JP2006032610A - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
JP2006032610A
JP2006032610A JP2004208597A JP2004208597A JP2006032610A JP 2006032610 A JP2006032610 A JP 2006032610A JP 2004208597 A JP2004208597 A JP 2004208597A JP 2004208597 A JP2004208597 A JP 2004208597A JP 2006032610 A JP2006032610 A JP 2006032610A
Authority
JP
Japan
Prior art keywords
gas
source gas
vacuum exhaust
exhaust
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004208597A
Other languages
English (en)
Inventor
Hiroyuki Matsuura
廣行 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2004208597A priority Critical patent/JP2006032610A/ja
Publication of JP2006032610A publication Critical patent/JP2006032610A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 基板が搬入された反応容器内に第1の原料ガス及び第2の原料ガスを交互に供給して成膜処理をすると共に、未反応ガスはガス処理設備に排気する成膜装置において、良好な排気をすること。
【解決手段】 反応容器に第1の原料ガスを供給するときには第1の真空排気路を介して第1の真空排気手段により排気を行い、ガスは第1の排気通路を介してガス処理設備に送る。また反応容器に第2の原料ガスを供給するときには切り替え手段で流路を切り替えて第2の真空排気路を介して第2の真空排気手段により排気を行い、ガスは第2の排気通路を介してガス処理設備に送る構成とする。この場合、排気通路内で原料ガスが混ざって反応物が生成することを抑えることができ、良好な排気を行うことができる。
【選択図】 図1

Description

本発明は、基板が搬入された反応容器内に第1の原料ガス及び第2の原料ガスを交互に供給し、減圧雰囲気下で基板上に成膜すると共に、反応容器内のガスをガス処理設備に排気する成膜装置に関する。
半導体デバイスのパターンの線幅の微細化に伴い、各種の膜について薄膜化が要求されており、このため成膜方法に関しても種々の改良を加えることが必要になっている。例えばMOS FETのゲート構造においては、ゲート絶縁膜の一部あるいはポリシリコン電極層の側壁におけるリーク防止膜(サイドウォールスペーサ)として窒化シリコン(シリコンナイトライド;Si)膜が使用されているが、この極薄化の要求に応えるため、単分子積層成膜法(ALD(Atomic Layer Deposition)プロセス)などと呼ばれる成膜法が実施されている。この成膜手法では、先ずジクロロシランガスを基板例えば半導体ウエハ(以下、「ウエハ」と呼ぶ)の表面に供給してこのジクロロシラン分子を吸着させ、次いでアンモニアガスをウエハWの表面に供給することにより、ジクロロシランとアンモニアとが反応して窒化シリコン膜が形成される。
一方、単分子積層成膜法をバッチ処理により実施する装置としては、縦型の減圧CVD炉が好適である。窒化シリコン膜を成膜するための減圧CVD装置としては、通常図4に示すような構造になっている。反応容器1内のウエハボート11に棚状にウエハWを保持してヒータ12により加熱すると共に、真空排気路13を介して真空ポンプ14により反応容器1内を真空排気した状態で、バルブ15a〜15cを操作することにより、先ず、ジクロロシランガスを反応容器1内に供給し、次いで窒素ガスパージを行った後、アンモニアガスを供給することによりウエハWの表面に窒化シリコン膜を形成する。このとき真空ポンプ14に引き込まれた反応容器1からの未反応ガスは大気圧雰囲気の排気通路16を通流してガス処理設備である除害設備17に供給される。なお図中18は排気バルブであり、19は圧力調整部である。
