JPH0560557A - Optical method and device for measuring micro displacement - Google Patents

Optical method and device for measuring micro displacement

Info

Publication number
JPH0560557A
JPH0560557A JP22617291A JP22617291A JPH0560557A JP H0560557 A JPH0560557 A JP H0560557A JP 22617291 A JP22617291 A JP 22617291A JP 22617291 A JP22617291 A JP 22617291A JP H0560557 A JPH0560557 A JP H0560557A
Authority
JP
Japan
Prior art keywords
light
measured
optical system
reflected
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22617291A
Other languages
Japanese (ja)
Inventor
Masaichi Mobara
政一 茂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22617291A priority Critical patent/JPH0560557A/en
Publication of JPH0560557A publication Critical patent/JPH0560557A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure with high accuracy the micro displacement of a subject to be measured having low reflectance by subtracting from the total quantity of reflected flux of light incident on a focal error detecting optical system the quantity of reflected flux of light as a corrected quantity of light, the reflected flux of light being incident on the optical system when a subject to be measured does not exist. CONSTITUTION:Laser light from a semiconductor laser 1 is converted into parallel beams of light by a collimator lens 2. The laser light is slightly deviated from S-polarized light and then part of the light is allowed to pass through a polarizing beam splitter 3 and enter a light quantity detector 10. Light reflected as circularly polarized light at a subject 6 to be measured is guided to a beam splitter 7 via the polarizing beam splitter 3 and is dispersed into a spectrum. The dispersed light is reflected at critical angle prisms 8A, 8B and is detected by two-divided light receiving elements 9A, 9B. The quantity of reflected flux of light which is incident when the subject to be measured does not exist is measured in advance as a corrected quantity of light and the corrected quantity of light is subtracted from the total quantity of reflected flux of light incident on and detected by the light-receiving elements 9A, 9B when the micro deviation of the subject to be measured is measured, so that intensity distribution is found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被測定物の微小変位や
表面粗さを光学的手段により測定する光学式微小変位測
定方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical micro-displacement measuring method and apparatus for measuring micro-displacement and surface roughness of an object to be measured.

【0002】[0002]

【従来の技術】従来より、焦点ずれを検出して被測定物
の微小変位や表面粗さを測定する光学式微小変位測定装
置としては、例えば、臨界角法を用いたもの(光技術コ
ンタクトVol.26,No.11,1988,p.7
48〜755)、非点収差法を用いたもの(光技術コン
タクトVol.26,No.11,1988,p.75
6〜762)、フーコー法を用いたもの(光技術コンタ
クトVol.26,No11,1988,p.773〜
784)等がある。
2. Description of the Related Art Conventionally, as an optical micro-displacement measuring apparatus for detecting a micro-displacement and a surface roughness of an object to be measured by detecting a defocus, for example, one using a critical angle method (optical technology contact Vol. 26, No. 11, 1988, p.7.
48-755), using the astigmatism method (Optical Technology Contact Vol. 26, No. 11, 1988, p. 75).
6-762), using the Foucault method (Optical Technology Contact Vol. 26, No 11, 1988, p. 773-
784) and so on.

【0003】ここで、臨界角法は、プリズムの有する固
有の臨界角近傍に入射する光ビーム強度が微小な角度変
化に対して急激な変化を呈する性質を利用したものであ
り、かかる臨界角法による従来の光学式微小変位測定装
置の構成の一例を図4に示す。同図中、101はレーザ
光源である半導体レーザ、102はコリメートレンズ、
103は偏光ビームスプリッタ、104は1/4波長
板、105は対物レンズ、106は被測定物、107は
ビームスプリッタ、108A,108Bは臨界角プリズ
ム、109A、109Bは2分割受光素子であり、半導
体レーザ101からのレーザ光はコリメートレンズ10
2により平行光束に変換され、S偏光で偏光ビームスプ
リッタ103を介して1/4波長板104へ導かれる。
この1/4波長板104に導かれたレーザ光は円偏光の
光束に変換された後、対物レンズ105を介して被測定
物106の表面に集光される。被測定物106で反射さ
れたレーザ光は1/4波長板104でP偏光にされた
後、偏光ビームスプリッタ103を透過してビームスプ
リッタ107に導かれ、分光される。分光された光はそ
れぞれ、反射面が臨界角に設定されている臨界角プリズ
ム108A,108Bで反射され、それぞれ2分割受光
素子109A,109B,に入射され、光量が検出され
る。
Here, the critical angle method utilizes the property that the intensity of the light beam incident near the inherent critical angle of the prism exhibits a rapid change with respect to a minute angle change. FIG. 4 shows an example of the configuration of a conventional optical micro-displacement measuring device according to the above. In the figure, 101 is a semiconductor laser which is a laser light source, 102 is a collimating lens,
Reference numeral 103 is a polarization beam splitter, 104 is a quarter wavelength plate, 105 is an objective lens, 106 is an object to be measured, 107 is a beam splitter, 108A and 108B are critical angle prisms, 109A and 109B are two-divided light receiving elements, and a semiconductor. The laser light from the laser 101 is collimated lens 10
It is converted into a parallel light flux by 2 and is guided to the quarter-wave plate 104 as S-polarized light through the polarization beam splitter 103.
The laser light guided to the quarter-wave plate 104 is converted into a circularly polarized light beam, and then is condensed on the surface of the DUT 106 via the objective lens 105. The laser light reflected by the DUT 106 is P-polarized by the quarter-wave plate 104, then passes through the polarization beam splitter 103, is guided to the beam splitter 107, and is dispersed. The separated lights are reflected by the critical angle prisms 108A and 108B whose reflection surfaces are set to the critical angles, respectively, and are incident on the two-divided light receiving elements 109A and 109B, respectively, and the amount of light is detected.

【0004】このように、被測定物106が対物レンズ
105の焦点に位置している場合には、反射光は平行と
なり、臨界角プリズム108A,108Bにおける反射
率は全光束で一定となり、2分割受光素子109A,1
09Bに受光される光量は等しくなる。しかし、被測定
物106が対物レンズ105の焦点より遠くに位置して
いる場合には反射光は収束光となるので臨界角プリズム
108A,108Bに入る光束の入射角はその光軸に対
して臨界角プリズム108Aで図中右側、臨界角プリズ
ム108bで図中上側は臨界角より小さくなり、反射率
が低下して、2分割受光素子109A,109Bに受光
される光量に差が生じる。同様に被測定物106が対物
レンズ105の焦点より近い地点に位置している場合に
は反射光は発散光となり、上述した場合とは逆になり、
2分割受光素子109A,109Bに受光される光量に
差が生じる。このような光量の差から被測定物106
の、対物レンズ105の焦点位置からの変位を検出し、
被測定物106の微小変位や表面粗さを測定することが
できる。
As described above, when the object to be measured 106 is located at the focal point of the objective lens 105, the reflected light becomes parallel, the reflectance at the critical angle prisms 108A and 108B is constant for all luminous fluxes, and is divided into two. Light receiving element 109A, 1
The amount of light received by 09B becomes equal. However, when the DUT 106 is located farther than the focal point of the objective lens 105, the reflected light becomes a convergent light, so that the incident angle of the light flux entering the critical angle prisms 108A and 108B is critical with respect to the optical axis. The angle prism 108A has a right side in the figure, and the critical angle prism 108b has an upper side in the figure smaller than the critical angle, and the reflectance decreases, which causes a difference in the amount of light received by the two-divided light receiving elements 109A and 109B. Similarly, when the DUT 106 is located closer to the focal point of the objective lens 105, the reflected light becomes divergent light, which is the opposite of the above case,
A difference occurs in the amount of light received by the two-divided light receiving elements 109A and 109B. From such a difference in the amount of light, the DUT 106
Of the displacement of the objective lens 105 from the focus position,
It is possible to measure the minute displacement and the surface roughness of the DUT 106.

【0005】一方、非点収差法は、円筒レンズを用いて
検出像に非点収差を与え、測定物の位置の移動変位量を
像の変形に変換するものであり、この方法による微小変
位測定装置では、被測定物が対物レンズの合焦点位置の
場合には、受光ビームは円形状となるが、結像位置が近
い場合には縦長な楕円形状になり、また、遠い場合には
横長な楕円形状となるので、これを4分割フォトダイオ
ードで光電変換し、縦方向、横方向のそれぞれの和を求
め、更にそれらの差の出力信号を求め、被測定物の移動
変位量に比例した出力を得るものである。
On the other hand, in the astigmatism method, astigmatism is applied to a detected image by using a cylindrical lens, and the displacement amount of the position of the object to be measured is converted into image deformation. In the device, when the object to be measured is the focus position of the objective lens, the received light beam has a circular shape, but when the image forming position is close, it has an elongated elliptical shape, and when it is far, it has a horizontal shape. Since it has an elliptical shape, it is photoelectrically converted by a 4-division photodiode, the sum of each of the vertical and horizontal directions is calculated, and the output signal of the difference between them is calculated, and the output proportional to the displacement amount of the measured object is output. Is what you get.

【0006】また、フーコー法による微小変位測定装置
は、光学的ナイフエッジ効果を持つ分割プリズムを用い
て被測定物からの反射光束を2光束に分割し、2分割フ
ォトダイオードに入射させるものであり、対物レンズと
被測定面との距離が変化すると被測定物からの反射光束
の広がり角が変化するため、2分割フォトダイオードの
受光量に差が生ずるので、これにより被測定物の変位量
を求めるものである。
Further, the Foucault micro-displacement measuring apparatus uses a splitting prism having an optical knife edge effect to split a light beam reflected from an object to be measured into two light beams and make them enter a two-divided photodiode. When the distance between the objective lens and the surface to be measured changes, the angle of divergence of the reflected light beam from the object to be measured changes, which causes a difference in the amount of light received by the two-divided photodiodes. It is what you want.

【0007】[0007]

【発明が解決しようとする課題】前述した従来の光学式
微小変位測定装置においては、通常、被測定物106の
反射率が10%以上必要であるといわれており、実際に
反射率が10%以下の被測定物についての微小変位や表
面粗さを測定すると測定精度が低いという問題がある。
In the above-mentioned conventional optical micro-displacement measuring device, it is generally said that the reflectance of the object to be measured 106 needs to be 10% or more, and the reflectance is actually 10%. There is a problem that the measurement accuracy is low when the following small displacement or surface roughness is measured for the object to be measured.

【0008】本発明はこのような事情に鑑み、反射率の
低い被測定物についての微小変位や表面粗さも高精度で
測定できる光学式微小変位測定方法及び装置を提供する
ことを目的とする。
In view of such circumstances, it is an object of the present invention to provide an optical micro-displacement measuring method and device capable of highly accurately measuring micro-displacement and surface roughness of an object having a low reflectance.

【0009】[0009]

【課題を解決するための手段】前記目的を達成する本発
明に係る光学式微小変位測定方法は、光源からの光束を
照射光学系により被測定物に照射し、焦点誤差検出光学
系に入射する反射光束の強度分布より焦点誤差を検出す
る光学式微小変位測定方法において、上記被測定物が存
在しない場合に上記焦点誤差検出光学系に入射する照射
光学系からの反射光束の光量を補正光量として予め測定
しておき、被測定物の微小変位を測定する際に上記焦点
誤差検出光学系に入射する反射光束の全体光量から上記
補正光量を差し引き強度分布を求めることを特徴とし、
また、本発明に係る光学式微小変位測定装置は、光源か
らの光束を被測定物に照射する照射光学系と、分割検出
器を有して誤分割検出器に入射する反射光束の強度分布
より焦点誤差を検出する焦点誤差検出光学系とを有する
光学式微小変位測定装置であって、上記光源からの光束
を分割して一方を上記照射光学系に送る光源出射光分割
手段と、この光源出射光分割手段で分割された他方の光
束を受光して光量を検出する光量検知用検出器と、焦点
誤差検出光学系の分割検出器の出力から上記光量検出器
の出力の一定倍率を減算する回路とを有することを特徴
とする。
In the optical micro-displacement measuring method according to the present invention which achieves the above object, a light beam from a light source is irradiated onto an object to be measured by an irradiation optical system and is incident on a focus error detecting optical system. In an optical micro-displacement measuring method for detecting a focus error from the intensity distribution of a reflected light beam, the light amount of the reflected light beam from the irradiation optical system that enters the focus error detection optical system when the object to be measured does not exist is used as the correction light amount. Measured in advance, when measuring a small displacement of the object to be measured, the correction light amount is subtracted from the total light amount of the reflected light beam incident on the focus error detection optical system to obtain an intensity distribution,
Further, the optical micro-displacement measuring device according to the present invention has an irradiation optical system for irradiating the object to be measured with a light beam from a light source, and a distribution detector for detecting an intensity distribution of a reflected light beam incident on an erroneous division detector. An optical micro-displacement measuring device having a focus error detection optical system for detecting a focus error, the light source emitting light splitting means for splitting a light beam from the light source and sending one to the irradiation optical system, and the light source output. A light amount detecting detector that receives the other light beam split by the light splitting means and detects the light amount, and a circuit that subtracts a constant magnification of the output of the light amount detector from the output of the split detector of the focus error detection optical system. And having.

【0010】[0010]

【作用】焦点誤差検出光学系による焦点誤差の検出は、
分割検出器における出力差により求めるが、被測定物の
反射率の違いを補正するために、通常、出力差を合計出
力で除算したものにより変位差をもとめる。しかし、被
測定物以外の、例えば照射光学系内の対物レンズでの反
射光束も焦点誤差検出系に入射することになり、被測定
物での反射率が小さい場合には、被測定物以外での反射
光束の変位量へ与える影響が大となる。本発明は被測定
物以外での反射光束に対応する出力を分割検出器の出力
から減算し、被測定物での反射率が小さい場合でも精度
よく変位量等を測定するものである。また、上記構成の
装置は、光源出射光分割手段で分割した一部の光を受光
する光量検出用検出器の出力の一定倍率を焦点誤差検出
光学系の分割検出器の出力から、減算する減算回路を備
えているので、被測定物がない状態での上記減算回路か
らの出力が零となるように減算する光量検出用検出器の
出力の倍率を設定すれば、光量の変動に応じて被測定物
以外での反射光束が除去される。
Operation: Focus error detection by the focus error detection optical system
Although it is determined by the output difference in the split detector, in order to correct the difference in reflectance of the object to be measured, the displacement difference is usually obtained by dividing the output difference by the total output. However, other than the object to be measured, for example, the reflected light flux from the objective lens in the irradiation optical system will also enter the focus error detection system, and if the reflectance of the object to be measured is small, it will not be in the object to be measured. Has a great influence on the amount of displacement of the reflected light flux. The present invention subtracts the output corresponding to the reflected light flux other than the measured object from the output of the split detector, and accurately measures the displacement amount and the like even when the reflectance of the measured object is small. Further, in the apparatus having the above-described configuration, the subtraction for subtracting the constant magnification of the output of the light quantity detecting detector that receives a part of the light split by the light source outgoing light splitting means from the output of the split detector of the focus error detection optical system. Since it is equipped with a circuit, if the output magnification of the detector for light quantity detection is set so that the output from the subtraction circuit becomes zero in the absence of the object to be measured, the object to be measured is changed according to the fluctuation of the light quantity. The reflected light flux other than the object to be measured is removed.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described below based on examples.

【0012】図1には一実施例に係る光学式微小変位測
定装置の構成を示す。同図中,1はレーザ光源である半
導体レーザ、2はコリメートレンズ、3は偏光ビームス
プリッタ、4は1/4波長板、5は対物レンズ、6は被
測定物、7はビームスプリッタ、8A、8Bは臨界角プ
リズム、9A,9Bは2分割受光素子であり、10は偏
光ビームスプリッタ3を透過した光を受光する光量検出
用検出器である。本実施例の装置では、半導体レーザ1
からのレーザ光はコリメートレンズ2により平行光束に
変換され、S偏光で偏光ビームスプリッタ3を介して1
/4波長板104へ導かれるが、半導体レーザ1からの
レーザ光をS偏光から少しずらしておくと、一部の光が
偏光ビームスプリッタ3を透過して光量検出用検出器1
0に入る。この光量検出用検出器10の出力をモニター
することにより半導体レーザ1からのレーザ光の出力変
動を検知することができる。
FIG. 1 shows the configuration of an optical micro-displacement measuring device according to an embodiment. In the figure, 1 is a semiconductor laser which is a laser light source, 2 is a collimating lens, 3 is a polarization beam splitter, 4 is a quarter wavelength plate, 5 is an objective lens, 6 is an object to be measured, 7 is a beam splitter, 8A, Reference numeral 8B is a critical angle prism, 9A and 9B are two-divided light receiving elements, and 10 is a light amount detecting detector for receiving the light transmitted through the polarization beam splitter 3. In the apparatus of this embodiment, the semiconductor laser 1
The laser light from is converted into a parallel light beam by the collimator lens 2 and is S-polarized through the polarization beam splitter 3 to be 1
Although it is guided to the / 4 wavelength plate 104, if the laser light from the semiconductor laser 1 is slightly deviated from the S-polarized light, a part of the light will pass through the polarization beam splitter 3 and the light amount detection detector 1
Enter 0. By monitoring the output of the light quantity detecting detector 10, the output fluctuation of the laser light from the semiconductor laser 1 can be detected.

【0013】一方、1/4波長板4に導かれたレーザ光
は円偏光の光束に変換された後、対物レンズ5を介して
被測定物6の表面に集光される。被測定物6で反射され
たレーザ光は1/4波長板4でP偏光にされた後、偏光
ビームスプリッタ3を透過してビームスプリッタ7に導
かれ、分光される。分光された光はそれぞれ、反射面が
臨界角に設定されている臨界角プリズム8A,8Bで反
射され、それぞれ2分割受光素子9A,9Bに入射さ
れ、光量が検出される。本実施例では2分割受光素子9
A,9Bと光量検出用検出器10との出力から被測定物
6の変位や表面粗さを求める。
On the other hand, the laser light guided to the quarter-wave plate 4 is converted into a circularly polarized light beam, and then is condensed on the surface of the DUT 6 through the objective lens 5. The laser light reflected by the DUT 6 is P-polarized by the quarter-wave plate 4, then passes through the polarization beam splitter 3, is guided to the beam splitter 7, and is dispersed. The separated lights are reflected by the critical angle prisms 8A and 8B whose reflecting surfaces are set to the critical angles, respectively, and are incident on the two-divided light receiving elements 9A and 9B, and the light amounts are detected. In this embodiment, the two-division light receiving element 9
The displacement and surface roughness of the DUT 6 are obtained from the outputs of A and 9B and the light amount detecting detector 10.

【0014】被測定物6の反射光束に対する2分割光量
素子9Aの出力をA,B,2分割受光素子の出力をC,
Dとすると、通常の変位計出力は次記数1で示される値
にセットされている。なお、ここで、(A+B+C+
D)で割るのは被測定物6の反射率を補正するためであ
る。
The output of the two-divided light quantity element 9A for the reflected light flux of the object to be measured 6 is A, B, the output of the two-divided light receiving element is C,
Assuming D, the normal displacement meter output is set to the value shown by the following expression 1. Here, (A + B + C +
The reason for dividing by D) is to correct the reflectance of the DUT 6.

【0015】[0015]

【数1】 [Equation 1]

【0016】しかし、実際には被測定物6以外、例えば
対物レンズ5での反射光束に対応する出力a,b,c,
dが2分割検出器9A,9Bに出力される。但し、a,
b,c,dは被測定物6の変位等に関係なく一定でa=
b=c=dである。したがって、実際の変位計出力は次
記数2で表される。
However, in practice, outputs a, b, c, other than the object 6 to be measured, corresponding to the reflected light flux from the objective lens 5, for example.
d is output to the two-divided detectors 9A and 9B. However, a,
b, c and d are constant irrespective of the displacement of the DUT 6 and a =
b = c = d. Therefore, the actual displacement meter output is expressed by the following expression 2.

【0017】[0017]

【数2】 [Equation 2]

【0018】すなわち、通常の場合の変位計出力は(a
+b+c+d)の分だけ大きい数値で割られていること
になる。この誤差は被測定物6の反射率は大きい場合は
問題ないが、反射率が小さい場合は変位量の誤差が大き
くなる。つまり、図2に示すように、被測定物6が高反
射率の場合の変位−出力特性の傾きと比較して、低反射
率の場合の傾きは小さくなる。本実施例では、かかる誤
差を以下のように補正する。
That is, the displacement meter output in the normal case is (a
+ B + c + d) is divided by a larger value. This error is not a problem when the reflectance of the DUT 6 is large, but when the reflectance is small, the error of the displacement amount becomes large. That is, as shown in FIG. 2, the inclination when the reflectance is low is smaller than the inclination of the displacement-output characteristic when the DUT 6 has a high reflectance. In this embodiment, such an error is corrected as follows.

【0019】本実施例での変位出力の回路を図3に示
す。図中、9A,9B,10は図1の2分割受光素子9
A,9B,光量検出用検出器10に対応する。そして、
2分割受光素子9A,9Bの各受光素子にはそれぞれプ
リアンプ11A,11B,11C,11Dが接続されて
おり、また、光量検出用検出器10には4つのプリアン
プ12A,12B,12C,12Dが並列に接続されて
いる。これらプリアンプ11A〜11Dとプリアンプ1
2A〜12Dとは減算器13A,13B,13C,13
Dに接続されており、13Aでは11Aと12Aとの
差、13Bでは11Bと12Bとの差、13Cでは11
Cと12Cとの差、13Dでは11Dと12Dとの差が
それぞれ出力されるようになっている。また、減算器1
3Aと13Cとは加算器14Aに接続され、減算器13
Bと13Dとは加算器14Bに接続されている。さら
に、加算器14Aと14Bとの差と和とは、それぞれ減
算器15及び加算器16で求められるようになってい
る。そして、除算器17により減算器15の出力を加算
器16の出力で除した値が出力されるようになってい
る。
A displacement output circuit in this embodiment is shown in FIG. In the figure, 9A, 9B and 10 are the two-divided light receiving elements 9 of FIG.
It corresponds to A, 9B and the detector 10 for detecting the light amount. And
Preamplifiers 11A, 11B, 11C and 11D are respectively connected to the light receiving elements of the two-divided light receiving elements 9A and 9B, and four preamplifiers 12A, 12B, 12C and 12D are connected in parallel to the light amount detecting detector 10. It is connected to the. These preamplifiers 11A to 11D and preamplifier 1
2A to 12D are subtractors 13A, 13B, 13C, 13
It is connected to D, the difference between 11A and 12A in 13A, the difference between 11B and 12B in 13B, 11 in 13C.
The difference between C and 12C, and the difference between 11D and 12D in 13D are output. Also, the subtractor 1
3A and 13C are connected to the adder 14A, and the subtractor 13A
B and 13D are connected to the adder 14B. Further, the difference between the adders 14A and 14B and the sum are obtained by the subtracter 15 and the adder 16, respectively. Then, a value obtained by dividing the output of the subtractor 15 by the output of the adder 16 by the divider 17 is output.

【0020】本実施例の装置では、予め以下の調整をす
る。まず、被測定物6を焦点位置に置き、分割受光素子
9A,9BのA,B,C,Dでの出力が同じになるよう
にプリアンプ11A〜11Dを調整する。次に、被測定
物6がない状態で各減算器13A〜13Dの出力が零と
なるように、プリアンプ12A〜12Dの増幅率を調整
する。これにより、被測定物6以外の反射が減算器13
A〜13Dでキャンセルされ補正されることになる。ま
た、光源1の出力が変動してもそれに応じて受光器10
に入射する光量も変動し、これに伴い減算器13A〜1
3Dでの減算量も変動するので、常に光源1の出力の変
動に応じた適正な補正が行われることになる。
In the device of this embodiment, the following adjustments are made in advance. First, the DUT 6 is placed at the focal position, and the preamplifiers 11A to 11D are adjusted so that the outputs of the divided light receiving elements 9A and 9B at A, B, C, and D become the same. Next, the amplification factors of the preamplifiers 12A to 12D are adjusted so that the outputs of the subtractors 13A to 13D become zero in the absence of the device under test 6. As a result, the reflections other than those of the DUT 6 are subtracted.
It will be canceled and corrected in A to 13D. In addition, even if the output of the light source 1 fluctuates, the light receiver 10 is correspondingly changed.
The amount of light incident on is also changed, and accordingly, the subtracters 13A to 13A-1
Since the subtraction amount in 3D also varies, appropriate correction is always performed according to the variation in the output of the light source 1.

【0021】このように、本実施例では、被測定物6以
外の反射光束に応じた出力(上記数2のa,b,c,
d)が減算されるので、被測定物6の反射率が低い場合
でも適正な変位等を測定することができる。なお、被測
定物6の反射率が低い場合の絶対的な光量不足による測
定精度の低下は、問題ないことが次の通り確認された。
例えば、被測定物6の反射率を1%、各光学素子による
損失合計を50%、受光素子で検知できる光量を1μ
W,臨界角プリズムでの透過損失を50%とすると、必
要な光量Pは P=(1×10-6×4)/ (0.01×0.5 ×0.5)=1.6 mW となり、光量不足は全く問題とならない。
As described above, in this embodiment, the output (a, b, c,
Since d) is subtracted, an appropriate displacement or the like can be measured even when the reflectance of the DUT 6 is low. It was confirmed as follows that the decrease in measurement accuracy due to an absolute light amount shortage when the reflectance of the DUT 6 was low was not a problem.
For example, the reflectance of the DUT 6 is 1%, the total loss due to each optical element is 50%, and the light amount detectable by the light receiving element is 1 μm.
Assuming that the transmission loss of W and the critical angle prism is 50%, the required light amount P is P = (1 x 10 -6 x 4) / (0.01 x 0.5 x 0.5) = 1.6 mW. I won't.

【0022】以上、実施例では臨界角法を用いたものに
ついて説明したが、非点収差法やフーコー法を用いたも
のについても同様に本発明を適用できることはいうまで
もない。また、補正方法は実施例に示した回路や調整方
法に限定されるものではない。
Although the embodiments have been described using the critical angle method, it goes without saying that the present invention can be similarly applied to the methods using the astigmatism method and the Foucault method. Further, the correction method is not limited to the circuits and adjustment methods shown in the embodiments.

【0023】[0023]

【発明の効果】以上説明したように、本発明によると反
射率の低い被測定物についての微小変位や表面粗さも高
精度で測定することができる。
As described above, according to the present invention, minute displacement and surface roughness of an object having a low reflectance can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例に係る光学式微小変位測定装置を示す
構成図である。
FIG. 1 is a configuration diagram showing an optical micro-displacement measuring device according to an embodiment.

【図2】変位−出力特性図である。FIG. 2 is a displacement-output characteristic diagram.

【図3】図1の装置の変位出力の回路図である。FIG. 3 is a circuit diagram of displacement output of the device of FIG.

【図4】従来技術に係る光学式微小変位測定装置を示す
構成図である。
FIG. 4 is a configuration diagram showing an optical micro-displacement measuring device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 半導体レーザ 2 コリメートレンズ 3 偏光ビームスプリッタ 4 1/4波長板 5 対物レンズ 6 被測定物 7 ビームスプリッタ 8A,8B 臨界角プリズム 9A,9B 2分割受光素子 10 光量検出用検出器 DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Collimating lens 3 Polarization beam splitter 4 1/4 wavelength plate 5 Objective lens 6 Object to be measured 7 Beam splitter 8A, 8B Critical angle prism 9A, 9B Divided light receiving element 10 Light quantity detection detector

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を照射光学系により被測
定物に照射し、焦点誤差検出光学系に入射する反射光束
の強度分布より焦点誤差を検出する光学式微小変位測定
方法において、上記被測定物が存在しない場合に上記焦
点誤差検出光学系に入射する照射光学系からの反射光束
の光量を補正光量として予め測定しておき、被測定物の
微小変位を測定する際に上記焦点誤差検出光学系に入射
する反射光束の全体光量から上記補正光量を差し引き強
度分布を求めることを特徴とする光学式微小変位測定方
法。
1. An optical micro-displacement measuring method for irradiating a light beam from a light source to an object to be measured by an irradiation optical system, and detecting a focus error from an intensity distribution of a reflected light beam entering a focus error detection optical system. When there is no measurement object, the light quantity of the reflected light flux from the irradiation optical system that enters the focus error detection optical system is measured in advance as a correction light quantity, and the focus error detection is performed when measuring a small displacement of the DUT. An optical micro-displacement measuring method, characterized in that the intensity distribution is obtained by subtracting the correction light amount from the total light amount of the reflected light beam entering the optical system.
【請求項2】 光源からの光束を被測定物に照射する照
射光学系と、分割検出器を有して該分割検出器に入射す
る反射光束の強度分布より焦点誤差を検出する焦点誤差
検出光学系とを有する光学式微小変位測定装置であっ
て、上記光源からの光束を分割して一方を上記照射光学
系に送る光源出射光分割手段と、この光源出射光分割手
段で分割された他方の光束を受光して光量を検出する光
量検知用検出器と、焦点誤差検出光学系の分割検出器の
全体出力から上記光量検出器の出方を減算する回路とを
有することを特徴とする光学式微小変位測定装置。
2. An irradiation optical system for irradiating an object to be measured with a light flux from a light source, and a focus error detection optical having a split detector for detecting a focus error from an intensity distribution of a reflected light flux incident on the split detector. An optical micro-displacement measuring device having a system, the light source emitting light splitting means for splitting a light beam from the light source and sending one to the irradiation optical system, and the other of the other split by the light source emitting light splitting means. An optical system having a light amount detecting detector for receiving a light beam and detecting the light amount, and a circuit for subtracting the output of the light amount detector from the overall output of the split detector of the focus error detection optical system. Micro displacement measuring device.
【請求項3】 請求項2において、光量検知用検出器の
出力信号を焦点誤差検出光学系の分割検出器の分割数と
同数の出力に分割する手段と、この分割された出力をそ
れぞれ変化させる手段とを備えたことを特徴とする光学
式微小変位測定装置。
3. The means according to claim 2, wherein the output signal of the light amount detection detector is divided into the same number of outputs as the number of divisions of the division detector of the focus error detection optical system, and the divided outputs are changed. And an optical micro-displacement measuring device.
JP22617291A 1991-09-05 1991-09-05 Optical method and device for measuring micro displacement Withdrawn JPH0560557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22617291A JPH0560557A (en) 1991-09-05 1991-09-05 Optical method and device for measuring micro displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22617291A JPH0560557A (en) 1991-09-05 1991-09-05 Optical method and device for measuring micro displacement

Publications (1)

Publication Number Publication Date
JPH0560557A true JPH0560557A (en) 1993-03-09

Family

ID=16841011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22617291A Withdrawn JPH0560557A (en) 1991-09-05 1991-09-05 Optical method and device for measuring micro displacement

Country Status (1)

Country Link
JP (1) JPH0560557A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310623A (en) * 2001-04-06 2002-10-23 Fotonikusu:Kk Surface shape measuring method and surface shape measuring instrument
CN109458934A (en) * 2018-07-04 2019-03-12 重庆大学 A kind of optical micrometric displacement measuring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310623A (en) * 2001-04-06 2002-10-23 Fotonikusu:Kk Surface shape measuring method and surface shape measuring instrument
JP4580579B2 (en) * 2001-04-06 2010-11-17 株式会社ナノテックス Surface shape measuring method and surface shape measuring apparatus
CN109458934A (en) * 2018-07-04 2019-03-12 重庆大学 A kind of optical micrometric displacement measuring system
CN109458934B (en) * 2018-07-04 2023-11-07 重庆大学 Optical micro-displacement measurement system

Similar Documents

Publication Publication Date Title
US8928891B2 (en) Optical distance sensor with tilt error correction
US4999014A (en) Method and apparatus for measuring thickness of thin films
US7123345B2 (en) Automatic focusing apparatus
US10451738B2 (en) Laser processing device and laser processing system
WO2018045735A1 (en) Apparatus used for laser-measurement signal correction
JPH0726806B2 (en) Distance measuring device
JPH0363001B2 (en)
CN106019259A (en) Laser frequency discriminating device and frequency discrimination method based on Mach-Zehnder interferometer
US5315373A (en) Method of measuring a minute displacement
US20040136008A1 (en) Optical characteristic measurement device and optical type displacement meter
US5870199A (en) Method and apparatus for highly accurate distance measurement with respect to surfaces
US6624403B2 (en) Autofocus system
US5633716A (en) Self-aligning retroreflector target carrier
JPH0560557A (en) Optical method and device for measuring micro displacement
EP0235861B1 (en) Device for detecting a centring error
JPH06213623A (en) Optical displacement sensor
JPH07294231A (en) Optical surface roughness sensor
JPH06307858A (en) Optical displacement meter
JPH08334606A (en) Lens
JPH10103915A (en) Apparatus for detecting position of face
JP2966950B2 (en) Sample displacement measuring device
JPH08128806A (en) Optical displacement sensor
JPH08327334A (en) Gap measuring apparatus
JP2808713B2 (en) Optical micro displacement measuring device
RU2148790C1 (en) Method and device for precise contactless measurement of distance between surfaces

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203