JP2006032755A - 荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。 - Google Patents

荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。 Download PDF

Info

Publication number
JP2006032755A
JP2006032755A JP2004211194A JP2004211194A JP2006032755A JP 2006032755 A JP2006032755 A JP 2006032755A JP 2004211194 A JP2004211194 A JP 2004211194A JP 2004211194 A JP2004211194 A JP 2004211194A JP 2006032755 A JP2006032755 A JP 2006032755A
Authority
JP
Japan
Prior art keywords
mask
charged particle
particle beam
pattern
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211194A
Other languages
English (en)
Inventor
Jiro Yamamoto
治朗 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004211194A priority Critical patent/JP2006032755A/ja
Priority to TW093138629A priority patent/TW200604726A/zh
Priority to EP04030140A priority patent/EP1619552A2/en
Priority to US11/014,867 priority patent/US20060019173A1/en
Publication of JP2006032755A publication Critical patent/JP2006032755A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electron Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【課題】 1枚のマスク上に複数の同一チップを作りこむ際のマスク欠陥検査において、Die to Die比較検査が可能となる荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法を提供する。
【解決手段】 本発明の荷電粒子線マスク設計方法においては、チップパターンのサイズがサブフィールド何個分に収まるかを算出して、これに基づきマスクをサブフィールド単位の複数のマスク領域に分割し、それぞれのマスク領域にチップパターンを形成する。このようにして、マスク上に複数形成される同一チップパターンがサブフィールドのサイズの整数倍のピッチで配置される荷電粒子線マスクを得る。
【選択図】 図1

Description

本発明は、荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法に関し、特に1枚のマスク上に複数の同一チップを作りこむ際のマスク欠陥検査において、ダイ・トゥ・ダイ(Die to Die)比較検査が可能となる荷電粒子線マスクの設計方法及び設計データ構造、これらにより形成された荷電粒子線マスク、並びにこのマスクを用いた荷電粒子線転写方法に関する。
半導体装置の高集積化にともない、パターンの微細化を実現する手段として、荷電粒子線露光方法が注目されている。荷電粒子線露光方法によれば、電子線などの荷電粒子線によるパターン転写を行うことで、より微細なパターン形成が可能となる。
図8は、荷電粒子線露光に用いられるマスクを表す模式図である。
荷電粒子線マスク800は、図8に表すように、マスク強度を保つために機械的な補強をされた梁構造で構成されている。支持梁(strut)801で区画されるパターン領域は「サブフィールド」と呼ばれ、このサブフィールド802が1度に露光する(1ショット)エリアに相当する。
サブフィールド802のサイズは、数100マイクロメータから数ミリメータ程度である。このため、数cmのチップパターンを転写するためには複数のサブフィールドに分割されたパターンを接続することになる。
ひとつの装置メーカから提唱されている電子線転写装置(Electron Projection Lithography)では、1枚のマスクにて転写可能な最大のチップサイズは、20mm×25mmとなる。このようなマスクにすべてのパターンを作りこみ転写する方式においては、マスク上のパターンの有無に関わらず、全領域を電子線走査する。従って、マスク上のできるだけ多くの領域を用いてパターン転写した方が、高スループットを得られることになる。このことから、1枚のマスク上に複数チップを配列することが可能な場合は、多面取りが行われる。
図9は、マスク上で多面取りを行った場合のチップレイアウトの一例を表した模式図である。
図9では、1枚のマスクに2チップ901、902が作り込まれている。1枚のマスクにて転写できる最大領域のサイズは20mm×25mmであり、1つのサイズが2.5mm×2.5mmのサブフィールド903によって、8×10個に分割されている。
一方、これら荷電粒子線マスクの欠陥検査方法は、大きく分けて3つの手法がある。
第1にチップ内の繰り返しパターンを利用して検査する、セル・トゥ・セル(Cell to Cell)検査、第2に設計データとマスクとを比較する、ダイ・トゥ・データベース(Die to Database)検査、第3に、同一マスク上に複数配列されているチップパターン同士を比較する、ダイ・トゥ・ダイ(Die to Die)検査である。
Cell to Cell検査は、DRAM(dynamic random access memory)等の同一セルが繰り返し配列されている場合に有効であり、高い欠陥検出率が期待できるものの、非繰り返しパターンでは使用できない。
Die to Database検査は、設計データ(Darabase)との比較を行うため設計に忠実な検査が期待できるものの、マスク作成の精度により欠陥検出率が左右される。例えば、欠陥検査装置は、パターンコーナーの丸みや線幅変動などのいわゆる擬似欠陥をマスク欠陥として検出してしまう。擬似欠陥を検出しないように検出感度を低く設定すると、欠陥検出精度を低下させることが懸念される。
Die to Die検査は、同一マスク内に複数存在するチップ同士を比較することによって検査し、欠陥がチップの同一箇所には発生しないという仮定の元で行われる。この場合、Die to Database検査のようにマスク作成の精度により影響されることはなく、比較的容易に検査を行うことが可能である。
特開2002−244275号公報
マスク欠陥装置によるDie to Die検査は、マスク上の同一パターンそれぞれからの透過光による拡大像をCCDなどの画像センサ上に結像させて電気信号に変換し、この2つの電気信号を比較し、不一致部分を検出するなどして行われる。
サブフィールド分割された荷電粒子線マスクに対してDie to Die検査を行う場合、透過光はサブフィールド単位で得られる。このため、同一マスク内の同一チップパターンであっても、サブフィールド分割のされ方が異なるとDie to Die検査ができないことになる。例えば、図9に表す荷電粒子線の場合、サブフィールド904とサブフィールド905に形成されるパターンは異なるため、透過光も異なってくる。
さらに、荷電粒子線マスクにおいては、マスク強度確保やドーナツパターン対策のために1つのパターンを2つに分割するいわゆる相補分割が行われることがある。この場合、各サブフィールド毎にパターン分割されるため、同一チップであっても異なるパターン分割がなされる。従って、マスク上の複数のチップにおいて、同一のパターン形状となる箇所はほとんどなく、Die to Die検査を行うことができないという問題が生じてしまう。
本発明は、かかる課題の認識に基づいてなされたものであり、その目的は、特に1枚のマスク上に複数の同一チップを作りこむ際のマスク欠陥検査において、Die to Die比較検査が可能となる荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法を提供することにある。
本発明の荷電粒子線マスク設計方法においては、チップパターンのサイズがサブフィールド何個分に収まるかを算出して、これに基づきマスクをサブフィールド単位の複数のマスク領域に分割し、それぞれのマスク領域にチップパターンを形成する。このようにして得られる荷電粒子線マスクは、マスク上に複数形成される同一チップパターンがサブフィールドのサイズの整数倍のピッチで配置されることになる。
すなわち、本発明の一態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置する設計方法であって、
前記チップパターンの配列ピッチを前記サブフィールドの整数倍とすることを特徴とする荷電粒子線マスクの設計方法が提供される。
ここで、前記サブフィールドのサイズが、縦x、横yであり、前記チップパターンの配列ピッチを、縦mx、横 ny(m,nは整数)とすることができる。
また、前記チップパターンのひとつを複数の前記サブフィールドに分割する処理を実行することによりパターン配置データを生成し、前記パターン配置データを前記サブフィールドの整数倍のピッチで配列することによりマスクデータを生成することができる。
また、本発明の他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置する設計方法であって、
複数の前記チップパターンにより形成されたチップパターン群の配列ピッチを前記サブフィールドの整数倍とすることを特徴とする荷電粒子線マスクの設計方法が提供される。
ここで、前記サブフィールドのサイズが、縦x、横yであり、前記チップパターン群の配列ピッチを、縦mx、横 ny(m,nは整数)とすることができる。
また、前記チップパターン群のひとつを複数の前記サブフィールドに分割する処理を実行することによりパターン配置データを生成し、前記パターン配置データを前記サブフィールドの整数倍のピッチで配列することによりマスクデータを生成することができる。
また、本発明のさらに他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置するための荷電粒子線マスクの設計データ構造であって、
前記チップパターンの配列ピッチを前記サブフィールドの整数倍とし、前記チップパターンのひとつを複数の前記サブフィールドに分割する処理を実行することにより生成されたパターン配置データが第1のデータ領域に格納され、
前記パターン配置データを前記サブフィールドの整数倍のピッチで配列するためのレイアウトに関するデータが第2のデータ領域に格納され、
前記第1のデータ領域と前記第2のデータ領域とは階層構造にて管理されることを特徴とする荷電粒子線マスクの設計データ構造が提供される。
ここで、前記荷電粒子線マスクは、前記チップパターンが収まる前記サブフィールド複数個よりなる複数のマスク領域に分割されており、
前記第2のデータ領域には、前記マスク領域の個数および配列に関するデータが格納されるものとすることができる。
また、本発明のさらに他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置するための荷電粒子線マスクの設計データ構造であって、
複数の前記チップパターンにより形成されたチップパターン群の配列ピッチを前記サブフィールドの整数倍とし、前記チップパターン群のひとつを複数の前記サブフィールドに分割する処理を実行することにより生成されたパターン群配置データが第1のデータ領域に格納され、
前記パターン群配置データを前記サブフィールドの整数倍のピッチで配列するためのレイアウトに関するデータが第2のデータ領域に格納され、
前記第1のデータ領域と前記第2のデータ領域とは階層構造にて管理されることを特徴とする荷電粒子線マスクの設計データ構造が提供される。
ここで、前記荷電粒子線マスクは、前記チップパターン群が収まる前記サブフィールド複数個よりなる複数のマスク領域に分割されており、
前記第2のデータ領域には、前記マスク領域の個数および配列に関するデータが格納されるものとすることができる。
また、本発明のさらに他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクであって、
複数の同一チップパターンが、前記サブフィールドの整数倍のピッチで配列されたことを特徴とする荷電粒子線マスクが提供される。
また、本発明のさらに他の態様によれば、1つのサイズが縦x、横yであり、1度に転写可能なサブフィールドが縦横複数設けられた荷電粒子線マスクであって、
縦m個、横n個の前記サブフィールドよりなる第1のマスク領域と、
縦m個、横n個の前記サブフィールドよりなる第2のマスク領域と、
を備え、
前記第1のマスク領域と第2のマスク領域には同一のチップパターンが形成され、前記第1及び第2のマスク領域の同位置にあるサブフィールドには同一のパターンが形成されてなることを特徴とする荷電粒子線マスクが提供される。
また、本発明のさらに他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクであって、
複数の同一チップパターンからなるチップパターン群が、前記サブフィールドの整数倍のピッチで配列されたことを特徴とする荷電粒子線マスクが提供される。
また、本発明のさらに他の態様によれば、1つのサイズが縦x、横yであり、1度に転写可能なサブフィールドが縦横複数設けられた荷電粒子線マスクであって、
縦m個、横n個の前記サブフィールドよりなる第1のマスク領域と、
縦m個、横n個の前記サブフィールドよりなる第2のマスク領域と、
を備え、
前記第1のマスク領域と第2のマスク領域にはそれぞれ複数のチップパターンにより形成された同一のチップパターン群が形成され、前記第1及び第2のマスク領域の同位置にあるサブフィールドには同一のパターンが形成されてなることを特徴とする荷電粒子線マスクが提供される。
また、本発明のさらに他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられ、複数の同一チップパターンが、前記サブフィールドの整数倍のピッチで配列された荷電粒子線マスクを用いた荷電粒子線転写方法であって、
前記複数の同一チップパターンのひとつにより形成されるパターンをウェーハ上の第1のウェーハ領域に転写する第1の転写工程と、
前記複数の同一チップパターンの前記ひとつに隣接するチップパターンにより形成されるパターンを第2のマスク領域に形成されるパターンをウェーハ上の第2のウェーハ領域に転写する第2の転写工程と、
を備え、
前記第1の転写工程の後、前記第1のウェーハ領域と前記第2のウェーハ領域が隣接するように荷電粒子線の偏向器の偏向量を調整することを特徴とする荷電粒子線転写方法が提供される。
また、本発明のさらに他の態様によれば、1度に転写が可能なサブフィールドが縦横複数設けられ、複数の同一チップパターンにより形成されるチップパターン群の複数が、前記サブフィールドの整数倍のピッチで配列された荷電粒子線マスクを用いた荷電粒子線転写方法であって、
前記複数のチップパターン群のひとつにより形成されるパターンをウェーハ上の第1のウェーハ領域に転写する第1の転写工程と、
前記複数のチップパターン群の前記ひとつに隣接するチップパターン群により形成されるパターンを第2のマスク領域に形成されるパターンをウェーハ上の第2のウェーハ領域に転写する第2の転写工程と、
を備え、
前記第1の転写工程の後、前記第1のウェーハ領域と前記第2のウェーハ領域が隣接するように荷電粒子線の偏向器の偏向量を調整することを特徴とする荷電粒子線転写方法が提供される。
本発明によれば、1枚のマスク上に形成される複数の同一パターンは各サブフィールド単位においても同一のものとなり、パターンの相補分割のされ方も同一とすることができる。このため、マスク欠陥検査装置を用いてのDie to Die検査を行うことが可能となる。さらに、設計データにおいては、1つ分のパターンデータと、チップの配置情報とを階層構造にて管理することにより、データ容量の低減、処理時間の短縮が可能になる。
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は、本発明の第1の実施の形態にかかる荷電粒子線マスクのレイアウトを表す模式図である。
図1より、この荷電粒子線マスク100は、転写可能な最大領域が20mm×25mmであり、1つのサイズが2.5mm×2.5mmのサブフィールド8×10個で構成されている。このマスクに、チップサイズが8mm×18mmのチップパターンを形成する場合を例に説明する。
1つのチップパターンは、4×8個のサブフィールド内に収まることが分かる。従って、マスク100には2つのチップパターン101、102を形成することができる。このことより、マスク100に対して、サブフィールド4×8個分で構成される2×1個のマスク領域103、104が割り当てられる。
チップパターン101とチップパターン102のパターンは同一なので、1つ分のパターン設計を行い、これを各マスク領域にコピーすればよい。このようにして得られる荷電粒子線マスク100上の、対応するサブフィールド105と106内のパターンは同一であり、相補分割のされ方も全く同じものとなる。チップパターン101とチップパターン102は、サブフィールドサイズの4倍のピッチで配置されており、それぞれの対応するパターンの間隔はすべて同様である。
荷電粒子線マスク100をマスク欠陥検査をする際、サブフィールド105とサブフィールド106の比較によるDie to Die検査が可能となる。同様にして、すべての対応するサブフィールドに対して、Die to Die検査が適用できる。
荷電粒子線マスク100の設計手順としては、チップパターン101をオリジナルのものとして、サブフィールド分割、パターンの相補分割については、このオリジナルのチップパターン101のみを行い、これを2個配列すればよい。
図2は、本発明の実施の形態にかかる荷電粒子線マスクの設計データのデータ構造を表す模式図である。図2において、(a)は図1に表した本発明の実施の形態にかかるマスクデータであり、(b)は図9に表したマスクのマスクデータである。
図2(a)より、マスク設計データは、図1に表すオリジナルのチップパターン101と、これを2×1個配置するチップ配列との階層構造として扱う。パターンデータレイヤにはパターンデータ、レイアウト情報レイヤにはマスク領域の分割、配置等のデータが格納される。パターンデータには、相補分割されたパターンデータも含まれる。
これに対して、図2(b)に表したデータ構造は、パターンデータレイヤに図9に表すチップパターン901とチップパターン902との2つ分のパターンデータが格納される。チップパターン901とチップパターン902とは、先に説明したように、サブフィールド分割のされ方が異なるためパターンデータも異なる。従って、情報量は図2(a)場合の2倍近くになっていた。
このように、マスク設計データを階層構造で管理することによりデータ容量を小さくすることができる。また、データ容量を小さくしたことで、データ処理時間も短縮される。
次に、本発明の実施の形態にかかる荷電粒子線マスクを用いたパターン転写方法について説明する。
図3は、荷電粒子線マスクを用いた露光装置の模式図であり、説明に必要な要素のみを表したものである。 荷電粒子線露光装置300は、荷電粒子源301、マスクM、マスクMを透過した露光光の結像等の調整を行う偏向器302、レジストが塗布されたウェーハWが設置されるステージ303より構成される。
パターン転写にあたって、マスクMとウェーハWとは、それぞれ図示しないマスクステージ駆動装置およびウェーハステージ駆動装置によって、相対的同期処理が施され、走査露光を行う。
図4は、本発明の実施の形態にかかる荷電粒子線マスクを用いた走査露光の様子を表す模式図である。
マスク401上のチップパターン402がウェーハ403上のウェーハ領域404に転写され、チップパターン405がウェーハ403上のウェーハ領域406に転写される。
転写の際の縮小率は4で、マスク上にはストラットと呼ばれる梁も存在することから、実際のマスク上でのチップサイズは、ウェーハ上に形成されるチップサイズの4倍以上となる。本文中にて採用している各種寸法は、転写後の寸法にて表現してある。
図4(a)より、サブフィールドのサイズに整形された荷電粒子線407は、マスク401の上のサブフィールド408上に照射され、マスク401を透過した荷電粒子線は図示しない縮小レンズによって4分の1のサイズに縮小された後、偏向器409によって偏向され、ウェーハ403上の所定の領域410上に結像される。図4(a)は、ちょうどチップパターン402の下右端のサブフィールド408の転写の様子を表している。
ところで、デバイスはウェーハ上に何層もの層を重ねて作製されるため、各層間でのチップ間隔は合致してなけれならない。また、チップパターン402、405内には、出来上がったウェーハをダイシング(チップに切り分ける)するときのために境界に引いておくスクライブラインも含まれる。このため、ウェーハ403上のチップは隣接して形成される。
図4(b)は、図4(a)の転写に引き続き、その右隣のサブフィールド411の転写の様子を表している。サブフィールド408を転写した後、マスク401とウェーハ403は、図中矢印で示した方向へ移動する。いわゆるマスクステージスキャンにより、荷電粒子線407の照射領域にはサブフィールド411がセットされる。同時に、マスクステージスキャンによりウェーハ403も所定の位置にセットされる。サブフィールド411には、チップパターン405の下左端のパターンが形成される。サブフィールド411を透過した荷電粒子線は、縮小、偏向され、ウェーハ403上の所定の領域412上に結像される。このとき、偏向器409は、通常の偏向量にマスク上のチップパターンの間隔によって生じるズレ量も加えて偏向する。荷電粒子線露光装置に、このズレ量とズレ量に合わせて偏向量を調節する機能をもたせることで、ウェーハ403上のチップを隣接して形成することができる。
これまで、2×1個のマスク領域を持つ荷電粒子線マスクを例に説明してきたが、マスク領域の配列は、縦方向、横方向とも任意である。マスクサイズと、サブフィールドサイズ、チップサイズとを考慮して、決定すればよい。
図5は、チップサイズが8mm×12mmのチップパターンが2×2個形成された荷電粒子線マスクのレイアウトを表す模式図である。
マスクサイズ、サブフィールドサイズは図1と同じとすると、マスク500に対して、サブフィールド4×5個分で構成される2×2個のマスク領域501〜504が割り当てられる。それぞれのマスク領域に対して、同一のチップパターン505〜508が形成される。
図6は、チップサイズが4mm×5.6mmのチップパターンが4×3個形成された荷電粒子線マスクのレイアウトを表す模式図である。
マスクサイズ、サブフィールドサイズは図1と同じとすると、マスク600に対して、サブフィールド2×3個分で構成される4×3個のマスク領域が割り当てられる。それぞれのマスク領域に対して、同一のチップパターンが形成される。
これらの荷電粒子線マスクは、図1に表した荷電粒子線マスク同様、マスク欠陥検査装置におけるDie to Die検査が可能である。
図6に表すチップの場合、1枚のマスクに形成可能なチップの最大数は、5×4の20チップである。これに対して、本発明の実施の形態にかかるマスク設計を行うことで、1枚のマスクに形成可能なチップ数は、4×3の12個に減少してしまう。このように、チップサイズが小さくなり多面取り数が大きくなるにつれて、1枚のマスクに形成可能なチップ数が減少し、スループットが低下してしまう。このような問題を解消する荷電粒子線マスクの設計方法とそのマスクについて以下に説明する。
図7は、本発明の第2の実施の形態にかかる荷電粒子線マスクのレイアウトを表す模式図である。本実施の形態においては、複数個のチップパターンをチップパターン群として、図1に表すチップパターン1つと同じように扱うことにより、1枚のマスクに形成するチップ数を多くしている。図7では、図6と同じマスクサイズおよびサブフィールドサイズの荷電粒子線マスク上に、同じサイズのチップパターンを形成する場合を例に、説明する。
図7より、この荷電粒子線マスク700は、転写可能な最大領域が20mm×25mmであり、1つのサイズが2.5mm×2.5mmのサブフィールド8×10個で構成されている。このマスクに、チップサイズが4mm×5.6mmのチップパターン5×2個をチップパターン群として、形成する。
1つのチップパターン群は、8×5個のサブフィールド内に収まることが分かる。従って、マスク700には2つのチップパターン群701、702を形成することができる。このことより、マスク700に対して、サブフィールド8×5個分で構成される1×2個のマスク領域703、704が割り当てられる。
チップパターン群701とチップパターン群702のパターンは同一なので、1つ分のパターン設計を行い、これを各マスク領域にコピーすればよい。このようにして得られる荷電粒子線マスク700の、対応するサブフィールド内のパターンは同一であり、相補分割のされ方も全く同じものとなる。チップパターン群701とチップパターン群702は、サブフィールドサイズの5倍のピッチで配置されており、それぞれの対応するパターンの間隔はすべて同様である。このため、荷電粒子線マスク700をマスク欠陥検査をする際、すべての対応するサブフィールドに対して、Die to Die検査が適用できる。
荷電粒子線マスク700の設計手順としては、第1の実施の形態と同様、チップパターン群701をオリジナルのものとして、サブフィールド分割、パターンの相補分割については、このオリジナルのチップパターン群701に対してのみを行い、これを2個配列すればよい。
マスク設計データに関しても、第1の実施の形態と同様、オリジナルのチップパターン群データと、これのレイアウト情報との階層構造で管理すればよい。
パターン転写についても、複数チップパターンをチップパターン群として扱うことで、偏向幅を大きくする必要がなくなる。転写するマスク領域が変わる度に行う偏向量の調整が、チップ単位からチップ群単位になるからである。これによって、露光装置への付加も小さくすることができる。
以上、説明したように、本発明の荷電粒子線マスクの設計方法およびその設計データ構造、荷電粒子線マスクおよびこれを用いた転写方法を採用することにより、1枚のマスク上に複数の同一チップを作りこむ際のマスク欠陥検査において、Die to Die比較検査が可能ことが可能となり、マスクの検査工程が容易になる。また、マスクの設計データの容量を小さくすることが可能となり、データ処理時間も短縮される。
本発明の第1の実施の形態にかかる荷電粒子線マスクのレイアウトを表す模式図である。 本発明の実施の形態にかかる荷電粒子線マスクの設計データのデータ構造を表す模式図である。 荷電粒子線マスクを用いた露光装置の模式図である。 本発明の実施の形態にかかる荷電粒子線マスクを用いた走査露光の様子を表す模式図である。 本発明の実施の形態にかかる荷電粒子線マスクのレイアウト(2×2個)を表す模式図である。 本発明の実施の形態にかかる荷電粒子線マスクのレイアウト(4×3個)を表す模式図である。 本発明の第2の実施の形態にかかる荷電粒子線マスクのレイアウトを表す模式図である。 荷電粒子線露光に用いられるマスクを表す模式図である。 マスク上で多面取りを行った場合のチップレイアウトの一例を表した模式図である。
符号の説明
100、400、500、600、700、800 荷電粒子線マスク
101、102、402、405、505、506、507、508、901、902 チップパターン
103、104、501、502、503、504、703 マスク領域
105、106、408、411、802、903、904、905 サブフィールド
300 荷電粒子線露光装置
301 荷電粒子源
302、409 偏向器
303 ステージ
403 ウェーハ
404、406 ウェーハ領域
407 荷電粒子線
701、702 チップパターン群
801 支持梁(strut)
M マスク
W ウェーハ

Claims (12)

  1. 1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置する設計方法であって、
    前記チップパターンの配列ピッチを前記サブフィールドの整数倍とすることを特徴とする荷電粒子線マスクの設計方法。
  2. 前記サブフィールドのサイズが、縦x、横yであり、
    前記チップパターンの配列ピッチを、縦mx、横 ny(m,nは整数)とすることを特徴とする請求項1記載の荷電粒子線マスクの設計方法。
  3. 前記チップパターンのひとつを複数の前記サブフィールドに分割する処理を実行することによりパターン配置データを生成し、前記パターン配置データを前記サブフィールドの整数倍のピッチで配列することによりマスクデータを生成することを特徴とする請求項1または2に記載の荷電粒子線マスクの設計方法。
  4. 1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置する設計方法であって、
    複数の前記チップパターンにより形成されたチップパターン群の配列ピッチを前記サブフィールドの整数倍とすることを特徴とする荷電粒子線マスクの設計方法。
  5. 1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置するための荷電粒子線マスクの設計データ構造であって、
    前記チップパターンの配列ピッチを前記サブフィールドの整数倍とし、前記チップパターンのひとつを複数の前記サブフィールドに分割する処理を実行することにより生成されたパターン配置データが第1のデータ領域に格納され、
    前記パターン配置データを前記サブフィールドの整数倍のピッチで配列するためのレイアウトに関するデータが第2のデータ領域に格納され、
    前記第1のデータ領域と前記第2のデータ領域とは階層構造にて管理されることを特徴とする荷電粒子線マスクの設計データ構造。
  6. 前記荷電粒子線マスクは、前記チップパターンが収まる前記サブフィールド複数個よりなる複数のマスク領域に分割されており、
    前記第2のデータ領域には、前記マスク領域の個数および配列に関するデータが格納されることを特徴とする請求項5記載の荷電粒子線マスクの設計データ構造。
  7. 1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクに複数の同一チップパターンを配置するための荷電粒子線マスクの設計データ構造であって、
    複数の前記チップパターンにより形成されたチップパターン群の配列ピッチを前記サブフィールドの整数倍とし、前記チップパターン群のひとつを複数の前記サブフィールドに分割する処理を実行することにより生成されたパターン群配置データが第1のデータ領域に格納され、
    前記パターン群配置データを前記サブフィールドの整数倍のピッチで配列するためのレイアウトに関するデータが第2のデータ領域に格納され、
    前記第1のデータ領域と前記第2のデータ領域とは階層構造にて管理されることを特徴とする荷電粒子線マスクの設計データ構造。
  8. 前記荷電粒子線マスクは、前記チップパターン群が収まる前記サブフィールド複数個よりなる複数のマスク領域に分割されており、
    前記第2のデータ領域には、前記マスク領域の個数および配列に関するデータが格納されることを特徴とする請求項9記載の荷電粒子線マスクの設計データ構造。
  9. 1度に転写が可能なサブフィールドが縦横複数設けられた荷電粒子マスクであって、
    複数の同一チップパターンが、前記サブフィールドの整数倍のピッチで配列されたことを特徴とする荷電粒子線マスク。
  10. 1つのサイズが縦x、横yであり、1度に転写可能なサブフィールドが縦横複数設けられた荷電粒子線マスクであって、
    縦m個、横n個の前記サブフィールドよりなる第1のマスク領域と、
    縦m個、横n個の前記サブフィールドよりなる第2のマスク領域と、
    を備え、
    前記第1のマスク領域と第2のマスク領域には同一のチップパターンが形成され、前記第1及び第2のマスク領域の同位置にあるサブフィールドには同一のパターンが形成されてなることを特徴とする荷電粒子線マスク。
  11. 1度に転写が可能なサブフィールドが縦横複数設けられ、複数の同一チップパターンが、前記サブフィールドの整数倍のピッチで配列された荷電粒子線マスクを用いた荷電粒子線転写方法であって、
    前記複数の同一チップパターンのひとつにより形成されるパターンをウェーハ上の第1のウェーハ領域に転写する第1の転写工程と、
    前記複数の同一チップパターンの前記ひとつに隣接するチップパターンにより形成されるパターンを第2のマスク領域に形成されるパターンをウェーハ上の第2のウェーハ領域に転写する第2の転写工程と、
    を備え、
    前記第1の転写工程の後、前記第1のウェーハ領域と前記第2のウェーハ領域が隣接するように荷電粒子線の偏向器の偏向量を調整することを特徴とする荷電粒子線転写方法。
  12. 1度に転写が可能なサブフィールドが縦横複数設けられ、複数の同一チップパターンにより形成されるチップパターン群の複数が、前記サブフィールドの整数倍のピッチで配列された荷電粒子線マスクを用いた荷電粒子線転写方法であって、
    前記複数のチップパターン群のひとつにより形成されるパターンをウェーハ上の第1のウェーハ領域に転写する第1の転写工程と、
    前記複数のチップパターン群の前記ひとつに隣接するチップパターン群により形成されるパターンを第2のマスク領域に形成されるパターンをウェーハ上の第2のウェーハ領域に転写する第2の転写工程と、
    を備え、
    前記第1の転写工程の後、前記第1のウェーハ領域と前記第2のウェーハ領域が隣接するように荷電粒子線の偏向器の偏向量を調整することを特徴とする荷電粒子線転写方法。
JP2004211194A 2004-07-20 2004-07-20 荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。 Pending JP2006032755A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004211194A JP2006032755A (ja) 2004-07-20 2004-07-20 荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。
TW093138629A TW200604726A (en) 2004-07-20 2004-12-13 Phase shift mask and method of manufacturing phase shift mask
EP04030140A EP1619552A2 (en) 2004-07-20 2004-12-20 Method of designing charged particle beam mask, charged particle beam mask and charged particle beam transfer method
US11/014,867 US20060019173A1 (en) 2004-07-20 2004-12-20 Method of designing charged particle beam mask, charged particle beam mask, and charged particle beam transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211194A JP2006032755A (ja) 2004-07-20 2004-07-20 荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。

Publications (1)

Publication Number Publication Date
JP2006032755A true JP2006032755A (ja) 2006-02-02

Family

ID=34981379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211194A Pending JP2006032755A (ja) 2004-07-20 2004-07-20 荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。

Country Status (4)

Country Link
US (1) US20060019173A1 (ja)
EP (1) EP1619552A2 (ja)
JP (1) JP2006032755A (ja)
TW (1) TW200604726A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184603A (ja) * 2014-03-26 2015-10-22 ビアメカニクス株式会社 露光装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101364672B1 (ko) * 2006-09-12 2014-02-19 가부시키가이샤 에바라 세이사꾸쇼 하전입자선장치, 그 장치를 이용한 비점수차 조정방법 및그 장치를 이용한 디바이스제조방법
US7879537B1 (en) * 2007-08-27 2011-02-01 Cadence Design Systems, Inc. Reticle and technique for multiple and single patterning
JP4945380B2 (ja) * 2007-09-05 2012-06-06 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP5498106B2 (ja) * 2009-09-15 2014-05-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
JP5498105B2 (ja) * 2009-09-15 2014-05-21 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画方法及び荷電粒子ビーム描画装置
US9208552B2 (en) * 2011-04-26 2015-12-08 Kla-Tencor Corporation Method and system for hybrid reticle inspection
WO2012148854A1 (en) * 2011-04-26 2012-11-01 Kla-Tencor Corporation Database-driven cell-to-cell reticle inspection
KR102230503B1 (ko) * 2015-04-14 2021-03-22 삼성전자주식회사 레이아웃 디자인 시스템, 이를 이용한 마스크 패턴 제조 시스템 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340492A (ja) * 1999-05-28 2000-12-08 Nec Corp 電子線露光用マスクとそれを用いた半導体装置製造方法
US6815693B2 (en) * 2000-02-18 2004-11-09 Nikon Corporation Charged-particle-beam microlithography apparatus and methods including proximity-effect correction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184603A (ja) * 2014-03-26 2015-10-22 ビアメカニクス株式会社 露光装置

Also Published As

Publication number Publication date
EP1619552A2 (en) 2006-01-25
TW200604726A (en) 2006-02-01
US20060019173A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
KR101855928B1 (ko) 패턴 검사 방법 및 패턴 검사 장치
JP6781582B2 (ja) 電子ビーム検査装置及び電子ビーム検査方法
US9165355B1 (en) Inspection method
US10290094B2 (en) Pattern inspection apparatus and pattern inspection method
US8861832B2 (en) Inspection system and method
US10727026B2 (en) Charged particle beam inspection method
US10886102B2 (en) Multiple electron beam irradiation apparatus, multiple electron beam irradiation method, and multiple electron beam inspection apparatus
US10578560B2 (en) Inspection apparatus and method for detecting false defects
US10373798B2 (en) Multi charged particle beam inspection apparatus, and multi charged particle beam inspection method
JP6649130B2 (ja) パターン検査装置及びパターン検査方法
JP2020053380A (ja) マルチ電子ビーム画像取得装置及びマルチ電子ビーム画像取得方法
JP2017198588A (ja) パターン検査装置
JP2019211296A (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP2006032755A (ja) 荷電粒子線マスクの設計方法及び設計データ構造、荷電粒子線マスク、並びに荷電粒子線転写方法。
US10777384B2 (en) Multiple beam image acquisition apparatus and multiple beam image acquisition method
JP2004253666A (ja) 露光用パターン又はマスクの検査方法、その製造方法、及び露光用パターン又はマスク
US10410824B2 (en) Electron beam inspection apparatus and electron beam inspection method
US20140310662A1 (en) Pattern inspection method
JP2022168944A (ja) 欠陥を検出するシステム、及びコンピュータ可読媒体
US10094791B2 (en) Pattern inspection apparatus
JP2020134165A (ja) 検査装置及び検査方法
TWI761004B (zh) 圖案檢查裝置及圖案檢查方法
WO2021024648A1 (ja) 電子ビーム検査装置及び電子ビーム検査方法
US20080001103A1 (en) Electron-beam lithography method and apparatus, and program thereof
CN116626999A (zh) 检测系统及检测方法