ところで単分子積層成膜法により窒化シリコン膜を成膜する場合、ジクロロシランガスとアンモニアガスとを交互に供給する動作を例えば100回以上行っているのが実情である。従来においては原料ガスの供給時間は各々15秒程度に設定され、またパージ時間は30〜60秒に設定されているので、ジクロロシランガス、パージガス、アンモニアガス、パージガスの順にガスを供給する1サイクルに要する時間は長くとも約2分半程度ではあるが、前記したようにサイクル数が多いためにトータルの成膜時間がかなり長い。従って、スループットを高くするために原料ガスの切り替え時におけるパージガスの通流時間を短くすることが得策である。
しかしながらパージ時間の設定値を例えば数秒まで短くした場合、真空ポンプ14の上流側においては減圧(真空)排気されているので、反応容器1及び真空排気路13内にある先に供給されたガスは速やかに真空ポンプ14に引き込まれ、後続のガスと混ざり合うことは少ない。しかし、真空ポンプ14の下流側の排気通路16においては、先に供給されたジクロロシラン分子(又はアンモニア分子)が大気圧雰囲気の当該排気通路16内で漂っている場合があり、そのため後続のガスと混ざり合ってジクロロシランとアンモニアとが反応し、塩化アンモニウム(NHCl)が生成することがある。塩化アンモニウムは大気圧では昇華点がおよそ330℃であるため排気通路16内では固体状になって例えば通路の壁面に堆積してしまい、堆積量が多くなると通路を閉塞させて真空ポンプ14の排気特性に影響する懸念がある。除害装置17は一般にクリーンルームの外に設置するため、真空ポンプ14と除害装置17とを接続する排気通路16は長いことも分子が漂ってしまう要因の一つである。このため堆積した塩化アンモニウムを排気通路16から除去するためのメンテナンスを頻繁に行う必要がある。
なおジクロロシランガスとアンモニアガスとの排気流が混ざり合わないようにするために、例えば排気通路16を分岐して三方バルブなどの切り替え手段により分別する手法を採用したとしても、三方バルブの上流側に共通の排気通路16の部位が残ってしまうので、この部位でガスが混ざり合って塩化アンモニウムが生成し、塩化アンモニウムの堆積防止の対策としては充分でない。更に、真空ポンプ14の二次側(排気口側)に塩化アンモニウムが付着する懸念もある。
一方、原料ガスを供給して原子層を成長させ、原料ガスとパージガスとを交互に成膜室に供給して薄膜を製造する技術として特許文献1がある。この文献1は、排気系統として互いに排気特性の異なる2系統の排気系を設け、原料ガスとパージガスとで排気系統を切り替えることにより、原料ガスの供給を行うときには排気を大きくし、パージガスの供給を行うときには排気を小さくする。その結果、原料ガスの凝集の防止と良好な生産性とを両立させることができることが記載されている。しかしながらこの文献では1種類の原料ガスを用いているので、当然に2種類の原料ガスを交互に供給するときの上述の課題は開示されていないし、示唆もされていない。
特開2001−220677号公報(図1、段落0040〜0041)
即ち、本発明の目的は、基板が搬入された反応容器内に第1の原料ガス及び第2の原料ガスを交互に供給し、減圧雰囲気下で基板上に成膜すると共に、反応容器内のガスをガス処理設備に排気する成膜装置において、反応容器から排気された第1の原料ガスと第2の原料ガスとが反応することを抑制して良好な排気をすることにある。また他の目的は、装置のメンテナンスを行う頻度を低減することにある。
本発明の成膜装置は、基板が搬入された反応容器内に第1の原料ガス及びこの第1の原料ガスと反応し得る第2の原料ガスを交互に供給し、減圧雰囲気下で基板上に成膜すると共に、反応容器内のガスをガス処理設備に排気する成膜装置において、
前記反応容器に供給された第1の原料ガス及び第2の原料ガスの夫々を排気する第1の真空排気路及び第2の真空排気路と、
前記第1の真空排気路及び第2の真空排気路に夫々設けられた第1の真空排気手段及び第2の真空排気手段と、
これら第1の真空排気手段及び第2の真空排気手段の上流側に設けられ、前記第1の真空排気路と第2の真空排気路との間で流路を切り替える切り替え手段と、
前記第1の真空排気手段とガス処理設備との間、及び第2の真空排気手段とガス処理設備との間に夫々設けられた第1の排気通路及び第2の排気通路と、
第1の原料ガスを供給するときには第1の真空排気路に切り替え、第2の原料ガスを供給するときには第2の真空排気路に切り替えるように前記切り替え手段を制御する制御部と、を備えたことを特徴とする。
また前記第1の原料ガス及び第2の原料ガスの供給を切り替えるときにパージガスを反応容器内に供給するように構成され、制御部は、第1の原料ガスを供給した後にパージガスを供給するときには、第1の真空排気路に切り替えた状態を維持し、第2の原料ガスを供給した後にパージガスを供給するときには第2の真空排気路に切り替えた状態を維持するように切り替え手段を制御する構成であってもよい。
更に第1の原料ガスを反応容器内に供給することにより第1の原料ガスの分子層が基板上に形成され、第2の原料ガスを反応容器内に供給することにより前記分子層と第2の原料ガスとが反応して基板上に反応生成物の薄膜が成膜される構成であってもよい。また第1の原料ガス及び第2の原料ガスは、塩化アンモニウムを副生成するものであってもよい。この場合、第1の原料ガス及び第2の原料ガスの一方は半導体又は金属の塩化物のガスであり、他方はアンモニアガスであってもよい。
本発明によれば、第1の原料ガスを反応容器に供給するときには第1の真空排気路に流路を切り替え、第2の原料ガスを反応容器に供給するときには第2の真空排気路に流路を切り替える構成としたことにより、反応容器から排出された各原料ガスが下流にある排気通路内で混ざり合って反応することを抑えることができる。このため排気通路内で例えば塩化アンモニウムのような固形物が生成して堆積することが少ないので、良好な排気を行うことができる。
また本発明によれば、前記塩化アンモニウムのような生成物が排気通路に堆積することがないか、あるいは堆積してもその量は極めて少ないので、これを除去するための装置メンテナンスの頻度を格段に少なくすることができる。
本発明に係る成膜装置を減圧CVD装置に適用した実施の形態について図1を参照しながら説明する。図中20は、気密に形成された反応容器であり、縦型の反応管2の下部にマニホールド20aが接合されて構成されている。このマニホールド20aの底部に設けられた昇降自在な蓋体21の上には多数枚の基板例えばウエハWを棚状に搭載したウエハボート22が設けられている。また23は加熱手段例えばヒータであり、このヒータ23は反応管2内に搬入されたウエハWを所定の温度例えば100〜900℃に加熱可能なように構成されている。
反応管2は、外管2a及び内管2bからなる二重管として構成されると共に、マニホールド20aには成膜用の原料ガスを導入するための供給管3が設けられており、供給管3から内管2b内に供給されたガスが上昇して外管2aと内管2bとの隙間を介して排気されるようになっている。この供給管3にはガス供給路31例えば配管の一端が接続され、更に他端側は例えば3本に分岐されており、各分岐路の先端は第1の原料ガス例えばジクロロシランガスの供給源32、第2の原料ガス例えばアンモニアガスの供給源33及び、パージガスである例えば窒素などの不活性ガスの供給源34と夫々接続されている。更に、分岐された各ガスの供給路の途中にはバルブV1(V2,V3)及び流量調整部例えばマスフローコントローラ35a(35b,35c)などからなる供給制御部36a(36b,36c)が設けられており、ジクロロシラン、アンモニア及びパージガスのいずれか一つのガスを所定の流量で反応管2内に供給可能なように構成されている。
反応管2には排気口4が形成されており、この排気口4には真空排気路41例えば配管の一端が接続されている。排気口4は反応管2の底部側に設けた構成に限られず、例えば反応管2を単管で構成する場合には上部側に設けられる。更にこの真空排気路41の他端側は例えば2本に分岐されており、これら分岐路は第1の原料ガスを排気するための第1の真空排気路41A及び第2の原料ガスを排気するための第2の真空排気路41Bとして形成されている。更に、これら真空排気路41A、41Bの各々の他端は第1の真空排気手段である真空ポンプ42及び、第2の真空排気手段である真空ポンプ43と夫々接続されている。更に第1の真空排気路の途中には第1の排気バルブMV1及び第1の圧力調整部PC1が設けられ、第2の真空排気路の途中には第2の排気バルブMV2及び第2の圧力調整部PC2が設けられている。排気バルブMV1及び排気バルブMV2は、排気を行うための流路を真空排気路41A及び真空排気路41Bの間で切り替える切り替え手段をなすものである。この圧力調整部PC1、PC2は例えば圧力調整バルブであり、反応容器1内にジクロロシランガス及びアンモニアガスを供給する際に、反応容器1内の圧力が各々のガスに対応した所定の圧力となるようにバルブ開度をコントローラにより調整されるように構成されている。なお図1記載の例では排気口4は一つに形成され、真空排気路41の一部に共通する部位があるが、ジクロロシランガス及びアンモニアガスに専用の排気口を設けて真空排気路41A、41Bを完全に分離するようにすることもある。
前記第1の真空ポンプ42及び第2の真空ポンプ43の各々の下流側には、第1の排気通路5及び第2の排気通路50の一端が夫々接続されており、各排気通路5,50の他端は真空ポンプ42,43が下流側(2次側)に排気する反応管2内からの未反応のジクロロシラン及びアンモニアを処理するためのガス処理設備である除害設備51,52に夫々接続されている。なお除害設備51,52は、図示は省略するが、排気流に含まれるジクロロシラン及びアンモニアを燃焼して酸化物とし、この酸化物を吸収液に吸収させて排気流から除去する手段を備えている。更に詳しくは、除外設備51,52の下流側には図示しないスクラバーが接続されており、このスクラバーに設けられた吸引手段により排気通路5,50内は例えば−100mmHO程度に僅かに減圧された状態に設定されている。また排気通路5,50内に、キャリアガスとして不活性ガス例えば窒素ガスを供給するためのガス供給手段を設けることもある。
また、図中6は制御部であり、この制御部6は、具体例は後述するが、所定のタイミングでバルブV1〜V3及び排気バルブMV1,MV2の開閉操作を行う機能を有していると共に、ヒータ23の出力、圧力調整部PC1,PC2、蓋体21の昇降動作などを制御する機能を有している。より詳しくは、制御部6は図示しないコンピュータを備えており、このコンピュータの記憶部例えばメモリには処理プログラム60が記憶されている。処理プログラム60は、バルブV1〜V3及び排気バルブMV1,MV2の開閉状態を時系列的に設定したシーケンステーブルに基づいて操作可能なように構成されている。その一部には、第1の原料ガスであるジクロロシランガスを供給した後、パージガスを供給するときには、第2の排気バルブMV2を閉じかつ第1の排気バルブMV1を開き、第2の原料ガスであるアンモニアガスを供給した後、パージガスを供給するときには、第1の排気バルブMV1を閉じかつ第2の排気バルブMV2を開くようにこれら排気バルブMV1,MV2の開閉状態を制御するステップが含まれる。
続いて上述の成膜装置を用いて基板例えばウエハWに成膜処理を行う工程について図2を参照しながら説明する。先ず、下降させた蓋体21上にあるウエハボート22にウエハWを支持し、蓋体21を上昇させて反応管2内にウエハWを搬入すると共に反応管2を気密にする(ステップS1)。このとき反応管2はヒータ23により加熱されており、これによりウエハWは所定の処理温度例えば300〜700℃に加熱される。続いて排気バルブMV1を開いて反応管2内を減圧排気する一方で、バルブV0を開き、更にバルブV3を開いて反応管2内にパージガス例えば窒素ガスを供給することにより反応管2を窒素パージする(ステップS2)。そしてバルブV3を閉じ、バルブV1を開いてジクロロシランガスを反応管2内に所定の流量例えば1000sccm(standard cc/min)で数秒間供給すると共に、圧力調整部PC1により反応管2内を所定の真空度例えば133Pa(1torr)に維持する(ステップS3)。
反応管2内にジクロロシランガスが供給されると、例えば図3(a)に模式的に示すように、ウエハWの表面に化学的にジクロロシランの分子が吸着する分子層が形成される。ウエハWに吸着しなかったジクロロシランガスは排気口4を介して排気され、第1の真空排気路41A内を通流して真空ポンプ42に引き込まれ、そして第1の排気通路5内を通流して除害設備51に供給される。そしてこの除害設備51にて空気や燃焼助剤と混合されてから燃焼され、酸化物となったジクロロシランは吸収液に溶解されて排気ガスから除去される。ジクロロシランが除去された排気流は除害設備51から排出され、図示しないスクラバーに供給される。
次いで、バルブV1を閉じ、バルブV3を開いてパージガスである窒素ガスを供給し、反応管2及び流路内の窒素パージを例えば数秒間行う(ステップS4)。次いで、バルブV3及び排気バルブMV1を閉じ、バルブV2及び排気バルブMV2を開いてアンモニアガスを反応管2内に所定の流量例えば1000sccmで数秒間供給すると共に、圧力調整部PC2により反応管2内を所定の真空度例えば66.7Pa(0.5torr)に維持する(ステップS5)。
反応管2内にアンモニアガスが供給されると、例えば図3(b)に模式的に示すように、ウエハWの表面に吸着しているジクロロシランとアンモニアとが熱エネルギーにより反応して窒化シリコンが生成することにより、ウエハWの表面に窒化シリコン膜が形成される。ジクロロシランと反応しなかったアンモニアガスは排気口4を介して排気され、第2の真空排気路内を通流して真空ポンプ43に引き込まれ、そして第2の排気通路50内を通流して除害設備52に供給される。そしてこの除害設備52にて空気や燃焼助剤と混合されてから燃焼され、酸化物となったアンモニアは吸収液に溶解されて排気ガスから除去される。ジクロロシランが除去された排気流は除害設備52から排出され、図示しないスクラバーに供給される。
次いで、バルブV2を閉じ、バルブV3を開いてパージガスである窒素ガスを供給し、反応管2及び流路内の窒素パージを例えば数秒間行う(ステップS6)。次いでバルブV3を閉じ、バルブV1を開いてステップS3と同様にしてジクロロシランガスを反応管2内に供給する(ステップS7)。更に、次いでバルブV1を閉じ、バルブV3を開いて窒素ガスを供給することにより、反応管2及び流路内の窒素パージを行う(ステップS8)。ここで、ステップS3〜S6に記載した、ジクロロシランガス、窒素ガス、アンモニアガス、窒素ガスの順に反応管2内にガスを供給する工程を1サイクルと呼ぶものとすると、ウエハWの表面に所望の厚みの窒化シリコン膜が形成されるまでこのサイクルを複数回例えば100回繰り返し行う。しかる後、反応管2内の窒素パージを行った後(ステップS9)、蓋体21を下降させてウエハボート22を反応管2から搬出し、ウエハボート22からウエハWを取り出して成膜処理を終了する(ステップS10)。
上述の実施の形態によれば、第1の原料ガスであるジクロロシランガスを排気するための排気系統と、この排気系統とは別に設けられた第2の原料ガスであるアンモニアガスを排気するための排気系統とを設けて、排気バルブMV1,MV2を操作してこれら原料ガスを分別排気する構成としたことにより、例えば数秒程度の短い間隔で交互に原料ガスを反応管2に供給した場合であっても、この反応管2から排気された未反応の原料ガスが下流の排気通路5(50)内で混ざり合うのを抑えることができる。このため例えば塩化アンモニウムのような固形物が副生成して排気通路5(50)内に堆積することが少ないので、良好な排気を行うことができる。
また言い換えれば、本実施例によれば良好な排気が行えるので、反応ガスを供給する間隔、つまり第1の原料ガスと第2の原料ガスとの切り替えの際に行われるパージの時間を極めて短く設定するか、あるいはパージを省略することができ、結果として高いスループットで成膜処理を行うことができる。
また上述の実施の形態によれば、塩化アンモニウムなどの固形物が排気路内に堆積することがないか、あるいは堆積してもその量は極めて少ないので、排気通路5(50)内にある塩化アンモニウムを除去するための装置メンテナンスの頻度を格段に少なくすることができる。その結果として、装置の稼働率の向上を図ることができ、またメンテナンスを行う作業者の負担を軽減することができる。
ここでウエハWの表面においてシリコンナイトライドが生成する際にも塩化アンモニウムが副生成されるが、1サイクルで形成される膜厚はせいぜい0.1nm程度であり、発生量が少ないので排気通路5(50)内に堆積する程まで至らない。それに比べて反応管2から排出される未反応ガスが混ざり合うことで生成される塩化アンモニウムの量は格段に多い、つまり単分子堆積成膜法のようにウエハWの表面への化学的吸着を頼った成膜手法においては、反応管2内に供給した原料ガスの殆どは未反応のまま排出されるので、この未反応の原料ガスを分別排気することで副生成物の生成を抑えることができる本発明は良好な排気を行うための手段として極めて有効である。
本発明においては、ジクロロシランガスとアンモニアガスとを原料に用いた成膜処理に限られず、第1の原料ガスにヘキサクロロジシラン(SiCl)、第2の原料ガスにアンモニア(NH)を用いて窒化シリコン膜を形成する成膜処理に適用することもでき、また第1の原料ガスとしては、シリコンなどの半導体の塩化物に限られず、金属の塩化物例えば四塩化チタン(TiCl)を用い、第2の原料ガスにアンモニア(NH)を用いて窒化チタン膜を形成する成膜処理に適用することもできる。即ち、本発明は、特に原料ガスの種類に限定されることはなく、第1の原料ガスを供給した後に続いてあるいは交互にこの第1の原料ガスと反応する第2の原料ガスを供給して成膜処理する場合に適用することができる。従って、既述の例のように第1の原料ガスと第2の原料ガスとが反応してある種の膜を形成する構成に限られず、第1の原料ガスによりウエハWの表面にある種の膜を形成した後に、第2の原料ガスによりウエハWの表面に別の膜を形成する成膜処理にも適用することができる。
更に本発明においては、各排気系統の各々に圧力調整部PC1,PC2を設けた構成に限られず、少なくとも一方の排気系統に圧力調整部を設けた構成としてもよい。上述の例においてもアンモニアガスを排気する系統に設けられた圧力調整部PC2は必ずしも設けなくともよく、真空ポンプ43により引き切りにした状態でアンモニアガスを反応管2に供給するようにしてもよい。この場合であっても上述の場合と同様の効果を得ることができる。
なお上述の例では第1の原料ガス及び第2の原料ガスの2種類の原料ガスを用いているため排気系統を2系統にしているが、本発明においては排気系統は2系統に限られず、例えば原料ガスの種類が3種類又はそれ以上ある場合にはその種類の数に対応する排気系統を設けることができる。但し、必ずしも各原料ガス毎に専用の排気系統を設けなくともよく、これらのガスのうち互いに反応し得るガスを分別しておけば互いに反応しないガスは共通の排気系統を用いて排気するようにしてもよい。また圧力調整部PC1(PC2)が排気バルブMV1(MV2)を兼用する構成としてもよい。更に排気バルブMV1及び排気バルブMV2に代えて三方バルブを設けた構成であってもよい。
更に本発明においては、各排気系統の各々に専用の除害装置を設けた構成としているが、例えば上述のジクロロシランとアンモニアの例のように燃焼させて処理するといったように除害の手法が同じであれば除害装置を共用する構成としてもよい。
更に本発明においては、図1記載の反応管2のように多数枚のウエハWを一度に処理する構成に限られず、例えば載置部に水平に1枚のウエハWを載置して処理する枚葉式の反応容器であってもよい。この場合であっても上述の場合と同様の効果を得ることができる。
本発明の実施の形態に係る成膜装置の縦断面図である。 上記成膜装置を用いてウエハを成膜する手順を示す工程図である。 上記成膜装置を用いて成膜されるウエハの表面の様子を示す説明図である。 従来の成膜装置を示す説明図である。
符号の説明
2 反応容器
4 排気口
42 第1の真空ポンプ
43 第2の真空ポンプ
41A 第1の真空排気路
41B 第2の真空排気路
5 第1の排気通路
50 第2の排気通路
V1、V2、V3 流量調整バルブ
MV1 第1の排気バルブ
MV2 第2の排気バルブ

Claims (5)

  1. 基板が搬入された反応容器内に第1の原料ガス及びこの第1の原料ガスと反応し得る第2の原料ガスを交互に供給し、減圧雰囲気下で基板上に成膜すると共に、反応容器内のガスをガス処理設備に排気する成膜装置において、
    前記反応容器に供給された第1の原料ガス及び第2の原料ガスの夫々を排気する第1の真空排気路及び第2の真空排気路と、
    前記第1の真空排気路及び第2の真空排気路に夫々設けられた第1の真空排気手段及び第2の真空排気手段と、
    これら第1の真空排気手段及び第2の真空排気手段の上流側に設けられ、前記第1の真空排気路と第2の真空排気路との間で流路を切り替える切り替え手段と、
    前記第1の真空排気手段とガス処理設備との間、及び第2の真空排気手段とガス処理設備との間に夫々設けられた第1の排気通路及び第2の排気通路と、
    第1の原料ガスを供給するときには第1の真空排気路に切り替え、第2の原料ガスを供給するときには第2の真空排気路に切り替えるように前記切り替え手段を制御する制御部と、を備えたことを特徴とする成膜装置。
  2. 第1の原料ガス及び第2の原料ガスの供給を切り替えるときにパージガスを反応容器内に供給するように構成され、
    制御部は、第1の原料ガスを供給した後にパージガスを供給するときには、第1の真空排気路に切り替えた状態を維持し、第2の原料ガスを供給した後にパージガスを供給するときには第2の真空排気路に切り替えた状態を維持するように切り替え手段を制御することを特徴とする請求項1記載の成膜装置。
  3. 第1の原料ガスを反応容器内に供給することにより第1の原料ガスの分子層が基板上に形成され、第2の原料ガスを反応容器内に供給することにより前記分子層と第2の原料ガスとが反応して基板上に反応生成物の薄膜が成膜されることを特徴とする請求項1又は2記載の成膜装置。
  4. 第1の原料ガス及び第2の原料ガスは、塩化アンモニウムを副生成するものであることを特徴とする請求項1ないし3のいずれか一つに記載の成膜装置。
  5. 第1の原料ガス及び第2の原料ガスの一方は半導体又は金属の塩化物のガスであり、他方はアンモニアガスであることを特徴とする請求項4記載の成膜装置。
JP2004208597A 2004-07-15 2004-07-15 成膜装置 Pending JP2006032610A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004208597A JP2006032610A (ja) 2004-07-15 2004-07-15 成膜装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004208597A JP2006032610A (ja) 2004-07-15 2004-07-15 成膜装置

Publications (1)

Publication Number Publication Date
JP2006032610A true JP2006032610A (ja) 2006-02-02

Family

ID=35898594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004208597A Pending JP2006032610A (ja) 2004-07-15 2004-07-15 成膜装置

Country Status (1)

Country Link
JP (1) JP2006032610A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045640A (ja) * 2004-08-06 2006-02-16 Tokyo Electron Ltd 薄膜形成方法及び薄膜形成装置
JP2011151294A (ja) * 2010-01-25 2011-08-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法
CN103046024A (zh) * 2011-10-13 2013-04-17 中国科学院微电子研究所 一种防回流的原子层沉积设备及其使用方法
JP2014236069A (ja) * 2013-05-31 2014-12-15 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP2016009724A (ja) * 2014-06-23 2016-01-18 東京エレクトロン株式会社 成膜装置および成膜方法
US9624579B2 (en) 2014-03-27 2017-04-18 Tokyo Electron Limited Film forming apparatus, film forming method, and non-transitory computer-readable storage medium
JP2017228700A (ja) * 2016-06-23 2017-12-28 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム
JP2019186574A (ja) * 2019-07-17 2019-10-24 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP2020120042A (ja) * 2019-01-25 2020-08-06 株式会社東芝 ケイ素含有物質形成装置
WO2022181664A1 (ja) * 2021-02-24 2022-09-01 株式会社Kokusai Electric 基板処理装置、基板処理方法、半導体装置の製造方法、プログラムおよび排気システム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045640A (ja) * 2004-08-06 2006-02-16 Tokyo Electron Ltd 薄膜形成方法及び薄膜形成装置
JP4718141B2 (ja) * 2004-08-06 2011-07-06 東京エレクトロン株式会社 薄膜形成方法及び薄膜形成装置
JP2011151294A (ja) * 2010-01-25 2011-08-04 Hitachi Kokusai Electric Inc 半導体装置の製造方法
CN103046024A (zh) * 2011-10-13 2013-04-17 中国科学院微电子研究所 一种防回流的原子层沉积设备及其使用方法
JP2014236069A (ja) * 2013-05-31 2014-12-15 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
US10535501B2 (en) 2013-05-31 2020-01-14 Tokyo Electron Limited Film forming apparatus, film forming method and non-transitory storage medium
US9624579B2 (en) 2014-03-27 2017-04-18 Tokyo Electron Limited Film forming apparatus, film forming method, and non-transitory computer-readable storage medium
JP2016009724A (ja) * 2014-06-23 2016-01-18 東京エレクトロン株式会社 成膜装置および成膜方法
JP2017228700A (ja) * 2016-06-23 2017-12-28 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、およびプログラム
CN107541717A (zh) * 2016-06-23 2018-01-05 株式会社日立国际电气 半导体器件的制造方法、衬底处理装置及记录介质
CN107541717B (zh) * 2016-06-23 2019-11-19 株式会社国际电气 半导体器件的制造方法、衬底处理装置及记录介质
JP2020120042A (ja) * 2019-01-25 2020-08-06 株式会社東芝 ケイ素含有物質形成装置
JP7175782B2 (ja) 2019-01-25 2022-11-21 株式会社東芝 ケイ素含有物質形成装置
JP2019186574A (ja) * 2019-07-17 2019-10-24 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
WO2022181664A1 (ja) * 2021-02-24 2022-09-01 株式会社Kokusai Electric 基板処理装置、基板処理方法、半導体装置の製造方法、プログラムおよび排気システム

Similar Documents

Publication Publication Date Title
JP4800344B2 (ja) 薄膜の形成方法
JP5223804B2 (ja) 成膜方法及び成膜装置
TWI815898B (zh) 蝕刻方法及蝕刻裝置
US7884034B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US8598047B2 (en) Substrate processing apparatus and producing method of semiconductor device
US20180033608A1 (en) Method and Apparatus for Forming Nitride Film
US20120267340A1 (en) Film deposition method and film deposition apparatus
JP2006049809A (ja) 成膜方法、成膜装置及び記憶媒体
KR20000035733A (ko) 열처리장치 및 그 세정방법
WO2011152352A1 (ja) 半導体装置の製造方法及び基板処理装置
US20180112312A1 (en) Film forming apparatus and film forming method
US20140073146A1 (en) Reaction Tube, Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device
JP4426671B2 (ja) 熱処理装置及びその洗浄方法
JP6363408B2 (ja) 成膜装置および成膜方法
JP4694209B2 (ja) 基板処理装置及び半導体装置の製造方法
TW201133626A (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
JP2007035740A (ja) 成膜方法、成膜装置及び記憶媒体
US20050136693A1 (en) Thermal processing unit and thermal processing method
JP2006032610A (ja) 成膜装置
JP4187599B2 (ja) 減圧処理装置及び減圧処理方法並びに圧力調整バルブ
KR20160094851A (ko) 배기관 무해화 방법 및 성막 장치
JP2006302946A (ja) 基板処理システム
JP7407521B2 (ja) 成膜方法及び成膜装置
JP2001250818A (ja) 酸化処理装置及びそのクリーニング方法
WO2001061736A1 (fr) Procede de traitement d'une plaquette