JPH04276514A - Noncontact displacement measuring apparatus - Google Patents

Noncontact displacement measuring apparatus

Info

Publication number
JPH04276514A
JPH04276514A JP6239091A JP6239091A JPH04276514A JP H04276514 A JPH04276514 A JP H04276514A JP 6239091 A JP6239091 A JP 6239091A JP 6239091 A JP6239091 A JP 6239091A JP H04276514 A JPH04276514 A JP H04276514A
Authority
JP
Japan
Prior art keywords
displacement
light
optical system
measurement
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6239091A
Other languages
Japanese (ja)
Other versions
JP2816257B2 (en
Inventor
Kenji Matsumaru
松丸 憲司
Hideto Kondo
秀人 近藤
Atsuro Tanuma
敦郎 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP6239091A priority Critical patent/JP2816257B2/en
Publication of JPH04276514A publication Critical patent/JPH04276514A/en
Application granted granted Critical
Publication of JP2816257B2 publication Critical patent/JP2816257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure displacement highly accurately by obtaining the output of the displacement corresponding to the state of the surface regardless of the surface state of an object to be measured. CONSTITUTION:A displacement output signal S1 corresponding to displacement is obtained without contact with a main optical system 2 and a processing part 10 with respect to an object to be measured B. A scattered light detecting optical system 15 for detecting the scattered light W of the main optical system 2 is provided in the vicinity of the main optical system 2. The state of the surface of the object to be measured B is detected and outputted into a linear correcting part 20. The linear correcting part 20 generates correcting data S4 corresponding to the surface state of the object to be measured B and corrects the output of the displacement output signal S1. Thus, the highly accurate displacement measurement can be performed automatically regardless of the surface state of the object to be measured B.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、測定対象の変位量を非
接触で測定することができる非接触変位測定装置に関し
、特に測定対象の表面状態に関わらず、これに対応して
常に正確な変位量を測定することができる非接触変位測
定装置に関する。
[Field of Industrial Application] The present invention relates to a non-contact displacement measuring device capable of non-contactly measuring the amount of displacement of an object to be measured. The present invention relates to a non-contact displacement measuring device that can measure the amount of displacement.

【0002】0002

【従来の技術】測定対象の寸法、形状、振動、等の変位
測定は光学系を用いた非接触変位測定装置により高精度
に測定することができる。図4は従来の非接触変位測定
装置39の構成を示すブロック図であり、この図を用い
て変位の測定動作を説明すると、半導体レーザ40から
放射された光は照明レンズ41を通り細く絞られ、L1
の位置にある測定対象Bに照射され測定対象のb1の位
置に光スポットが形成される。測定対象Bの表面で反射
、散乱した光の一部を結像レンズ43でとらえ、光スポ
ットの像を光検出素子44の受光面上に投影すると、光
スポットの像がc1に形成される。
BACKGROUND OF THE INVENTION Displacement measurements of dimensions, shapes, vibrations, etc. of objects to be measured can be performed with high accuracy by non-contact displacement measuring devices using optical systems. FIG. 4 is a block diagram showing the configuration of a conventional non-contact displacement measurement device 39. Using this diagram to explain the displacement measurement operation, light emitted from a semiconductor laser 40 passes through an illumination lens 41 and is narrowed down. ,L1
The light beam is irradiated onto the measurement object B at the position , and a light spot is formed at the measurement object position b1. When a part of the light reflected and scattered by the surface of the measurement object B is captured by the imaging lens 43 and an image of the light spot is projected onto the light receiving surface of the photodetector element 44, an image of the light spot is formed at c1.

【0003】結像レンズ43で作られた反射点の像は、
測定対象Bが前後に移動すると、それに応じて光検出素
子44上を移動する。測定対象BがL2の位置に移動す
ると光スポットがb2の位置に移り、それに応じて結像
レンズ43で作られる光スポットの像も光検出素子44
上でc2に移動する。光検出素子44の両側の端子44
a,44bからは光スポットの像の光量と位置に依存し
た電流が発生する。この電流i1,i2は電圧変換され
、それぞれV1,V2とされ、図示しない処理部でV1
,V2の和と差の信号をつくり除算されると、像の光量
変化によらず光スポットの位置のみによって決まる変位
出力が得られる。光スポット位置(測定対象Bの位置)
と光スポットの像の位置は一定の関係をもつのでこの変
位出力により測定対象Bの位置を知ることができる。
The image of the reflection point created by the imaging lens 43 is
When the measurement target B moves back and forth, it moves on the photodetecting element 44 accordingly. When the measurement target B moves to the position L2, the light spot moves to the position b2, and accordingly, the image of the light spot created by the imaging lens 43 also changes to the light detection element 44.
Move to c2 above. Terminals 44 on both sides of the photodetector element 44
A and 44b generate currents that depend on the amount of light and the position of the image of the light spot. These currents i1 and i2 are converted into voltages and set to V1 and V2, respectively.
, V2 and are divided, a displacement output determined only by the position of the light spot without depending on the change in the light amount of the image is obtained. Light spot position (position of measurement target B)
Since there is a certain relationship between the position of the image of the light spot and the position of the image of the light spot, the position of the object B to be measured can be known from this displacement output.

【0004】0004

【発明が解決しようとする課題】ところで、測定範囲内
で、測定対象Bの位置を変化させたときに生ずる測定誤
差の許容値を直線性として定義しているが、この直線性
は、測定対象Bの表面状態により異なるものである。 尚、測定対象Bの標準試料としては鏡面を有する物体、
あるいは白色散乱体のいずれかが用いられている。した
がって、上記従来の非接触変位測定装置では、測定対象
Bの表面状態が場所により異なり反射率が変わる場合に
は、直線性が得られず、測定誤差を生じ正確な変位の測
定を行うことができなかった。上記欠点は、測定対象B
の表面状態を検知するセンサが提供されていないことも
要因となっている。
[Problem to be Solved by the Invention] By the way, linearity is defined as the allowable value of measurement error that occurs when the position of measurement object B is changed within the measurement range. It varies depending on the surface condition of B. Note that the standard sample for measurement target B is an object with a mirror surface,
Alternatively, either a white scatterer is used. Therefore, in the conventional non-contact displacement measuring device described above, if the surface condition of the measurement object B varies depending on the location and the reflectance changes, linearity cannot be obtained, measurement errors occur, and accurate displacement measurement cannot be performed. could not. The above drawback is that the measurement target B
Another factor is that there are no sensors available to detect the surface condition of the surface.

【0005】本発明は、上記課題を解決するためになさ
れたものであり、測定対象の表面状態を常時監視し、測
定対象の表面状態にかかわらず常に直線性を得ることが
でき高精度な変位測定を行うことができる非接触変位測
定装置を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and is capable of constantly monitoring the surface condition of the object to be measured, and achieving highly accurate displacement that can always obtain linearity regardless of the surface condition of the object to be measured. It is an object of the present invention to provide a non-contact displacement measuring device that can perform measurements.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明の非接触変位測定装置は、測定対象Bに対し光
学系を用いて非接触に変位を測定する非接触変位測定装
置において、測定対象に対し出射光N1を出射する投光
部3、及び測定対象からの反射光N2を受光する受光部
4が設けられた主光学系2と、該主光学系の近傍に設け
られ、測定対象の散乱光Wを偏光状態で透過する偏光フ
ィルタ17、及び受光素子18が設けられた散乱光検出
用光学系15と、前記主光学系の検出出力に基づき測定
対象の変位に対応する変位出力信号S1を出力する処理
部10と、前記散乱光検出用光学系の検出出力に基づき
測定対象の表面状態に対応する補正用データS4により
前記変位出力信号S1を補正出力する直線補正部20と
、を具備することを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the non-contact displacement measuring device of the present invention is a non-contact displacement measuring device that non-contactly measures displacement of a measurement object B using an optical system. A main optical system 2 is provided with a light projecting section 3 that emits the output light N1 to the measurement object, and a light receiving section 4 that receives the reflected light N2 from the measurement object; A polarizing filter 17 that transmits the scattered light W of the object in a polarized state, a scattered light detection optical system 15 provided with a light receiving element 18, and a displacement output corresponding to the displacement of the measurement object based on the detection output of the main optical system. a processing unit 10 that outputs a signal S1; a linear correction unit 20 that corrects and outputs the displacement output signal S1 using correction data S4 corresponding to the surface state of the measurement target based on the detection output of the scattered light detection optical system; It is characterized by having the following.

【0007】[0007]

【作用】測定対象Bは、表面状態が異なることにより直
線性が異なってくる。主光学系2、および処理部10で
測定対象Bの変位出力信号S1が得られる。さらに散乱
光検出用光学系15ではこの測定対象Bの散乱光に基づ
き表面状態を検出する。また、直線補正部20によりこ
の表面状態に対応した直線性の補正用データS4が得ら
れる。これにより、測定対象Bの表面状態が自動的に検
出でき、この表面状態に対応して補正した変位出力信号
S1を得ることができる。
[Operation] The measurement object B has different linearity due to different surface conditions. A displacement output signal S1 of the measurement object B is obtained by the main optical system 2 and the processing section 10. Furthermore, the scattered light detection optical system 15 detects the surface state of the object B based on the scattered light. Further, the linearity correction section 20 obtains linearity correction data S4 corresponding to this surface condition. Thereby, the surface condition of the measurement object B can be automatically detected, and the displacement output signal S1 corrected in accordance with this surface condition can be obtained.

【0008】[0008]

【実施例】図1は、本発明の非接触変位測定装置の実施
例を示すブロック図である。センサヘッド1には、主光
学系2としての投光部3、及び受光部4が設けられる。 投光部3には、所定波長(例えば780nm)の光を出
射する半導体レーザ5が設けられる。この半導体レーザ
5の出射光N1は照明レンズ6を通り細く絞られ測定対
象Bに光スポットbが照射される。受光部4は、結像レ
ンズ7、光検出素子8により構成され、結像レンズ7は
、測定対象Bの表面で反射した反射光N2の一部を捉え
、光スポットbの像を光検出素子8の受光面上のc部分
に投影する。ここで、出射光N1,反射光N2は測定対
象Bに対し所定角度Rを有して正反射の関係とされ、こ
のため投光部3、受光部4はこの所定角度Rに沿って配
置されている。
Embodiment FIG. 1 is a block diagram showing an embodiment of the non-contact displacement measuring device of the present invention. The sensor head 1 is provided with a light projecting section 3 as a main optical system 2 and a light receiving section 4. The light projection unit 3 is provided with a semiconductor laser 5 that emits light of a predetermined wavelength (for example, 780 nm). The emitted light N1 of the semiconductor laser 5 passes through an illumination lens 6 and is narrowed down to a narrow beam spot b to be irradiated onto the object B to be measured. The light receiving unit 4 is composed of an imaging lens 7 and a photodetecting element 8. The imaging lens 7 captures a part of the reflected light N2 reflected on the surface of the measurement object B, and transmits the image of the light spot b to the photodetecting element. The image is projected onto part c on the light-receiving surface of No.8. Here, the emitted light N1 and the reflected light N2 have a predetermined angle R with respect to the measurement target B, and are in a regular reflection relationship, and therefore the light projecting section 3 and the light receiving section 4 are arranged along this predetermined angle R. ing.

【0009】そして、結像レンズ7で作られた反射点の
像は、測定対象BのL1−L2方向の変位に対応する光
スポットb1−b2の移動に応じて光検出素子8上をc
1−c2方向に移動する。光検出素子8は、ポジション
センサによって構成されており、2つの端子8a,8b
からは光スポットbの像の光量と位置に依存した電流i
1,i2が出力される。この出力は、各々電流−電圧変
換部9a,9bで電圧信号V1,V2に変換後、処理部
10に出力される。
The image of the reflection point formed by the imaging lens 7 moves over the photodetector element 8 according to the movement of the light spot b1-b2 corresponding to the displacement of the object B in the L1-L2 direction.
Move in the 1-c2 direction. The photodetection element 8 is composed of a position sensor, and has two terminals 8a and 8b.
is a current i that depends on the light intensity and position of the image of light spot b.
1, i2 is output. These outputs are converted into voltage signals V1 and V2 by current-voltage conversion units 9a and 9b, respectively, and then output to a processing unit 10.

【0010】処理部10は、電圧信号V1,V2に基づ
きこれら電圧信号V1,V2の差を演算する減算部11
、和を演算する加算部12が前段に設けられる。さらに
減算部11、加算部12の出力は、除算部13に入力さ
れて除算演算され、直線化するリニア補正部14を介し
て出力される。これにより、測定対象Bの像の光量変化
に関わらず光スポットbの位置のみによって決まる変位
出力信号S1が得られる。
The processing section 10 includes a subtraction section 11 that calculates the difference between the voltage signals V1 and V2 based on the voltage signals V1 and V2.
, an adder 12 that calculates the sum is provided at the front stage. Further, the outputs of the subtraction section 11 and the addition section 12 are inputted to a division section 13, subjected to a division operation, and outputted via a linear correction section 14 for linearization. As a result, a displacement output signal S1 determined only by the position of the light spot b is obtained regardless of changes in the light amount of the image of the measurement object B.

【0011】上記センサヘッド1の主光学系2の中間部
分、つまり投光部3及び受光部4間には、散乱光検出用
光学系15が設けられる。散乱光検出用光学系15は、
測定対象Bに照射される出射光N1の散乱光Wを検出す
る。測定対象Bに向いて設けられる干渉フィルタ16は
、前記出射光N1の波長の光のみを透過させる。この干
渉フィルタ16に隣接して偏光フィルタ17が設けられ
、偏光された光が受光素子18に入射する。これにより
受光素子18は、測定対象Bの散乱光Wの受光レベル、
すなわち測定対象Bの表面状態に応じた散乱光出力信号
S2が得られる。
An optical system 15 for detecting scattered light is provided in an intermediate portion of the main optical system 2 of the sensor head 1, that is, between the light projecting section 3 and the light receiving section 4. The scattered light detection optical system 15 is
The scattered light W of the emitted light N1 irradiated onto the measurement object B is detected. The interference filter 16 provided facing the measurement target B transmits only the light having the wavelength of the emitted light N1. A polarizing filter 17 is provided adjacent to the interference filter 16, and polarized light enters the light receiving element 18. As a result, the light receiving element 18 detects the light receiving level of the scattered light W of the measurement object B,
That is, a scattered light output signal S2 corresponding to the surface condition of the measurement object B is obtained.

【0012】この散乱光出力S2は、直線補正部20に
入力される。直線補正部20は、散乱光出力S2を増幅
する増幅部24を介し、判別回路25に出力される。増
幅部24前段には検波部を設けてもよい。判別回路25
は、散乱光出力信号S2に基づき測定対象Bを判別する
。判別する測定対象Bは、光沢のある物体B1、散乱体
B2、光が内部に入り込む物体B3の3種類である。
This scattered light output S2 is input to the straight line correction section 20. The linear correction section 20 outputs the scattered light output S2 to the discrimination circuit 25 via the amplification section 24 that amplifies the scattered light output S2. A detection section may be provided before the amplification section 24. Discrimination circuit 25
determines the measurement target B based on the scattered light output signal S2. There are three types of measurement objects B to be determined: a shiny object B1, a scattering object B2, and an object B3 into which light enters.

【0013】図3に示すのは、表面状態が異なる各測定
対象B1,B2,B3の直線性を示すグラフである。そ
して、測定範囲(L1−L2;但し、L1は最長測定位
置、L2は最短測定位置、L0は測定範囲の中心)内に
おける前記変位出力信号S1は、各測定対象B1,B2
,B3の変位量に応じて各々直線性が異なる。光沢のあ
る物体B1は表面状態が全反射に近く、直線性は定範囲
全域にわたり傾きが緩やかで変化分が少ない。これに対
し光が内部に入り込む物体B3は吸収作用により近距離
測定になる程、誤差が拡大する右下がりの傾きが急な直
線性である。散乱体B2は、反射作用によりこれらの中
間特性を示している。
FIG. 3 is a graph showing the linearity of the measurement objects B1, B2, and B3 having different surface conditions. The displacement output signal S1 within the measurement range (L1-L2; where L1 is the longest measurement position, L2 is the shortest measurement position, and L0 is the center of the measurement range) is
, B3, the linearity differs depending on the amount of displacement. The surface state of the glossy object B1 is close to total reflection, and the linearity has a gentle slope over the entire fixed range with little variation. On the other hand, the object B3 into which light enters has linearity with a steeper downward slope to the right, where the error increases as the distance is measured due to the absorption effect. Scatterer B2 exhibits these intermediate characteristics due to the reflection effect.

【0014】ところで、散乱体B2と、光が内部に入り
込む物体B3は、通常、受光レベルのみで見た場合には
、ほぼ同一レベルであり判別が困難である。しかしなが
ら本発明者は、これら散乱体B2と、光が内部に入り込
む物体B3の散乱光Wは、それぞれ偏光状態が異なるこ
とを発見し、前記偏光フィルタ17を用いることにより
これらの受光レベルに差をもたせ受光素子18で検出を
行い散乱光出力信号S2を出力して判別回路25は各測
定対象B1,B2,B3のいずれであるかの判別を行う
ことができる。
By the way, the scatterer B2 and the object B3 into which light enters are usually at almost the same level when viewed only in terms of the light reception level, making it difficult to distinguish between them. However, the inventor discovered that the scattered light W of the scatterer B2 and the scattered light W of the object B3 into which the light enters have different polarization states, and by using the polarizing filter 17, it is possible to eliminate the difference in the level of received light. Detection is performed by the leaning light receiving element 18, and a scattered light output signal S2 is output, so that the discrimination circuit 25 can discriminate whether each object to be measured is B1, B2, or B3.

【0015】判別回路25は、この判別結果に基づき各
測定対象B1,B2,B3に対応した補正信号S3を補
正データ部26に出力する。補正データ部26には、予
め各測定対象B1,B2,B3毎に予想される直線性(
前記図3参照)に対応する補正データが記憶されている
。そして、補正信号S3の入力により各測定対象Bの直
線性に対応する補正用データS4をリニア補正部14に
出力する。これにより、リニア補正部14は、変位出力
信号S1を各測定対象B1,B2,B3の直線性に対応
させるべく補正して出力する。
The discrimination circuit 25 outputs a correction signal S3 corresponding to each of the measurement objects B1, B2, and B3 to the correction data section 26 based on the discrimination result. The correction data section 26 stores the expected linearity (
(see FIG. 3) is stored. Then, by inputting the correction signal S3, correction data S4 corresponding to the linearity of each measurement object B is output to the linear correction section 14. Thereby, the linear correction unit 14 corrects the displacement output signal S1 so as to correspond to the linearity of each of the measurement objects B1, B2, and B3, and outputs the corrected displacement output signal S1.

【0016】以上の構成により例えば、光が内部に入り
込む物体B3上に、光沢のある物体B1及び散乱体B2
がそれぞれ設けられた物体の厚さを測定する場合、主光
学系2は、測定箇所のいずれかの測定対象B1,B2,
B3に対して出射光N1を出射し、処理部10はこの反
射光N2により変位出力信号S1を出力する。同時に散
乱光検出用光学系15、直線補正部20により出射光N
1の散乱光Wを用いてこの測定箇所の測定対象が判別さ
れ、かつ生成される補正用データS4により前記変位出
力信号S1は測定箇所の測定対象Bの直線性に対応して
補正出力される。これにより、直線性が異なる測定対象
Bを連続して測定するときにこの測定を同一な特性で正
確に行うことができる。
With the above configuration, for example, a shiny object B1 and a scattering object B2 are placed on an object B3 into which light enters.
When measuring the thickness of an object provided with B1, B2,
Output light N1 is emitted to B3, and processing section 10 outputs displacement output signal S1 using this reflected light N2. At the same time, the scattered light detection optical system 15 and the straight line correction unit 20
The measurement object at this measurement point is determined using the scattered light W of 1, and the displacement output signal S1 is corrected and outputted in accordance with the linearity of the measurement object B at the measurement point using the generated correction data S4. . Thereby, when measuring objects B having different linearities are successively measured, this measurement can be performed accurately with the same characteristics.

【0017】次に、図2に示すのは、上記実施例の変形
例を示すブロック図である。この実施例では前記直線補
正部20の構成を変形している。判別回路25が出力す
る補正信号S3は、第1、第2の定数選択回路27a,
27bに夫々入力される。これら第1、第2の定数選択
回路27a,27bは、図3に示す各測定対象B(B1
,B2,B3)の1次直線の算式y=Bax+d(y;
変位出力信号S1,B;各測定対象,x;測定対象の変
位,a;定数(測定対象毎の直線の傾き),d;測定対
象Bの変位0のときの誤差0に対するオフセット値)に
おけるパラメータB,dを記憶している。
Next, FIG. 2 is a block diagram showing a modification of the above embodiment. In this embodiment, the configuration of the linear correction section 20 is modified. The correction signal S3 outputted by the discrimination circuit 25 is transmitted to the first and second constant selection circuits 27a,
27b, respectively. These first and second constant selection circuits 27a and 27b are connected to each measurement object B (B1
, B2, B3) of the linear straight line y=Bax+d(y;
Displacement output signal S1, B: each measurement object, x: displacement of the measurement object, a: constant (slope of straight line for each measurement object), d: offset value for error 0 when displacement of measurement object B is 0). B and d are memorized.

【0018】そして前記リニア補正部14の出力は、感
度補正回路28に入力されるとともに、この感度補正回
路28には第1の定数選択回路27aの信号が入力され
、直線性の傾き分を補正してオフセット回路29に出力
される。オフセット回路29には第2の定数選択回路2
7bの信号が入力され、直線性のオフセット値分を補正
して最終的な変位出力信号S1を出力する。これにより
、補正信号S3により各測定対象B1,B2,B3毎に
対応した直線性を有する変位出力信号S1を得ることが
できる。
The output of the linear correction section 14 is input to a sensitivity correction circuit 28, and the signal from the first constant selection circuit 27a is input to this sensitivity correction circuit 28, and the slope of the linearity is corrected. and output to the offset circuit 29. The offset circuit 29 includes a second constant selection circuit 2.
The signal 7b is input, the linearity offset value is corrected, and the final displacement output signal S1 is output. Thereby, it is possible to obtain a displacement output signal S1 having linearity corresponding to each of the measurement objects B1, B2, and B3 using the correction signal S3.

【0019】[0019]

【発明の効果】本発明によれば、測定対象の変位は、測
定対象の表面状態を検出する散乱光検出用光学系、さら
にこの散乱光検出用光学系の出力に基づきこの表面状態
に対応する直線性で補正して出力する直線補正部を備え
た構成であり、測定対象の表面状態を自動的に検出し常
に最適な直線性を得ることができ、これにより変位測定
を高精度に行うことができる。
According to the present invention, the displacement of the object to be measured corresponds to the surface condition based on the scattered light detection optical system that detects the surface condition of the object to be measured, and the output of the scattered light detection optical system. It is equipped with a linear correction section that corrects and outputs linearity, and automatically detects the surface condition of the measurement target and always obtains optimal linearity.This allows displacement measurement to be performed with high precision. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の非接触変位測定装置の実施例を示すブ
ロック図。
FIG. 1 is a block diagram showing an embodiment of a non-contact displacement measuring device of the present invention.

【図2】同装置の他の実施例を示すブロック図。FIG. 2 is a block diagram showing another embodiment of the device.

【図3】表面状態が異なる測定対象の直線性を示すグラ
フ。
FIG. 3 is a graph showing the linearity of measurement objects with different surface conditions.

【図4】従来の非接触変位測定装置の構成を示すブロッ
ク図。
FIG. 4 is a block diagram showing the configuration of a conventional non-contact displacement measuring device.

【符号の説明】[Explanation of symbols]

1…センサヘッド、2…主光学系、3…投光部、4…受
光部、5…半導体レーザ、6…照明レンズ、7…結像レ
ンズ、8…光検出素子、9a,9b…電流−電圧変換部
、10…処理部、11…減算部、12…加算部、13…
除算部、14…リニア補正部、15…散乱光検出用光学
系、16…干渉フィルタ、17…偏光フィルタ、18…
受光素子、20…直線補正部、24…増幅部、25…判
別回路、26…補正データ部、27a…第1の定数選択
回路、27b…第2の定数選択回路、28…感度補正回
路、29…オフセット回路、B(B1,B2,B3)…
測定対象、b…光スポット、N1…出射光、N2…反射
光、W…散乱光、S1…変位出力信号、S2…散乱光出
力信号、S3…補正信号、S4…補正用データ。
DESCRIPTION OF SYMBOLS 1...Sensor head, 2...Main optical system, 3...Light emitter, 4...Light receiving part, 5...Semiconductor laser, 6...Illumination lens, 7...Imaging lens, 8...Photodetection element, 9a, 9b...Current - Voltage conversion section, 10... Processing section, 11... Subtraction section, 12... Addition section, 13...
Dividing unit, 14... Linear correction unit, 15... Optical system for detecting scattered light, 16... Interference filter, 17... Polarizing filter, 18...
Light receiving element, 20... Linear correction section, 24... Amplification section, 25... Discrimination circuit, 26... Correction data section, 27a... First constant selection circuit, 27b... Second constant selection circuit, 28... Sensitivity correction circuit, 29 ...Offset circuit, B (B1, B2, B3)...
Measurement object, b...light spot, N1...outgoing light, N2...reflected light, W...scattered light, S1...displacement output signal, S2...scattered light output signal, S3...correction signal, S4...data for correction.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  測定対象(B)に対し光学系を用いて
非接触に変位を測定する非接触変位測定装置において、
測定対象に対し出射光(N1)を出射する投光部(3)
、及び測定対象からの反射光(N2)を受光する受光部
(4)が設けられた主光学系(2)と、該主光学系の近
傍に設けられ、測定対象の散乱光(W)を偏光状態で透
過する偏光フィルタ(17)、及び受光素子(18)が
設けられた散乱光検出用光学系(15)と、前記主光学
系の検出出力に基づき測定対象の変位に対応する変位出
力信号(S1)を出力する処理部(10)と、前記散乱
光検出用光学系の検出出力に基づき測定対象の表面状態
に対応する補正用データ(S4)により前記変位出力信
号(S1)を補正出力する直線補正部(20)と、を具
備することを特徴とする非接触変位測定装置。
Claim 1: A non-contact displacement measurement device that non-contactly measures displacement of a measurement object (B) using an optical system, comprising:
Light projection unit (3) that emits the output light (N1) to the measurement target
, and a main optical system (2) provided with a light receiving section (4) that receives the reflected light (N2) from the measurement target, and a main optical system (2) that is provided near the main optical system and receives the scattered light (W) of the measurement target. a scattered light detection optical system (15) provided with a polarizing filter (17) that transmits in a polarized state and a light receiving element (18); and a displacement output corresponding to the displacement of the measurement target based on the detection output of the main optical system. The displacement output signal (S1) is corrected by a processing unit (10) that outputs a signal (S1) and correction data (S4) corresponding to the surface condition of the measurement target based on the detection output of the scattered light detection optical system. A non-contact displacement measuring device, comprising: a straight line correction section (20) that outputs an output.
JP6239091A 1991-03-05 1991-03-05 Non-contact displacement measuring device Expired - Fee Related JP2816257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6239091A JP2816257B2 (en) 1991-03-05 1991-03-05 Non-contact displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6239091A JP2816257B2 (en) 1991-03-05 1991-03-05 Non-contact displacement measuring device

Publications (2)

Publication Number Publication Date
JPH04276514A true JPH04276514A (en) 1992-10-01
JP2816257B2 JP2816257B2 (en) 1998-10-27

Family

ID=13198757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6239091A Expired - Fee Related JP2816257B2 (en) 1991-03-05 1991-03-05 Non-contact displacement measuring device

Country Status (1)

Country Link
JP (1) JP2816257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030118A (en) * 2004-07-21 2006-02-02 Hitachi High-Tech Electronics Engineering Co Ltd Foreign matter inspecting device and foreign matter inspection method
JP2013036972A (en) * 2011-07-13 2013-02-21 New Japan Radio Co Ltd Position detection device using reflection type photo sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030118A (en) * 2004-07-21 2006-02-02 Hitachi High-Tech Electronics Engineering Co Ltd Foreign matter inspecting device and foreign matter inspection method
JP4493428B2 (en) * 2004-07-21 2010-06-30 株式会社日立ハイテクノロジーズ Foreign matter inspection apparatus and foreign matter inspection method
JP2013036972A (en) * 2011-07-13 2013-02-21 New Japan Radio Co Ltd Position detection device using reflection type photo sensor

Also Published As

Publication number Publication date
JP2816257B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US6538751B2 (en) Image capturing apparatus and distance measuring method
KR101360252B1 (en) A reflection type optics sensor and a surface coarseness detection method of the measurement side
JPH04276514A (en) Noncontact displacement measuring apparatus
JPH07248374A (en) Distance measuring device
CN101320218B (en) Three scanning type silicon slice focusing and leveling measurement apparatus, system and method
JP3439521B2 (en) Photoelectric sensor
JPH06307816A (en) Non-contact plate width measuring device
JP2522191B2 (en) IC lead height measuring device
JPH05288688A (en) Method and apparatus for inspecting foreign matter
JPH07113547B2 (en) Sample plane position measuring device
JPH10103915A (en) Apparatus for detecting position of face
JPH04364414A (en) Distance-measuring device
JPH07181006A (en) Laser length measuring equipment
JPH0642168Y2 (en) Smoothness / Glossiness meter
JP3479515B2 (en) Displacement measuring device and method
JPH0560557A (en) Optical method and device for measuring micro displacement
JPS623609A (en) Range finder
JPH0534120A (en) Method and apparatus for measuring shape of surface
JP2970250B2 (en) Distance measuring device
JP2502413B2 (en) Non-contact displacement measuring device
JPH02302605A (en) Apparatus for measuring size of outer diameter
JPS6264904A (en) Apparatus for measuring shape
JPH05215524A (en) Laser-type height measuring apparatus
JPH0510717A (en) Position and displacement measuring apparatus
JPS63243715A (en) Non-contact measuring apparatus for distance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees