the wire bonding surface 6 t 2 using the pressing claw 8 and sandwich and fix the electrode member 6 to the vacuum chuck table 7. If the wire bonding strength is sufficient, the vacuum suction function of the vacuum chuck table 7 may be omitted to simplify the mechanism. Wire bonding is performed by a wire bonder using ultrasonic bonding, and the vacuum chuck table 7 and the presser claw 8 are removed after the bonding is completed.

ワイヤ4接合後、電極部材6のワイヤ接合面6t2が設置された端部6E2は片側支持状態で不安定であるが、通常、半導体装置10全体を耐熱性の樹脂でモールドするため、ワイヤ接合面下の空間は樹脂で埋められて、振動を受ける環境においてもワイヤを安定に支持することが出来る。 After the wire 4 is joined, the end 6 E2 on which the wire joining surface 6 t2 of the electrode member 6 is installed is unstable in a single-side supported state. Usually, however, the entire semiconductor device 10 is molded with a heat-resistant resin. The space below the joint surface is filled with resin, and the wire can be stably supported even in an environment where vibration is received.

実施の形態1の変形例1.
なお、図1に示す実施の形態1では電極部材6として2層のサイドレイクラッド材6Bを用いた例を示したが、バイメタルの応力を防止するため、図3にように厚み方向において対称となるように三層構成をとるようにしてもよい。図3(a)は一端側16E1において厚み方向の中間部に低熱膨張材16MBを挿入して3層クラッドを構成した板材16Bの断面を示し、図3(b)は板材16Bを良導電部材16MCが外側になるように(本変形例1ではどちら側に曲げても外側になるが)U字形状に折り曲げた電極部材16の断面を示す。本変形例1では、低膨張部材16MBの影響により、第1の接合面16t1が設けられた緩衝部分16FBの線膨張係数はワイヤよりも半導体素子の線膨張係数に近くなっているが、線膨張係数の同じ部材が板材16Bの厚み方向の対称な位置に配置されるようになっているので、接合面16t1側と裏面16t1R側に働く力が均等となり、いわゆるバイメタルのような反りの発生が抑制される。
Modification 1 of Embodiment 1
In the first embodiment shown in FIG. 1, an example in which the two-layer sidelay clad material 6B is used as the electrode member 6 is shown. However, in order to prevent the stress of the bimetal, it is symmetrical in the thickness direction as shown in FIG. You may make it take a three-layer structure so that it may become. FIGS. 3 (a) Yoshirubeden shows a cross section of the plate member 16B which constitute a 3-layer clad by inserting a low thermal expansion material 16 MB in the middle portion in the thickness direction at one end 16 E1, FIG. 3 (b) plate material 16B The cross section of the electrode member 16 bent into a U-shape is shown so that the member 16 MC is on the outside (although it is outside on either side in this modification 1). In the first modification, due to the influence of the low expansion member 16 MB , the linear expansion coefficient of the buffer portion 16 FB provided with the first joint surface 16 t1 is closer to the linear expansion coefficient of the semiconductor element than the wire. , since the same member of the linear expansion coefficient is adapted to be disposed at symmetrical positions in the thickness direction of the plate 16B, the force acting on the joint surface 16 t1 side and the back 16 T1R side becomes equal, such as a so-called bimetal The occurrence of warpage is suppressed.

なお、本変形例1においては、部分クラッド(インレイクラッド)の板材16Bを示しているが、実施の形態1に示したようなサイドレイクラッド材の2枚を低膨張材側が向き合うように重ねて一体化して形成するようにしてもよい。   In the first modification, the partially clad (inlay clad) plate material 16B is shown, but the two side lay clad materials as shown in the first embodiment are overlapped so that the low expansion material faces each other. You may make it form integrally.

実施の形態1の変形例2.
また、上記実施の形態1や変形例1においては、部分クラッド材を用いることで、一端側と他端側で線膨張係数が異なるようにしたが、本変形例では板材の厚み方向の構成が板材の面の延在方向において一様なクラッド材、いわゆるオーバーレイクラッド材を用いて電極部材を構成した例について示す。図4は、本変形例2にかかる電極部材および電極部材の形成方法を説明するための図であり、図4(a)は板材の断面を、図4(b)はエッチング加工した板材の断面を、図4(c)は電極部材の断面を示す。図において、板材26Bは、低膨張部材26MBを厚み方向の両側から良導電部材26MC1、26MC2で挟み込むようにして一体化し、面の延在方向で材質が一様な3層クラッド材である。このクラッド材26Bに対し、図4(a)に示すように、他端26E2側の曲線E−Eに相当する部分をエッチングにより除去し、3層のうちの、一方の良導電部材16MC1のみを残すようにする。そして、図4(b)に示すように、良導電部材16MC1側が外側になるようにエッチング後の板材26BEをU字形状に折り曲げると、図4(c)に示すような電極部材26が形成できる。
Modification 2 of Embodiment 1
Further, in the first embodiment and the first modified example, by using the partial clad material, the linear expansion coefficient is different between the one end side and the other end side. However, in this modified example, the configuration in the thickness direction of the plate material is different. An example in which the electrode member is configured using a clad material that is uniform in the extending direction of the surface of the plate material, a so-called overlay clad material will be described. 4A and 4B are diagrams for explaining an electrode member and a method for forming the electrode member according to the second modification. FIG. 4A is a cross section of the plate material, and FIG. 4B is a cross section of the etched plate material. FIG. 4C shows a cross section of the electrode member. In the figure, the plate member 26B is integrated by the low expansion member 26 MB from both sides in the thickness direction so as to sandwich in good conductive member 26 MC1, 26 MC2, in the extending direction of the surface is a uniform three-layer clad material Material is there. For this clad material 26B, as shown in FIG. 4 (a), a portion corresponding to the other end 26 E2 the curve E-E is removed by etching, among the three layers, one good conductive member 16 MC1 Only leave to leave. Then, as shown in FIG. 4B, when the etched plate material 26 BE is bent into a U shape so that the good conductive member 16 MC1 side is on the outside, the electrode member 26 as shown in FIG. Can be formed.

