JP2006030118A - Foreign matter inspecting device and foreign matter inspection method - Google Patents

Foreign matter inspecting device and foreign matter inspection method Download PDF

Info

Publication number
JP2006030118A
JP2006030118A JP2004212693A JP2004212693A JP2006030118A JP 2006030118 A JP2006030118 A JP 2006030118A JP 2004212693 A JP2004212693 A JP 2004212693A JP 2004212693 A JP2004212693 A JP 2004212693A JP 2006030118 A JP2006030118 A JP 2006030118A
Authority
JP
Japan
Prior art keywords
light
foreign matter
inspection
substrate
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004212693A
Other languages
Japanese (ja)
Other versions
JP4493428B2 (en
Inventor
Susumu Iwai
進 岩井
Satoru Suzuki
悟 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Electronics Engineering Co Ltd filed Critical Hitachi High Tech Electronics Engineering Co Ltd
Priority to JP2004212693A priority Critical patent/JP4493428B2/en
Publication of JP2006030118A publication Critical patent/JP2006030118A/en
Application granted granted Critical
Publication of JP4493428B2 publication Critical patent/JP4493428B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent light transmission foreign matter, having a large area, from being recognized wrongly to be a foreign matter higher than a predetermined height. <P>SOLUTION: A projection system of an optical system 10 irradiates a surface of a glass substrate 1 with a band-like inspection light at an incoming angle of about 20°. A first light-receiving system of the optical system 10 receives scattered light formed, by scattering the inspection light with a foreign matter on a surface of the glass substrate 1 substantially vertically, with respect to the inspection light. The second light-receiving system of the optical system 10 receives reflected light formed by reflecting the inspection light with the surface of the glass substrate 1, at a reflection angle with respect to the incident angle of the inspection light. Regarding foreign matter that makes light transmitted, when the inspection light transmitted into the foreign matter is radiated at a position shifted largely from the incoming position of the inspection light, the first light-receiving system receives light at an angle closer to the horizontal angle than the conventional art, and hence the focus is not achieved at a light irradiated position and emitted light is hardly received. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基板の表面の異物を検査する異物検査装置及び異物検査方法に係り、特に異物の高さを検出するのに好適な異物検査装置及び異物検査方法に関する。   The present invention relates to a foreign matter inspection apparatus and foreign matter inspection method for inspecting foreign matters on the surface of a substrate, and more particularly to a foreign matter inspection apparatus and foreign matter inspection method suitable for detecting the height of a foreign matter.

表示用パネルとして用いられる液晶ディスプレイ装置のTFT(Thin Film Transistor)基板やカラーフィルタ基板、プラズマディスプレイパネル用基板、有機EL(Electroluminescence)表示パネル用基板等の製造は、露光装置を用いて、フォトリソグラフィー技術によりガラス基板上にパターンを形成して行われる。露光装置としては、レンズ又は鏡を用いてフォトマスク(以下、「マスク」と称す)のパターンをガラス基板上に投影するプロジェクション方式と、マスクとガラス基板との間に微小な間隙(プロキシミティギャップ)を設けてマスクのパターンを転写するプロキシミティ方式とがある。プロキシミティ方式は、プロジェクション方式に比べてパターン解像性能は劣るが、照射光学系の構成が簡単で、かつ処理能力が高く量産用に適している。   The manufacture of TFT (Thin Film Transistor) substrates, color filter substrates, plasma display panel substrates, organic EL (Electroluminescence) display panel substrates, etc. for liquid crystal display devices used as display panels is performed using an exposure apparatus, photolithography. This is performed by forming a pattern on a glass substrate by a technique. As an exposure apparatus, a projection method in which a pattern of a photomask (hereinafter referred to as “mask”) is projected onto a glass substrate using a lens or a mirror, and a minute gap (proximity gap) between the mask and the glass substrate. ) To transfer the mask pattern. The proximity method is inferior in pattern resolution performance to the projection method, but the configuration of the irradiation optical system is simple, the processing capability is high, and it is suitable for mass production.

プロキシミティ露光装置では、ガラス基板の表面にプロキシミティギャップ以上の高さの異物が存在すると、露光の際に異物がマスクに接触して、マスクに損傷を与える恐れがある。このため、露光前にガラス基板の表面の異物検査を行い、所定以上の高さの異物を検出している。   In the proximity exposure apparatus, if a foreign object having a height equal to or greater than the proximity gap exists on the surface of the glass substrate, the foreign object may come into contact with the mask during exposure to damage the mask. For this reason, the foreign substance inspection of the surface of a glass substrate is performed before exposure, and the foreign substance more than predetermined height is detected.

従来、このような所定以上の高さの異物を検出する異物検査では、帯状の検査光を基板の表面へ斜めに照射し、検査光が基板の表面で反射された反射光と、検査光が基板の表面の異物により散乱された散乱光とを受光して、異物の高さの検出を行っていた。図4は、従来の異物検査装置の概略構成を示す図である。投光系では、光源11が発生した検査光を、スリット12により図面奥行き方向に帯状にし、レンズ13を介してガラス基板1の表面へ照射する。このときの検査光の入射角は、30°〜40°程度であった。受光系は、ガラス基板1の表面からの反射光及び異物からの散乱光をレンズ14で集光して、2次元受光素子15により受光する。このとき受光系は、検査光に対してほぼ垂直の角度で反射光及び散乱光の受光を行っていた。   Conventionally, in the foreign matter inspection for detecting foreign matters having a height higher than a predetermined level, a strip-shaped inspection light is obliquely applied to the surface of the substrate, and the reflected light reflected from the surface of the substrate and the inspection light are reflected. The scattered light scattered by the foreign matter on the surface of the substrate is received and the height of the foreign matter is detected. FIG. 4 is a diagram showing a schematic configuration of a conventional foreign matter inspection apparatus. In the light projecting system, the inspection light generated by the light source 11 is formed in a strip shape in the drawing depth direction by the slit 12 and is irradiated onto the surface of the glass substrate 1 through the lens 13. The incident angle of the inspection light at this time was about 30 ° to 40 °. The light receiving system collects the reflected light from the surface of the glass substrate 1 and the scattered light from the foreign matter by the lens 14 and receives the light by the two-dimensional light receiving element 15. At this time, the light receiving system receives reflected light and scattered light at an angle substantially perpendicular to the inspection light.

2次元受光素子15で受光したガラス基板1の表面からの反射光は、検査光に対応した帯状となるが、ガラス基板1の表面に異物があると、その部分だけ検査光が異物で散乱されて散乱光が受光される。検査光をガラス基板1の表面へ斜めに照射するため、検査光が異物へ照射される位置は、異物の高さにより、検査光がガラス基板1の表面へ照射される位置からずれる。従って、異物からの散乱光が発生する位置は、異物の高さに応じて、ガラス基板1の表面からの反射光が発生する位置よりずれ、そのずれ量の大きさから異物の高さを検出する。なお、特許文献1及び特許文献2には、同様の技術を用いて、基板上の電気部品の高さを検出する装置が開示されている。また、特許文献3には、同様の技術を用いて、3次元測定を行う装置が開示されている。
特開昭61−76903号公報 特開昭63−37479号公報 特開平11−183149号公報
The reflected light from the surface of the glass substrate 1 received by the two-dimensional light receiving element 15 has a band shape corresponding to the inspection light. If there is a foreign substance on the surface of the glass substrate 1, the inspection light is scattered by the foreign substance only at that portion. Scattered light is received. Since the inspection light is radiated obliquely onto the surface of the glass substrate 1, the position where the inspection light is irradiated onto the foreign substance is shifted from the position where the inspection light is irradiated onto the surface of the glass substrate 1 depending on the height of the foreign substance. Therefore, the position where the scattered light from the foreign matter is generated is shifted from the position where the reflected light from the surface of the glass substrate 1 is generated according to the height of the foreign matter, and the height of the foreign matter is detected from the amount of the shift. To do. Note that Patent Document 1 and Patent Document 2 disclose an apparatus for detecting the height of an electrical component on a substrate using the same technique. Patent Document 3 discloses an apparatus that performs three-dimensional measurement using the same technique.
JP 61-76903 A JP 63-37479 A JP 11-183149 A

基板の表面の異物が光を透過させる物質である場合、異物の内部へ透過した検査光は、異物の内部を伝搬して異物の角状の部分から放射される。従って、異物の高さが低くても異物の面積が大きいと、異物の内部へ透過した検査光が、検査光の入射位置から大きくずれた位置で放射されることがある。このような場合、従来の異物検査装置を用いた異物検査では、異物の内部を伝搬して放射された光を受光することにより、面積の大きな異物を所定以上の高さの異物と誤認識するという問題があった。   When the foreign substance on the surface of the substrate is a substance that transmits light, the inspection light transmitted to the inside of the foreign substance propagates through the foreign substance and is radiated from the angular portion of the foreign substance. Therefore, if the foreign matter has a large area even if the height of the foreign matter is low, the inspection light transmitted to the inside of the foreign matter may be emitted at a position greatly deviated from the incident position of the inspection light. In such a case, in the foreign matter inspection using the conventional foreign matter inspection apparatus, the foreign matter having a large area is erroneously recognized as a foreign matter having a predetermined height or more by receiving the light emitted through the inside of the foreign matter. There was a problem.

本発明の課題は、光を透過させる異物について、面積の大きな異物を所定以上の高さの異物と誤認識するのを防止することである。   An object of the present invention is to prevent a foreign matter having a large area from being erroneously recognized as a foreign matter having a height of a predetermined level or more with respect to a foreign matter that transmits light.

本発明の異物検査装置は、帯状の検査光を基板の表面へ20°前後の入射角で照射する投光手段と、検査光が基板の表面の異物により散乱された散乱光を、検査光に対してほぼ垂直の角度で受光する第1の受光手段と、検査光が基板の表面で反射された反射光を受光する第2の受光手段と、第1の受光手段が受光した散乱光及び第2の受光手段が受光した反射光から、基板の表面の異物の高さを検出する信号処理手段とを備えたものである。   The foreign matter inspection apparatus of the present invention uses, as inspection light, a light projecting means for irradiating the surface of the substrate with a belt-like inspection light at an incident angle of about 20 °, and the scattered light scattered by the foreign matter on the surface of the substrate. A first light receiving means for receiving light at an angle substantially perpendicular to the second light receiving means; a second light receiving means for receiving reflected light reflected by the surface of the substrate; and a scattered light and a first light received by the first light receiving means. And signal processing means for detecting the height of the foreign matter on the surface of the substrate from the reflected light received by the two light receiving means.

また、本発明の異物検査方法は、帯状の検査光を基板の表面へ20°前後の入射角で照射し、検査光が基板の表面の異物により散乱された散乱光を、検査光に対してほぼ垂直の角度で受光し、検査光が基板の表面で反射された反射光を、散乱光と別に受光して、受光した散乱光及び反射光から、基板の表面の異物の高さを検出するものである。   Further, the foreign matter inspection method of the present invention irradiates a strip-shaped inspection light to the surface of the substrate at an incident angle of about 20 °, and the scattered light scattered by the foreign matter on the surface of the substrate is applied to the inspection light. The reflected light that is received at an almost vertical angle and the inspection light reflected by the surface of the substrate is received separately from the scattered light, and the height of the foreign material on the surface of the substrate is detected from the received scattered light and reflected light. Is.

投光手段は、帯状の検査光を、基板の表面へ20°前後の入射角で照射する。第1の受光手段は、検査光が基板の表面の異物により散乱された散乱光を、検査光に対してほぼ垂直の角度で受光する。このとき、第1の受光手段の焦点は、検査光が異物又は基板の表面へ照射される位置に合っている。しかしながら、検査光の入射角を従来よりも小さな20°前後としたため、基板の表面からの反射光は第1の受光手段でほとんど受光されない。そこで、第2の検出手段を設けて、基板の表面からの反射光を散乱光と別に受光する。   The light projecting means irradiates the surface of the substrate with the strip-shaped inspection light at an incident angle of about 20 °. The first light receiving means receives the scattered light obtained by scattering the inspection light by the foreign matter on the surface of the substrate at an angle substantially perpendicular to the inspection light. At this time, the focus of the first light receiving means is aligned with the position where the inspection light is irradiated onto the foreign matter or the surface of the substrate. However, since the incident angle of the inspection light is about 20 ° which is smaller than the conventional angle, the reflected light from the surface of the substrate is hardly received by the first light receiving means. Therefore, second detection means is provided to receive the reflected light from the surface of the substrate separately from the scattered light.

光を透過させる異物について、異物の内部へ透過した検査光が、検査光の入射位置から大きくずれた位置で放射された場合、第1の受光手段は、従来よりも水平に近い角度で受光を行うため、光が放射された位置に焦点が合わず、放射された光をほとんど受光しない。   When the inspection light transmitted to the inside of the foreign matter is emitted at a position greatly deviated from the incident position of the inspection light, the first light receiving means receives the light at an angle closer to the horizontal than in the past. As a result, the position where the light is emitted is not focused, and the emitted light is hardly received.

本発明によれば、光を透過させる異物について、異物の内部へ透過した検査光が、検査光の入射位置から大きくずれた位置で放射された場合、放射された光をほとんど受光しないため、面積の大きな異物を所定以上の高さの異物と誤認識するのを防止することができる。   According to the present invention, when the inspection light transmitted to the inside of the foreign matter is radiated at a position greatly deviated from the incident position of the inspection light, the emitted light hardly receives the emitted light. Can be prevented from being erroneously recognized as a foreign object having a height higher than a predetermined height.

図1は、本発明の一実施の形態による異物検査装置の概略構成を示す図である。本実施の形態は、表面に膜が形成されたガラス基板1について、所定以上の高さの異物を検出する異物検査装置の例を示している。異物検査装置は、光学系10、光学系移動機構20、駆動回路30、アナログ・ディジタル変換器40、信号処理装置50、メモリ60、及び制御装置70を含んで構成されている。   FIG. 1 is a diagram showing a schematic configuration of a foreign matter inspection apparatus according to an embodiment of the present invention. The present embodiment shows an example of a foreign substance inspection apparatus that detects a foreign substance having a predetermined height or higher with respect to a glass substrate 1 having a film formed on the surface. The foreign matter inspection apparatus includes an optical system 10, an optical system moving mechanism 20, a drive circuit 30, an analog / digital converter 40, a signal processing device 50, a memory 60, and a control device 70.

光学系10は、投光系と2つの受光系とからなる。投光系は、光源11、スリット12、及びレンズ13を含んで構成されている。光源11は、例えば発光ダイオード(LED)からなり、ガラス基板1の表面に形成された膜に応じた適当な波長の検査光を発生する。例えば、液晶ディスプレイ装置のカラーフィルタ膜の場合、R(レッド)及びG(グリーン)の膜に対してはB(ブルー)の波長の光を、B(ブルー)の膜に対してはR(レッド)の波長の光を発生する発光ダイオードを使用する。光源11から発生された検査光は、スリット12により図面奥行き方向に帯状にされ、レンズ13を介して、基板1の表面へ20°前後の入射角で照射される。   The optical system 10 includes a light projecting system and two light receiving systems. The light projecting system includes a light source 11, a slit 12, and a lens 13. The light source 11 is made of, for example, a light emitting diode (LED), and generates inspection light having an appropriate wavelength according to a film formed on the surface of the glass substrate 1. For example, in the case of a color filter film of a liquid crystal display device, light of B (blue) wavelength is applied to R (red) and G (green) films, and R (red) is applied to B (blue) films. ) Is used to generate light having a wavelength of. The inspection light generated from the light source 11 is formed in a band shape in the drawing depth direction by the slit 12, and is irradiated to the surface of the substrate 1 through the lens 13 at an incident angle of about 20 °.

駆動回路30は、制御装置70の制御により、光学系移動機構20を駆動して、光学系10をXY方向へ移動させる。光学系10のXY方向へ移動により、光学系10からの帯状の検査光がガラス基板1の表面を走査し、ガラス基板1の表面全体の検査が行われる。なお、光学系10を移動する代わりに、ガラス基板1を移動することによって、ガラス基板1の表面全体の検査を行ってもよい。   The drive circuit 30 drives the optical system moving mechanism 20 under the control of the control device 70 to move the optical system 10 in the XY directions. As the optical system 10 moves in the X and Y directions, the strip-shaped inspection light from the optical system 10 scans the surface of the glass substrate 1, and the entire surface of the glass substrate 1 is inspected. Instead of moving the optical system 10, the entire surface of the glass substrate 1 may be inspected by moving the glass substrate 1.

ガラス基板1の表面に照射された検査光は、ガラス基板1の表面に形成された膜で反射され、また膜の上に異物が存在する場合は、異物により散乱される。光学系10の第1の受光系は、レンズ14及び2次元受光素子15を含んで構成されている。第1の受光系は、検査光が異物により散乱された散乱光を、検査光に対してほぼ垂直の角度で受光する。散乱光は、レンズ14により集束されて、2次元受光素子15の受光面で結像する。   The inspection light irradiated on the surface of the glass substrate 1 is reflected by a film formed on the surface of the glass substrate 1, and when a foreign substance exists on the film, it is scattered by the foreign substance. The first light receiving system of the optical system 10 includes a lens 14 and a two-dimensional light receiving element 15. The first light receiving system receives scattered light obtained by scattering the inspection light by the foreign matter at an angle substantially perpendicular to the inspection light. The scattered light is focused by the lens 14 and forms an image on the light receiving surface of the two-dimensional light receiving element 15.

一方、光学系10の第2の受光系は、レンズ16及び2次元受光素子17を含んで構成されている。第2の受光系は、検査光がガラス基板1の表面に形成された膜で反射された反射光を、検査光の入射角に対する反射角で受光する。反射光は、レンズ16により集束されて、2次元受光素子17の受光面で結像する。2次元受光素子15,17は、例えばCCDエリアセンサーからなり、受光面で受光した光の強度に応じた検出信号を出力する。   On the other hand, the second light receiving system of the optical system 10 includes a lens 16 and a two-dimensional light receiving element 17. The second light receiving system receives the reflected light reflected by the film formed on the surface of the glass substrate 1 at the reflection angle with respect to the incident angle of the inspection light. The reflected light is focused by the lens 16 and forms an image on the light receiving surface of the two-dimensional light receiving element 17. The two-dimensional light receiving elements 15 and 17 are composed of, for example, a CCD area sensor, and output a detection signal corresponding to the intensity of light received by the light receiving surface.

アナログ・ディジタル変換器40は、2次元受光素子15,17が出力した検出信号をディジタル信号に変換して、信号処理装置50へ出力する。信号処理装置50は、アナログ・ディジタル変換器40から入力したディジタル信号を、ディジタルデータとしてメモリ60に記憶する。そして、信号処理回路50は、制御装置70の制御により、メモリ60に記憶されたディジタルデータを処理して、ガラス基板1の表面の異物の高さを検出する。   The analog / digital converter 40 converts the detection signals output from the two-dimensional light receiving elements 15 and 17 into digital signals and outputs the digital signals to the signal processing device 50. The signal processing device 50 stores the digital signal input from the analog / digital converter 40 in the memory 60 as digital data. And the signal processing circuit 50 processes the digital data memorize | stored in the memory 60 by control of the control apparatus 70, and detects the height of the foreign material on the surface of the glass substrate 1. FIG.

図2は、光を透過させない異物について、異物の高さの検出を説明する図である。ガラス基板1の表面に膜2が形成されており、膜2の上に光を透過させない異物3aが存在する。図面奥行き方向に異物3aが存在するところでは、ガラス基板1の表面に照射された検査光Iが異物3aにより散乱されて散乱光S1が発生し、発生した散乱光S1は第1の受光系で受光される。一方、図面奥行き方向に異物3aが存在しないところでは、検査光Iが膜2で反射されて反射光Rが発生し、発生した反射光Rは第2の受光系で受光される。   FIG. 2 is a diagram for explaining the detection of the height of a foreign object that does not transmit light. A film 2 is formed on the surface of the glass substrate 1, and a foreign material 3 a that does not transmit light exists on the film 2. Where the foreign matter 3a exists in the depth direction of the drawing, the inspection light I irradiated on the surface of the glass substrate 1 is scattered by the foreign matter 3a to generate scattered light S1, and the generated scattered light S1 is generated by the first light receiving system. Received light. On the other hand, when the foreign matter 3a does not exist in the depth direction of the drawing, the inspection light I is reflected by the film 2 to generate reflected light R, and the generated reflected light R is received by the second light receiving system.

このとき、第1の受光系の焦点は、検査光Iが異物3a又は膜2へ照射される破線で囲んだ範囲に合っている。しかしながら、検査光Iの入射角を従来よりも小さな20°前後としたため、膜2からの反射光Rは第1の受光系でほとんど受光されない。   At this time, the focus of the first light receiving system is in a range surrounded by a broken line where the inspection light I is irradiated onto the foreign matter 3a or the film 2. However, since the incident angle of the inspection light I is about 20 ° which is smaller than the conventional angle, the reflected light R from the film 2 is hardly received by the first light receiving system.

検査光Iは斜めに照射されているため、検査光Iが異物3aへ照射される位置は、異物3aの高さにより、検査光Iが膜2へ照射される位置からずれる。従って、異物3aからの散乱光S1が発生する位置は、異物3aの高さに応じて、膜2からの反射光Rが発生する位置よりずれ、そのずれ量の大きさから異物3aの高さを検出する。   Since the inspection light I is irradiated obliquely, the position where the inspection light I is irradiated onto the foreign material 3a is shifted from the position where the inspection light I is irradiated onto the film 2 depending on the height of the foreign material 3a. Therefore, the position where the scattered light S1 from the foreign matter 3a is generated is shifted from the position where the reflected light R from the film 2 is generated according to the height of the foreign matter 3a. Is detected.

図3は、光を透過させる異物について、異物の高さの検出を説明する図である。ガラス基板1の表面に膜2が形成されており、膜2の上に光を透過させる異物3bが存在する。図面奥行き方向に異物3bが存在するところでは、ガラス基板1の表面に照射された検査光Iの一部が異物3bにより散乱されて、散乱光S2が発生し、発生した散乱光S2は第1の受光系で受光される。また、検査光Iの一部が、異物3bの内部へ透過し、異物3bの内部を伝搬して、異物3bの角状の部分から光S3として放射される。一方、図面奥行き方向に異物3bが存在しないところでは、検査光Iが膜2で反射されて反射光Rが発生し、発生した反射光Rは第2の受光系で受光される。   FIG. 3 is a diagram for explaining the detection of the height of a foreign substance with respect to the foreign substance that transmits light. A film 2 is formed on the surface of the glass substrate 1, and a foreign material 3 b that transmits light exists on the film 2. Where the foreign matter 3b exists in the depth direction of the drawing, a part of the inspection light I irradiated on the surface of the glass substrate 1 is scattered by the foreign matter 3b to generate scattered light S2, and the generated scattered light S2 is the first. The light receiving system receives light. Further, a part of the inspection light I is transmitted to the inside of the foreign material 3b, propagates through the inside of the foreign material 3b, and is radiated as light S3 from the angular portion of the foreign material 3b. On the other hand, when the foreign matter 3b does not exist in the depth direction of the drawing, the inspection light I is reflected by the film 2 to generate the reflected light R, and the generated reflected light R is received by the second light receiving system.

このとき、第1の受光系の焦点は、検査光Iが異物3b又は膜2へ照射される破線で囲んだ範囲に合っている。しかしながら、検査光Iの入射角を従来よりも小さな20°前後としたため、膜2からの反射光Rは第1の受光系でほとんど受光されない。また、図3に示すように、異物3bの内部へ透過した検査光が、検査光Iの入射位置から大きくずれた位置で放射された場合、第1の受光系は、従来よりも水平に近い角度で受光を行うため、光S3が放射された位置に焦点が合わず、放射された光S3をほとんど受光しない。   At this time, the focus of the first light receiving system is in a range surrounded by a broken line where the inspection light I is irradiated onto the foreign matter 3b or the film 2. However, since the incident angle of the inspection light I is about 20 ° which is smaller than the conventional angle, the reflected light R from the film 2 is hardly received by the first light receiving system. Further, as shown in FIG. 3, when the inspection light transmitted into the foreign matter 3b is emitted at a position greatly deviated from the incident position of the inspection light I, the first light receiving system is closer to the horizontal than in the past. Since the light is received at an angle, the position where the light S3 is emitted is not focused, and the emitted light S3 is hardly received.

図2の場合と同様に、異物3bからの散乱光S2が発生する位置は、異物3bの高さに応じて、膜2からの反射光Rが発生する位置よりずれ、そのずれ量の大きさから異物3bの高さを検出する。   As in the case of FIG. 2, the position where the scattered light S2 from the foreign material 3b is generated is deviated from the position where the reflected light R from the film 2 is generated according to the height of the foreign material 3b. From this, the height of the foreign matter 3b is detected.

以上説明した実施の形態によれば、光を透過させる異物について、異物の内部へ透過した検査光が、検査光の入射位置から大きくずれた位置で放射された場合、放射された光をほとんど受光しないため、面積の大きな異物を所定以上の高さの異物と誤認識するのを防止することができる。   According to the embodiments described above, when the inspection light transmitted to the inside of the foreign substance is emitted at a position greatly deviated from the incident position of the inspection light, the emitted light is almost received. Therefore, it is possible to prevent a foreign matter having a large area from being erroneously recognized as a foreign matter having a height higher than a predetermined level.

本発明の一実施の形態による異物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the foreign material inspection apparatus by one embodiment of this invention. 光を透過させない異物について、異物の高さの検出を説明する図である。It is a figure explaining the detection of the height of a foreign material about the foreign material which does not permeate | transmit light. 光を透過させる異物について、異物の高さの検出を説明する図である。It is a figure explaining the detection of the height of a foreign material about the foreign material which permeate | transmits light. 従来の異物検査装置の概略構成を示す図である。It is a figure which shows schematic structure of the conventional foreign material inspection apparatus.

符号の説明Explanation of symbols

1 ガラス基板
2 膜
3a,3b 異物
10 光学系
11 光源
12 スリット
13,14,16 レンズ
15,17 2次元受光素子
20 光学系移動機構
30 駆動回路
40 アナログ・ディジタル変換器
50 信号処理装置
60 メモリ
70 制御装置
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Film | membrane 3a, 3b Foreign material 10 Optical system 11 Light source 12 Slit 13, 14, 16 Lens 15, 17 Two-dimensional light receiving element 20 Optical system moving mechanism 30 Drive circuit 40 Analog / digital converter 50 Signal processing device 60 Memory 70 Control device

Claims (2)

帯状の検査光を基板の表面へ20°前後の入射角で照射する投光手段と、
検査光が基板の表面の異物により散乱された散乱光を、検査光に対してほぼ垂直の角度で受光する第1の受光手段と、
検査光が基板の表面で反射された反射光を受光する第2の受光手段と、
前記第1の受光手段が受光した散乱光及び前記第2の受光手段が受光した反射光から、基板の表面の異物の高さを検出する信号処理手段とを備えたことを特徴とする異物検査装置。
A light projecting means for irradiating the surface of the substrate with an incident angle of about 20 ° to the surface of the substrate;
A first light receiving means for receiving the scattered light scattered by the foreign matter on the surface of the substrate at an angle substantially perpendicular to the inspection light;
A second light receiving means for receiving the reflected light of the inspection light reflected by the surface of the substrate;
Foreign matter inspection comprising signal processing means for detecting the height of the foreign matter on the surface of the substrate from the scattered light received by the first light receiving means and the reflected light received by the second light receiving means. apparatus.
帯状の検査光を基板の表面へ20°前後の入射角で照射し、
検査光が基板の表面の異物により散乱された散乱光を、検査光に対してほぼ垂直の角度で受光し、
検査光が基板の表面で反射された反射光を、散乱光と別に受光して、
受光した散乱光及び反射光から、基板の表面の異物の高さを検出することを特徴とする異物検査方法。
Irradiate the surface of the substrate with a band-shaped inspection light at an incident angle of about 20 °,
The inspection light is scattered by the foreign matter on the surface of the substrate, and the scattered light is received at an angle substantially perpendicular to the inspection light.
The reflected light reflected by the surface of the substrate is received separately from the scattered light,
A foreign matter inspection method comprising detecting the height of a foreign matter on a surface of a substrate from received scattered light and reflected light.
JP2004212693A 2004-07-21 2004-07-21 Foreign matter inspection apparatus and foreign matter inspection method Expired - Fee Related JP4493428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004212693A JP4493428B2 (en) 2004-07-21 2004-07-21 Foreign matter inspection apparatus and foreign matter inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004212693A JP4493428B2 (en) 2004-07-21 2004-07-21 Foreign matter inspection apparatus and foreign matter inspection method

Publications (2)

Publication Number Publication Date
JP2006030118A true JP2006030118A (en) 2006-02-02
JP4493428B2 JP4493428B2 (en) 2010-06-30

Family

ID=35896645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004212693A Expired - Fee Related JP4493428B2 (en) 2004-07-21 2004-07-21 Foreign matter inspection apparatus and foreign matter inspection method

Country Status (1)

Country Link
JP (1) JP4493428B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162880A (en) * 2008-12-16 2010-07-29 Fujifilm Corp Method for manufacturing laminate
CN102854200A (en) * 2012-09-06 2013-01-02 北京京东方光电科技有限公司 Array substrate detection apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176903A (en) * 1984-09-21 1986-04-19 Fujitsu Ltd Parts inspecting instrument
JPS6337479A (en) * 1986-07-31 1988-02-18 Nec Kansai Ltd Pattern recognizer
JPH01187437A (en) * 1988-01-21 1989-07-26 Nikon Corp Defect inspection device
JPH04276514A (en) * 1991-03-05 1992-10-01 Anritsu Corp Noncontact displacement measuring apparatus
JPH0549297A (en) * 1991-08-16 1993-02-26 Fuji Electric Co Ltd Power supply switching control circuit
JPH085575A (en) * 1994-06-21 1996-01-12 Hitachi Electron Eng Co Ltd Method and apparatus for detecting foreign matter protrusion on color filter
JPH11183149A (en) * 1997-12-19 1999-07-09 Juki Corp Three-dimensional measurement apparatus
JPH11284038A (en) * 1998-03-27 1999-10-15 Mitsubishi Materials Silicon Corp Particle detection method and device thereof
JP2000337844A (en) * 1999-06-01 2000-12-08 Topcon Corp Apparatus and method for inspection of surface
JP2001066263A (en) * 1999-08-31 2001-03-16 Hitachi Electronics Eng Co Ltd Disk surface defect-inspecting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176903A (en) * 1984-09-21 1986-04-19 Fujitsu Ltd Parts inspecting instrument
JPS6337479A (en) * 1986-07-31 1988-02-18 Nec Kansai Ltd Pattern recognizer
JPH01187437A (en) * 1988-01-21 1989-07-26 Nikon Corp Defect inspection device
JPH04276514A (en) * 1991-03-05 1992-10-01 Anritsu Corp Noncontact displacement measuring apparatus
JPH0549297A (en) * 1991-08-16 1993-02-26 Fuji Electric Co Ltd Power supply switching control circuit
JPH085575A (en) * 1994-06-21 1996-01-12 Hitachi Electron Eng Co Ltd Method and apparatus for detecting foreign matter protrusion on color filter
JPH11183149A (en) * 1997-12-19 1999-07-09 Juki Corp Three-dimensional measurement apparatus
JPH11284038A (en) * 1998-03-27 1999-10-15 Mitsubishi Materials Silicon Corp Particle detection method and device thereof
JP2000337844A (en) * 1999-06-01 2000-12-08 Topcon Corp Apparatus and method for inspection of surface
JP2001066263A (en) * 1999-08-31 2001-03-16 Hitachi Electronics Eng Co Ltd Disk surface defect-inspecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162880A (en) * 2008-12-16 2010-07-29 Fujifilm Corp Method for manufacturing laminate
CN102854200A (en) * 2012-09-06 2013-01-02 北京京东方光电科技有限公司 Array substrate detection apparatus
CN102854200B (en) * 2012-09-06 2015-03-04 北京京东方光电科技有限公司 Array substrate detection apparatus

Also Published As

Publication number Publication date
JP4493428B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
CN100454511C (en) Apparatus and method of inspecting mura-defect and method of fabricating photomask
CN101046625A (en) Pattern defect inspection method, photomask manufacturing method, and display device substrate manufacturing method
JP2009139333A (en) Macro inspection device, and macro inspection method
JP2006284183A (en) Inspection device and imaging apparatus
CN108458972B (en) Light box structure and optical detection equipment applying same
JP4362335B2 (en) Inspection device
KR102011553B1 (en) Foreign matter checking apparatus, exposure apparatus and device manufacturing method
JP2008026306A (en) Pattern defect inspecting method, pattern defect inspecting apparatus, method for manufacturing photomask product and method for manufacturing substrate for display device
JP2007279047A (en) Optical inspection system
JP4493428B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JP2015137927A (en) imaging device and inspection system
JP2008268011A (en) Foreign matter inspection device
JP4679282B2 (en) Substrate inspection apparatus and substrate inspection method
JP5178281B2 (en) Substrate inspection apparatus and substrate inspection method
JP2005241586A (en) Inspection device and method for optical film
JP2011226939A (en) Method and device for inspecting substrate
JP2009174957A (en) Foreign matter detection method and foreign matter detector
JP4708292B2 (en) Substrate inspection apparatus and substrate inspection method
JP2009212382A (en) Proximity exposure device, substrate moving method of proximity exposure device and method of manufacturing displaying panel substrate
JP2007334212A (en) Inspection method and device for photomask
JP4688582B2 (en) Substrate positioning device
JP2013195378A (en) Liquid crystal inspection device
JP2005156416A (en) Method and apparatus for inspecting glass substrate
JP2006258649A (en) Surface inspection device
JP2003075364A (en) Device and method for inspecting defect

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees