JP2006030149A - 三相交流検査装置 - Google Patents

三相交流検査装置 Download PDF

Info

Publication number
JP2006030149A
JP2006030149A JP2004213763A JP2004213763A JP2006030149A JP 2006030149 A JP2006030149 A JP 2006030149A JP 2004213763 A JP2004213763 A JP 2004213763A JP 2004213763 A JP2004213763 A JP 2004213763A JP 2006030149 A JP2006030149 A JP 2006030149A
Authority
JP
Japan
Prior art keywords
phase
signal
digital signal
flip
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004213763A
Other languages
English (en)
Other versions
JP4641750B2 (ja
Inventor
Makio Kitazawa
真喜男 北沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2004213763A priority Critical patent/JP4641750B2/ja
Publication of JP2006030149A publication Critical patent/JP2006030149A/ja
Application granted granted Critical
Publication of JP4641750B2 publication Critical patent/JP4641750B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Phase Differences (AREA)

Abstract

【課題】スター結線された三相交流およびデルタ結線された三相交流についての相順や欠相の状態を正確に検出する。
【解決手段】R相、S相およびT相の波形を波形整形してディジタル信号Sr,Ss,Stを出力する波形整形回路2〜3と、ディジタル信号Ssを遅延させる遅延回路9と、遅延したディジタル信号Ss1のアクティブへの遷移に同期して、ディジタル信号Ssに対して位相の進んでいるディジタル信号Srのロジック状態を検出して出力するフリップフロップ回路10およびディジタル信号Ssに対して位相の遅れているディジタル信号Stのロジック状態を検出して出力するフリップフロップ回路11と、ディジタル信号Sr,Ss,Stのロジック状態がすべて非アクティブのときにフリップフロップ回路10,11に対してその出力信号を非アクティブにさせるクリア回路5とを備えている。
【選択図】図1

Description

本発明は、三相交流の相順や欠相などの状態を検査する三相交流検査装置に関するものである。
この種の三相交流検査装置として、特開平4−262272号公報に開示された三相交流検査装置が知られている。この三相交流検査装置では、R相、S相およびT相の各三相交流信号をパルス信号(ディジタル信号)に変換するゼロクロス信号発生回路と、3つのフリップフロップ(D−フリップフロップ)で構成されると共にゼロクロス信号発生回路から出力されたR相、S相およびT相の各パルス信号に基づいてR相、S相およびT相の相互間の位相を比較する位相比較回路と、各フリップフロップの出力を入力するNAND素子と、各フリップフロップの出力を入力するNOR素子とを備え、NAND素子の出力のロジック状態(HighまたはLow)とNOR素子の出力のロジック状態との組み合わせに基づいて、三相交流の状態(相順および欠相)を判定可能に構成されている。
特開平4−262272号公報(第2頁、第1−2図)
ところが、従来の三相交流検査装置には、以下のような問題点がある。すなわち、この三相交流検査装置では、位相比較器の1つのフリップフロップにおいてS相のパルス信号をクロックとして使用してR相のパルス信号のロジック状態(アクティブか非アクティブか)を検出し、もう1つのフリップフロップにおいてT相のパルス信号をクロックとして使用してS相のパルス信号のロジック状態を検出し、さらにもう1つのフリップフロップにおいてR相のパルス信号をクロックとして使用してT相のパルス信号のロジック状態を検出している。したがって、この三相交流検査装置は、同号公報中の図2に示すように、スター結線された三相交流の1つの相が欠相したときにおいても、他の2相の交流が欠相前の状態を維持するため、その欠相に関しては確実に検出することができる。しかしながら、デルタ結線された三相交流の場合、1つの相が欠相したときに、他の2相に位相が180度反転した逆極性の交流が発生するため、この逆極性となる2つの相についてのパルス信号を入力するフリップフロップにおいて、クロックとして入力するパルス信号およびデータとして入力するパルス信号の極性がほぼ同時に切り替わる。このため、クロックに対するデータのセットアップ時間およびホールド時間が不足して出力が不定となる事態が生じるおそれがある。したがって、この三相交流検査装置には、デルタ結線された三相交流についての欠相を正確に検出することができないという問題点が存在する。
本発明は、かかる問題点を解決すべくなされたものであり、スター結線された三相交流およびデルタ結線された三相交流についての相順や欠相の状態を正確に検出し得る三相交流検査装置を提供することを主目的とする。
上記目的を達成すべく請求項1記載の三相交流検査装置は、入力した三相交流のR相波形、S相波形およびT相波形を所定の閾値とそれぞれ比較することにより、アクティブのときのデューティ比が50%よりも小さいディジタル信号を前記各相波形に同期させて出力する波形整形回路と、前記各ディジタル信号のうちの1のディジタル信号を遅延させる遅延回路と、当該遅延した1のディジタル信号の非アクティブからアクティブへの遷移に同期して、前記各ディジタル信号のうちの前記1のディジタル信号に対して位相の進んでいる一方のディジタル信号のロジック状態を検出して出力する第1のフリップフロップ回路と、前記遅延した1のディジタル信号の非アクティブからアクティブへの遷移に同期して、前記各ディジタル信号のうちの当該1のディジタル信号に対して位相の遅れている他方のディジタル信号のロジック状態を検出して出力する第2のフリップフロップ回路と、前記各ディジタル信号のロジック状態がすべて非アクティブのときに前記各フリップフロップ回路に対してその出力信号を非アクティブにさせるクリア信号を出力するクリア回路とを備えている。
請求項1記載の三相交流検査装置によれば、波形整形回路が、R相波形、S相波形およびT相波形を所定の閾値とそれぞれ比較してアクティブのときのデューティ比が50%よりも小さいディジタル信号を各相波形に同期させて出力し、遅延回路が1のディジタル信号を遅延させ、第1のフリップフロップ回路が、遅延した1のディジタル信号の非アクティブからアクティブへの遷移に同期して、1のディジタル信号に対して位相の進んでいる一方のディジタル信号のロジック状態を検出して出力し、第2のフリップフロップ回路が、1のディジタル信号の非アクティブからアクティブへの遷移に同期して、各ディジタル信号のうちの1のディジタル信号に対して位相の遅れている他方のディジタル信号のロジック状態を検出して出力し、クリア回路が各ディジタル信号のロジック状態がすべて非アクティブのときに各フリップフロップ回路に対してその出力信号を非アクティブにさせるクリア信号を出力することにより、各フリップフロップ回路の出力信号および反転出力信号の各ロジック状態に基づいて、デルタ結線された三相交流線路およびスター結線された三相交流線路についての相順および欠相を確実に検出することができる。
以下、添付図面を参照して、本発明に係る三相交流検査装置の最良の形態について説明する。
まず、三相交流検査装置1の構成について図面を参照して説明する。
三相交流検査装置1は、図1に示すように、3つの波形整形回路2,3,4、クリア回路5、3つのAND回路6,7,8、遅延回路9、2つのフリップフロップ回路10,11、および判定回路12を備えて構成されて、入力した三相交流のR相波形、S相波形およびT相波形に基づき、三相交流の状態(相順および欠相)を検査する。
各波形整形回路2,3,4は、一例として、閾値VH,VLがゼロボルトよりも若干高い正の電圧値にそれぞれ設定されたシュミットトリガ回路(図示せず)を含んで構成されている。したがって、各波形整形回路2,3,4は、入力したR相波形、S相波形およびT相波形を各閾値VH,VLと比較することによってR相波形、S相波形およびT相波形を波形整形して、ロジック状態がアクティブ(本例では、一例としてHigh)のときのデューティ比が常に50%よりも若干小さい(本発明における50%よりも小さいデューティ比の一例)ディジタル信号Sr,Ss,StをR相波形、S相波形およびT相波形にそれぞれ同期させて出力する。この場合、各閾値VH,VLは、例えばR相波形、S相波形およびT相波形が振幅10Vの交流電圧波形であるときには、一例として、1.5V,0.8Vにそれぞれ規定されている。
クリア回路5は、各ディジタル信号Sr,Ss,Stを入力すると共に、すべてのディジタル信号Sr,Ss,Stのロジック状態が非アクティブのときに、クリア信号Sclのロジック状態をアクティブにしてフリップフロップ回路10,11に対してその出力信号の状態を非アクティブにさせる。本例ではクリア回路5は、一例として3入力OR素子で構成されている。したがって、クリア回路5は、すべてのディジタル信号Sr,Ss,StがLow(非アクティブ)のときに、クリア信号Sclのロジック状態をLow(アクティブ)にする。なお、本明細書では、信号のロジック状態がアクティブのときには「信号がアクティブ」ともいい、また信号のロジック状態が非アクティブのときには「信号が非アクティブ」ともいう。
各AND回路6,7,8は、各フリップフロップ回路10,11に対するクリア信号Sclおよび各ディジタル信号Sr,Ss,Stの供給タイミングを揃えるために、各ディジタル信号Sr,Ss,Stの供給ラインに介装されて、各ディジタル信号Sr,Ss,Stとクリア信号Sclとの論理積をディジタル信号Sr1,Ss1,St1として出力する。なお、クリア信号Sclと、各ディジタル信号Sr,Ss,Stとの供給タイミングを揃える必要のない回路構成のときにはその介装を省いて、各ディジタル信号Sr,Ss,Stを各フリップフロップ回路10,11や遅延回路9に直接入力させる構成を採用することもできる。遅延回路9は、ディジタル信号Sr1,Ss1,St1のうちの1つのディジタル信号Ss1を入力すると共にそのディジタル信号Ss1を若干(時間td)遅延させて(本発明における1のディジタル信号を遅延させる遅延量の一例)クロック信号Sckとして出力する。この場合、遅延させる時間tdは、例えば、2msに規定されている。
フリップフロップ回路(本発明における第1のフリップフロップ回路)10は、一例としてD−フリップフロップ回路で構成されて、入力端子(D端子)にディジタル信号Sr1を入力し、クロック端子(CK端子)にクロック信号Sckを入力し、クリア端子(CL端子)にクリア信号Sclを入力する。この構成により、フリップフロップ回路10は、ディジタル信号Ss1を遅延させたクロック信号Sckの非アクティブ(本例では、一例としてLow)からアクティブ(本例では、一例としてHigh)への遷移(立ち上がり)に同期して、各ディジタル信号Sr,Stのうちの、順相のときにディジタル信号Ssに対して位相が進んでいる一方のディジタル信号Srのロジック状態を検出して出力信号Sr2および反転出力信号Sr3を出力する。フリップフロップ回路(本発明における第2のフリップフロップ回路)11は、一例としてD−フリップフロップ回路で構成されて、入力端子(D端子)にディジタル信号St1を入力し、クロック端子(CK端子)にクロック信号Sckを入力し、クリア端子(CL端子)にクリア信号Sclを入力する。この構成により、フリップフロップ回路11は、クロック信号Sckの非アクティブ(この例では、Low)からアクティブ(この例では、High)への遷移(立ち上がり)に同期して、各ディジタル信号Sr,Stのうちの、順相のときにディジタル信号Ssに対して位相が遅れている他方のディジタル信号Stのロジック状態を検出して出力信号St2および反転出力信号St3を出力する。なお、本例では、各フリップフロップ回路10,11をD−フリップフロップ回路で構成しているが、JK−フリップフロップ回路やRS−フリップフロップ回路などのフリップフロップ回路で構成することもできる。
判定回路12は、フリップフロップ回路10の出力信号Sr2および反転出力信号Sr3と、フリップフロップ回路11の出力信号St2および反転出力信号St3とを入力して、各信号Sr2,Sr3,St2,St3のロジック状態に基づいて、三相交流の状態(相順および欠相)を検出する判定処理を実行する。本例では、判定回路12は、一例として、2つのNAND素子12a,12b、CPU12cおよび不図示のメモリを備えて構成されている。この場合、NAND素子12aは、出力信号Sr2と反転出力信号St3とを入力してその論理積信号So1をCPU12cに出力する。また、NAND素子12bは、反転出力信号Sr3と出力信号St2とを入力してその論理積信号So2をCPU12cに出力する。CPU12cは、メモリに記憶されている動作プログラムに従って作動して、入力した論理積信号So1,So2の各ロジック状態と、メモリに予め記憶された判定テーブル(図4参照)の内容とを比較して判定処理を実行する。
次に、三相交流検査装置1の動作について、図1を参照して説明する。
この三相交流検査装置1では、電源投入直後において各波形整形回路2,3,4に十分な電源電圧が供給されるまでの間、各ディジタル信号Sr,Ss,Stは非アクティブ(Low)の状態にある。このため、クリア回路5は、クリア信号Sclをアクティブ(Low)にする。したがって、各フリップフロップ回路10,11は、その出力がクリアされて、出力信号Sr2,St2をLowに、また反転出力信号Sr3,St3をHighに維持する。
一方、内部の各構成要素に十分な電源電圧が供給された状態では、各波形整形回路2,3,4が、スター結線(またはデルタ結線)された三相交流線路から入力したR相波形、S相波形およびT相波形を波形整形して、ディジタル信号Sr,Ss,Stを出力する。図2に示す期間T2のように、三相交流に欠相が発生していないときには、各波形整形回路2,3,4は、互いの位相が120度ずつずれ、かつ各相波形と同一周期のディジタル信号Sr,Ss,Stを出力する。具体的には、波形整形回路2では、閾値VH,VLが1.5V,0.8Vにそれぞれ規定されたシュミットトリガ回路が、図6に示すように、入力したR相波形が上昇しつつ閾値VH(1.5V)を横切ったときにディジタル信号SrをHighに移行させ、その後に、R相波形が下降しつつ閾値VL(0.8V)を横切ったときにディジタル信号SrをLowに移行させると共に、再度R相波形が上昇しつつ閾値VH(1.5V)を横切るまでディジタル信号SrをLowに維持する。このように閾値VH,VLが共に正の電圧値に規定されたシュミットトリガ回路を備えたことにより、同図に示すように、ディジタル信号Srがアクティブ(High)になる期間Aは、常にR相波形の半周期(B/2:BはR相波形の1周期)よりも若干短くなる。また、ディジタル信号Srの周期は、上記したようにR相波形の周期Bと一致する。したがって、波形整形回路2は、デューティ比(A/B×100)が常に50%よりも若干小さく、かつ立ち上がり部分および立ち下がり部分においてヒゲ(ハザード)のないディジタル信号Srを出力する。波形整形回路3,4も、各波形整形回路2と同一の構成のため、同様にして、アクティブ(High)のデューティ比が常に50%よりも若干小さく、かつ立ち上がり部分および立ち下がり部分においてヒゲ(ハザード)のないディジタル信号Sr,Stをそれぞれ出力する。
クリア回路5は、三相交流に欠相が発生していないときには、図2に示す期間T2のように、各ディジタル信号Sr,Ss,Stのアクティブ期間が互いにオーバーラップしているため、クリア信号Sclを常時非アクティブ(High)に維持する。また、各AND回路6,7,8は、図2に示すように、ディジタル信号Sr,Ss,Stをそれぞれ入力したときには、クリア回路5の伝搬時間だけ遅延して入力されるクリア信号Sclと論理和して、ディジタル信号Sr1,Ss1,St1をそれぞれ出力する。また、遅延回路9は、ディジタル信号Ss1を時間tdだけ遅延させてクロック信号Sckとして出力する。したがって、各フリップフロップ回路10,11は、クリア信号Sclが非アクティブのため、クロック信号Sckの立ち上がりに同期して、入力している各ディジタル信号Sr1,St1の各ロジック状態を繰り返し検出して出力する。具体的には、フリップフロップ回路10は、図2の期間T1に示すように、クロック信号Sckの最初の立ち上がりに同期して、ディジタル信号Sr1のロジック状態(High)を検出して出力し、フリップフロップ回路11は、クロック信号Sckの最初の立ち上がりに同期して、ディジタル信号St1のロジック状態(Low)を検出して出力する。したがって、同図に示すように、欠相が発生していないときには、フリップフロップ回路10は、ディジタル信号Sr1がHighの状態を常に検出し、フリップフロップ回路11は、ディジタル信号St1がLowの状態を常に検出し続ける。これにより、同図に示すように、フリップフロップ回路10は、出力信号Sr2を常にHigh(反転出力信号Sr3はLow)に維持する。一方、フリップフロップ回路11は、出力信号St2を常にLow(反転出力信号St3はHigh)に維持する。
一方、判定回路12では、CPU12cが、NAND素子12a,12bから出力された論理積信号So1,So2に基づいて判定処理を実行して、三相交流についての状態(相順および欠相)を検出する。具体的には、R相波形、S相波形およびT相波形がこの順(順相)で入力されているときには、ディジタル信号Sr、ディジタル信号Ssおよびディジタル信号Stも、図2の期間T2のように、この順で生成される。このため、論理積信号So1は、図2に示すように、入力される出力信号Sr2および反転出力信号St3が共にHighのため、常にアクティブ(Low)になる。また、論理積信号So2は、同図に示すように、入力される出力信号St2および反転出力信号Sr3が共にLowのため、常に非アクティブ(High)になる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の上から1段目に示すように、三相交流が順相であり、かつ欠相が発生していないと判別する。
また、T相波形、S相波形およびR相波形がこの順(逆相)に入力されているときには、ディジタル信号St、ディジタル信号Ssおよびディジタル信号Srも、図3の期間T4のように、この順で発生する。この状態では、同図に示すように、論理積信号So1は、入力される出力信号Sr2および反転出力信号St3が共にLowのため、常に非アクティブ(High)になる。また、論理積信号So2は、同図に示すように、入力される出力信号St2および反転出力信号Sr3が共にHighのため、常にアクティブ(Low)になる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の上から2段目に示すように、三相交流が逆相であり、かつ欠相が発生していないと判別する。
一方、デルタ結線された三相交流線路において、R相およびT相の一方(一例としてR相)が欠相しているときには、図2の期間T3のように、ディジタル信号Srが常に非アクティブ(Low)になり、ディジタル信号Ssおよびディジタル信号Stは、位相が180度反転する関係となる。この状態においても、波形整形回路3,4は、アクティブ(High)のときのデューティ比が常に50%よりも若干小さくなるようにR相波形およびT相波形をそれぞれ波形整形する結果、同図に示すように、ディジタル信号Ss,StのHigh期間同士がオーバーラップすることはない。このため、クリア回路5は、欠相が発生している期間において、周期的に(三相交流の周期の1/2の周期で)クリア信号Sclをアクティブ(Low)に移行させる。したがって、各フリップフロップ回路10,11は、周期的に、出力信号Sr2(反転出力信号Sr3)および出力信号St2(反転出力信号St3)をクリアし続ける。また、欠相が発生しているときであってもクロック信号Sckが連続して出力されているものの、図2の期間T3のように、R相波形が欠相しているために、ディジタル信号Sr1が常にLowに維持されている。また、クロック信号Sckは、ディジタル信号Ssに対して遅延回路9によって時間tdだけ遅延させられている。このため、フリップフロップ回路10は、クロック信号Sckの立ち上がりにおいてディジタル信号Sr2を常にLowにし、フリップフロップ回路11は、クロック信号Sckの立ち上がりにおいてディジタル信号St2を常にLowにする。この結果、同図に示すように、出力信号Sr2,St2が共に常にLowに維持されるため、論理積信号So1,So2が共に常に非アクティブ(High)となる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の上から3段目に示すように、三相交流に欠相が発生していると判別する。
また、デルタ結線された三相交流線路において、S相が欠相しているときには、図3の期間T5のように、ディジタル信号Ssが常に非アクティブ(Low)になり、ディジタル信号Srおよびディジタル信号Stは、位相が180度反転する関係となる。この状態においても、波形整形回路3,4は、アクティブ(High)のときのデューティ比が常に50%よりも若干小さくなるようにR相波形およびT相波形をそれぞれ波形整形する結果、同図に示すように、ディジタル信号Sr,StのHigh期間同士がオーバーラップすることはない。このため、クリア回路5は、欠相が発生している期間において、周期的に(三相交流の周期の1/2の周期で)クリア信号Sclをアクティブ(Low)に移行させる。また、クロック信号Sckが常に非アクティブ(Low)に維持されている。このため、各フリップフロップ回路10,11は、周期的に、出力信号Sr2(反転出力信号Sr3)および出力信号St2(反転出力信号St3)をクリアし続けて共にLoWを維持する。この結果、同図に示すように、論理積信号So1,So2が共に常に非アクティブ(High)となる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の上から3段目に示すように、三相交流に欠相が発生していると判別する。
また、スター結線された三相交流線路において、順相状態のR相、S相およびT相のいずれかが欠相しているときには、ディジタル信号Sr,Ss,Stのうちの欠相した相に対応するディジタル信号のみが欠落し、欠相していない相に対応するディジタル信号は欠相が生じていないときと同じ状態で波形整形回路2,3,4から出力される。例えば、順相状態においてR相が欠相しているときには、図5の期間T6に示すように、ディジタル信号Srのみが欠落し、他の2つのディジタル信号Ss,Stは、欠相発生前と同じ状態で波形整形回路3,4から出力される。しかしながら、R相が欠相しているときには、クリア信号Sclが周期的にアクティブ(Low)となるため、各フリップフロップ回路10,11は、その出力(出力信号Sr2等)を周期的にクリアする。また、クロック信号Sckの立ち上がりにおいてディジタル信号Sr1が常に非アクティブ(Low)になると共に、ディジタル信号St1もまた常に非アクティブ(Low)になる。このため、各フリップフロップ回路10,11は、出力信号Sr2,St2を共に常にLowに維持する。この結果、同図に示すように、論理積信号So1,So2が共に常に非アクティブ(High)となる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の上から3段目に示すように、三相交流に欠相が発生していると判別する。
また、T相が欠相しているときには、図5の期間T7に示すように、ディジタル信号Stのみが欠落し、他の2つのディジタル信号Sr,Ssは、欠相発生前と同じ状態で波形整形回路3,4から出力される。この場合、同期間T7に示すように、クリア信号Sclが周期的にアクティブ(Low)となるため、各フリップフロップ回路10,11は、クリア信号SclがLowになる都度、その出力(出力信号Sr2等)をLowにクリアする。一方、R相が欠相したときとは異なり、クロック信号Sckの立ち上がりにおいてディジタル信号Sr1が常にアクティブ(High)になるため、フリップフロップ回路10は、クロック信号Sckが立ち上がる都度、その出力(出力信号Sr2)をHighに移行させる。したがって、フリップフロップ回路10から出力される出力信号Sr2がトグルする(HighとLowとを繰り返す)。この結果、同図に示すように、論理積信号So1も、出力信号Sr2に同期してトグルする。一方、論理積信号So2は、常に非アクティブ(High)となる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の下から2段目に示すように、三相交流に欠相が発生していると判別する。なお、同図に示す判定テーブルの「High/Low」は、該当する信号がトグルする状態を示している。
また、図示はしないが、S相が欠相しているときには、上記したR相およびT相のいずれかが欠相したときと同様にして、クリア信号Sclが周期的にアクティブ(Low)になるため、各フリップフロップ回路10,11は、クリア信号SclがLowになる都度、その出力(出力信号Sr2等)をクリアする。また、S相が欠相しているため、各フリップフロップ回路10,11にクロック信号Sckが供給されない。したがって、各フリップフロップ回路10,11は、その出力(出力信号Sr2,St2)を常にLowに維持する。この結果、論理積信号So1,So2は、常に非アクティブ(High)になる。CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、図4の上から3段目に示すように、三相交流に欠相が発生していると判別する。
なお、図5を参照して、スター結線された三相交流線路において、順相状態のR相、S相およびT相のいずれかが欠相した例について説明したが、スター結線された三相交流線路において、逆相状態のR相、S相およびT相のうちのR相が欠相したときには、出力信号Sr2が常にLowになるため、論理積信号So1は常にHighになり、出力信号St2がトグルするため、論理積信号So2もトグルする。また、逆相状態のR相、S相およびT相のうちのS相またはT相が欠相したときには、各出力信号Sr2,St2が共に常にLowになる結果、論理積信号So1,So2は共に常にHighになる。したがって、CPU12cは、検出した各論理積信号So1,So2のロジック状態と、メモリに記憶されている判定テーブルの内容とを比較することにより、スター結線された三相交流線路において逆相状態のR相が欠相したときには、図4の上から5段目に示すように、三相交流に欠相が発生していると判別する。また、CPU12cは、スター結線された三相交流線路において逆相状態のS相またはT相が欠相したときには、図4の上から3段目に示すように、三相交流に欠相が発生していると判別する。
このように、この三相交流検査装置1によれば、波形整形回路2,3,4がR相波形、S相波形およびT相波形を所定の閾値VH,VLとそれぞれ比較してアクティブ(例えばHigh)のときのデューティ比が50%よりも若干小さいディジタル信号Sr,Ss,Stを各相波形に同期させて出力し、遅延回路9がディジタル信号Sr,Ss,Stのうちの1のディジタル信号(例えばディジタル信号Ss)を若干遅延させ、フリップフロップ回路10が、1のディジタル信号の非アクティブ(例えばLow)からアクティブ(例えばHigh)への遷移(立ち上がり)に同期して、各ディジタル信号Sr,Ss,Stのうちの1のディジタル信号に対して位相の進んでいる一方のディジタル信号(例えばディジタル信号Sr)のロジック状態を検出して出力し、フリップフロップ回路11が、1のディジタル信号の非アクティブ(例えばLow)からアクティブ(例えばHigh)への遷移(立ち上がり)に同期して、各ディジタル信号Sr,Ss,Stのうちの1のディジタル信号に対して位相の遅れている他方のディジタル信号(例えばディジタル信号St)のロジック状態を検出して出力し、クリア回路5が各ディジタル信号Sr,Ss,Stのロジック状態がすべて非アクティブ(例えばLow)のときに各フリップフロップ回路10,11に対してその出力信号Sr2,St2を非アクティブ(例えばLow)にさせるクリア信号Sclを出力することにより、各フリップフロップ回路10,11の出力信号Sr2,St2および反転出力信号Sr3,St3の各ロジック状態に基づいて、デルタ結線された三相交流線路およびスター結線された三相交流線路についての相順および欠相を確実に検出することができる。
なお、本発明は、上記の構成に限定されない。例えば、上記の構成では、2つのNAND素子12a,12bとCPU12cとを有し、出力信号Sr2,St2および反転出力信号Sr3,St3の各ロジック状態、具体的には論理積信号So1,So2の各ロジック状態に基づいて、デルタ結線された三相交流線路およびスター結線された三相交流線路についての相順および欠相をCPU12cが検出する判定回路12を採用したが、これに限定されない。例えば、CPU12cが出力信号Sr2,St2および反転出力信号Sr3,St3を直接入力して三相交流線路についての相順および欠相を検出する構成を採用することもできる。また、上記の構成では、ディジタル信号Sr,Ss,St、クリア信号Scl、ディジタル信号Sr1,Ss1,St1、クロック信号Sck、および出力信号Sr2,St2の各アクティブロジック状態をHighとし、論理積信号So1,So2の各アクティブロジック状態をLowとする例について説明したが、各信号のアクティブロジック状態は適宜規定することができ、HighおよびLowのいずれにも設定することができる。この場合には、図1に示した回路構成を適宜変更し、かつ図4に示す判定テーブルの内容を適宜変更する。
三相交流検査装置1の構成を示すブロック図である。 デルタ結線の三相交流線路についての順相状態における三相交流検査装置1の動作を説明するためのタイミングチャートである。 デルタ結線の三相交流線路についての逆相状態における三相交流検査装置1の動作を説明するためのタイミングチャートである。 判定テーブルの内容を示す説明図である。 スター結線の三相交流線路についての順相状態における三相交流検査装置1の動作を説明するためのタイミングチャートである。 波形整形回路2による波形整形動作を説明するためのタイミングチャートである。
符号の説明
1 三相交流検査装置
2〜4 波形整形回路
5 クリア回路
9 遅延回路
10,11 フリップフロップ回路
Scl クリア信号
Sr,Ss,Ss1,St ディジタル信号
Sr2,St2 出力信号
Sr3,St3 反転出力信号
VH,VL 閾値

Claims (1)

  1. 入力した三相交流のR相波形、S相波形およびT相波形を所定の閾値とそれぞれ比較することにより、アクティブのときのデューティ比が50%よりも小さいディジタル信号を前記各相波形に同期させて出力する波形整形回路と、
    前記各ディジタル信号のうちの1のディジタル信号を遅延させる遅延回路と、
    当該遅延した1のディジタル信号の非アクティブからアクティブへの遷移に同期して、前記各ディジタル信号のうちの前記1のディジタル信号に対して位相の進んでいる一方のディジタル信号のロジック状態を検出して出力する第1のフリップフロップ回路と、
    前記遅延した1のディジタル信号の非アクティブからアクティブへの遷移に同期して、前記各ディジタル信号のうちの当該1のディジタル信号に対して位相の遅れている他方のディジタル信号のロジック状態を検出して出力する第2のフリップフロップ回路と、
    前記各ディジタル信号のロジック状態がすべて非アクティブのときに前記各フリップフロップ回路に対してその出力信号を非アクティブにさせるクリア信号を出力するクリア回路とを備えている三相交流検査装置。
JP2004213763A 2004-07-22 2004-07-22 三相交流検査装置 Expired - Fee Related JP4641750B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213763A JP4641750B2 (ja) 2004-07-22 2004-07-22 三相交流検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004213763A JP4641750B2 (ja) 2004-07-22 2004-07-22 三相交流検査装置

Publications (2)

Publication Number Publication Date
JP2006030149A true JP2006030149A (ja) 2006-02-02
JP4641750B2 JP4641750B2 (ja) 2011-03-02

Family

ID=35896671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213763A Expired - Fee Related JP4641750B2 (ja) 2004-07-22 2004-07-22 三相交流検査装置

Country Status (1)

Country Link
JP (1) JP4641750B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842938B1 (ko) 2006-12-11 2008-07-02 주식회사 화인텍센추리 3상 입력 전원의 역상 감지 장치
WO2010073593A1 (ja) * 2008-12-22 2010-07-01 新電元工業株式会社 バッテリ充電装置
JP2011053108A (ja) * 2009-09-02 2011-03-17 Kyoritsu Keiki Co Ltd 逆相欠相検出器
CN102937672A (zh) * 2012-11-02 2013-02-20 北京天诚同创电气有限公司 一种用于并网设备的三相交流电相序检测方法及其检测装置
CN102944761A (zh) * 2012-11-02 2013-02-27 北京天诚同创电气有限公司 一种用于并网设备的三相交流电相序检测方法及其检测装置
CN116449122A (zh) * 2023-06-16 2023-07-18 创辉科技有限公司 供电系统故障检测电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414780A (en) * 1977-07-05 1979-02-03 Toshiba Corp Missing phase detector
JPH04262272A (ja) * 1991-01-22 1992-09-17 Mitsubishi Electric Corp 三相入力状態判定装置
JPH095376A (ja) * 1995-06-16 1997-01-10 Mitsubishi Electric Corp 相回転異常検出装置
JPH1048274A (ja) * 1996-08-01 1998-02-20 Toko Denki Kk 位相判定回路
JP2001258151A (ja) * 2000-03-08 2001-09-21 Yaskawa Electric Corp 電源電圧異常検出回路および方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414780A (en) * 1977-07-05 1979-02-03 Toshiba Corp Missing phase detector
JPH04262272A (ja) * 1991-01-22 1992-09-17 Mitsubishi Electric Corp 三相入力状態判定装置
JPH095376A (ja) * 1995-06-16 1997-01-10 Mitsubishi Electric Corp 相回転異常検出装置
JPH1048274A (ja) * 1996-08-01 1998-02-20 Toko Denki Kk 位相判定回路
JP2001258151A (ja) * 2000-03-08 2001-09-21 Yaskawa Electric Corp 電源電圧異常検出回路および方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842938B1 (ko) 2006-12-11 2008-07-02 주식회사 화인텍센추리 3상 입력 전원의 역상 감지 장치
WO2010073593A1 (ja) * 2008-12-22 2010-07-01 新電元工業株式会社 バッテリ充電装置
US8466653B2 (en) 2008-12-22 2013-06-18 Shindengen Electric Manufacturing Co., Ltd. Battery charger
JP2011053108A (ja) * 2009-09-02 2011-03-17 Kyoritsu Keiki Co Ltd 逆相欠相検出器
CN102937672A (zh) * 2012-11-02 2013-02-20 北京天诚同创电气有限公司 一种用于并网设备的三相交流电相序检测方法及其检测装置
CN102944761A (zh) * 2012-11-02 2013-02-27 北京天诚同创电气有限公司 一种用于并网设备的三相交流电相序检测方法及其检测装置
CN116449122A (zh) * 2023-06-16 2023-07-18 创辉科技有限公司 供电系统故障检测电路
CN116449122B (zh) * 2023-06-16 2023-08-18 创辉科技有限公司 供电系统故障检测电路

Also Published As

Publication number Publication date
JP4641750B2 (ja) 2011-03-02

Similar Documents

Publication Publication Date Title
US8803554B2 (en) Missing clock circuit switching clock from second to first clock
JP4641750B2 (ja) 三相交流検査装置
CN112130617A (zh) 一种时钟动态切换电路
US6653867B1 (en) Apparatus and method for providing a smooth transition between two clock signals
KR101166800B1 (ko) 지연회로
JP2007086960A (ja) クロック切り替え回路
KR20100062547A (ko) 지연고정루프회로
KR100925393B1 (ko) 반도체 메모리 장치의 도메인 크로싱 회로
CN110504968B (zh) 一种双异步信号采样计数装置与方法
US9484902B2 (en) Delay circuit
JP6410594B2 (ja) シンクロナイザおよび半導体装置
US20120008726A1 (en) Delay locked loop
KR20120027850A (ko) 듀티 검출기를 포함하는 듀티 보정 회로, 이를 포함하는 지연동기루프 회로 및 듀티 보정 방법
JP2010060314A (ja) テスト回路
JP4339145B2 (ja) 同期化回路
JP5541484B2 (ja) データ照合装置
CN213122748U (zh) 一种时钟动态切换电路
KR102022645B1 (ko) 반도체 집적 회로 및 클럭 동기화 방법
JP2000261310A (ja) 非同期信号の同期化回路および半導体集積回路
KR100235563B1 (ko) 극성 검출기(A Polarity Detector)
JP5486354B2 (ja) データ伝送回路
JPH08107406A (ja) クロック信号切替回路
KR20100030303A (ko) 데이터 처리 장치 및 이를 포함하는 데이터 처리 시스템
EP0911971A1 (en) Clock switching apparatus
KR100882725B1 (ko) 동기 데이터 변환장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4641750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees