JPH05288688A - Method and apparatus for inspecting foreign matter - Google Patents

Method and apparatus for inspecting foreign matter

Info

Publication number
JPH05288688A
JPH05288688A JP11845592A JP11845592A JPH05288688A JP H05288688 A JPH05288688 A JP H05288688A JP 11845592 A JP11845592 A JP 11845592A JP 11845592 A JP11845592 A JP 11845592A JP H05288688 A JPH05288688 A JP H05288688A
Authority
JP
Japan
Prior art keywords
light
transmittance
foreign matter
polarized beam
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11845592A
Other languages
Japanese (ja)
Other versions
JP3168480B2 (en
Inventor
Fumitomo Hayano
史倫 早野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11845592A priority Critical patent/JP3168480B2/en
Priority to US08/044,197 priority patent/US5436464A/en
Publication of JPH05288688A publication Critical patent/JPH05288688A/en
Application granted granted Critical
Publication of JP3168480B2 publication Critical patent/JP3168480B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To correct the sensitivity of the detected signal of scattered light by using both of the polarized-light-beam transmittance of a light transmitting member corresponding to an incident angle by scanning and the non-polarized-light-beam transmittance of the light transmitting member corresponding to the emitting angle of the detecting light path of the scattered light by the scanning. CONSTITUTION:In the detection of foreign matter on a circuit pattern, a polarized light beam is made to scan on the circuit pattern through a pellicle film 1, and the scattered light generated from the foreign matter, on which the polarized light beam is applied is detected through the pellicle film 1. The foreign matter is judged based on the size of the detected signal of the scattered light. A correcting circuit 12 accumulates the polarized-light-beam transmittance of the pellicle film 1 corresponding to the incident angle and the scattered transmittance of the pellicle film 1 corresponding to the emitting angle of the detecting light path of the scattered light for every fluctuating position X of the polarized light beam. The reciprocal of the product value of the poralized-light-beam transmittance and the non-polarized-light-beam transmittance, which are read out at the position X, is multiplied with the detected signal of the scattered light from a photoelectric detector 13, and the correcting operation is performed. A transmittance operating circuit 14 operates the polarized-light-beam transmittance from the output of a detector 34 and the non-polarized-beam transmittance from the output of a detector 35 in reference to the output of a detector 39.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光透過性部材を装着し
た被検査面で偏光ビ−ムを走査し、光透過性部材を介し
て被検査面上の異物からの散乱光を検出し、前記散乱光
の検出信号で前記異物を判別する異物検査装置、例え
ば、ペリクル膜を装着した半導体製造用マスク(レチク
ル)の回路パタ−ン面における異物検出を行うための異
物検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a scattered light from a foreign substance on a surface to be inspected through the light transmissive member by scanning a polarized beam on the surface to be inspected on which the light transmissive member is mounted. The present invention relates to a foreign substance inspection device for determining the foreign substance based on the detection signal of the scattered light, for example, a foreign substance inspection device for detecting a foreign substance on the circuit pattern surface of a semiconductor manufacturing mask (reticle) having a pellicle film mounted thereon.

【0002】[0002]

【従来の技術】被検査面で偏光ビ−ムを走査し、被検査
面上の異物からの散乱光を検出光学系で検出し、散乱光
の検出信号のレベルで前記異物の大きさを判別する異物
検査方法が種々の用途に実用化されている。例えば、半
導体製造用マスク(レチクル)の回路パタ−ン面におけ
る異物検出を行うための異物検査装置が、ウェハ上に形
成される回路パタ−ンの欠陥を未然に阻止する目的で採
用されている。
2. Description of the Related Art A polarizing beam is scanned on a surface to be inspected, scattered light from a foreign matter on the surface to be inspected is detected by a detection optical system, and the size of the foreign matter is discriminated by the level of a detection signal of the scattered light. The foreign material inspection method that has been put to practical use has been put to practical use for various purposes. For example, a foreign matter inspection apparatus for detecting foreign matter on the circuit pattern surface of a semiconductor manufacturing mask (reticle) is employed for the purpose of preventing defects in the circuit pattern formed on the wafer. ..

【0003】このような異物検出を行うべき被検査面
は、一般的に、常時高度な清浄度が要求される。少々清
浄度に欠ける環境下においては、被検査面に新たな異物
が追加されたり、酸化等の不必要な化学反応が起きたり
しないように、被検査面に光透過性部材が装着される場
合がある。例えば、半導体製造用マスクの場合、回路パ
タ−ンの周囲に支持枠を配置してペリクル膜を張設し、
回路パタ−ンを外界から遮断する技術が既に実用化され
ている。
Generally, the surface to be inspected for detecting such foreign matter is required to have a high degree of cleanliness. When a light-transmissive member is attached to the surface to be inspected so that new foreign matter is not added to the surface to be inspected or unnecessary chemical reaction such as oxidation does not occur in an environment where the cleanliness is a little poor There is. For example, in the case of a semiconductor manufacturing mask, a supporting frame is arranged around the circuit pattern and a pellicle film is stretched,
A technique for cutting off a circuit pattern from the outside has already been put into practical use.

【0004】光透過性部材を装着した被検査面について
異物検出を行う場合、検査光を光透過性部材を介して被
検査面に入射させ、被検査面上の異物からの散乱光は、
光透過性部材を介して検出光学系に入射する。ここで、
光透過性部材を透過した検査光によって発生した散乱光
の強度は、光透過性部材が装着されていない被検査面上
に付着した同程度の異物で発生する散乱光の強度と比較
して、光透過性部材の検査光に対する透過率分にまで低
下する。さらに、光透過性部材を透過して検出光学系に
入射する散乱光の強度は、光透過性部材を透過する際
に、光透過性部材の散乱光に対する透過率分にまで低下
する。従って、光透過性部材を装着した被検査面上の異
物による検出信号のレベルは、光透過性部材が装着され
ていない被検査面上の同程度の異物による検出信号のレ
ベルに、光透過性部材の検査光に対する透過率と光透過
性部材の散乱光に対する透過率とをかけた分にまで低下
している。
When foreign matter is detected on the surface to be inspected on which the light transmissive member is mounted, the inspection light is made incident on the surface to be inspected through the light transmissive member, and scattered light from the foreign matter on the surface to be inspected is
The light enters the detection optical system through the light transmissive member. here,
The intensity of scattered light generated by the inspection light transmitted through the light transmissive member is greater than the intensity of scattered light generated by a foreign substance of the same size attached on the surface to be inspected on which the light transmissive member is not attached, The transmittance of the light transmissive member with respect to the inspection light is reduced. Furthermore, the intensity of the scattered light that passes through the light transmissive member and enters the detection optical system is reduced to the transmittance of the light transmissive member for the scattered light when passing through the light transmissive member. Therefore, the level of the detection signal due to the foreign matter on the surface to be inspected on which the light transmissive member is mounted is the same as the level of the detection signal due to the foreign matter on the surface to be inspected on which the light transmissive member is not mounted. It is as low as the product of the transmittance of the member for the inspection light and the transmittance of the light transmissive member for the scattered light.

【0005】従って、光透過性部材を装着した被検査面
上の異物と光透過性部材が装着されていない被検査面上
の同程度の異物の大きさを等しく判別するためには、光
透過性部材を装着した被検査面上の異物による検出信号
を[1/(光透過性部材の検査光に対する透過率×光透
過性部材の散乱光に対する透過率)]倍に補正演算する
必要がある。
Therefore, in order to determine the size of a foreign matter on the surface to be inspected on which the light transmissive member is mounted and the size of a foreign material on the surface to be inspected on which the light transmissive member is not mounted to be equal, It is necessary to correct and calculate the detection signal due to the foreign matter on the surface to be inspected on which the transparent member is mounted by [1 / (transmittance of the light transmissive member with respect to inspection light x transmittance of the light transmissive member with respect to scattered light)] times. ..

【0006】しかし、光透過性部材の検査光に対する透
過率は、検査光の入射角度に応じて変化し、光透過性部
材の散乱光に対する透過率は、散乱光の検出光学系に向
う出射角度に応じて変化する。検査光の入射角度と散乱
光の検出光学系に向う出射角度は、検査光の走査位置に
応じてそれぞれ異なり、特に、光透過性部材の厚さが検
査光の波長程度で検査光が単色光の場合には、光透過性
部材の厚さによる波長選択性が加算される。このため、
入射角度が少しでも異なると光透過性部材の検査光に対
する透過率が大幅に変化し、検出光学系に向う出射角度
が少しでも異なると光透過性部材の散乱光に対する透過
率が大幅に変化する。言い換えれば、光透過性部材を装
着した同じ被検査面上の同程度の異物でも異なった走査
位置に付着していれば検出信号のレベルが大きく異な
る。
However, the transmittance of the light transmissive member for the inspection light changes depending on the incident angle of the inspection light, and the transmittance of the light transmissive member for the scattered light is the emission angle of the scattered light toward the detection optical system. Change according to. The incident angle of the inspection light and the emission angle of the scattered light toward the detection optical system differ depending on the scanning position of the inspection light. Especially, the thickness of the light transmissive member is about the wavelength of the inspection light and the inspection light is a monochromatic light. In this case, the wavelength selectivity due to the thickness of the light transmissive member is added. For this reason,
If the incident angle is slightly different, the transmittance of the light transmissive member for the inspection light changes significantly, and if the output angle toward the detection optical system is slightly different, the transmittance of the light transmissive member for the scattered light changes significantly. .. In other words, the level of the detection signal is significantly different if the same foreign matter on the same surface to which the light-transmissive member is attached adheres to different scanning positions.

【0007】そこで、被検査面上の各走査位置につい
て、光透過性部材の検査光に対する透過率と光透過性部
材の散乱光に対する透過率とを予め設定しておき、走査
位置に応じて検出信号を補正演算する異物検査方法が提
案されている。
Therefore, at each scanning position on the surface to be inspected, the transmittance of the light transmissive member for the inspection light and the transmittance of the light transmissive member for the scattered light are set in advance and detected according to the scanning position. A foreign matter inspection method for correcting and calculating a signal has been proposed.