この場合、流通量が多く、各層の接合信頼性の高いオーバーレイクラッド材を用いることができるので、緩衝部分26FBの線膨張係数のばらつきが少なく、設計通りの線膨張係数を容易に得ることができるので、半導体装置10に用いた時に品質が安定する。   In this case, since an overlay clad material having a large circulation amount and high bonding reliability of each layer can be used, variation in the linear expansion coefficient of the buffer portion 26FB is small, and the designed linear expansion coefficient can be easily obtained. Therefore, the quality is stabilized when used in the semiconductor device 10.

実施の形態1の変形例3.
また、本実施の形態にかかる電極部材では、半導体素子との接合面が設けられた部分と配線部材との接合面が設けられた部分とが離れているので、配線部材との接合面の形状が半導体素子の形状の制約を受けなくなる。そのため、配線部材との接合面の大きさを半導体素子の大きさよりも大きくすることができる。図5は、本変形例3にかかる電極部材および電極部材の形成方法を説明するための図であり、図5(a)は板材の平面を、図5(b)は板材を曲げ加工する際の側面を、図5(c)は加工後の電極部材の平面を示す。図において、板材36Bは、低膨張部材36MBが一体化され、第1の接合面36t1が設けられる一端部36E1側の幅は、接合対象の半導体素子の電極面に合わせているが、第2の接合面36t2が設けられる他端36E2側の幅は、一端部36E1側の幅より広くなり、接合面36t2の広さは、半導体素子の電極面よりも大きくなっている。
Modification 3 of Embodiment 1
Further, in the electrode member according to the present embodiment, since the portion where the bonding surface with the semiconductor element is provided and the portion where the bonding surface with the wiring member is provided are separated, the shape of the bonding surface with the wiring member However, there is no restriction on the shape of the semiconductor element. Therefore, the size of the joint surface with the wiring member can be made larger than the size of the semiconductor element. FIGS. 5A and 5B are diagrams for explaining the electrode member and the electrode member forming method according to the third modification. FIG. 5A is a plan view of the plate material, and FIG. FIG. 5C shows a plane of the electrode member after processing. In the figure, the plate member 36B is low expansion member 36 MB are integrated, the width of the first mating surface 36 t1 is provided at one end portion 36 E1 side, but in accordance with the electrode surface of the semiconductor element to be joined, The width on the other end 36 E2 side where the second bonding surface 36 t2 is provided is wider than the width on the one end 36 E1 side, and the width of the bonding surface 36 t2 is larger than the electrode surface of the semiconductor element. .

本変形例3のように、第2の接合面36t2の大きさを半導体素子の大きさよりも大きくしたので、従来のように、半導体素子の面積で制約を受けていたワイヤ本数を第2の接合面36t2の大きさに対応して増やすことが可能になる。このため、半導体素子に流す電流に対してワイヤ1本あたりの電流量が低減し、ワイヤの通電による発熱を低減し、ワイヤの最高温度を低下させることで、パワーサイクル寿命を改善することが可能となる。このことは、パワーサイクル寿命の第2のファクターであるワイヤの通電/非通電サイクルでのループ変形による疲労破壊の寿命を延ばすことにもつながる。 Since the size of the second bonding surface 36 t2 is made larger than the size of the semiconductor element as in the third modification, the number of wires that are restricted by the area of the semiconductor element as in the conventional case is set to the second number. It becomes possible to increase corresponding to the size of the joint surface 36 t2 . For this reason, the amount of current per wire is reduced with respect to the current flowing through the semiconductor element, heat generation due to energization of the wire is reduced, and the maximum temperature of the wire is lowered, thereby improving the power cycle life. It becomes. This also extends the life of fatigue failure due to loop deformation in the energization / non-energization cycle of the wire, which is the second factor of the power cycle life.

なお、第2の接合面36t2が設けられる他端36E2側の大きさは、幅だけでなく、長さ方向に張り出してもよく、張り出す方向が一方に偏っていてもよい。 The size on the other end 36E2 side where the second joining surface 36t2 is provided may project not only in the width but also in the length direction, and the projecting direction may be biased to one side.

<線膨張係数の調整例>
なお、上記実施の形態や変形例において、半導体素子3に接合される接合面6t1の線膨張係数をクラッド材の低熱膨張材6MBと良導電材6MCの厚みの比率を変えることで制御する例をあげる。たとえば、図3に示す変形例1のようにインバー合金(厚みT)を銅(厚みT)で挟んだ3層構造の電極部材の厚み比率TC1:T:TC2を1:3:1に設定すると、3層構造部分16FBにおける板材としての線膨張係数はおよそ7ppm/Kとなる。
<Example of adjustment of linear expansion coefficient>
In the above-described embodiment and modification, the linear expansion coefficient of the joint surface 6 t1 joined to the semiconductor element 3 is controlled by changing the ratio of the thickness of the low thermal expansion material 6 MB of the clad material and the good conductive material 6 MC. Here are some examples: For example, a thickness ratio T C1 : T B : T C2 of a three-layer structure in which an Invar alloy (thickness T B ) is sandwiched between copper (thickness T C ) as in Modification 1 shown in FIG. 3 is 1: 3. When set to 1, the linear expansion coefficient as a plate material in the three-layer structure portion 16 FB is approximately 7 ppm / K.

また、ワイヤとの接合面となる第2の接合面は半導体素子との接合面となる第1の接合面に対して垂直にする、例えば電極部材をL字形状のような折り曲げ形状にすれば電極部材として機能させることは不可能ではないが、ワイヤが絶縁基板1に設けられた回路パターンの面延在方向にある接合部に接続することを考慮すると、電極面と平行な面となることが好ましい。ただし、完全に平行である必要はなく、垂直よりは平行に近い、いわゆるU字形状に形成すればよい。この場合、ワイヤボンダ、リボンボンダは一般的な装置をベースに改良を加えればよいため、コスト上昇を抑制することが出来る。また、U字形状において、半導体素子3との接合面である第1の接合面6t1の裏側の面6t1Rと、配線部材4との接合面である第2の接合面6t2の裏側の面6t2Rとの間には、所定間隔の隙間があることがワイヤボンディング時の半導体素子への影響を防止する点で望ましい。しかし、隙間がない場合でも、接合後のパワーサイクル寿命延長効果はあるので、隙間がない程度に折り曲げてもよい。 Also, the second bonding surface that becomes the bonding surface with the wire is perpendicular to the first bonding surface that becomes the bonding surface with the semiconductor element. For example, if the electrode member is bent like an L shape, Although it is not impossible to function as an electrode member, it becomes a plane parallel to the electrode surface in consideration of connecting the wire to the joint portion in the surface extending direction of the circuit pattern provided on the insulating substrate 1. Is preferred. However, it is not necessary to be completely parallel, and it may be formed in a so-called U-shape that is closer to parallel than vertical. In this case, the wire bonder and the ribbon bonder may be improved based on a general apparatus, so that an increase in cost can be suppressed. Further, in the U-shape, the back surface 6 t1R of the first joint surface 6 t1 that is the joint surface with the semiconductor element 3 and the back surface of the second joint surface 6 t2 that is the joint surface with the wiring member 4. It is desirable that there is a predetermined gap between the surface 6t2R and the semiconductor element at the time of wire bonding. However, even when there is no gap, there is an effect of extending the power cycle life after joining, and therefore, bending may be performed to the extent that there is no gap.

以上のように、本発明の実施の形態1にかかる電極部材6(16、26、36、46)によれば、半導体素子3と配線部材4とを電気接続するための電極部材であって、帯状の第1の金属板6MCの長さ方向における一端6E1側から所定長さの領域に第2の金属板6MBが張り合わされた帯状材6を、第2の金属板6MBが張り合わされた領域6FBよりも他端6E2側の部分を折り曲げて第1の金属板6MCが第2の金属板6MBの外側に位置するU字形状となし、U字形状の外側となった面において、一端6E1側から折り曲げ部分6までの所定長さの領域に半導体素子3との接合面6t1が、他端6E2側から折り曲げ部分6までの所定長さの領域に配線部材4との接合面6t2が設けられ、第1の金属板6MCの線膨張係数は、半導体素子3の線膨張係数よりも配線部材4の線膨張係数に近く、第2の金属板6MBが張り合わされた領域6FBにおける帯状材6の線膨張係数は、配線部材4の線膨張係数よりも半導体素子3の線膨張係数に近い、ように構成したので、半導体素子3との接合面6t1は半導体素子3の線膨張係数に近く、配線部材4との接合面6t2は配線部材4の線膨張係数に近くなるので最高到達温度が高く、温度変化量が大きくなっても、パワーサイクル寿命が飛躍的に伸び、しかも、第1の金属板6MCが全長にわたって接合面6t1と接合面6t2が形成された外側に露出しているので、帯状材中の異種金属の接合界面である積層構造の接合面を通ることなく、両接合面間に電流が流れるようにしたので、接合界面での熱応力による導電性が変化しても影響を受けることがなく、高効率で信頼性の高い半導体装置を得ることができる。また、第2の金属板6MBが張り合わされた領域は、折り曲げられていないので、第1の金属板6MCと第2の金属板6MBとの界面に曲げ加工時の応力がかかることがなく、接合強度を保つことができる。 As described above, the electrode member 6 (16, 26, 36, 46) according to the first embodiment of the present invention is an electrode member for electrically connecting the semiconductor element 3 and the wiring member 4, The first metal plate 6 in the length direction of the band-shaped first metal plate 6 MC in the length direction is a band-shaped material 6 B in which the second metal plate 6 MB is bonded to a region of a predetermined length from the E1 side, and the second metal plate 6 MB is The first metal plate 6 MC is located outside the second metal plate 6 MB by bending a portion on the other end 6 E2 side of the bonded region 6 FB so that the first metal plate 6 MC is located outside the second metal plate 6 MB. In the formed surface, the bonding surface 6 t1 to the semiconductor element 3 is in a region having a predetermined length from the one end 6 E1 side to the bent portion 6 C, and a region having a predetermined length from the other end 6 E2 side to the bent portion 6 C. Is provided with a joint surface 6t2 with the wiring member 4, and the first metal plate 6MC The coefficient of linear expansion close to the coefficient of linear expansion of the wiring member 4 than the linear expansion coefficient of the semiconductor element 3, the linear expansion coefficient of the belt-shaped member 6 B of the second metal plate 6 MB is glued area 6 FB is wiring Since the configuration is such that the linear expansion coefficient of the semiconductor element 3 is closer than the linear expansion coefficient of the member 4, the bonding surface 6 t1 with the semiconductor element 3 is close to the linear expansion coefficient of the semiconductor element 3 and is bonded to the wiring member 4. higher maximum temperature because the surface 6 t2 is close to the linear expansion coefficient of the wiring member 4, even if the temperature variation is increased, the power cycle life increased dramatically, moreover, the first metal plate 6 MC overall length Are exposed to the outside where the joint surface 6 t1 and the joint surface 6 t2 are formed, so that current flows between the joint surfaces without passing through the joint surface of the laminated structure, which is a joint interface of dissimilar metals in the band-shaped material. Since it was allowed to flow, It not affected even if the change in conductivity due to thermal stress, it is possible to obtain a highly reliable semiconductor device with high efficiency. In addition, since the region where the second metal plate 6 MB is bonded is not bent, stress during bending may be applied to the interface between the first metal plate 6 MC and the second metal plate 6 MB. Therefore, the bonding strength can be maintained.

とくに、帯状材16Bの第2の金属板16MBが張り合わされた領域16FBでは、第1の金属板16MC1と同じ線膨張係数の第3の金属板16MC2が、第2の金属板16MBの上に張り合わされているようにしたので、温度変化の際にバイメタルのように反りかえることがなく、安定した接合を維持できる。 In particular, in the region 16 FB in which the second metal plate 16 MB of the band-shaped material 16B is bonded, the third metal plate 16 MC2 having the same linear expansion coefficient as the first metal plate 16 MC1 is replaced with the second metal plate 16. Since it is stuck on the MB , it does not warp like a bimetal when the temperature changes, and stable bonding can be maintained.

さらに、帯状材6Bにおける半導体素子3との接合面6t1の裏側の面6t1Rと、配線部材4との接合面6t2の裏側の面6t2Rとの間に所定間隔の隙間があるようにしたので、第2の接合面6t2が半導体素子3の接合面と同じ方向を向くことになり、電極部材6の有無にかかわらず同じワイヤボンダで、または特別な接合方法を用いなくても同様の接合方法で配線部材を接合することができる。また、ワイヤボンディング時の超音波振動が半導体素子3に直接伝わることがなく、半導体素子への影響を最小限にして強力なボンディングが可能となる。 Furthermore, there is a gap of a predetermined distance between the surface 6 t1R on the back side of the bonding surface 6 t1 to the semiconductor element 3 and the surface 6 t2R on the back side of the bonding surface 6 t2 to the wiring member 4 in the strip 6B. As a result, the second bonding surface 6t2 faces the same direction as the bonding surface of the semiconductor element 3, and the same wire bonder is used regardless of the presence or absence of the electrode member 6 or the same method without using a special bonding method. Wiring members can be joined by a joining method. Further, ultrasonic vibration during wire bonding is not directly transmitted to the semiconductor element 3, and strong bonding is possible with minimal influence on the semiconductor element.

さらに、帯状材36Bの他端36E2側の幅WE2が、一端36E1側の幅WE1よりも広いようにしたので、半導体素子の電極面の大きさの制約を受けずにワイヤ等の配線部材の本数を増やしたり、リード材の大きさを大きくしたりして、配線部材での電流密度を減少させ、発熱を抑制し、より寿命を向上させることができる。 Furthermore, the width W E2 of the other end 36 E2 side of the strip material 36B is. Thus wider than the width W E1 of the one end 36 E1 side, such as a wire without the size limitations of the electrode surface of the semiconductor element By increasing the number of wiring members or increasing the size of the lead material, the current density in the wiring members can be reduced, heat generation can be suppressed, and the life can be further improved.

第1の金属板6MCを、ワイヤボンドやリード材といった配線部材の主構成材と同じ、例えば、アルミニウムや銅で構成すると、第2の接合面6t2と配線部材4とは同じ材料で接合されることになり、熱応力の影響を極力減らすことができる強固な接合が得られる。 A first metal plate 6 MC, the same as the main constituent material of the wiring member such as wire bonding and lead material, for example, when made of aluminum or copper, and the second joint surface 6t2 and wiring member 4 are joined in the same material As a result, a strong bond capable of reducing the influence of thermal stress as much as possible can be obtained.

実施の形態2.
本実施の形態2にかかる電極部材においては、実施の形態1にかかる電極部材のU字形状の内側に形成される空間を樹脂で充填したものである。半導体装置10内への適用といった他の構成部分については、実施の形態1と同様であるので説明を省略する。
Embodiment 2. FIG.
In the electrode member according to the second embodiment, the space formed inside the U shape of the electrode member according to the first embodiment is filled with resin. Other components such as application to the semiconductor device 10 are the same as those in the first embodiment, and thus description thereof is omitted.

図6は本実施の形態2にかかる電極部材216の断面を示すもので、電極部材のU字形状をなす部分は、実施の形態1の変形例1にかかる電極部材16と同じである。そして、電極部材216のU字形状の内側の空間である第1の接合面216t1の裏面216t1Rと第2の接合面216t2の裏面216t2R間の空隙にフィラー9を充填した樹脂ペレット9を挿入することを特徴としている。樹脂ペレット9は、金属粒子ないしは樹脂製粒子やシリカなどのセラミックス粒子をフィラー9として含有する。樹脂9は耐熱性エポキシ樹脂等の熱硬化樹脂を用いればよく、ワイヤ接合面216t2下の空間に挿入可能な形状のペレットとして成型する。樹脂はあらかじめ半硬化状態として、ワイヤ接合面下に挿入後、加圧、加温して裏面216t1Rと裏面216t2Rに対して接着(完全硬化)をおこなう。このとき、フィラー9の存在と、加圧前に半硬化させておいた効果により、ペレット9自体の変形が抑制され、ほぼ接着前の形状を維持することが出来る。接着の際の加圧力はペレット9が押しつぶされない範囲に適宜調整されることは言うまでもない。また、図では電極部材216のU字形状内の空間のうち、コーナー部216に接する半円形部分に樹脂9が充填されていないが、この半円形部分の空間が充填されていても良い。 FIG. 6 shows a cross section of the electrode member 216 according to the second embodiment, and the U-shaped portion of the electrode member is the same as that of the electrode member 16 according to the first modification of the first embodiment. Then, the resin pellets void filled with filler 9 F in between the back surface 216 T2R backside 216 T1R and second mating surface 216 t2 of the first joint surface 216 t1 is an inner space of the U-shaped electrode member 216 9 is inserted. Resin pellets 9 contains ceramic particles such as metal particles or resin particles or silica as the filler 9 F. The resin 9 R may be a thermosetting resin such as a heat-resistant epoxy resin, and is molded as a pellet having a shape that can be inserted into the space below the wire bonding surface 216 t2 . The resin is preliminarily set in a semi-cured state, and after being inserted under the wire bonding surface, is pressurized and heated to adhere (completely cure) the back surface 216 t1R and the back surface 216 t2R . At this time, the presence of the filler 9 F, by the effect which had been semi-cured prior to pressurization, the deformation of the pellets 9 itself is suppressed, it is possible to maintain an approximately adhesion previous shape. Needless to say, the pressure applied at the time of bonding is appropriately adjusted within a range in which the pellets 9 are not crushed. Also, among the space inside the U-shaped electrode member 216 in the figure, the resin 9 on the semi-circular portion in contact with the corner portion 216 C is not filled, the space of the semi-circular portion may be filled.

このようにして図6に示すような電極部材216の構成が完成するが、この工程は半導体素子3に対して電極部材216を接合する工程の前であっても後であってもよい。後になる場合は、樹脂9が半導体素子3と電極部材216とのはんだ接合の際の高温プロセス(はんだ溶融のための加熱)を経ても接着を維持する材料であることが必要となる。   Thus, the configuration of the electrode member 216 as shown in FIG. 6 is completed, but this step may be before or after the step of bonding the electrode member 216 to the semiconductor element 3. In the latter case, the resin 9 needs to be a material that maintains adhesion even after a high-temperature process (heating for melting the solder) at the time of solder joining between the semiconductor element 3 and the electrode member 216.

この実施の形態2にかかる電極部材216を用いれば、ワイヤボンド時にはワイヤ接合面216t2が設置された他端部216E2が樹脂9によって固定されることから、電極部材216の板材が薄い場合でも、バキュームチャックテーブルや押さえ爪を用いる必要がない。ワイヤボンドに必要なワイヤ接合面216t2の平坦性と水平性は、樹脂ペレット9を挿入した後の接着工程において加圧機構の調整により必要な公差を確保すればよい。 When the electrode member 216 according to the second embodiment is used, the other end portion 216 E2 provided with the wire bonding surface 216 t2 is fixed by the resin 9 at the time of wire bonding, so that even when the plate member of the electrode member 216 is thin There is no need to use a vacuum chuck table or holding claws. The flatness and horizontality of the wire bonding surface 216 t2 necessary for the wire bonding may be ensured by a necessary tolerance by adjusting the pressure mechanism in the bonding process after the resin pellet 9 is inserted.

なお、本実施の形態2にかかる電極部材216の構成では、動作による高温での保持と、パワーサイクル負荷とによって樹脂9が劣化し、樹脂9と電極部材216の内側の面(216t1R、216t2R)との接着面で剥離が進行することがある。しかしながら、この樹脂9はワイヤボンド時の固定を目的としており、半導体装置10全体は、モールド樹脂によって固定されて移動することがないため、それ以降に剥離が生じても、半導体装置10内の電気接続の信頼性には影響を及ぼさない。したがって、実施の形態1と同様にワイヤ接合部のパワーサイクル寿命を延ばす効果を得ることが出来る。 In the configuration of the electrode member 216 according to the second embodiment, the resin 9 deteriorates due to the holding at a high temperature by the operation and the power cycle load, and the inner surface of the resin 9 and the electrode member 216 (216 t1R , 216 Separation may proceed on the adhesive surface with t2R ). However, the resin 9 is intended for fixing at the time of wire bonding, and the entire semiconductor device 10 is fixed by the mold resin and does not move. Therefore, even if peeling occurs after that, Does not affect connection reliability. Therefore, the effect of extending the power cycle life of the wire joint can be obtained as in the first embodiment.

以上のように、本発明の実施の形態2にかかる電極部材216によれば、半導体素子3との接合面216t1の裏側の面216t1Rと、配線部材4との接合面216t2の裏側の面216t2Rとの隙間に樹脂ペレット9が充填されているように構成したので、ワイヤボンド時に、他端部216E2が樹脂9によって固定されるので、電極部材216の板材が薄い場合でも、バキュームチャックテーブルや押さえ爪を用いる必要がなく、特別な接合法を用いずに容易に接合できる。 As described above, according to the electrode member 216 according to the second embodiment of the present invention, the back surface 216 t1R of the bonding surface 216 t1 to the semiconductor element 3 and the back surface of the bonding surface 216 t2 to the wiring member 4 are provided. Since the resin pellet 9 is filled in the gap with the surface 216 t2R , the other end 216 E2 is fixed by the resin 9 at the time of wire bonding, so even if the plate material of the electrode member 216 is thin, the vacuum There is no need to use a chuck table or a holding claw, and it can be easily joined without using a special joining method.

実施の形態3.
本実施の形態3にかかる電極部材においては、実施の形態2にかかる電極部材においてU字形状の内側に形成される空間へ充填していた樹脂に代えて、はんだ材料を充填したものである。半導体装置10内への適用といった他の構成部分については、実施の形態1や2と同様であるので説明を省略する。
Embodiment 3 FIG.
In the electrode member according to the third embodiment, the electrode member according to the second embodiment is filled with a solder material instead of the resin filled in the space formed inside the U-shape. Since other components such as application to the semiconductor device 10 are the same as those in the first and second embodiments, the description thereof is omitted.

図7は本実施の形態3にかかる電極部材316の断面を示すもので、電極部材のU字形状をなす部分も、実施の形態2と同様に、実施の形態1の変形例1にかかる電極部材16と同じ部材である。そして、電極部材316のU字形状の内側の空間である第1の接合面316t1の裏面316t1Rと第2の接合面316t2の裏面316t2R間の空隙にはんだ材料15を充填したことを特徴としている。はんだ材料15は図1で説明した回路パターン2aと半導体素子3との接合、および半導体素子3と電極部材6との接合に用いたはんだ5と同じ材料であっても違うものであってもよいが、半導体装置10の使用時に溶融しないことが必要である。ワイヤ4を接合する前にあらかじめ、ワイヤ接合面下に供給されて加熱、溶融し、裏面316t1Rと裏面316t2Rに対して接合する。このとき、はんだ15との接合面となる裏面316t1Rと裏面316t2R、または、U字形状の内側全体に適宜図示しないニッケルメッキなどを施すことは言うまでもない。 FIG. 7 shows a cross-section of the electrode member 316 according to the third embodiment, and the U-shaped portion of the electrode member is the electrode according to the first modification of the first embodiment as in the second embodiment. This is the same member as the member 16. The gap between the back surface 316 t1R of the first joint surface 316 t1 and the back surface 316 t2R of the second joint surface 316 t2 that is the U-shaped inner space of the electrode member 316 is filled with the solder material 15. It is a feature. The solder material 15 may be the same material as or different from the solder 5 used for joining the circuit pattern 2 a and the semiconductor element 3 described in FIG. 1 and joining the semiconductor element 3 and the electrode member 6. However, it is necessary not to melt when the semiconductor device 10 is used. Before the wire 4 is bonded, it is supplied in advance under the wire bonding surface, heated and melted, and bonded to the back surface 316 t1R and the back surface 316 t2R . At this time, it goes without saying that the back surface 316 t1R and the back surface 316 t2R , which are joint surfaces with the solder 15, or nickel plating (not shown) is appropriately applied to the entire inside of the U shape.

上記加熱、溶融時にはんだ15が接合すべき領域に留まって両接合面216t1Rと216t2Rに接触するには、はんだ15の表面張力によって上下の接合面の間に滞留する効果を用いる必要があり、効果を確実に得るために、ワイヤ接合面下の空間の高さHを1.0mm以下にすることが望ましい。また、はんだ15の冷却時の収縮により、ワイヤ接合面316t2が変形するのを防ぐため、良導電部材316MCに銅を使用する場合、他端部316E2における厚みとして0.3mm以上を確保する必要があり、好ましくは0.5mm以上を用いる。また、図では電極部材316のU字形状内の空間のうち、コーナー部316に接する半円形部分にはんだ15が充填されていないが、この半円形部分の空間が充填されていても良い。 In order to stay in the region where the solder 15 is to be joined at the time of heating and melting and to contact the joint surfaces 216 t1R and 216 t2R , it is necessary to use the effect of staying between the upper and lower joint surfaces due to the surface tension of the solder 15. In order to surely obtain the effect, it is desirable that the height H S of the space below the wire bonding surface is 1.0 mm or less. Further, in order to prevent the wire bonding surface 316 t2 from being deformed due to the shrinkage of the solder 15 during cooling, when the copper is used for the good conductive member 316 MC , a thickness of 0.3 mm or more is secured at the other end 316 E2 . It is necessary to use 0.5 mm or more. Also, among the space inside the U-shaped electrode member 316 in the figure, although the solder 15 in a semi-circular portion in contact with the corner portion 316 C is not filled, the space of the semi-circular portion may be filled.

この構成を用いることにより、ワイヤボンド時にはワイヤ接合面316t2が設置された他端部316E2がはんだ15によって固定されることから、バキュームチャックテーブルや押さえ爪を用いる必要がない。なお、パワーサイクル負荷によりはんだ15内部に亀裂が進展したり、接合界面で剥離が生じたりするが、電極部材316に求められる電流経路は良導電部材316MC部分であるので、電気特性に及ぼす影響は少ない。また、はんだ材料は亀裂進展の他、クリープ現象を生じることもあるが、半導体素子接合部への影響は小さい。また、はんだ15の線膨張係数はアルミニウムに近いため、実施の形態1と同様にワイヤ接合部のパワーサイクル寿命を延ばす効果を得ることが出来る。 By using this configuration, the other end portion 316 E2 provided with the wire bonding surface 316 t2 is fixed by the solder 15 at the time of wire bonding, so there is no need to use a vacuum chuck table or a holding claw. In addition, although the crack progresses inside the solder 15 due to the power cycle load or the separation occurs at the joint interface, the current path required for the electrode member 316 is the good conductive member 316 MC portion, and therefore the influence on the electrical characteristics. There are few. In addition to the crack propagation, the solder material may cause a creep phenomenon, but the influence on the semiconductor element junction is small. Further, since the linear expansion coefficient of the solder 15 is close to that of aluminum, the effect of extending the power cycle life of the wire joint can be obtained as in the first embodiment.

以上のように、本発明の実施の形態3にかかる電極部材によれば、半導体素子3との接合面316t1の裏側の面316t1Rと、配線部材4との接合面316t2の裏側の面316t2Rとの隙間にはんだ15が充填されているように構成したので、ワイヤボンド時に、他端部316E2がはんだ15によって固定されるので、電極部材316の板材が薄い場合でも、バキュームチャックテーブルや押さえ爪を用いる必要がなく、特別な接合法を用いずに容易に接合できる。 As described above, according to the electrode member according to the third embodiment of the present invention, the back surface 316 t1R of the bonding surface 316 t1 with the semiconductor element 3 and the back surface of the bonding surface 316 t2 with the wiring member 4 316 Since the solder 15 is filled in the gap with the t2R , the other end portion 316 E2 is fixed by the solder 15 at the time of wire bonding. Therefore, even when the plate member of the electrode member 316 is thin, the vacuum chuck table It is not necessary to use a presser claw and can be easily joined without using a special joining method.

なお、上記各実施の形態においては、スイッチング素子(トランジスタ)や整流素子(ダイオード)として機能する半導体素子3には、炭化ケイ素によって形成されたものを示したが、これに限られることはなく、一般的に用いられているケイ素(Si)で形成されたものであってもよい。しかし、ケイ素よりもバンドギャップが大きい、いわゆるワイドギャップ半導体を形成できる炭化ケイ素や、窒化ガリウム系材料又はダイヤモンドを用いた時の方が、以下に述べるように本発明による効果をより一層発揮することができる。   In each of the above embodiments, the semiconductor element 3 functioning as a switching element (transistor) or a rectifying element (diode) is shown as being formed of silicon carbide, but is not limited thereto. It may be formed of silicon (Si) that is generally used. However, when using silicon carbide, gallium nitride-based material, or diamond that can form a so-called wide gap semiconductor having a larger band gap than silicon, the effects of the present invention can be further exhibited as described below. Can do.

ワイドバンドギャップ半導体によって形成されたスイッチング素子や整流素子(各実施の形態における半導体素子3)は、ケイ素で形成された素子よりも電力損失が低いため、スイッチング素子や整流素子における高効率化が可能であり、ひいては、電力用半導体装置10の高効率化が可能となる。さらに、耐電圧性が高く、許容電流密度も高いため、スイッチング素子や整流素子の小型化が可能であり、これら小型化されたスイッチング素子や整流素子を用いることにより、電力用半導体装置10も小型化が可能となる。また耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置10の一層の小型化が可能になる。   Since switching elements and rectifier elements (semiconductor elements 3 in each embodiment) formed of wide band gap semiconductors have lower power loss than elements formed of silicon, higher efficiency can be achieved in switching elements and rectifier elements. As a result, the power semiconductor device 10 can be made highly efficient. Furthermore, since the withstand voltage is high and the allowable current density is high, the switching element and the rectifying element can be downsized. By using the downsized switching element and rectifying element, the power semiconductor device 10 is also small. Can be realized. Further, since the heat resistance is high, it is possible to operate at a high temperature, and it is possible to reduce the size of the heat dissipating fins of the heat sink and the air cooling of the water-cooled portion, so that the power semiconductor device 10 can be further reduced in size.

一方、上記のように高温動作する場合は停止・駆動時の温度差が大きくなり、さらに、高効率・小型化によって、単位体積当たりに扱う電流量が大きくなる。そのため経時的な温度変化や空間的な温度勾配が大きくなり、半導体素子と配線部材との熱応力も大きくなる可能性がある。しかし、本発明のように電極部材の半導体素子との接合面が配置された一端側は半導体素子の方に線膨張係数が近く、ワイヤのような配線部材との接合面が配置された他端側は配線部材の方に線膨張係数が近いので、各接合部での熱応力が緩和されるので、ワイドバンドギャップ半導体の特性を活かして、小型化や高効率化を進めてもパワーサイクル寿命が長く、信頼性の高い電力用半導体装置10を得ることが容易となる。つまり、本発明による効果を発揮することで、ワイドバンドギャップ半導体の特性を活かすことができるようになる。   On the other hand, when operating at a high temperature as described above, the temperature difference during stop and drive increases, and the amount of current handled per unit volume increases due to high efficiency and downsizing. Therefore, the temperature change with time and the spatial temperature gradient increase, and the thermal stress between the semiconductor element and the wiring member may also increase. However, one end side where the bonding surface of the electrode member with the semiconductor element is arranged like the present invention has a linear expansion coefficient closer to the semiconductor element, and the other end where the bonding surface with the wiring member such as a wire is arranged. Since the coefficient of linear expansion is closer to the wiring member on the side, the thermal stress at each joint is relieved, so the power cycle life can be improved even if miniaturization and higher efficiency are promoted by taking advantage of the characteristics of wide band gap semiconductors. Therefore, it is easy to obtain the power semiconductor device 10 having a long and high reliability. That is, by exhibiting the effect of the present invention, the characteristics of the wide band gap semiconductor can be utilized.

なお、スイッチング素子及び整流素子の両方がワイドバンドギャップ半導体によって形成されていても、いずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよい。また、ワイヤやリードといった配線部材も異なる材料を使ってもよい。その場合、素子や配線部材の種類や材料に応じて、つまり、半導体素子と配線部材の線膨張係数に応じて一端側と他端側の線膨張係数を変えるようにすれば、よりパワーサイクル寿命を向上させることができる。   Note that both the switching element and the rectifying element may be formed of a wide band gap semiconductor, or one of the elements may be formed of a wide band gap semiconductor. Different materials may also be used for the wiring members such as wires and leads. In that case, if the linear expansion coefficient on one end side and the other end side is changed in accordance with the type and material of the element and wiring member, that is, in accordance with the linear expansion coefficient of the semiconductor element and wiring member, the power cycle life is further increased. Can be improved.

1 絶縁基板(1f 回路面)、 2 回路パターン(2a,2b)、 3 半導体素子、 4 ワイヤ(配線部材)、 5,15 はんだ(5a,5b)、
6 電極部材(6B 帯状材)、 7 バキュームチャックテーブル、 8 押さえ爪、 9 充填樹脂、 10 電力用半導体装置 。
添え字 FB:第2の金属板が張り合わされた領域(緩衝領域)、MC:良導電部材(第1の金属板)、MB:低膨張部材(第2の金属板)、 t1:第1の接合面、t2:第2の接合面、E1:一端部、E2:他端部
十位の数字の違いは実施の形態1における変形例、百位の数字は実施の形態による構成の相違を示す。
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate (1f circuit surface), 2 Circuit pattern (2a, 2b), 3 Semiconductor element, 4 Wire (wiring member), 5,15 Solder (5a, 5b),
6 Electrode member (6B belt-like material), 7 Vacuum chuck table, 8 Holding claw, 9 Filling resin, 10 Power semiconductor device
Subscript FB: region where second metal plate is bonded (buffer region), MC: good conductive member (first metal plate), MB: low expansion member (second metal plate), t1: first Bonding surface, t2: second bonding surface, E1: one end, E2: other end The tenth digit difference indicates a modification in the first embodiment, and the hundredth digit indicates a difference in configuration according to the embodiment. .

Claims (11)

半導体素子と配線部材とを電気接続するための電極部材であって、
帯状の第1の金属板の長さ方向における一端側から所定長さの領域に第2の金属板が張り合わされた帯状材を、前記第2の金属板が張り合わされた領域よりも他端側の部分を折り曲げて前記第1の金属板が前記第2の金属板の外側に位置するU字形状となし、
前記U字形状の外側となった面において、前記一端側から折り曲げ部分までの所定長さの領域に前記半導体素子との接合面が、前記他端側から前記折り曲げ部分までの所定長さの領域に前記配線部材との接合面が設けられ、
前記第1の金属板の線膨張係数は、前記半導体素子の線膨張係数よりも前記配線部材の線膨張係数に近く、
前記第2の金属板が張り合わされた領域における前記帯状材の線膨張係数は、前記配線部材の線膨張係数よりも前記半導体素子の線膨張係数に近い、
ことを特徴とする電極部材。
An electrode member for electrically connecting the semiconductor element and the wiring member,
The other end side of the band-shaped material in which the second metal plate is bonded to the region of a predetermined length from the one end side in the length direction of the band-shaped first metal plate, with respect to the region where the second metal plate is bonded The first metal plate is bent into a U-shape that is located outside the second metal plate,
On the surface that is the outer side of the U-shape, a bonding surface with the semiconductor element is in a region of a predetermined length from the one end side to the bent portion, and a region of a predetermined length from the other end side to the bent portion. A joint surface with the wiring member is provided,
The linear expansion coefficient of the first metal plate is closer to the linear expansion coefficient of the wiring member than the linear expansion coefficient of the semiconductor element,
The linear expansion coefficient of the strip in the region where the second metal plate is bonded is closer to the linear expansion coefficient of the semiconductor element than the linear expansion coefficient of the wiring member,
An electrode member.
記第2の金属板の前記第1の金属板に張り合わされた面の反対側には、前記第1の金属板と同じ線膨張係数の第3の金属板が張り合わされていることを特徴とする請求項1に記載の電極部材。 The front Symbol opposite the first surface that is glued to the metal plate of the second metal plate, that the third metal plates of the same linear expansion coefficient as the first metal plate is combined Ri Zhang The electrode member according to claim 1. 前記帯状材における前記半導体素子との接合面の裏側の面と、前記配線部材との接合面の裏側の面との間には、所定間隔の隙間があることを特徴とする請求項1または2に記載の電極部材。   3. The gap between the back surface of the bonding surface with the semiconductor element and the back surface of the bonding surface with the wiring member in the belt-shaped material is a predetermined gap. An electrode member according to 1. 前記帯状材の前記他端側の幅が、前記一端側の幅よりも広いことを特徴とする請求項3記載の電極部材。   The electrode member according to claim 3, wherein a width of the belt-like material on the other end side is wider than a width on the one end side. 前記所定間隔の隙間に、樹脂ペレットが充填されていることを特徴とする請求項3または4に記載の電極部材。   The electrode member according to claim 3 or 4, wherein a resin pellet is filled in the gap of the predetermined interval. 前記所定間隔の隙間に、はんだ材料が充填されていることを特徴とする請求項3または4に記載の電極部材。   The electrode member according to claim 3 or 4, wherein a gap between the predetermined intervals is filled with a solder material. 絶縁基板に形成された回路パターン上に取り付けられた半導体素子と、
前記半導体素子の前記回路パターンとの取り付け面の反対側の面に前記半導体素子との接合面を接合させた請求項1ないし6のいずれか1項に記載の電極部材と、
前記電極部材の配線部材との接合面に接合された配線部材と、
を備えたことを特徴とする半導体装置。
A semiconductor element mounted on a circuit pattern formed on an insulating substrate;
The electrode member according to any one of claims 1 to 6, wherein a bonding surface with the semiconductor element is bonded to a surface opposite to a mounting surface of the semiconductor element with the circuit pattern.
A wiring member joined to a joint surface of the electrode member with the wiring member;
A semiconductor device comprising:
前記帯状材の前記第2の金属板が張り合わされた領域の線膨張係数と前記半導体素子の線膨張係数との差と、
前記第1の金属板の線膨張係数と前記配線部材の線膨張係数との差が、
いずれも当該半導体装置の使用温度範囲内で8ppm/K以下であることを特徴とする請求項7に記載の半導体装置。
A difference between the linear expansion coefficient of the region where the second metal plate of the strip-shaped material is bonded and the linear expansion coefficient of the semiconductor element;
The difference between the linear expansion coefficient of the first metal plate and the linear expansion coefficient of the wiring member is
8. The semiconductor device according to claim 7, wherein both are 8 ppm / K or less within the operating temperature range of the semiconductor device.
前記第1の金属板は、前記配線部材の主構成材料と同じ金属材料からなることを特徴とする請求項7または8に記載の半導体装置。   The semiconductor device according to claim 7, wherein the first metal plate is made of the same metal material as a main constituent material of the wiring member. 前記半導体素子がワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項7ないし9のいずれか1項に記載の半導体装置。   10. The semiconductor device according to claim 7, wherein the semiconductor element is made of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム、またはダイヤモンド、のうちのいずれかであることを特徴とする請求項10に記載の半導体装置。   The semiconductor device according to claim 10, wherein the wide band gap semiconductor material is any one of silicon carbide, gallium nitride, and diamond.
JP2010085083A 2010-04-01 2010-04-01 Electrode member and semiconductor device using the same Expired - Fee Related JP5368357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010085083A JP5368357B2 (en) 2010-04-01 2010-04-01 Electrode member and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010085083A JP5368357B2 (en) 2010-04-01 2010-04-01 Electrode member and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2011216766A JP2011216766A (en) 2011-10-27
JP5368357B2 true JP5368357B2 (en) 2013-12-18

Family

ID=44946193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010085083A Expired - Fee Related JP5368357B2 (en) 2010-04-01 2010-04-01 Electrode member and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP5368357B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6230238B2 (en) 2013-02-06 2017-11-15 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP6475918B2 (en) * 2014-02-05 2019-02-27 ローム株式会社 Power module
CN111788694A (en) * 2018-03-08 2020-10-16 三菱电机株式会社 Semiconductor element, semiconductor device, power conversion device, and method for manufacturing semiconductor element
JP6691984B2 (en) * 2019-02-04 2020-05-13 ローム株式会社 Power module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758781Y2 (en) * 1977-12-26 1982-12-15
JPS55166936A (en) * 1979-06-14 1980-12-26 Nec Corp Glass sealing type diode
JP4499577B2 (en) * 2005-01-19 2010-07-07 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2011216766A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5542567B2 (en) Semiconductor device
JP6234630B2 (en) Power module
US9899345B2 (en) Electrode terminal, semiconductor device for electrical power, and method for manufacturing semiconductor device for electrical power
KR102585450B1 (en) Molded package with chip carrier comprising brazed electrically conductive layers
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP6366857B2 (en) Power semiconductor device
JP6576108B2 (en) Power semiconductor device
CN109314063B (en) Power semiconductor device
JP2007234690A (en) Power semiconductor module
JP2012028561A (en) Semiconductor device
WO2015141284A1 (en) Semiconductor module unit and semiconductor module
JP2013065836A (en) Electrode member and power semiconductor device using the same
JP2015076562A (en) Power module
JP2011243839A (en) Power semiconductor device
JP2017107937A (en) Power semiconductor device
US20130112993A1 (en) Semiconductor device and wiring substrate
JP5368357B2 (en) Electrode member and semiconductor device using the same
WO2017183222A1 (en) Semiconductor device and method for manufacturing same
WO2014021077A1 (en) Multilayer substrate and power module using multilayer substrate
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
JP6643481B2 (en) Semiconductor module and method of manufacturing semiconductor module
JP5899952B2 (en) Semiconductor module
JP6129090B2 (en) Power module and method for manufacturing power module
JP2006196765A (en) Semiconductor device
JP2016086003A (en) Manufacturing method of power semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees