JP2006038658A - 磁気検出装置及びこの装置を用いた磁気検出方法 - Google Patents

磁気検出装置及びこの装置を用いた磁気検出方法 Download PDF

Info

Publication number
JP2006038658A
JP2006038658A JP2004219572A JP2004219572A JP2006038658A JP 2006038658 A JP2006038658 A JP 2006038658A JP 2004219572 A JP2004219572 A JP 2004219572A JP 2004219572 A JP2004219572 A JP 2004219572A JP 2006038658 A JP2006038658 A JP 2006038658A
Authority
JP
Japan
Prior art keywords
magnetic
central axis
magnet
magnetoresistive elements
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004219572A
Other languages
English (en)
Inventor
Shigeo Koseki
栄男 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohden Co Ltd
Original Assignee
Kohden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohden Co Ltd filed Critical Kohden Co Ltd
Priority to JP2004219572A priority Critical patent/JP2006038658A/ja
Publication of JP2006038658A publication Critical patent/JP2006038658A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
小型でかつ特性の向上を可能にした磁気検出装置及びこの装置を用いた磁気検出方法を提供すること。
【解決手段】
磁石の磁極面と略平行な取付面に2つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、これら2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成した。
【選択図】 図1

Description

本発明は、磁気抵抗素子の特性を利用して検出対象物の回転等の運動を検出する磁気検出装置に関するものであり、詳しくは、小型化しても必要な電位差を得られるとともに特性の向上を図った磁気検出装置及び磁気検出方法に関するものである。
回転する対象物を検出する磁気検出装置としてInSbを用いた半導体磁気抵抗素子やホール素子が広く知られているが、これらに比べ温度特性に優れ且つ低磁界での感度が高い等の特徴から、Fe-Ni合金からなる異方性磁気抵抗素子(以下、磁気抵抗素子と呼ぶ)を使用した磁気検出装置が期待され多くの構造が提案されている。
一般的に磁気抵抗素子は、図11(a)に示すような磁気抵抗素子に対する磁気ベクトルMの角度θについて、電流iと磁界中の磁気ベクトルMとが垂直(θ=0°、180°)の時に抵抗値が最小であり、電流iと磁界中の磁気ベクトルMが平行(θ=90°、270°)の時に抵抗値が最大になるという特徴を有する。θ=0°の抵抗値をρ⊥、θ=90°の抵抗値ρ〃とすると、ρ(θ)=ρ⊥sinθ+ρ〃cosθが成立する。そこで、図11(b)に示すような水平方向と垂直方向に長い2つの磁気抵抗素子からなる回路を組むことで、電圧出力(Vout)について、Vout=Vin/2−ksin2θ:k=ΔρVin/2(ρ⊥+ρ〃)が成立する。この電圧出力(Vout)は、Vin/2を中点としたサインカーブを描く出力波形となり、これを用いて磁気の検出を行う。実際には、図11(c)又は(d)に示すように、特性の向上をはかるために磁気抵抗素子をストライプ状に形成する。
このような磁気抵抗素子を使用した従来の磁気検出装置としては、特許文献1に開示された磁気検出装置が知られている。この磁気検出装置は、図12(a)に示すように磁石21の着磁面が、検出対象物としての歯車24に対向し、回転方向u(最接近した歯車24の接線方向)に対して平行に設置にされている。検出対象物としての歯車24と磁石21の間に、支持板22と磁気抵抗素子が蒸着された基板23がそれぞれ同じ方向で接着されている。図12(b)に示すように磁気抵抗素子25a、25bは、外周側に向かうベクトルHに対し略45°傾けて配置されている。このような磁気抵抗素子の配置状態において歯車24が回転すると、磁石21から歯車24へ向かう磁気ベクトルの方向が図12(b)に示すようにH1〜H2のように変化し、この変化に伴って各磁気抵抗素子の抵抗値に変化が生じる(詳細は図13に基づき後述する)。この構造にて磁気抵抗素子の検出装置としての機能を確保している。
特開平07−294540号公報
ここで、回転する対象物(ここでは歯車を例にする)を検出する原理ついて説明する。表面側がN極である磁石から発せられる磁気ベクトルは、周囲に歯車がない場合(近くに磁性体が無い場合)には、図13(a)に示すように、磁石の中央近辺の磁気的中心部分を磁極面座標軸として、それぞれ方向が違うHB+、HB−の磁気ベクトルが放射状に発生している。ここで歯車が磁石の近くで回転すると、歯車の山と谷の位置により、図13(b)[1]〜[4]のように、図13(a)とは異なる座標軸で磁気ベクトルが変化する。この図13(b)[1]〜[4]のそれぞれの磁気ベクトルの変化を磁石上面から観察したものが、図13(c)[1]〜[4]である。この図13(c)[1]〜[4]からも分かるように、この変化する磁気ベクトルの状態を、磁石の磁極面座標軸でみると、周期的に方向が変わる磁気ベクトルが、磁気的中心を通る回転方向uに平行な軸xで線対称に現れ、かつ、図13(d)で示すように、同一方向をなす磁気ベクトルの領域は、軸xの両側に扇状に広がっている。
このように、歯車の山と谷の位置に応じて変化する磁気ベクトルから、歯車の回転等を検出する構成となっている。図12に示す従来技術の磁気検出装置においては、磁気抵抗素子25aと25bの成す角度は90°であり、これらの接続中点からとり出す電位を大きく変動させるためには、磁気抵抗素子25aと25bの各抵抗値を逆に変化させることが必要であり、そのためには磁気抵抗素子25aと25bに同じ方向の磁気ベクトルが印加されなければならない。
図13(d)に示すように、同じ方向の磁気ベクトルを印加するためには、磁気抵抗素子25a、25bをバイアス磁石の中心よりHB+とHB−のどちらか一方のかなり偏倚した位置に配置しなければならない。よって、装置の全体構造は図12(b)で示すH方向に大きくなってしまうという問題がある。
また、図13(d)に示す同じ方向の磁気ベクトルが印加される領域は、歯車ピッチが小さくなれば領域の間隔cが狭くなることは容易に想定できる。このような状態で、図12(b)に示すように磁気抵抗素子25a、25bが歯車の山と谷のピッチ方向(歯車の回転方向)に構成されていると、歯車ピッチにより25aと25bの素子内で方向が違う磁気ベクトルが混在してしまい、接続中点からとり出す電位差が小さくなる、という欠点が生じてしまう。これを解決しようと磁気抵抗素子25a、25bの幅(図12(b)で示すq)を小さくしたとしても、磁気抵抗素子の全体の感磁面面積が小さくなり、結果的には電位差は小さく、さらにノイズが影響し特性的に不安定になってしまうという欠点が生じてしまう。
本発明は、上記問題点に鑑みなされたもので、小型でかつ特性の向上を可能にし、さらに検出対象物の正転、反転を識別可能な磁気検出装置及びこの装置を用いた磁気検出方法を提供することを目的とするものである。
本発明の請求項1は、磁石の磁極面と略平行な取付面に2つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、これら2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成したことを特徴とする磁気検出装置である。
本発明の請求項2は、磁石の磁極面と略平行な取付面に4つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成したことを特徴とする磁気検出装置である。
本発明の請求項3は、磁石の磁極面と略平行な取付面に設けた4つの磁気抵抗素子によって、所定距離λ毎に被検出部を有する検出対象物との相対的運動により生じる磁気ベクトルの周期的な変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記4つの磁気抵抗素子のうち2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、この2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成し、前記4つの磁気抵抗素子のうち残りの2つの磁気抵抗素子を用いて同様にハーフブリッジの等価回路を構成し、これら2組のハーフブリッジの等価回路を磁気的中心軸上において前記検出対象物の所定距離λの略1/4だけ離間させて基板上に構成し、かつ、磁石は磁気的中心軸が検出対象物の運動方向に対して平行となるように設けたことを特徴とする磁気検出装置である。
本発明の請求項4は、磁石の磁極面と略平行な取付面に設けた8つの磁気抵抗素子によって、所定距離λ毎に被検出部を有する検出対象物との相対的運動により生じる磁気ベクトルの周期的な変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記8つの磁気抵抗素子のうち4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成し、前記8つの磁気抵抗素子のうち残りの4つの磁気抵抗素子を用いて同様にフルブリッジの等価回路を構成し、これら2組のフルブリッジの等価回路を磁気的中心軸上において前記検出対象物の所定距離λの略1/4だけ離間させて基板上に構成し、かつ、磁石は磁気的中心軸が検出対象物の運動方向に対して平行となるように設けたことを特徴とする磁気検出装置である。
本発明の請求項5は、請求項1又は2に加えて、磁石は、磁極面を長辺と短辺からなる長方形に形成して長辺側と平行に磁気的中心軸を設けたことを特徴とする磁気検出装置である。
本発明の請求項6は、請求項3又は4に加えて、磁石は、磁極面を長辺と短辺からなる長方形に形成して長辺側と平行に磁気的中心軸を設けると共に、長辺の長さが検出対象物の所定距離λの長さ以上となるように構成したことを特徴とする磁気検出装置である。
本発明の請求項7は、磁石の磁極面と略平行な取付面に2つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、これら2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成したことを特徴とする磁気検出装置を構成し、この磁気検出装置を、前記磁気的中心軸と、検出対象物と磁石との相対的運動方向とが0°乃至±45°の角度となるように検出対象物に対向させて設置し、この状態で磁石と検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにしたことを特徴とする磁気検出方法である。
本発明の請求項8は、磁石の磁極面と略平行な取付面に4つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成したことを特徴とする磁気検出装置を、前記磁気的中心軸と、検出対象物と磁石との相対的運動方向とが0°乃至±45°の角度となるように検出対象物に対向させて設置し、この状態で磁石と検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにしたことを特徴とする磁気検出方法である。
請求項1記載の発明によれば、磁石の磁気的中心軸に対して対称となる位置に互いの感磁方向が磁気的中心軸に対して略45°の角度となるように延伸させて2つの磁気抵抗素子を設け、これらを用いてハーフブリッジの等価回路を構成することで、磁石を小型化しても接続中点からとり出す電位差は従来技術構造より大きくすることができ、また、傾斜、スラスト移動、ギャップとモジュールがある程度の範囲内であれば、良好な電位差を得ることができ、歯車に対して磁気検出装置を設置する際の位置決めは、従来技術に比べて許容範囲が非常に広がった。
請求項2記載の発明によれば、前記4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成したので、磁石を小型化しても接続中点からとり出す電位差は従来技術構造より大きくすることができ、また、傾斜、スラスト移動、ギャップとモジュールがある程度の範囲内であれば、良好な電位差を得ることができ、歯車に対して磁気検出装置を設置する際の位置決めは、従来技術に比べて許容範囲が非常に広がった。さらに、フルブリッジの等価回路なので、他方の出力を差動信号やリファレンス信号として利用できる。
請求項3記載の発明によれば、2組のハーフブリッジの等価回路を磁気的中心軸上において前記検出対象物の所定距離λの略1/4だけ離間させて基板上に設けることで、2つのブリッジ回路からの出力信号は約π/2の位相差を持つようになり、この位相差を利用することで歯車の正転と反転を判別することが可能となる。
請求項4記載の発明によれば、2組のフルブリッジの等価回路を磁気的中心軸上において前記検出対象物の所定距離λの略1/4だけ離間させて基板上に設けることで、2つのブリッジ回路からの出力信号は約π/2の位相差を持つようになり、この位相差を利用することで歯車の正転と反転を判別することが可能となる。
請求項5記載の発明によれば、請求項1又は2の効果に加えて、磁石を長方形に形成して長辺側を磁気的中心軸とすることで、ブリッジ回路で得られる電位差を大きくすることができる。
請求項6記載の発明によれば、請求項3又は4の効果に加えて、磁石の磁極面を長辺と短辺からなる長方形に形成して長辺側を磁気的中心軸とすると共に長辺の長さが検出対象物の所定距離λの長さ以上となるように構成したので、2つのブリッジ回路からの出力信号が安定して約π/2の位相差を持つようになり、歯車の正転と反転をより正確に判別することが可能となる。
請求項7記載の発明によれば、磁気的中心軸に対して対称となる位置でかつ互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させた2つの磁気抵抗素子を用いてハーフブリッジの等価回路を形成した磁気検出装置を、前記磁気的中心軸と、検出対象物と磁石との相対的運動方向とが0°乃至±45°の角度となるように検出対象物に対向させて設置し、この状態で磁石と検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした検出方法なので、磁石を小型化しても接続中点からとり出す電位差は従来技術構造より大きくすることができ、また、検出装置を0°乃至±45°の角度だけ傾けて検出対象物に対向させて設置しても良好な電位差を得ることができ、さらに、スラスト移動、ギャップとモジュールがある程度の範囲内であれば、良好な電位差を得ることができ、磁気検出装置を設置する際の位置決めの許容範囲は、従来技術に比べて非常に広がった磁気検出方法となっている。
請求項8記載の発明によれば、4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を形成した磁気検出装置を、磁気的中心軸と、検出対象物と磁石との相対的運動方向とが0°乃至±45°の角度となるように検出対象物に対向させて設置し、この状態で磁石と検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした検出方法なので、磁石を小型化しても接続中点からとり出す電位差は従来技術構造より大きくすることができ、また、検出装置を0°乃至±45°の角度だけ傾けて検出対象物に対向させて設置しても良好な電位差を得ることができ、さらに、スラスト移動、ギャップとモジュールがある程度の範囲内であれば、良好な電位差を得ることができ、磁気検出装置を設置する際の位置決めの許容範囲は、従来技術に比べて非常に広がった磁気検出方法となっている。
本発明による磁気検出装置は、磁石の磁極面と略平行な取付面に2つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、これら2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成したことを特徴とするものである。このような構成とすることで、アジマス、スラスト移動、ギャップ長等の変化があっても一定範囲内で良好な電位差を得られる磁気検出装置となる。
また、さらに磁気抵抗素子2つを追加してフルブリッジの等価回路を構成することで、2つ目の出力信号を差動信号又はリファレンス信号として用いることもできる。
さらに、このようなハーフブリッジの等価回路又はフルブリッジの等価回路を2組用いて、これら2組のブリッジ回路を周期ピッチλの略1/4だけ離間させて基板上に構成することで、歯車等の検出対象物の正転と反転を識別可能な磁気検出装置を得ることができる。
以下、具体的な実施例について図面を用いながら説明を行う。
本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の磁気検出装置の構成を示したものである。図1(a)において、磁石11は保持体12に設置され、この保持体12の磁石11を設置した側と反対の面には基板13が設置されており、この基板13の表面を取付面として磁気抵抗素子14a、14bが設けられている。これらの磁石11、保持体12及び基板13を組合わせたものは、基板13の表面及び磁石11の磁極面が歯車15の接線と平行となるように設ける。なお、図1(a)に示すように、磁石11は、歯車15に対向している側の表面がN極、裏側表面がS極となるように配置している。
この図1(a)に示す磁気検出装置の構成を横向きにして矢印Aの方向から見たものが、図1(b)であり、この図1(b)に示すように、磁石11及び基板13が歯車15の高さ方向の略中心に来るように設置し、かつ、磁石11の磁極面における磁気的中心を通る軸x(以下、磁気的中心軸xという)と歯車15の回転方向uとが平行となるように設置する。また、基板13の表面の磁気抵抗素子14a、14bは、図1(c)に示すように、磁石の磁極面の磁気的中心軸xから対称となる位置でハーフブリッジの等価回路を構成し、2つの磁気抵抗素子14a、14bは磁気的中心軸xに対して略45°(又は、略135°)の同一方向に延伸して配置する。なお、磁気的中心軸xとは、図13(a)に示すような磁気ベクトルが放射状に発せられるその中心である磁気的中心を通る架空の軸xのことであり、例えば、磁極面が円形である場合には軸xはどの方向にも定義可能なものであるが、本実施例のように磁極面を長方形で形成した場合には、磁気的中心軸xは長辺と平行に形成されるものとする(後述する図3(b)のイメージ)。また、本明細書中において磁気的中心軸xと言う場合には、磁極面上における磁気的中心を通る軸のみを表すのではなく、図1(c)に示すように、磁極面に垂直な方向から観察した場合に基板13上で磁気的中心と重なるように配置された軸も含んだものとして、以下、磁気的中心軸xを用いるものとする。
このように構成した理由は、図13(d)に示すように、同じ方向の磁気ベクトルが印加される領域が磁気的中心軸xに対して線対称に発生している現象を利用するためである。歯車の位置が山又は谷の場合には、略45°の同一方向に延伸した2つの磁気抵抗素子14a、14bに対して、それぞれ45°の角度を持って磁気ベクトルが印加されるため、2つの磁気抵抗素子14a、14bの抵抗値は略同じとなるが、歯車の位置が山と谷の中間の場合には、一方の磁気抵抗素子には感磁方向に水平に近い磁気ベクトルが印加され、他方の磁気抵抗素子には感磁方向に垂直に近い磁気ベクトルが印加されるため、2つの磁気抵抗素子14a、14bの抵抗値が最大と最小をとることとなり、この場合のハーフブリッジの等価回路から得られる電位差は最大となる。このように、図13(d)に示す領域が磁気的中心軸xに対して線対称に発生している部分に2つの磁気抵抗素子14a、14bを配置することで、従来技術と異なり、磁石の中央部分に磁気抵抗素子を配置しても大きな電位差を得られる磁気検出装置を構成することができる。
より詳細な構成としては、例えば、基板13を絶縁膜付きSiとし、その表面に図2(a)に示す磁界強度−出力電圧特性を持つ磁気抵抗素子14a、14bを用いてハーフブリッジの等価回路を構成し、その際に、図2(b)に示すように、横方向(磁気的中心軸xの方向)に0.8mm、縦方向に1.8mmの長さを有する感磁面を形成して構成し、この感磁面と磁石の磁極面との間隔(Si基板厚+保持体厚)を1.0mmで固定した。また、歯車15としてはピッチ円の直径50.0mm、歯数50、JIS規格モジュール1.0(JIS規格モジュール(M)=歯車直径/歯数)、厚さ6.0mmのものを使用し、この歯車15の歯先から磁気抵抗素子の感磁面までの距離(ギャップ)を0.5mmとした。このようにして構成した磁気検出装置の特性を検討するために、以下、実験結果を用いながら説明する。
(1)磁石の磁極面の形状の影響
上記磁気検出装置の構成について説明した際には、磁石の磁極面の形状については触れなかったが、磁石の磁極面の形状と磁気検出装置で検出される電位差との関係を検討する。磁石11としてはフェライトを用いたものを使用し、図1(c)に示す磁石11のように、縦方向の長さをv、横方向(磁気的中心軸xの方向)の長さをwとし、磁石の厚さを2.0mmとした状態で、これらのv、wの長さを変更しながら磁気検出装置で検出される電位差を測定する。その測定結果を図3(a)に示す。この図3(a)からも分かるように、v≧wの場合よりもv<wの場合のほうが測定電位差が大きくなっている。当然、磁気検出装置としては電位差を大きくとれることが望ましく、よって、磁石11の形状としては、v<wとなるように構成することが望ましい。
また、w方向の中心より磁気抵抗素子がずれても電位差に大きく影響しないことがわかった。言及すれば基板と磁石の取り付けに際し高度な位置精度を要求しないということである。このことは、図3(b)で示すように、w方向に磁気的中心が点状より線状になり広がったと理解できる。
(2)基板と磁石の傾斜の影響
図4(a)に示すように、保持体12(図示省略)によって固定された磁石11と基板13との全体を、歯車15の回転方向uに対して傾斜させた場合の磁気検出装置で検出される電位差について検討した。条件としては、磁石の磁極面の大きさをv=3.0mm、w=4.0mmとし、磁気的中心軸xが、歯車の回転方向uと平行(0°)の位置から図4(a)に示すように基板付磁石を傾斜(アジマス)させ電位差を測定した。その結果、図4(b)で示すように、歯車の回転方向uと平行(0°)の場合が最も高い電位差を得られ、また、±45°の傾角の場合でも支障のない電位差を得ることができ、広いアジマス許容範囲を持つことが分かった。
(3)スラスト移動の影響
図5(a)に示すように、保持体12(図示省略)によって固定された磁石11と基板13との全体を、歯車の回転方向uの接線z上(スラスト)で移動させた場合の磁気検出装置で検出される電位差を測定した。その結果、図5(b)に示すように、スラスト方向でも±歯車ピッチ分の距離(歯車ピッチ=π×M、モジュール1の場合:1.0×π=3.14mm)であれば電位差に支障がなく、広い許容範囲を持つことがわかった。
(4)ギャップとモジュールの影響
歯車のモジュールが0.5、1.0、2.0の場合について、それぞれ歯先から磁気抵抗素子の感磁面との間隔(ギャップ)を変化させながら磁気検出装置で検出される電位差を測定した。その結果、図6に示すように、モジュール0.5以上で支障ない電位差を得られることが分かった。
(5)従来技術との比較
上記(4)で検討した歯車のモジュールが0.5及び1.0の場合のギャップとモジュールの関係について、従来技術と比較検討を行った。図2(a)で示す特性の磁気抵抗素子を図7(a)に示すように感磁方向を90°ずらして等価回路を構成し、磁石の磁極面をΦ5.0mm、厚さを2.0mmとし、磁気抵抗素子の位置を磁石の中央から適正な位置に偏倚した従来技術品と、磁石の面積が3.0mm×4.0mm(従来技術の磁石より小さい)で厚さが2.0mmのものを用いた図7(b)に示す本発明品とで、歯先から磁気抵抗素子の感磁面との間隔(ギャップ)との関係を電位差で測定した。その結果、図7(c)に示すように、従来技術品よりも本発明品の方が磁石は小さいにもかかわらず、高い電位差を得ることができた。
このように、本発明の磁気検出装置は、従来技術とは違い図13(c)に示す磁気的中心に対して対称の方向となる磁気ベクトルを利用する為に、同じ方向に延伸する磁気抵抗素子を用いた構成となっており、この磁気抵抗素子を離間せずに磁石の中央近辺に配置しているため、図3(d)に示す領域を有効に活用し小型化を可能にしている。また、磁気抵抗素子14a、14bが歯車の回転方向uに対して垂直に形成されているため、歯車ピッチの影響で接続中点からとり出す電位差が低下することを抑えられる。さらに、磁石を小型化しても接続中点から取出す電位差は従来技術構造より大きいことが分かった。
また、上記(2)〜(4)で述べたように、傾斜、スラスト移動、ギャップとモジュールについては、ある程度の範囲内であれば、良好な電位差を得ることができ、よって、歯車に対して磁気検出装置を設置する際の位置決めは、従来技術に比べて許容範囲が非常に広がったと言える。
この実施例1における磁気検出装置は、図8(a)に示すように、感磁面を同一面積の正方形で形成した磁気抵抗素子14a、14bを、磁気的中心軸xに対して対称となる位置に頂点同士が向き合うように配置し、この2つの磁気抵抗素子の感磁方向が磁気的中心軸xに対して略45°(又は、略135°)の同一方向となるように延伸して構成した。しかし、これはほんの一例であり、例えば図8(b)に示すように、感磁面を同一面積の正方形で形成した磁気抵抗素子を、磁気的中心軸xに対して対称となる位置に辺同士が向き合うように配置してもよいし、図8(c)に示すように、感磁面を同一面積の三角形で形成した磁気抵抗素子を、磁気的中心軸xに対して対称となる位置に頂点同士が向き合うように配置してもよい。このように、同一面積で同一形状、かつ、感磁方向が同一方向である2つの磁気抵抗素子を磁気的中心軸xに対して対称となる位置に配置するものであれば、実施例に限らず、本発明の効果を得ることができる。
前記実施例1においては、2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成し、このハーフブリッジの等価回路に生じる電位差を用いて歯車の回転等を検出する磁気検出装置について説明したが、本発明はこれに限られるものではない。図9(a)及び(b)に示すように、感磁方向が同一方向(磁気的中心軸xに対して略45°又は略135°傾斜した方向)である2つの磁気抵抗素子16a、16bを磁気的中心軸xに対して対称となる位置に配置し、さらに外側に、感磁方向が同一方向である2つの磁気抵抗素子17a、17bを磁気的中心軸xに対して対称となる位置に配置して、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成するようにしてもよい。この場合、外側に設けた2つの磁気抵抗素子17a、17bの感磁方向は、図9(a)に示すように、内側に設けた2つの磁気抵抗素子16a、16bの感磁方向と垂直な方向としてもよいし、また、図9(b)に示すように、内側に設けた2つの磁気抵抗素子16a、16bの感磁方向と同一方向としてもよい。
これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を組むことで、歯車の回転等を検出するためのメイン出力(Out2)と、メイン出力の後回路処理において制御の確かさを向上するために利用するサブ出力(Out1)の2つの出力を得ることができる。接続例としては、図9(a)のように配置した磁気抵抗素子を用いて、図9(c)又は(d)のように接続した場合には、図9(e)又は(f)に示すような波形が得られ、これらのOut1信号は差動信号として利用することができる。また、図9(b)のように配置した磁気抵抗素子を用いて、図9(c)のように接続した場合には、図9(g)に示すような波形が得られ、このOut1信号はリファレンス信号として利用することができる。
前記実施例1では、2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成した磁気検出装置について説明し、前記実施例4では、4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成した磁気検出装置について説明した。これらの磁気検出装置を用いることにより、歯車の回転を検出することが可能であったが、本発明の更なる応用として、歯車の正転と反転を判別するための構成を以下に述べる。
図10(b)に示すように、基板上に磁気的中心軸xの方向に中心を約1/4×λだけ離間させて2つのハーフブリッジの等価回路を形成する。ここでλは、図10(a)に示すように、歯の高さの中点を通る円周上の同一点を結んだ隣の歯との距離を表した歯車ピッチλである。或いは、同様に、図10(c)に示すように、基板上に磁気的中心軸xの方向に中心を約1/4×λだけ離間させて2つのフルブリッジの等価回路を形成する。この図10(b)又は(c)のように構成した2つのブリッジ回路からの出力信号は約π/2の位相差を持つようになり、この位相差を利用することで歯車の正転と反転を判別することが可能となる。
ここで、位相差と電位差を揃えるためには、磁気的中心軸xが歯車の回転方向に対して略平行であることが条件の一つとなる。また、二つ目の条件としては、図13(a)で示すような磁気ベクトルが、離間させた2つのブリッジ回路に同等に掛かることが必要である。これを満たすための構成としては、磁石の幅wを約λ≦wとすることで支障のない特性を得て実現性の確認ができた。
前記実施例では、検出対象物として歯車15を例に挙げて説明を行ったが、本発明はこれに限られるものではなく、歯車以外であっても、短冊状や櫛歯状の対象物等であってもよく、また、回転運動をするもののみならず、スライド移動などの水平方向に移動する場合などであってもよい。このような場合には、運動によって磁性体材料と非磁性体材料とが交互に繰り返すことで磁気ベクトルが変化するようにしてもよいし、何らかの方法で運動と共に磁気ベクトルが変化する構成であれば、本発明の磁気検出装置を適用可能である。この場合に、前記実施例で歯車としていたものを検出対象物とし、回転方向と表現していたものは運動方向と表現し、歯車ピッチと表現していたものは周期ピッチと表現することで一般性を得る。
前記実施例では、図1(a)に示すように、検出対象物である歯車15と磁石11との間に保持体12を介して基板13を設け、この基板13の表面に磁気抵抗素子を配置して構成しており、歯車15に対向した側の磁石11の磁極面(N極)から発せられる磁気ベクトルの変化によって歯車の回転を検出していた。しかし、本発明はこれに限られるものではなく、磁石11の2つの磁極面のうち歯車15に対向した側に基板13を設けるのではなく、歯車15に対向した側とは反対側(S極側)に保持体12を介して基板13を設け、この基板13の表面に磁気抵抗素子を配置して構成してもよい。このように構成しても、歯車15が回転することによって磁気ベクトルに変化が生じ、この磁気ベクトルの変化を磁石11の裏面側に配置した磁気抵抗素子でも検出することができ、十分に磁気検出装置として機能する。
(a)は、本発明による磁気検出装置の構成を示した模式図であり、(b)は、(a)の磁気検出装置をA線側から見た模式図で、(c)は、(a)の磁気検出装置の基板13の表面を拡大した模式図である。 (a)は、図1の磁気検出装置において使用している磁気抵抗素子の磁界強度−出力電圧特性を表したグラフであり、(b)は、磁気抵抗素子を配置する場合の寸法を表した模式図である。 (a)は、図1の磁気検出装置における磁石11の寸法と測定した電位差との関係を表したグラフであり、(b)は、磁石の寸法をv<wとすることで磁気的中心が点状から線状に変化するイメージを表した模式図である。 (a)は、固定された磁石11と基板13との全体を歯車15の回転方向uに対して傾斜させる様子を表した模式図であり、(b)は、(a)の場合における傾斜角θと測定した電位差との関係を表したグラフである。 (a)は、固定された磁石11と基板13との全体を歯車の回転方向uの接線z上(スラスト)で移動させる様子を表した模式図であり、(b)は、(a)の場合における移動距離と測定した電位差との関係を表したグラフである。 歯車のモジュールが0.5、1.0、2.0のそれぞれについて、歯先から磁気抵抗素子の感磁面との間隔(ギャップ)と磁気検出装置で検出される電位差との関係を表したグラフである。 (a)は、従来技術による磁気検出装置の構成を表した模式図で、(b)は、本発明による磁の気検出装置の構成を表した模式図で、(c)は、従来技術の磁気検出装置と本発明の磁気検出装置のそれぞれで、歯車のモジュールが0.5、1.0の場合について、歯先から磁気抵抗素子の感磁面との間隔(ギャップ)と磁気検出装置で検出される電位差との関係を表したグラフである。 (a)〜(c)は、磁気抵抗素子を用いてハーフブリッジの等価回路を構成する場合において、各磁気抵抗素子の感磁面の形成例を表した模式図である。 (a)及び(b)は、本発明の第2実施例としてフルブリッジの等価回路を構成する場合の4つの磁気抵抗素子の配置例を表した模式図であり、(c)及び(d)は、4つの磁気抵抗素子の異なる2つの接続例を表した回路図であり、(e)、(f)及び(g)は、出力波形の例を表した模式図である。 (a)は、歯車ピッチλの表す距離を表した模式図であり、(b)は、ハーフブリッジ回路を2組用いて構成した歯車の正転と反転を判別可能な磁気検出装置を表した模式図であり、(c)は、フルブリッジ回路を2組用いて構成した歯車の正転と反転を判別可能な磁気検出装置を表した模式図である。 (a)及び(b)は、磁気抵抗素子の原理説明に用いた模式図であり、(c)及び(d)は、磁気抵抗素子を用いて磁気検出装置の感磁面を形成する場合の従来の構成例を表した模式図である。 (a)は、従来技術による磁気検出装置の構成を示した模式図であり、(b)は、(a)の磁気検出装置の基板13の表面側を観察した模式図である。 (a)は、歯車のない状態での磁石から出る磁気ベクトルの様子を表した模式図であり、(b)及び(c)は、歯車の歯の位置に応じて変化する磁気ベクトルの様子を表した模式図であり、(d)は、磁気ベクトルが同一方向となる領域を表した模式図である。
符号の説明
11…磁石、12…保持体、13…基板、14…磁気抵抗素子、15…歯車、16…磁気抵抗素子、17…磁気抵抗素子、21…磁石、22…保持体、23…基板、24…歯車、25…磁気抵抗素子。

Claims (8)

  1. 磁石の磁極面と略平行な取付面に2つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、これら2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成したことを特徴とする磁気検出装置。
  2. 磁石の磁極面と略平行な取付面に4つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成したことを特徴とする磁気検出装置。
  3. 磁石の磁極面と略平行な取付面に設けた4つの磁気抵抗素子によって、所定距離λ毎に被検出部を有する検出対象物との相対的運動により生じる磁気ベクトルの周期的な変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記4つの磁気抵抗素子のうち2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、この2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成し、前記4つの磁気抵抗素子のうち残りの2つの磁気抵抗素子を用いて同様にハーフブリッジの等価回路を構成し、これら2組のハーフブリッジの等価回路を磁気的中心軸上において前記検出対象物の所定距離λの略1/4だけ離間させて基板上に構成し、かつ、磁石は磁気的中心軸が検出対象物の運動方向に対して平行となるように設けたことを特徴とする磁気検出装置。
  4. 磁石の磁極面と略平行な取付面に設けた8つの磁気抵抗素子によって、所定距離λ毎に被検出部を有する検出対象物との相対的運動により生じる磁気ベクトルの周期的な変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記8つの磁気抵抗素子のうち4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成し、前記8つの磁気抵抗素子のうち残りの4つの磁気抵抗素子を用いて同様にフルブリッジの等価回路を構成し、これら2組のフルブリッジの等価回路を磁気的中心軸上において前記検出対象物の所定距離λの略1/4だけ離間させて基板上に構成し、かつ、磁石は磁気的中心軸が検出対象物の運動方向に対して平行となるように設けたことを特徴とする磁気検出装置。
  5. 磁石は、磁極面を長辺と短辺からなる長方形に形成して長辺側と平行に磁気的中心軸を設けたことを特徴とする請求項1又は2記載の磁気検出装置。
  6. 磁石は、磁極面を長辺と短辺からなる長方形に形成して長辺側と平行に磁気的中心軸を設けると共に、長辺の長さが検出対象物の所定距離λの長さ以上となるように構成したことを特徴とする請求項3又は4記載の磁気検出装置。
  7. 磁石の磁極面と略平行な取付面に2つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記2つの磁気抵抗素子を前記磁気的中心軸の両側の対称となる位置にそれぞれ1つずつ配置し、この2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、これら2つの磁気抵抗素子を用いてハーフブリッジの等価回路を構成したことを特徴とする磁気検出装置を構成し、この磁気検出装置を、前記磁気的中心軸と、検出対象物と磁石との相対的運動方向とが0°乃至±45°の角度となるように検出対象物に対向させて設置し、この状態で磁石と検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにしたことを特徴とする磁気検出方法。
  8. 磁石の磁極面と略平行な取付面に4つの磁気抵抗素子を設け、前記磁石とこの磁石の磁極面に対向する検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにした磁気検出装置において、前記取付面上に、磁気的中心を通る任意の磁気的中心軸を設定し、前記4つの磁気抵抗素子を、前記磁気的中心軸の両側の対称となる位置で、この磁気的中心軸に近い位置と遠い位置とにそれぞれ1つずつ配置し、前記磁気的中心軸に近い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°の角度となる同一方向に延伸させて設け、前記磁気的中心軸から遠い側の2つの磁気抵抗素子は、互いの感磁方向が磁気的中心軸に対して略45°(又は135°)の角度となる同一方向に延伸させて設け、これら4つの磁気抵抗素子を用いてフルブリッジの等価回路を構成したことを特徴とする磁気検出装置を、前記磁気的中心軸と、検出対象物と磁石との相対的運動方向とが0°乃至±45°の角度となるように検出対象物に対向させて設置し、この状態で磁石と検出対象物との相対的運動により生じる磁気ベクトルの変化を検出するようにしたことを特徴とする磁気検出方法。
JP2004219572A 2004-07-28 2004-07-28 磁気検出装置及びこの装置を用いた磁気検出方法 Pending JP2006038658A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219572A JP2006038658A (ja) 2004-07-28 2004-07-28 磁気検出装置及びこの装置を用いた磁気検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219572A JP2006038658A (ja) 2004-07-28 2004-07-28 磁気検出装置及びこの装置を用いた磁気検出方法

Publications (1)

Publication Number Publication Date
JP2006038658A true JP2006038658A (ja) 2006-02-09

Family

ID=35903807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219572A Pending JP2006038658A (ja) 2004-07-28 2004-07-28 磁気検出装置及びこの装置を用いた磁気検出方法

Country Status (1)

Country Link
JP (1) JP2006038658A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510286A (ja) * 2011-04-01 2014-04-24 アレグロ・マイクロシステムズ・エルエルシー 配向独立測定のための差動磁場センサ構造
WO2018013302A1 (en) * 2016-07-14 2018-01-18 Allegro Microsystems, Llc Magnetic field sensor for detecting motion of an object
JP2020012730A (ja) * 2018-07-18 2020-01-23 多摩川精機株式会社 磁気式エンコーダおよびその取り付け方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510286A (ja) * 2011-04-01 2014-04-24 アレグロ・マイクロシステムズ・エルエルシー 配向独立測定のための差動磁場センサ構造
WO2018013302A1 (en) * 2016-07-14 2018-01-18 Allegro Microsystems, Llc Magnetic field sensor for detecting motion of an object
US9880026B1 (en) 2016-07-14 2018-01-30 Allegro Microsystems, Llc Magnetic field sensor for detecting motion of an object
JP2020012730A (ja) * 2018-07-18 2020-01-23 多摩川精機株式会社 磁気式エンコーダおよびその取り付け方法

Similar Documents

Publication Publication Date Title
JP4319153B2 (ja) 磁気センサ
KR101597639B1 (ko) 앱솔루트 인코더 장치 및 모터
US8587295B2 (en) Angle detection apparatus and position detection apparatus
JP4052798B2 (ja) 相対位置計測器
JP5500785B2 (ja) 磁気センサ
JP4873709B2 (ja) 電流センサ
JP5131537B2 (ja) 角度検出装置
JP2011137796A (ja) 磁気式位置検出装置
US9400194B2 (en) Magnetic detection device and on-vehicle rotation detection device equipped with the same
JP2009025047A (ja) 磁気センサ及びそれを備えた磁気式エンコーダ
JP2007051953A (ja) 磁気エンコーダ
JP5002917B2 (ja) 回転角検出装置
JP4900838B2 (ja) 位置検出装置及び直線駆動装置
JP2005351656A (ja) 磁気検出装置
JP6455314B2 (ja) 回転検出装置
JP2006038658A (ja) 磁気検出装置及びこの装置を用いた磁気検出方法
JP2010032234A (ja) 4軸磁気センサ
JP5103158B2 (ja) 磁気式座標位置検出装置
JP2005069744A (ja) 磁気検出素子
JPH1019601A (ja) 磁気検出装置
JPH11311543A (ja) 磁気抵抗素子及び磁気検出装置
JP4941367B2 (ja) 磁気検出装置
JP2011043338A (ja) 電流センサ
JP7341454B2 (ja) 磁気センサ
JP4465513B2 (ja) 位置検出装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090324