【0008】走査位置に応じて検出信号を補正演算する
異物検査装置の例が特開昭63−208746号公報に
示される。ここでは、ペリクル膜を装着した半導体製造
用マスク(レチクル)の回路パタ−ン上の異物検出が行
われ、X方向にレ−ザビ−ムを走査しながらY方向に被
検査面(レチクル)を送り、レ−ザビ−ム送光系に対し
て位置関係を固定して配置した複数の光電検出器によっ
て、被検査面上の異物からの散乱光を検出している。こ
こでは、X方向の走査位置に対してレ−ザビ−ムの入射
角度と光電検出器に入射する散乱光の出射角度の両方が
一対一に対応するから、X方向の走査位置を指定すれ
ば、レ−ザビ−ムの入射時の透過率と散乱光の出射時の
透過率の両方が確定し、予めメモリに蓄えておいたこれ
ら2種類の透過率を呼び出して散乱光の検出信号を補正
している。例えば、これら2種類の透過率が60%と5
0%であれば、ペリクル膜の無い場合に比較して検出信
号のレベルが30%(0.6×0.5)に低下している
ことになり、検出信号は自動的に(1/0.3)倍に増
幅される。
An example of a foreign matter inspection device for correcting and calculating a detection signal according to a scanning position is shown in Japanese Patent Laid-Open No. 63-208746. Here, foreign matter is detected on a circuit pattern of a semiconductor manufacturing mask (reticle) having a pellicle film mounted thereon, and a surface to be inspected (reticle) is scanned in the Y direction while scanning the laser beam in the X direction. The scattered light from the foreign matter on the surface to be inspected is detected by a plurality of photoelectric detectors arranged in a fixed positional relationship with respect to the sending and laser beam sending system. Here, since both the incident angle of the laser beam and the outgoing angle of the scattered light incident on the photoelectric detector have a one-to-one correspondence with the scanning position in the X direction, if the scanning position in the X direction is designated. , The transmittance at the time of entering the laser beam and the transmittance at the time of emitting the scattered light are both determined, and these two types of transmittance stored in the memory in advance are called to correct the scattered light detection signal. is doing. For example, the transmittance of these two types is 60% and 5
If it is 0%, the level of the detection signal is reduced to 30% (0.6 × 0.5) as compared with the case without the pellicle film, and the detection signal is automatically (1/0 . 3) It is amplified twice.

【0009】そして、ここで用いられる2種類の透過率
は、異物検出に先立って行われる実測操作を通じてメモ
リに蓄えられる。すなわち、実際の異物検査時における
レ−ザビ−ム送光系と被検査面(レチクル)の位置関係
によって定まるレ−ザビ−ムの入射角度の範囲と、レ−
ザビ−ム送光系と被検査面と検出光学系の位置関係によ
って定まる光電検出器に入射する散乱光の出射角度の範
囲とに相当する2つの角度グル−プが設定される。2つ
の角度グル−プの中のそれぞれの角度で実際の検査光
(レ−ザビ−ム)を実際の光透過性部材(ペリクル膜)
に入射して、2つの角度グル−プにおける検査光(レ−
ザビ−ム)に対する光透過性部材の透過率が実測され
る。なお、2つの角度グル−プ内の最小値から最大値ま
での範囲内で例えば1度単位で透過率を実測してもよ
い。
The two types of transmittance used here are stored in the memory through the actual measurement operation performed prior to the foreign matter detection. That is, the range of the incident angle of the laser beam determined by the positional relationship between the laser beam transmitting system and the surface to be inspected (reticle) during the actual foreign matter inspection, and the laser
Two angle groups are set, which correspond to the range of the emission angle of the scattered light incident on the photoelectric detector, which is determined by the positional relationship between the beam transmitting system, the surface to be inspected, and the detection optical system. Actual inspection light (laser beam) is emitted at each angle of the two angle groups, and an actual light transmitting member (pellicle film) is used.
Incident on the inspection light (ray) at two angle groups.
The transmittance of the light transmissive member with respect to the beam is measured. The transmittance may be measured in units of 1 degree within the range from the minimum value to the maximum value in the two angle groups.

【0010】[0010]

【発明が解決しようとする課題】特開昭63−2087
46号公報の異物検査装置によれば、走査の各位置ごと
に検出信号が補正される。このため、異なった走査位置
に付着した2つの異物を検出信号で正確に判別でき、光
透過性部材を装着した被検査面上の異物と光透過性部材
が装着されていない被検査面上の異物とを検出信号で正
確に判別できる。しかしながら、偏光ビ−ムを用いて異
物検出を行う場合には、特開昭63−208746号公
報に示される方法で実測された透過率では正確な補正が
できなくなることが判明した。
Problems to be Solved by the Invention JP-A-63-2087
According to the foreign matter inspection apparatus of Japanese Patent No. 46, the detection signal is corrected for each scanning position. Therefore, it is possible to accurately discriminate two foreign matters attached to different scanning positions by the detection signal, and the foreign matter on the surface to be inspected on which the light transmissive member is mounted and the foreign matter on the surface to be inspected on which the light transmissive member is not mounted. The foreign matter can be accurately discriminated by the detection signal. However, when foreign matter is detected using a polarized beam, it has been found that the transmittance actually measured by the method disclosed in JP-A-63-208746 cannot be accurately corrected.

【0011】一般にレ−ザ光は特定の偏光方向を持つも
のが多用されており、また、被検査面に対する特定の偏
光方向を設定した偏光ビ−ムは、被検査面上の回路パタ
−ンによる検出信号と比較して、異物による検出信号を
相対的に強め、被検査面における異物の存在を際立たせ
る目的のために採用される場合もある。しかしながら、
偏光ビ−ムで照射されても、異物の不規則な反射面によ
る散乱光は偏光状態が崩れており、同一入射角度におけ
る光透過性部材の偏光ビ−ム透過率と散乱光透過率は大
きく異なる(図3参照)。
In general, laser light having a specific polarization direction is often used, and a polarization beam having a specific polarization direction with respect to a surface to be inspected is a circuit pattern on the surface to be inspected. In some cases, it is used for the purpose of relatively strengthening the detection signal of the foreign matter as compared with the detection signal of the above-mentioned one, and making the presence of the foreign matter on the surface to be inspected stand out. However,
Even when irradiated with a polarized beam, the scattered light from the irregular reflection surface of the foreign matter has its polarization state collapsed, and the polarized beam transmittance and scattered light transmittance of the light transmissive member at the same incident angle are large. Different (see Figure 3).

【0012】従って、検査光(偏光ビ−ム)を光透過性
部材に入射して計測した透過率を散乱光透過率とみなし
て散乱光の検出信号を補正演算する特開昭63−208
746号公報の方法では、被検査面上の異物のサイズに
対する検出信号の大きさの誤差が拡大してしまい、検出
信号による、光透過性部材が装着されていない被検査面
上の異物との判別や、同じ被検査面上の異なった走査位
置に付着した異物同士の判別が正確でなくなる。
Therefore, the transmittance measured by injecting the inspection light (polarization beam) into the light transmissive member is regarded as the scattered light transmittance, and the scattered light detection signal is corrected and calculated.
In the method disclosed in Japanese Patent No. 746, the error in the magnitude of the detection signal with respect to the size of the foreign matter on the surface to be inspected is increased, and the detection signal causes the foreign matter on the surface to be inspected on which the light transmissive member is not attached. The discrimination and the discrimination between the foreign matters attached to different scanning positions on the same surface to be inspected are not accurate.

【0013】本発明は、偏光ビ−ムを検査光に用いる場
合について、異物による散乱光の透過率とみなされる光
透過性部材の透過率を用いる異物検出方法、および異物
による散乱光の透過率とみなされる光透過性部材の透過
率を正確に計測できる異物検査装置、すなわち、特開昭
63−208746号公報の異物検査装置よりも正確に
検出信号を補正できる異物検出方法、および異物検査装
置を提供することを目的としている。
The present invention relates to a foreign matter detection method using the transmittance of a light transmissive member, which is regarded as the transmittance of scattered light due to foreign matter, when using a polarized beam for inspection light, and the transmittance of scattered light due to foreign matter. The foreign matter inspection apparatus capable of accurately measuring the transmittance of the light transmissive member regarded as, that is, the foreign matter detection method and the foreign matter inspection apparatus capable of correcting the detection signal more accurately than the foreign matter inspection apparatus disclosed in Japanese Patent Laid-Open No. 63-208746. Is intended to provide.

【0014】[0014]

【課題を解決するための手段】請求項1の異物検出方法
は、光透過性部材を装着した被検査面で偏光ビ−ムを走
査し、光透過性部材を介して被検査面上の異物からの散
乱光を検出し、前記散乱光の検出信号で前記異物を判別
する異物検査方法において、前記走査による入射角度に
応じた光透過性部材の偏光ビ−ム透過率と、前記走査に
よる散乱光の検出光路の出射角度に応じた光透過性部材
の非偏光透過率の両方を用いて前記散乱光の検出信号の
感度を補正する方法である。
A foreign matter detecting method according to claim 1, wherein a polarization beam is scanned on a surface to be inspected on which a light transmissive member is mounted, and the foreign matter on the surface to be inspected is passed through the light transmissive member. In the foreign matter inspection method for detecting scattered light from a light source and discriminating the foreign matter by the detection signal of the scattered light, the polarization beam transmittance of the light transmissive member according to the incident angle by the scanning and the scattering by the scanning. It is a method of correcting the sensitivity of the detection signal of the scattered light by using both the non-polarized transmittance of the light transmissive member according to the emission angle of the detection light path of light.

【0015】請求項2の異物検出方法は、請求項1の異
物検査方法において、前記非偏光透過率として前記偏光
ビ−ムとほぼ同一波長の非偏光ビ−ムに対する透過率を
用いる方法である。
The foreign matter detecting method according to a second aspect is the method for inspecting a foreign matter according to the first aspect, wherein the non-polarizing beam having a wavelength substantially the same as that of the polarizing beam is used as the non-polarizing beam transmittance. ..

【0016】請求項3の異物検査装置は、光透過性部材
を装着した被検査面で偏光ビ−ムを走査し、光透過性部
材を介して被検査面上の異物からの散乱光を検出し、前
記散乱光の検出信号で前記異物を判別する異物検査装置
において、前記走査による入射角度に応じた光透過性部
材の偏光ビ−ムに対する透過率を実測する第1計測手段
と、前記走査による前記散乱光の検出光路の出射角度に
応じた光透過性部材の前記偏光ビ−ムとほぼ同一波長の
非偏光ビ−ムに対する透過率を実測する第2計測手段
と、求められた前記偏光ビ−ムに対する透過率と前記非
偏光ビ−ムに対する透過率の両方を用いて前記散乱光の
検出信号を補正する補正演算回路と、を有するものであ
る。
According to another aspect of the present invention, there is provided a foreign matter inspection device which scans a polarized beam on a surface to be inspected having a light transmissive member, and detects scattered light from the foreign matter on the surface to be inspected through the light transmissive member. In the foreign matter inspecting apparatus for discriminating the foreign matter based on the detection signal of the scattered light, first measuring means for actually measuring the transmittance of the light transmissive member with respect to the polarized beam depending on the incident angle of the scanning, and the scanning. Second measuring means for actually measuring the transmittance of the light-transmissive member for the non-polarized beam having substantially the same wavelength as the polarized beam according to the outgoing angle of the detected light path of the scattered light by the above-mentioned polarized light. And a correction operation circuit for correcting the detection signal of the scattered light by using both the transmittance for the beam and the transmittance for the non-polarized beam.

【0017】請求項4の異物検査装置は、請求項3の異
物検査装置において、前記第2計測手段は、偏光ビ−ム
の偏光を解除して非偏光ビ−ムに変換する偏光解除手段
と、該非偏光ビ−ムを走査による散乱光の検出光路の出
射角度に応じた角度で光透過性部材に入射させて正反射
光の強度を検出する計測光学系と、該反射光の強度から
非偏光ビ−ムに対する透過率を算出する非偏光ビ−ム透
過率演算回路と、を含むものである。
A foreign matter inspection apparatus according to a fourth aspect is the foreign matter inspection apparatus according to the third aspect, wherein the second measuring means includes a depolarizing means for depolarizing the polarized beam to convert it into a non-polarized beam. , A measuring optical system for detecting the intensity of specularly reflected light by causing the non-polarizing beam to enter a light transmissive member at an angle corresponding to the exit angle of the scattered light detecting optical path by scanning, and And a non-polarization beam transmittance calculation circuit for calculating the transmittance for the polarized beam.

【0018】請求項5の異物検査装置は、請求項3の異
物検査装置において、前記第1計測手段は、被検査面に
走査される偏光ビ−ムの光透過性部材による正反射光の
強度を検出する走査反射光検出器と、該反射光の強度か
ら偏光ビ−ムに対する透過率を算出する偏光ビ−ム透過
率演算回路と、を含むものである。
A foreign matter inspection apparatus according to a fifth aspect is the foreign matter inspection apparatus according to the third aspect, wherein the first measuring means is the intensity of specularly reflected light by the light transmissive member of the polarized beam scanned on the surface to be inspected. A scanning reflected light detector for detecting the light intensity, and a polarized beam transmittance calculation circuit for calculating the transmittance for the polarized beam from the intensity of the reflected light.

【0019】請求項6の異物検査装置は、請求項4の異
物検査装置において、計測光学系を、1つ以上の代表角
度で非偏光ビ−ムを光透過性部材に入射させて正反射光
の強度を検出するもの、また、非偏光ビ−ム透過率演算
回路を、該代表角度での透過率から補正演算回路で必要
な全部の非偏光ビ−ムに対する透過率を類推演算するも
のとしたものである。
A foreign matter inspection apparatus according to a sixth aspect of the present invention is the foreign matter inspection apparatus according to the fourth aspect, in which a non-polarizing beam is made incident on the light transmissive member at one or more representative angles of the measurement optical system. Of the non-polarizing beam, and a non-polarizing beam transmittance calculating circuit for calculating the transmittance of all the non-polarizing beams necessary for the correction calculating circuit from the transmittance at the representative angle. It was done.

【0020】[0020]

【作用】請求項1、2の異物検出方法では、光透過性部
材の検査光(偏光ビ−ム)に対する透過率の代りに、光
透過性部材の偏光ビ−ムとほぼ同一波長の非偏光ビ−ム
に対する透過率を、実際の異物による散乱光の透過率と
みなして検出信号の補正演算を行う。これは、異物の不
規則な反射面で散乱されて偏光状態を崩した偏光ビ−ム
散乱光に対する光透過性部材の透過率は、偏光ビ−ムに
対する透過率よりも、偏光ビ−ムとほぼ同一波長の非偏
光ビ−ムに対する透過率により近いものであるという認
識に基く。しかし、走査される検査光の入射に相当する
補正演算には、特開昭63−208746号公報の異物
検査装置と同様、光透過性部材の検査光(偏光ビ−ム)
に対する透過率が用いられる。
In the foreign matter detecting method according to the present invention, instead of the transmittance of the light transmissive member for the inspection light (polarization beam), the non-polarized light having substantially the same wavelength as the polarization beam of the light transmissive member is used. The transmittance of the beam is regarded as the actual transmittance of the scattered light due to the foreign matter, and the correction calculation of the detection signal is performed. This is because the transmittance of the light transmissive member with respect to the polarized beam scattered light scattered by the irregular reflection surface of the foreign matter and collapsing the polarization state is more than that of the polarized beam with respect to the polarized beam. It is based on the recognition that it is closer to the transmittance for an unpolarized beam of approximately the same wavelength. However, in the correction calculation corresponding to the incidence of the scanning inspection light, the inspection light (polarization beam) of the light transmissive member is used as in the foreign matter inspection apparatus disclosed in Japanese Patent Laid-Open No. 63-208746.
The transmittance for is used.

【0021】走査による入射角度に応じた光透過性部材
の偏光ビ−ム透過率と、走査による散乱光の検出光路の
出射角度に応じた光透過性部材の散乱光透過率(偏光ビ
−ムとほぼ同一波長の非偏光ビ−ムに対する透過率で代
用)とは、被検査面上の走査位置ごとに設定されて散乱
光の検出信号の補正演算に用いられる。これらの数値の
入力は、偏光ビ−ムの入射角度の範囲、散乱光の出射角
度の範囲、光透過性部材の厚さ、偏光ビ−ムの波長等に
基いて理論計算された数値を被検査面のX−Y座標の行
列の各交点に対応させて人手でセットしてもよいが、特
開昭63−208746号公報の異物検査装置と同様
に、実際の異物検査に先立って実物の光透過性部材で偏
光ビ−ム透過率と非偏光ビ−ム透過率を実測して蓄える
ようにしてもよい。また、偏光ビ−ム透過率と非偏光ビ
−ム透過率は光透過性部材の厚さに応じた一定の関係に
あるから、偏光ビ−ム透過率と非偏光ビ−ム透過率の一
方だけを実測し、他方についてはこの実測値から演算ま
たは対照表によって求めてもよい。
Polarized beam transmittance of the light transmissive member according to the incident angle by scanning, and scattered light transmittance of the light transmissive member according to the exit angle of the detection light path of scattered light by scanning (polarized beam) Is substituted for the non-polarized beam having substantially the same wavelength) and is set for each scanning position on the surface to be inspected and used for correction calculation of the detection signal of scattered light. The input of these numerical values is the numerical value theoretically calculated based on the incident angle range of the polarized beam, the outgoing angle range of the scattered light, the thickness of the light transmitting member, the wavelength of the polarized beam, etc. Although it may be manually set in correspondence with each intersection of the matrix of XY coordinates on the inspection surface, like the foreign matter inspection apparatus disclosed in Japanese Patent Laid-Open No. 63-208746, it is possible to set an actual object prior to actual foreign matter inspection. The light transmissive member may measure and store the polarized beam transmittance and the non-polarized beam transmittance. Further, since the polarized beam transmittance and the non-polarized beam transmittance have a constant relationship according to the thickness of the light transmitting member, one of the polarized beam transmittance and the non-polarized beam transmittance is used. Only one may be measured, and the other may be calculated from this measured value or obtained by a comparison table.

【0022】請求項3の異物検査装置では、実際の異物
検査に先立って実物の光透過性部材を用いて偏光ビ−ム
透過率と非偏光ビ−ム透過率を実測して蓄えており、実
際の異物検査で得られた検出信号はこれらの数値に基い
て補正演算される。実物の光透過性部材による偏光ビ−
ム透過率と非偏光ビ−ム透過率の実測は、実際の異物検
査に用いられる偏光ビ−ム送光系を利用して、実際の異
物検査時における被検査面の支持状態のままで行えるよ
うにしてもよいが、特開昭63−208746号公報の
異物検査装置と同様に、実際に異物検査を行う場所とは
独立させた透過率専用の実測位置を設定し、この実測位
置に異物検査用の送光光学系とは独立させた専用の送光
光学系を配置してもよい。
In the foreign matter inspection apparatus according to the third aspect, prior to the actual foreign matter inspection, an actual light transmissive member is used to measure and store the polarized beam transmittance and the non-polarized beam transmittance. The detection signal obtained by the actual foreign matter inspection is corrected and calculated based on these numerical values. Polarized beam with real light-transmissive material
Measurement of the beam transmittance and the non-polarized beam transmittance can be performed with the polarization beam transmitting system used for the actual foreign substance inspection, while maintaining the supported state of the surface to be inspected during the actual foreign substance inspection. However, like the foreign matter inspection apparatus disclosed in Japanese Patent Laid-Open No. 63-208746, a transmittance measurement dedicated position independent of the actual foreign matter inspection location is set, and the foreign matter is located at this measured position. A dedicated light-transmitting optical system independent of the inspection light-transmitting optical system may be arranged.

【0023】異物検査の際には被検査面で偏光ビ−ムが
走査されるため、被検査面上の異物に到達できる偏光ビ
−ムの強度は、偏光ビ−ムの入射角度(走査位置)に対
応した光透過性部材の透過率に依存し、検出光学系に検
出される散乱光の強度は、異物に到達した偏光ビ−ムの
強度と、検出光学系に向う散乱光の出射角度(走査位
置)に対応した光透過性部材の透過率とに依存する。第
1計測手段が偏光ビ−ム透過率の実測を行う際には、被
検査面上の走査位置を網羅した偏光ビ−ムの入射角度範
囲について偏光ビ−ムが光透過性部材に入射されて、透
過光または反射光の強度が測定され、この実測値から必
要な偏光ビ−ム透過率が演算される。第2計測手段が非
偏光ビ−ム透過率の実測を行う際には、被検査面上の走
査位置を網羅した散乱光の出射角度範囲について非偏光
ビ−ムが光透過性部材に入射されて、透過光または反射
光の強度が測定され、この実測値から必要な非偏光ビ−
ム透過率が演算される。このようにして求められた偏光
ビ−ム透過率および非偏光ビ−ム透過率は、走査位置に
対応させて引出し可能に記憶される。そして、実際の異
物検査において、補正演算回路は、検出光学系に検出さ
れた散乱光の検出信号を、その走査位置に対応させて呼
び出した偏光ビ−ム透過率と非偏光ビ−ム透過率の両方
を用いて補正演算する。
Since the polarized beam is scanned on the surface to be inspected during the foreign matter inspection, the intensity of the polarized beam that can reach the foreign matter on the surface to be inspected is determined by the incident angle of the polarized beam (scanning position). ), The intensity of scattered light detected by the detection optical system depends on the intensity of the polarized beam reaching the foreign matter and the outgoing angle of the scattered light toward the detection optical system. It depends on the transmittance of the light transmissive member corresponding to the (scanning position). When the first measuring means actually measures the transmittance of the polarized beam, the polarized beam is incident on the light transmissive member in the incident angle range of the polarized beam covering the scanning position on the surface to be inspected. Then, the intensity of the transmitted light or the reflected light is measured, and the required polarization beam transmittance is calculated from this measured value. When the second measuring means actually measures the non-polarized beam transmittance, the non-polarized beam is incident on the light transmissive member in the emission angle range of the scattered light covering the scanning position on the surface to be inspected. The intensity of transmitted light or reflected light is measured and the required non-polarized beam is obtained from this measured value.
The system transmittance is calculated. The polarized beam transmittance and non-polarized beam transmittance thus obtained are stored so as to be extractable in correspondence with the scanning position. Then, in the actual foreign matter inspection, the correction arithmetic circuit calls the detection signal of the scattered light detected by the detection optical system corresponding to the scanning position, and transmits the polarized beam transmittance and the non-polarized beam transmittance. Both are used to perform the correction calculation.

【0024】請求項4の異物検査装置では、第1計測手
段と第2計測手段とで部材を多く共用できる。偏光解除
手段は、第1計測手段および第2計測手段として計測光
学系を時間的に使い分けるための手段、すなわち、検出
光(偏光ビ−ム)を形成する偏光板や検出光(偏光ビ−
ム)の偏光状態を崩す散乱板や光ファイバ−束を挿入撤
退可能に設けたものでもよいが、第1計測手段と第2計
測手段で計測光学系を部分的に共用するための手段、す
なわち、光源から射出された偏光ビ−ムまたは非偏光ビ
−ムの光路を2つに分割し、一方の光路に、非偏光ビ−
ムの場合には偏光板、偏光ビ−ムの場合には散乱板や光
ファイバ−束を固定して取付けたものでもよい。計測光
学系を時間的に使い分ける場合、反射光または透過光の
強度から透過率を演算する手順にも共通点が多く、非偏
光ビ−ム透過率演算回路を偏光ビ−ム透過率演算回路と
しても共用できる。
In the foreign matter inspection device according to the fourth aspect, many members can be shared by the first measuring means and the second measuring means. The depolarizing means is means for temporally selectively using the measuring optical system as the first measuring means and the second measuring means, that is, a polarizing plate for forming detection light (polarization beam) and detection light (polarization beam).
Although a scattering plate or an optical fiber-bundle that breaks the polarization state of (1) can be inserted and withdrawn, a means for partially sharing the measurement optical system between the first measuring means and the second measuring means, that is, , The optical path of the polarized beam or the non-polarized beam emitted from the light source is divided into two, and the non-polarized beam is provided in one optical path.
In the case of a beam, a polarizing plate may be used, and in the case of a polarizing beam, a scattering plate or an optical fiber bundle may be fixedly attached. When the measurement optical system is used differently in time, there are many common points in the procedure of calculating the transmittance from the intensity of reflected light or transmitted light, and the non-polarization beam transmittance calculation circuit is used as a polarization beam transmittance calculation circuit. Can also be shared.

【0025】請求項5の異物検査装置では、実際に異物
検査を行うための送光光学系を第1計測手段に共用でき
る。走査反射光検出器は、送光光学系によって被検査面
で走査された偏光ビ−ムの光透過性部材による正反射光
の強度を走査幅の全体で検出できる大きさと取付け位置
を有する。一方、偏光ビ−ム透過率演算回路は、走査反
射光検出器によって検出された正反射光の強度から偏光
ビ−ムに対する透過率を算出する。
In the foreign matter inspection apparatus according to the fifth aspect, the light-transmitting optical system for actually performing the foreign matter inspection can be shared by the first measuring means. The scanning reflected light detector has a size and a mounting position capable of detecting the intensity of specularly reflected light by the light transmissive member of the polarized beam scanned by the light transmitting optical system on the surface to be inspected over the entire scanning width. On the other hand, the polarized beam transmittance calculation circuit calculates the transmittance for the polarized beam from the intensity of the specularly reflected light detected by the scanning reflected light detector.

【0026】請求項6の異物検査装置では、走査による
散乱光の出射角度範囲に応じた光透過性部材の非偏光ビ
−ム透過率として、非偏光ビ−ム透過率演算回路で類推
演算された値を採用している。すなわち、計測光学系
は、走査による散乱光の出射角度範囲内の全部の角度に
ついて反射光の強度を実測する訳ではなく、出射角度範
囲内に設定した1つ以上の代表角度で非偏光ビ−ムを光
透過性部材に入射させて正反射光の強度を検出する。そ
して、非偏光ビ−ム透過率演算回路は、この代表角度で
の透過率から補正演算回路で必要な全部の非偏光ビ−ム
に対する透過率を類推演算する。
In the foreign matter inspecting apparatus according to the sixth aspect, the non-polarization beam transmittance calculating circuit analogizes as the non-polarization beam transmittance of the light transmissive member according to the emission angle range of scattered light by scanning. It adopts the value. That is, the measurement optical system does not actually measure the intensity of the reflected light for all angles within the emission angle range of the scattered light due to scanning, but does not measure the non-polarized beam at one or more representative angles set within the emission angle range. The light is made incident on the light transmissive member and the intensity of the specularly reflected light is detected. Then, the non-polarization beam transmittance calculation circuit analogically calculates the transmittances for all the non-polarization beams necessary for the correction calculation circuit from the transmittance at this representative angle.

【0027】[0027]

【実施例】本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described with reference to the drawings.

【0028】図1は第1実施例の異物検査装置の模式
図、図2は図1の異物検査装置における偏光ビ−ムの入
射角度と散乱光の出射角度の線図、図3は図1のペリク
ル膜の透過率の線図、図4は図1の異物検査装置におけ
る補正演算回路および透過率演算回路の回路図である。
ここでは、特開昭63−208746号公報の異物検査
装置と同様に、実際に異物検査を行う場所とは独立させ
た透過率の実測位置が設定され、偏光ビ−ムと非偏光ビ
−ムとで光源を共有するものの、異物検査用の検出光学
系とは独立させた透過率計測専用の光学系(第1、第2
計測手段)が設けられる。
FIG. 1 is a schematic diagram of a foreign matter inspection apparatus according to the first embodiment, FIG. 2 is a diagram showing an incident angle of a polarized beam and an outgoing angle of scattered light in the foreign matter inspection apparatus of FIG. 1, and FIG. FIG. 4 is a diagram of the transmittance of the pellicle film, and FIG. 4 is a circuit diagram of the correction calculation circuit and the transmittance calculation circuit in the foreign matter inspection apparatus of FIG.
Here, similarly to the foreign matter inspection apparatus disclosed in Japanese Patent Laid-Open No. 63-208746, the actual measurement position of the transmittance independent of the actual foreign matter inspection location is set, and the polarized beam and the non-polarized beam are set. Although the light source is shared by and, the optical system dedicated to the transmittance measurement independent of the detection optical system for inspecting foreign matter (first and second optical systems).
(Measuring means) is provided.

【0029】図1において、レチクル3の回路パタ−ン
の上方には支持枠2に張設されたペリクル膜1が設けら
れている。回路パタ−ン上の異物検出は、ペリクル膜1
を介して回路パタ−ン上に偏光ビ−ムを走査し、偏光ビ
−ムを照射された異物が発生する散乱光をペリクル膜1
を介して検出し、散乱光の検出信号の大きさで異物を判
別することで実行される。偏光ビ−ムの走査は、図中、
紙面と垂直なX方向に偏光ビ−ムを揺動する一方でY方
向にレチクル3を移動させて行われ、異物検出のための
送光光学系と検出光学系の相互の位置関係が固定されて
いるから、偏光ビ−ムの揺動位置(x)によって、偏光
ビ−ムの入射角度と散乱光の検出光路の出射角度とが一
義的に定まる。
In FIG. 1, a pellicle film 1 stretched on a support frame 2 is provided above the circuit pattern of the reticle 3. Foreign matter on the circuit pattern is detected by the pellicle film 1
The polarized beam is scanned on the circuit pattern through the pellicle film 1 and scattered light generated by the foreign matter irradiated with the polarized beam is generated.
It is performed by detecting the foreign matter through the detector and discriminating the foreign matter based on the magnitude of the scattered light detection signal. The scanning of the polarized beam is as follows.
This is performed by oscillating the polarization beam in the X direction perpendicular to the paper surface and moving the reticle 3 in the Y direction, so that the positional relationship between the light sending optical system and the detection optical system for detecting foreign matter is fixed. Therefore, the incident angle of the polarized beam and the outgoing angle of the scattered light detecting optical path are uniquely determined by the swinging position (x) of the polarized beam.

【0030】異物検出のための送光光学系は、レ−ザ光
の偏光ビ−ムを出力する光源4、ビ−ムスプリッタ−
6、反射ミラ−8、駆動部10により振動される光走査
ミラ−9、光走査ミラ−9の走査範囲をカバ−して回路
パタ−ン上に偏光ビ−ムの焦点を形成する走査レンズ1
1等を含み、異物検出のための検出光学系は、異物から
の散乱光を検出する光電検出器13等を含む。光電検出
器13は、回路パタ−ン面の偏光ビ−ムの揺動中心を囲
んで対称に実際には2個以上(13a、13b)配置さ
れ、それぞれ集光レンズ等を含む。(図6参照)
The light-transmitting optical system for detecting foreign matter includes a light source 4 for outputting a polarized beam of laser light and a beam splitter.
6, a reflection mirror 8, an optical scanning mirror 9 which is vibrated by the driving unit 10, and a scanning lens which covers the scanning range of the optical scanning mirror 9 to form a focal point of a polarization beam on a circuit pattern. 1
1, etc., the detection optical system for detecting a foreign matter includes a photoelectric detector 13 and the like for detecting scattered light from a foreign matter. Actually, two or more (13a, 13b) photoelectric detectors 13 are symmetrically arranged around the oscillation center of the polarization beam on the circuit pattern surface, and each includes a condenser lens and the like. (See Figure 6)

【0031】補正演算回路12は、実際の異物検出に先
立って、入射角度に応じたペリクル膜1の偏光ビ−ム透
過率と、散乱光の検出光路の出射角度に応じたペリクル
膜1の散乱光透過率(偏光ビ−ムとほぼ同一波長の非偏
光ビ−ムに対する透過率で代用)とを偏光ビ−ムの揺動
位置(x)ごとに蓄積し、揺動位置(x)で呼び出した
偏光ビ−ム透過率と非偏光ビ−ム透過率との積値の逆数
を光電検出器13からの散乱光の検出信号に乗じる補正
演算を遂行する。
Prior to the actual foreign matter detection, the correction arithmetic circuit 12 transmits the polarization beam transmittance of the pellicle film 1 according to the incident angle and the scattering of the pellicle film 1 according to the outgoing angle of the scattered light detecting optical path. The light transmittance (substituted by the transmittance for a non-polarized beam having substantially the same wavelength as the polarized beam) is stored for each swing position (x) of the polarized beam, and is called at the swing position (x). A correction calculation is performed by multiplying the detection signal of the scattered light from the photoelectric detector 13 by the reciprocal of the product of the polarized beam transmittance and the non-polarized beam transmittance.

【0032】一方、実物のペリクル膜1を用いて偏光ビ
−ム透過率と非偏光ビ−ム透過率を計測する手段は、回
転ミラ−22を用いて非偏光ビ−ム23を光路28〜2
9の範囲で変位してペリクル膜1に対する種々の入射角
度を設定し、ペリクル膜1による正反射光30の強度を
検出するものである。送光光学系は、偏光ビ−ム16の
偏光状態を解除して非偏光ビ−ム18に変換する光ファ
イバ−束17、視野絞り19、開口絞り20、レンズ2
1、回転ミラ−22、レンズ24、ミラ−25、レンズ
26を含む。そして、検出光学系は、レンズ31、ミラ
−32、レンズ33、ビ−ムスプリッタ−36、偏光ビ
−ムと同一の偏光成分を抽出する偏光板34、光電検出
器34、35、ペリクル膜1へ入射する非偏光ビ−ム2
3の強度を検出する光電検出器39を含み、開口絞り2
0を透過する光量で視野絞り19の開口形状がペリクル
膜1上に投影される。光電検出器34、35の光電面は
ペリクル膜1を反射面とした開口絞り20と共役な位置
に配置される。透過率演算回路14は、光電検出器39
の検出出力を参照して、光電検出器34の検出出力から
は偏光ビ−ム透過率を、光電検出器35の検出出力から
は非偏光ビ−ム透過率をそれぞれ演算する。透過率の演
算は、反射光強度を入射光強度で除して反射率を求め、
全反射率との差(1−反射率)を透過率とする。これ
は、一般に光源として用いられる光の波長域(可視光
域)ではペリクル膜1の吸収率を無視できるからであ
る。
On the other hand, the means for measuring the polarization beam non-transmission and the non-polarization beam transmissivity using the actual pellicle film 1 uses the rotating mirror 22 to pass the non-polarization beam 23 through the optical paths 28 to 28. Two
It is displaced in the range of 9 to set various incident angles with respect to the pellicle film 1, and the intensity of the specularly reflected light 30 by the pellicle film 1 is detected. The light transmission optical system includes an optical fiber bundle 17, a field stop 19, an aperture stop 20, and a lens 2 for depolarizing the polarization beam 16 and converting it into a non-polarization beam 18.
1, a rotating mirror 22, a lens 24, a mirror 25, and a lens 26. The detection optical system includes a lens 31, a mirror 32, a lens 33, a beam splitter 36, a polarizing plate 34 for extracting the same polarization component as the polarization beam, photoelectric detectors 34, 35, and the pellicle film 1. Non-polarizing beam 2 incident on
3 including a photoelectric detector 39 for detecting the intensity of
The aperture shape of the field stop 19 is projected on the pellicle film 1 with the amount of light passing through 0. Photoelectric surfaces of the photoelectric detectors 34 and 35 are arranged at positions conjugate with the aperture stop 20 having the pellicle film 1 as a reflection surface. The transmittance calculation circuit 14 includes a photoelectric detector 39.
The polarization beam transmittance is calculated from the detection output of the photoelectric detector 34, and the non-polarization beam transmittance is calculated from the detection output of the photoelectric detector 35. To calculate the transmittance, divide the reflected light intensity by the incident light intensity to obtain the reflectance,
The difference from the total reflectance (1-reflectance) is taken as the transmittance. This is because the absorptance of the pellicle film 1 can be neglected in the wavelength range (visible light range) of light generally used as a light source.

【0033】このように構成された異物検査装置では、
まず、レチクル3が右側の透過率計測位置に搬入され、
走査による入射角度範囲でペリクル膜1に非偏光ビ−ム
23が入射されるように回転ミラ−22を回転27して
光電検出器34で反射光30の強度を計測する。次に、
走査による散乱光の検出光路の出射角度範囲でペリクル
膜1に非偏光ビ−ム23が入射されるように回転ミラ−
22を回転して光電検出器35で反射光30の強度を計
測する。そして、回転ミラ−22を90度回転して非偏
光ビ−ム18を光電検出器39に全量入射させてペリク
ル膜1への入射光30の強度を計測する。これらの計測
値に基いて透過率演算回路14で演算された「走査によ
る入射角度に応じた偏光ビ−ム透過率」と「走査による
散乱光の検出光路の出射角度に応じた非偏光ビ−ム透過
率」は、出力tとして回路パタ−ンのX−Y座標値に対
応させて呼び出し可能な状態で補正演算回路12に蓄え
られる。
In the foreign matter inspection device thus constructed,
First, the reticle 3 is carried into the transmittance measurement position on the right side,
The rotating mirror 22 is rotated 27 so that the non-polarizing beam 23 is incident on the pellicle film 1 within the incident angle range by scanning, and the intensity of the reflected light 30 is measured by the photoelectric detector 34. next,
Rotation mirror so that the non-polarization beam 23 is incident on the pellicle film 1 within the emission angle range of the detection of scattered light by scanning.
22 is rotated and the photoelectric detector 35 measures the intensity of the reflected light 30. Then, the rotating mirror 22 is rotated by 90 degrees so that the non-polarizing beam 18 is entirely incident on the photoelectric detector 39, and the intensity of the incident light 30 on the pellicle film 1 is measured. Based on these measured values, the "polarized beam transmittance depending on the incident angle by scanning" calculated by the transmittance calculating circuit 14 and the "non-polarized beam depending on the outgoing angle of the scattered light detection optical path by scanning". The "transmissivity" is stored in the correction arithmetic circuit 12 as an output t in a state in which it can be called in correspondence with the XY coordinate values of the circuit pattern.

【0034】その後、レチクル3は異物検出位置に送ら
れて、回路パタ−ン上の異物検出が遂行される。光源4
から出力された偏光ビ−ム5から光ファイバ−束17へ
の入射光16を除いた偏光ビ−ム7は、光走査ミラ−9
によって回路パタ−ン上でX方向に揺動される。一方、
レチクル3がY方向に移動して走査線l上に異物が侵入
すると、偏光ビ−ム7に照射された異物から上方の空間
に散乱光が放射され、散乱光のごく一部が検出光路方向
に進んで光電検出器13に入射する。補正演算回路12
では、駆動部10から出力sとして出力される偏光ビ−
ム7の揺動位置(x)とY方向送り機構から出力される
Y座標とから回路パタ−ン上における偏光ビ−ム7の照
射位置を判別し、該当する「走査による入射角度に応じ
た偏光ビ−ム透過率」と「走査による散乱光の検出光路
の出射角度に応じた非偏光ビ−ム透過率」を呼び出し
て、光電検出器13の検出信号を補正する。
After that, the reticle 3 is sent to the foreign matter detection position and the foreign matter on the circuit pattern is detected. Light source 4
The polarization beam 7 obtained by removing the incident light 16 from the polarization beam 5 output from the optical fiber bundle 17 into the optical fiber bundle 17 is an optical scanning mirror 9
Is oscillated in the X direction on the circuit pattern. on the other hand,
When the reticle 3 moves in the Y direction and a foreign matter enters the scanning line 1, scattered light is emitted from the foreign matter with which the polarized beam 7 is irradiated to the upper space, and a small part of the scattered light is detected in the detection optical path direction. Then, the light enters the photoelectric detector 13. Correction arithmetic circuit 12
Then, the polarization beam output from the drive unit 10 as the output s.
The irradiation position of the polarization beam 7 on the circuit pattern is discriminated from the swing position (x) of the beam 7 and the Y coordinate output from the Y-direction feed mechanism, and the corresponding "corresponding to the incident angle by scanning is determined. The "polarized beam transmittance" and "non-polarized beam transmittance corresponding to the outgoing angle of the detection optical path of scattered light by scanning" are called to correct the detection signal of the photoelectric detector 13.

【0035】図1の異物検査装置では、レチクル3で異
物検出が行われている間、右側の透過率計測位置には次
のレチクルがセットされて、実物のペリクル膜による偏
光ビ−ム透過率と非偏光ビ−ム透過率の計測が行われて
いる。また、非偏光ビ−ム18を光電検出器39に入射
させてペリクル膜1への入射光30の強度を計測してい
るため、光源4の出力が経時変化するような場合でも反
射率(最終的には透過率)を正確に計測できる。
In the foreign matter inspection apparatus of FIG. 1, while the foreign matter is being detected by the reticle 3, the next reticle is set at the transmittance measurement position on the right side, and the polarized beam transmittance by the actual pellicle film is set. And the non-polarized beam transmittance is measured. Further, since the intensity of the incident light 30 on the pellicle film 1 is measured by making the non-polarizing beam 18 incident on the photoelectric detector 39, even if the output of the light source 4 changes with time, the reflectance (final The transmittance can be accurately measured.

【0036】図2において、(a) は走査による偏光ビ−
ムの入射角度の変化、(b) は走査による散乱光の検出光
路の出射角度の変化を示す。図1の偏光ビ−ム7は手前
を−奥側を+としたX方向(紙面と垂直な方向)に揺動
されており、LからRまでの揺動位置xに応じて偏光ビ
−ム7の入射角度はθiL〜θiC〜θiRに、一方、散乱光
の検出光路の出射角度はθdL〜θdC〜θdRに変化する。
In FIG. 2, (a) is a polarization beam by scanning.
The change in the incident angle of the beam is shown in (b). The polarizing beam 7 in FIG. 1 is swung in the X direction (direction perpendicular to the paper surface) with the front side as the + back side being +, and the polarization beam 7 is swung according to the swing position x from L to R. The incident angle of 7 changes to θ iL to θ iC to θ iR , while the emission angle of the scattered light detection optical path changes to θ dL to θ dC to θ dR .

【0037】図3において、図1の異物検査装置および
レチクルでは、ペリクル膜1の厚さが1μm で偏光ビ−
ム7の波長0.6μm と同程度で、偏光ビ−ム7が単色
光であるため、ペリクル膜1による波長選択性が加算さ
れて、入射角度に応じてペリクル膜1の偏光ビ−ム7に
対する透過率iは大幅に変化する。しかし、異物からの
散乱光に対するペリクル膜1の透過率の入射角度に応じ
た変化は、ペリクル膜1の非偏光ビ−ムに対する透過率
dの変化に近く、入射角度に応じて、偏光ビ−ム7に対
する透過率iよりもなだらかに変化する。従って、特開
昭63−208746号公報の異物検査装置に記載され
た方法では、散乱光透過率を検査光透過率(図1の場合
には偏光ビ−ム透過率)で代用するため、非偏光ビ−ム
に対する透過率dと偏光ビ−ム7に対する透過率iの格
差に相当する誤差が発生する。また、図3の線図中、図
1の異物検査装置で実際に偏光ビ−ムに対する透過率i
が計測される範囲pは、図2(a) のθiL〜θiC〜θiR
相当する範囲、非偏光ビ−ムに対する透過率dが計測さ
れる範囲qは、図2(b) のθdL〜θdC〜θdRに相当する
範囲だけである。
3, in the foreign matter inspection apparatus and reticle shown in FIG. 1, the pellicle film 1 has a thickness of 1 μm and a polarization beam.
Since the polarization beam 7 is a monochromatic light having a wavelength of about 0.6 μm of the beam 7, the wavelength selectivity of the pellicle film 1 is added, and the polarization beam 7 of the pellicle film 1 is added according to the incident angle. The transmittance i with respect to changes significantly. However, the change of the transmittance of the pellicle film 1 with respect to the scattered light from the foreign matter according to the incident angle is close to the change of the transmittance d of the pellicle film 1 with respect to the non-polarized beam, and the polarization beam is changed according to the incident angle. It changes more gently than the transmittance i for the frame 7. Therefore, in the method described in the foreign matter inspection apparatus of Japanese Patent Laid-Open No. 63-208746, the scattered light transmittance is replaced by the inspection light transmittance (polarized beam transmittance in the case of FIG. 1). An error corresponding to the difference between the transmittance d for the polarized beam and the transmittance i for the polarized beam 7 occurs. Further, in the diagram of FIG. 3, the transmittance i for the polarized beam is actually measured by the foreign matter inspection apparatus of FIG.
The range p in which is measured is the range corresponding to θ iL to θ iC to θ iR in FIG. 2A, and the range q in which the transmittance d for the unpolarized beam is measured is shown in FIG. Only the range corresponding to θ dL to θ dC to θ dR .

【0038】図4において、光電検出器13a、13b
の出力信号は、増幅器(プリアンプ)40、41により
増幅されて可変増幅器42、43に入力される。可変増
幅器42、43では、走査ミラ−9の駆動部10から出
力される走査角度、すなわちX方向の走査位置に応じて
増幅度を変化させる。これは、ペリクル1が無い状態で
も光電検出器から遠い位置の異物信号の方が近い位置の
異物信号よりも信号量が小さくなるのを補正するためで
ある。例えば、レチクル3の奥側に位置する光電検出器
13aにとっては、走査線l上の手前側の点Lよりも奥
側の点Rのほうが光電検出器13aからの距離が短く、
受光する異物信号が大きくなるので、奥側の点Rに近づ
くに従って増幅率を小さくし、走査線l上のどの位置に
あっても等しい異物信号が得られるようにしている。こ
のようにして、可変増幅器42、43から出力された信
号44、45は、ペリクル膜の透過率による光量低下を
補正する直前の信号となる。
In FIG. 4, photoelectric detectors 13a and 13b are provided.
The output signal of is amplified by amplifiers (preamplifiers) 40 and 41 and input to variable amplifiers 42 and 43. The variable amplifiers 42 and 43 change the amplification degree according to the scanning angle output from the driving unit 10 of the scanning mirror 9, that is, the scanning position in the X direction. This is to correct that the foreign object signal at a position far from the photoelectric detector has a smaller signal amount than the foreign object signal at a position closer to the photoelectric detector even without the pellicle 1. For example, for the photoelectric detector 13a located on the back side of the reticle 3, the distance R from the photoelectric detector 13a is shorter at the point R on the back side than the point L on the front side on the scanning line 1,
Since the received foreign matter signal becomes large, the amplification factor is reduced as it approaches the point R on the far side, so that the same foreign matter signal can be obtained at any position on the scanning line 1. In this way, the signals 44 and 45 output from the variable amplifiers 42 and 43 become the signals immediately before the correction of the light amount decrease due to the transmittance of the pellicle film.

【0039】図1の右側の透過率実測位置におけるペリ
クル透過率補正値の決定は、実際の異物検査に先立って
行われる。このとき、回転ミラ−22の駆動部46によ
り回転ミラ−22が回転し、光電検出器34では、非偏
光ビ−ムがペリクル膜に反射し、ビ−ムスプリッタ−3
6で分割された光の偏光成分だけが偏光素子37を通っ
て電気信号に変換される。レ−ザ光源4から出力される
偏光ビ−ムの光量が常に一定ならば、光電検出器34か
ら得られる電気信号に計数を掛けるだけで反射率が得ら
れる。この計数は増幅器47の増幅度によって与えられ
ている。回転ミラ−22を駆動部46により、θiCから
θiRの範囲内でθi が変化するように駆動するとき、θ
iCからθiRの間での反射率R(θi)が得られるが、ペリ
クル膜での光の吸収はないため、入射透過率T(θi)
は、T(θi)=1−R(θi)で求められる。
The pellicle transmittance correction value at the transmittance measurement position on the right side of FIG. 1 is determined prior to the actual foreign matter inspection. At this time, the rotating mirror 22 is rotated by the driving unit 46 of the rotating mirror 22, and in the photoelectric detector 34, the non-polarized beam is reflected on the pellicle film, and the beam splitter-3.
Only the polarization component of the light divided by 6 passes through the polarization element 37 and is converted into an electric signal. If the light quantity of the polarized beam output from the laser light source 4 is always constant, the reflectance can be obtained only by multiplying the electric signal obtained from the photoelectric detector 34 by a count. This count is given by the amplification of amplifier 47. When the rotating mirror 22 is driven by the drive unit 46 so that θ i changes within the range of θ iC to θ iR ,
The reflectance R (θ i ) can be obtained between iC and θ iR , but since the pellicle film does not absorb light, the incident transmittance T (θ i )
Is calculated by T (θ i ) = 1−R (θ i ).

【0040】この処理は計算部48において行う。ま
た、図2(a) のように走査線l上のx位置と入射角θi
の関係は装置として決っているので、換算部49により
θi とxを換算したときのxに応じた入射透過率T
i(x)が判明する。また、光電検出器35からは非偏光
ビ−ムのペリクル反射率の電気情報が出力され、増幅器
50により反射率R(θd)が得られ、計算部51によ
り、T(θd)=1−R(θd)によって受光透過率T(θ
d)が計算される。さらに換算部52により図2(b) 等に
基いて受光透過率Td(x)が計算される。乗算器53で
は換算部49によって得られる入射透過率Ti(x)と換
算部52によって得られる受光透過率Td(x)とが掛け
合せられて、まずT (x)が得られ、さらに検出感度補
正用の値としてT(x)の逆数T (x)-1が計算され
る。
This processing is performed by the calculation unit 48. Further, as shown in FIG. 2A, the x position on the scanning line 1 and the incident angle θ i
Since the relationship is determined as a device, the incident transmittance T according to x when θ i and x are converted by the conversion unit 49.
i (x) is known. Further, the photoelectric detector 35 outputs electrical information of the pellicle reflectance of the non-polarized beam, the amplifier 50 obtains the reflectance R (θ d ), and the calculator 51 calculates T (θ d ) = 1. -R (θ d ), the received light transmittance T (θ
d ) is calculated. Further, the conversion unit 52 calculates the received light transmittance T d (x) based on FIG. In the multiplier 53, the incident transmittance T i (x) obtained by the conversion unit 49 and the received light transmittance T d (x) obtained by the conversion unit 52 are first multiplied to obtain T (x) and then detected. The reciprocal of T (x), T (x) -1, is calculated as a value for sensitivity correction.

【0041】図1において、光電検出器13a、13b
が左右対称に配置(図6参照)されていて、光電検出器
13aから見たときのペリクル透過率補正値がT (x)
-1であった場合、光電検出器13bにおけるペリクル透
過率補正値はxの符合を逆にしたもの、すなわちT (−
x)-1でよいことは言うまでもなく、この計算は計算部
54において行う。以上2つのデ−タ、すなわちT
(x)-1とT (−x)-1はそれぞれメモリ55、56に
格納される。
In FIG. 1, photoelectric detectors 13a and 13b are provided.
Are symmetrically arranged (see FIG. 6), and the pellicle transmittance correction value when viewed from the photoelectric detector 13a is T (x).
If it is -1 , the pellicle transmittance correction value in the photoelectric detector 13b is obtained by inverting the sign of x, that is, T (-
It goes without saying that x) −1 is sufficient, and this calculation is performed in the calculation unit 54. The above two data, that is, T
(x) −1 and T (−x) −1 are stored in the memories 55 and 56, respectively.

【0042】さて、異物信号処理に説明を戻すと、光走
査駆動部10の光走査位置(x)の出力信号57に応じ
て順次メモリ55、56から補正デ−タT (x)-1とT
(−x)-1が出力され、乗算器57、58においてペリ
クル透過率補正前の異物信号44、45と掛け合せる。
こうして得られた信号は、A/Dコンバ−タ−(アナロ
グ/デジタル変換器)59、60により、それぞれデジ
タル信号に変換され、論理積回路61により2つの信号
の両方ともある値以上であるならば、異物として検出す
る。これは、レチクル表面には異物以外に回路パタ−ン
も当然ついているわけだが、回路パタ−ンからの回折光
は指向性が強く、2つの光電検出器13a、13bの両
方ともに回折光が入ることはないという性質を利用し
て、回路パタ−ンと異物を区別して異物のみの検出を行
うためである。
Now, returning to the foreign matter signal processing, the correction data T (x) -1 is sequentially read from the memories 55 and 56 in accordance with the output signal 57 of the optical scanning position (x) of the optical scanning drive unit 10. T
(-X) -1 is output and is multiplied by the foreign matter signals 44 and 45 before the pellicle transmittance correction in the multipliers 57 and 58.
The signals thus obtained are converted into digital signals by A / D converters (analog / digital converters) 59 and 60, respectively, and if both signals are equal to or more than a certain value by an AND circuit 61. For example, it is detected as a foreign substance. This means that the surface of the reticle naturally has a circuit pattern in addition to foreign matter, but the diffracted light from the circuit pattern has a strong directivity, and diffracted light enters both of the two photoelectric detectors 13a and 13b. This is because the foreign matter alone is detected by distinguishing between the circuit pattern and the foreign matter by utilizing the property that nothing happens.

【0043】図5は、第2実施例の異物検査装置の模式
図、図6は図5の異物検査装置の光学系の斜視図であ
る。ここでは、異物検出を行う同じ位置で異物検出に先
立つペリクル膜の透過率の計測を行い、異物検出を行う
ための送光光学系を透過率の計測を行うため送光光学系
としてそのまま利用し、ペリクル透過率を測定する光電
検出器100を設けた。
FIG. 5 is a schematic view of the foreign matter inspection apparatus of the second embodiment, and FIG. 6 is a perspective view of the optical system of the foreign matter inspection apparatus of FIG. Here, the transmittance of the pellicle film is measured at the same position where the foreign matter is detected prior to the foreign matter detection, and the light-transmitting optical system for detecting the foreign matter is used as it is as the light-transmitting optical system for measuring the transmittance. A photoelectric detector 100 for measuring the pellicle transmittance was provided.

【0044】図5、図6において、異物検出のための基
本的な送光光学系は、第1実施例と同様であるが、ここ
では、非偏光ビ−ムを使用することとした。本実施例に
よる異物検査装置は、非偏光ビ−ムを出力する光源4、
ビ−ムスプリッタ−6、偏光板70、反射ミラ−8、駆
動部10により振動される光走査ミラ−9、光走査ミラ
−9の走査範囲をカバ−して回路パタ−ン上に偏光ビ−
ムの焦点を形成する走査レンズ11等を含み、異物検出
のための検出光学系は、異物からの散乱光を検出する光
電検出器13等を含む。さらに、本実施例においては、
偏光ビ−ムによる入射透過率を測定する光電検出器10
0を設けた。光電検出器100は、複数の光電検出器を
間隔を開けて並べたものである。
In FIGS. 5 and 6, the basic light-transmitting optical system for detecting a foreign matter is the same as that of the first embodiment, but a non-polarizing beam is used here. The foreign matter inspection apparatus according to this embodiment includes a light source 4 that outputs a non-polarized beam.
The beam splitter 6, the polarizing plate 70, the reflection mirror 8, the optical scanning mirror 9 vibrated by the driving unit 10, the scanning range of the optical scanning mirror 9 is covered, and the polarization beam is polarized on the circuit pattern. −
The detection optical system for detecting a foreign matter includes a photoelectric detector 13 and the like for detecting scattered light from the foreign matter. Furthermore, in this embodiment,
Photoelectric detector 10 for measuring incident transmittance by a polarized beam
0 is set. The photoelectric detector 100 is a plurality of photoelectric detectors arranged at intervals.

【0045】補正演算回路12は、第1実施例と同様
に、実際の異物検出に先立って、走査による入射角度に
応じたペリクル膜1の偏光ビ−ム透過率と、走査による
散乱光の検出光路の出射角度に応じたペリクル膜1の散
乱光透過率(偏光ビ−ムとほぼ同一波長の非偏光ビ−ム
に対する透過率で代用)とを偏光ビ−ムの揺動位置
(x)ごとに蓄積し、偏光ビ−ムの揺動位置(x)で呼
び出した偏光ビ−ム透過率と非偏光ビ−ム透過率の積値
を光電検出器13からの散乱光の検出信号に乗じる補正
演算を遂行する。
Similar to the first embodiment, the correction arithmetic circuit 12 detects the polarized beam transmittance of the pellicle film 1 according to the incident angle by scanning and the scattered light by scanning prior to the actual detection of foreign matter. The scattered light transmittance of the pellicle film 1 (substituting the transmittance for a non-polarized beam having substantially the same wavelength as the polarized beam) according to the outgoing angle of the optical path is used for each swing position (x) of the polarized beam. Correction by multiplying the detection value of scattered light from the photoelectric detector 13 by the product value of the polarization beam transmittance and the non-polarization beam transmittance stored in the oscillation position (x) of the polarization beam. Carry out operations.

【0046】このように構成された異物検査装置では、
レチクル3が異物検出を開始する位置に搬入されると、
偏光板70を介してペリクル膜1に偏光ビ−ムが走査さ
れ、光電検出器アレイ100により、走査位置xのとび
とびの値に相当する入射角度における正反射光の強度が
計測される。そして、これらの反射光強度に基いて透過
率演算回路14が演算した偏光ビ−ム透過率は、補正演
算回路12に、光走査ミラ−9による走査位置(x)に
対応させて蓄えられる。本実施例においても、実測され
た走査位置xのとびとびの値に相当しない走査位置xの
偏光ビ−ム透過率については、両側の実測値に基いて類
推演算されて蓄えられる。類推演算は、補間法、あるい
は4次方程式等の高次方程式で最小二乗法近似する方法
等で行われる。
In the foreign matter inspection device thus constructed,
When the reticle 3 is carried into the position where the foreign matter detection is started,
The pellicle film 1 is scanned by the polarization beam via the polarizing plate 70, and the photoelectric detector array 100 measures the intensity of specularly reflected light at an incident angle corresponding to the discrete value at the scanning position x. Then, the polarization beam transmittance calculated by the transmittance calculating circuit 14 on the basis of these reflected light intensities is stored in the correction calculating circuit 12 in association with the scanning position (x) by the optical scanning mirror 9. Also in this embodiment, the polarization beam transmittance of the scanning position x which does not correspond to the discrete value of the actually measured scanning position x is calculated by analogy based on the measured values of both sides and stored. The analogy calculation is performed by an interpolation method, a method of approximating the least squares by a higher-order equation such as a quartic equation, or the like.

【0047】その後、実際の異物検出は、偏光板70を
介した偏光ビ−ムを光走査ミラ−9で走査して、図1の
実施例の場合と同様に行われ、補正演算回路12は、蓄
えた偏光ビ−ム透過率および非偏光ビ−ム透過率の両方
を用いて光電検出器13による検出信号を補正する。
Thereafter, the actual foreign matter detection is performed in the same manner as in the embodiment of FIG. 1 by scanning the polarization beam through the polarizing plate 70 with the optical scanning mirror 9, and the correction arithmetic circuit 12 , The stored detected polarized beam transmittance and non-polarized beam transmittance are used to correct the detection signal by the photoelectric detector 13.

【0048】さて、図6において、視野絞り19以降の
装置構成については、一部簡略化されているが、図1に
おける視野絞り19以降とほぼ同一構成となっている。
光電検出器100のx方向の長さは光走査していてもペ
リクル反射光をもれなく受光できるように長くなってい
る。この場合、図6の視野絞り19以降の構成も図1と
比較して簡略になる。何故ならば、非偏光ビ−ムを使っ
ているのでファイバ−は必要なく、また、光電検出器1
00が入射透過率測定の役目を果たしているため、図1
の光電検出器34、偏光素子(検光子)37、ビ−ムス
プリッタ−36が不要になることにより、光電検出器3
5に入る光量が増え、S/Nが向上するだけではなく、
回転ミラ−22は入射角θがθic〜θirの範囲になるよ
うにする必要がなくなる。なお、本実施例において、偏
光ビ−ムを射出する光源4を用い、入射透過率測定を光
電検出器100を用いて行うようにしてもよい。この場
合ファイバ−17等の偏光状態解除手段は必要となる。
また、偏光板70を光路7から退去可能な構成としても
よい。偏光板70を退去させて非偏光ビ−ムをペリクル
に入射して同様な操作を繰返すことにより、検出信号を
補正するために必要なペリクルの非偏光ビ−ム透過率も
また求めることができる。
In FIG. 6, the device configuration after the field stop 19 is partly simplified, but is almost the same as that after the field stop 19 in FIG.
The length of the photoelectric detector 100 in the x direction is long so that the pellicle reflected light can be received without fail even when optical scanning is performed. In this case, the configuration after the field stop 19 in FIG. 6 is also simplified as compared with FIG. Because the non-polarizing beam is used, no fiber is needed, and the photoelectric detector 1
Since 00 plays the role of measuring incident transmittance,
Since the photoelectric detector 34, the polarization element (analyzer) 37, and the beam splitter 36 are unnecessary, the photoelectric detector 3
In addition to increasing the amount of light entering 5 and improving S / N,
The rotating mirror 22 does not need to have the incident angle θ in the range of θ ic to θ ir . In this embodiment, the light source 4 which emits the polarized beam may be used and the incident transmittance may be measured using the photoelectric detector 100. In this case, polarization state releasing means such as the fiber-17 is required.
Further, the polarizing plate 70 may be configured to be able to be withdrawn from the optical path 7. The non-polarizing beam transmittance of the pellicle necessary for correcting the detection signal can also be obtained by retreating the polarizing plate 70 and allowing the non-polarizing beam to enter the pellicle and repeating the same operation. ..

【0049】以上の発明に共通した応用例としては、異
物検査用の偏光レ−ザと又はレ−ザと偏光素子の組合せ
と、ペリクル透過率測定用のレ−ザを別々にして、例え
ば、異物検査用は直線偏光He −Ne レ−ザを用い、透
過率測定用としてはランダム偏光He −Ne レ−ザを用
いて、ランダム(非偏光)成分と偏光成分とに分けてペ
リクル透過率を測定してもよい。この場合は、偏光解消
素子として光ファイバ−を用いていないだけの違いであ
る。
As an application common to the above inventions, a polarization laser for inspecting a foreign substance or a combination of a laser and a polarization element and a laser for measuring pellicle transmittance are separately provided. A linear polarization He-Ne laser is used for foreign matter inspection, and a random polarization He-Ne laser is used for transmittance measurement. The pellicle transmittance is divided into a random (non-polarized) component and a polarized component. You may measure. In this case, the only difference is that no optical fiber is used as the depolarizing element.

【0050】さらに、本発明は、異物検査装置の光入射
角度、受光角度、光走査等を限定するものではなく、例
えば、落射暗視野照射方法にてペリクル越しにレチクル
上の異物を顕微鏡検査する場合にも適用されるし、ま
た、ペリクルに限らず光透過性基板を通して異物等の欠
陥を検査する装置にも適用される。
Furthermore, the present invention does not limit the light incident angle, the light receiving angle, the light scanning, etc. of the foreign matter inspection apparatus, and, for example, microscopically inspects the foreign matter on the reticle through the pellicle by the epi-illumination dark field irradiation method. It is applied not only to the case but also to an apparatus for inspecting defects such as foreign matters through a light transmissive substrate, not limited to the pellicle.

【0051】[0051]

【発明の効果】請求項1〜2の異物検出方法によれば、
偏光ビ−ムを検査光に用いても、光透過性部材を装着し
た被検査面上の異物を感度ムラなく検出することがで
き、検出精度が向上する。また、光透過性部材を装着し
ていない被検査面上の異物との判別や、同じ被検査面上
の異なった走査位置に付着した異物同士の判別が正確で
ある。
According to the foreign matter detecting method of claims 1 and 2,
Even if the polarized beam is used as the inspection light, the foreign matter on the surface to be inspected on which the light transmissive member is mounted can be detected without unevenness in sensitivity, and the detection accuracy is improved. Further, it is possible to accurately discriminate the foreign matter on the surface to be inspected without mounting the light transmissive member or to discriminate the foreign matter adhering to different scanning positions on the same surface to be inspected.

【0052】請求項3の異物検査装置によれば、実物の
光透過性部材を用いて必要な透過率を実測するから検出
信号の補正が正確である。
According to the foreign matter inspection apparatus of the third aspect, since the required transmittance is measured by using the actual light-transmitting member, the correction of the detection signal is accurate.

【0053】請求項4〜5の異物検査装置によれば、光
学系を共有できるので、透過率を実測する光学系が簡単
で済む。
According to the foreign matter inspection apparatus of the fourth to fifth aspects, since the optical system can be shared, the optical system for measuring the transmittance can be simple.

【0054】請求項6の異物検査装置によれば、必要な
透過率の実測が簡略化される。
According to the foreign matter inspection apparatus of the sixth aspect, the required measurement of the transmittance is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の異物検査装置の模式図である。FIG. 1 is a schematic diagram of a foreign matter inspection apparatus according to a first embodiment.

【図2】図1の異物検査装置における偏光ビ−ムの入射
角度と散乱光の出射角度の線図である。
FIG. 2 is a diagram showing an incident angle of a polarized beam and an outgoing angle of scattered light in the foreign matter inspection apparatus of FIG.

【図3】図1のペリクル膜の透過率の線図である。FIG. 3 is a diagram of the transmittance of the pellicle film of FIG.

【図4】図1の異物検査装置における補正演算回路およ
び透過率演算回路の回路図である。
4 is a circuit diagram of a correction calculation circuit and a transmittance calculation circuit in the foreign matter inspection apparatus of FIG.

【図5】第2実施例の異物検査装置の模式図である。FIG. 5 is a schematic diagram of a foreign matter inspection device according to a second embodiment.

【図6】図5の異物検査装置の光学系の斜視図である。FIG. 6 is a perspective view of an optical system of the foreign matter inspection apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 ペリクル膜 2 支持枠 3 レチクル 4 光源 6 ビ−ムスプリッタ− 8 反射ミラ− 9 光走査ミラ− 10 駆動部 11 走査レンズ 12 補正演算回路 13 光電検出器 14 透過率演算回路 17 光ファイバ−束 19 視野絞り 20 開口絞り 21 レンズ 22 回転ミラ− 24 レンズ 25 ミラ− 26 レンズ 31 レンズ 32 ミラ− 33 レンズ 34 光電検出器 35 光電検出器 36 ビ−ムスプリッタ− 37 偏光素子 39 光電検出器 DESCRIPTION OF SYMBOLS 1 Pellicle film 2 Support frame 3 Reticle 4 Light source 6 Beam splitter 8 Reflection mirror 9 Optical scanning mirror 10 Drive part 11 Scanning lens 12 Correction arithmetic circuit 13 Photoelectric detector 14 Transmittance arithmetic circuit 17 Optical fiber bundle 19 Field stop 20 Aperture stop 21 Lens 22 Rotating mirror 24 Lens 25 Miller 26 Lens 31 Lens 32 Miller 33 Lens 34 Photoelectric detector 35 Photoelectric detector 36 Beam splitter 37 Polarizing element 39 Photoelectric detector

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area H01L 21/027

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光透過性部材を装着した被検査面で偏光
ビ−ムを走査し、光透過性部材を介して被検査面上の異
物からの散乱光を検出し、前記散乱光の検出信号で前記
異物を判別する異物検査方法において、前記走査による
入射角度に応じた光透過性部材の偏光ビ−ム透過率と、
前記走査による散乱光の検出光路の出射角度に応じた光
透過性部材の非偏光透過率の両方を用いて前記散乱光の
検出信号の感度を補正することを特徴とする異物検査方
法。
1. A polarized beam is scanned on a surface to be inspected on which a light transmissive member is mounted, and scattered light from foreign matter on the surface to be inspected is detected through the light transmissive member, and the scattered light is detected. In the foreign matter inspection method for determining the foreign matter with a signal, the polarization beam transmittance of the light transmissive member according to the incident angle by the scanning,
A foreign matter inspection method, wherein the sensitivity of the scattered light detection signal is corrected by using both the non-polarized light transmittance of the light transmissive member according to the outgoing angle of the scattered light detection optical path by the scanning.
【請求項2】 請求項1の異物検査方法において、前記
非偏光透過率として前記偏光ビ−ムとほぼ同一波長の非
偏光ビ−ムに対する透過率を用いることを特徴とする異
物検査方法。
2. The foreign matter inspection method according to claim 1, wherein the non-polarized light transmittance is a transmittance for a non-polarized beam having substantially the same wavelength as the polarized beam.
【請求項3】 光透過性部材を装着した被検査面で偏光
ビ−ムを走査し、光透過性部材を介して被検査面上の異
物からの散乱光を検出し、前記散乱光の検出信号で前記
異物を判別する異物検査装置において、前記走査による
入射角度に応じた光透過性部材の偏光ビ−ムに対する透
過率を実測する第1計測手段と、前記走査による前記散
乱光の検出光路の出射角度に応じた光透過性部材の前記
偏光ビ−ムとほぼ同一波長の非偏光ビ−ムに対する透過
率を実測する第2計測手段と、求められた前記偏光ビ−
ムに対する透過率と前記非偏光ビ−ムに対する透過率の
両方を用いて前記散乱光の検出信号を補正する補正演算
回路と、を有することを特徴とする異物検査装置。
3. A scattered beam from a foreign object on the surface to be inspected is detected by scanning the polarized beam on the surface to be inspected on which the light transmissive member is mounted, and the scattered light is detected. In a foreign matter inspecting apparatus for discriminating the foreign matter by a signal, first measuring means for actually measuring the transmittance of a light transmissive member with respect to a polarized beam according to an incident angle in the scanning, and a detection optical path of the scattered light in the scanning. Second measuring means for actually measuring the transmittance of the light-transmissive member for the non-polarized beam having substantially the same wavelength as the polarized beam according to the outgoing angle of the polarized beam.
A foreign matter inspecting apparatus, comprising: a correction calculation circuit that corrects the detection signal of the scattered light by using both the transmittance for the beam and the transmittance for the non-polarized beam.
【請求項4】 請求項3の異物検査装置において、前記
第2計測手段は、偏光ビ−ムの偏光を解除して非偏光ビ
−ムに変換する偏光解除手段と、該非偏光ビ−ムを走査
による散乱光の検出光路の出射角度に応じた角度で光透
過性部材に入射させて正反射光の強度を検出する計測光
学系と、該反射光の強度から非偏光ビ−ムに対する透過
率を算出する非偏光ビ−ム透過率演算回路と、を含むこ
とを特徴とする異物検査装置。
4. The foreign matter inspection apparatus according to claim 3, wherein the second measuring means depolarizes the polarized beam to convert it into a non-polarized beam, and the non-polarized beam. Detection of scattered light by scanning Measurement optical system that detects the intensity of specularly reflected light by entering the light-transmissive member at an angle according to the exit angle of the optical path, and the transmittance from the intensity of the reflected light to the non-polarized beam And a non-polarization beam transmittance calculation circuit for calculating.
【請求項5】 請求項3の異物検査装置において、前記
第1計測手段は、被検査面に走査される偏光ビ−ムの光
透過性部材による正反射光の強度を検出する走査反射光
検出器と、該反射光の強度から偏光ビ−ムに対する透過
率を算出する偏光ビ−ム透過率演算回路と、を含むこと
を特徴とする異物検査装置。
5. The foreign matter inspection apparatus according to claim 3, wherein the first measuring means detects the intensity of specularly reflected light by the light transmissive member of the polarized beam scanned on the surface to be inspected. And a polarization beam transmittance calculation circuit for calculating the transmittance for the polarization beam from the intensity of the reflected light.
【請求項6】 請求項4の異物検査装置において、計測
光学系は、1つ以上の代表角度で非偏光ビ−ムを光透過
性部材に入射させて正反射光の強度を検出するもの、ま
た、非偏光ビ−ム透過率演算回路は、該代表角度での透
過率から補正演算回路で必要な全部の非偏光ビ−ムに対
する透過率を類推演算するものとしたことを特徴とする
異物検査装置。
6. The foreign matter inspection apparatus according to claim 4, wherein the measurement optical system detects the intensity of specularly reflected light by causing a non-polarizing beam to enter the light transmissive member at one or more representative angles. Further, the non-polarization beam transmittance arithmetic circuit is adapted to perform an analogy calculation of the transmittances for all the non-polarization beams necessary for the correction arithmetic circuit from the transmittances at the representative angles. Inspection equipment.
JP11845592A 1992-04-13 1992-04-13 Foreign matter inspection method and foreign matter inspection device Expired - Fee Related JP3168480B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11845592A JP3168480B2 (en) 1992-04-13 1992-04-13 Foreign matter inspection method and foreign matter inspection device
US08/044,197 US5436464A (en) 1992-04-13 1993-04-08 Foreign particle inspecting method and apparatus with correction for pellicle transmittance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11845592A JP3168480B2 (en) 1992-04-13 1992-04-13 Foreign matter inspection method and foreign matter inspection device

Publications (2)

Publication Number Publication Date
JPH05288688A true JPH05288688A (en) 1993-11-02
JP3168480B2 JP3168480B2 (en) 2001-05-21

Family

ID=14737073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11845592A Expired - Fee Related JP3168480B2 (en) 1992-04-13 1992-04-13 Foreign matter inspection method and foreign matter inspection device

Country Status (1)

Country Link
JP (1) JP3168480B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180549A (en) * 2005-12-27 2007-07-12 Asml Netherlands Bv Lithography device and method
JP2009115753A (en) * 2007-11-09 2009-05-28 Hitachi High-Technologies Corp Detection circuit and foreign matter inspection apparatus for semiconductor wafer
CN107421721A (en) * 2017-09-06 2017-12-01 中国工程物理研究院激光聚变研究中心 Scattering light based on scatter plate receives photosystem transmitance caliberating device
CN111426700A (en) * 2020-05-11 2020-07-17 中国科学院上海光学精密机械研究所 Single-beam photothermal measuring device and method for absorptive defects

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007180549A (en) * 2005-12-27 2007-07-12 Asml Netherlands Bv Lithography device and method
JP2009115753A (en) * 2007-11-09 2009-05-28 Hitachi High-Technologies Corp Detection circuit and foreign matter inspection apparatus for semiconductor wafer
CN107421721A (en) * 2017-09-06 2017-12-01 中国工程物理研究院激光聚变研究中心 Scattering light based on scatter plate receives photosystem transmitance caliberating device
CN107421721B (en) * 2017-09-06 2023-06-13 中国工程物理研究院激光聚变研究中心 Scattered light receiving system transmissivity calibration device based on scattering plate
CN111426700A (en) * 2020-05-11 2020-07-17 中国科学院上海光学精密机械研究所 Single-beam photothermal measuring device and method for absorptive defects
CN111426700B (en) * 2020-05-11 2024-05-17 中国科学院上海光学精密机械研究所 Light and heat measuring device and measuring method for absorptive defect Shan Guangshu

Also Published As

Publication number Publication date
JP3168480B2 (en) 2001-05-21

Similar Documents

Publication Publication Date Title
US5436464A (en) Foreign particle inspecting method and apparatus with correction for pellicle transmittance
JPH0820371B2 (en) Defect inspection device and defect inspection method
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
JPH0915163A (en) Method and equipment for inspecting foreign substance
US5070237A (en) Optical measurement and detection system
JP4104924B2 (en) Optical measuring method and apparatus
JP2010271133A (en) Optical scanning type plane inspection device
JP2009008643A (en) Optical scanning type plane inspecting apparatus
JP5219487B2 (en) Defect inspection apparatus and defect inspection program
JP3168480B2 (en) Foreign matter inspection method and foreign matter inspection device
JP2651815B2 (en) Foreign matter inspection device
JPH0511257B2 (en)
JP2008032669A (en) Optical scanning type planal visual inspecting apparatus
JPS63208746A (en) Defect inspecting device
JPH0795040B2 (en) Micro foreign matter inspection device
JP2006010544A (en) Apparatus and method for inspecting foreign matter
JP2000258144A (en) Flatness and thickness measurement device for wafer
JP2505331B2 (en) Flat object size and defect measuring device
JP3159271B2 (en) Foreign matter inspection method and apparatus
JP3319666B2 (en) Edge detection device
JPH11183151A (en) Transparent sheet inspecting equipment
JPH0547091B2 (en)
JP5777068B2 (en) Mask evaluation device
JPH05157700A (en) Surface state inspecting device
JPH10293103A (en) Method and equipment for optical measurement and optical measuring equipment for patterned substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees