JP2006014530A - Coil and its manufacturing method - Google Patents

Coil and its manufacturing method Download PDF

Info

Publication number
JP2006014530A
JP2006014530A JP2004190235A JP2004190235A JP2006014530A JP 2006014530 A JP2006014530 A JP 2006014530A JP 2004190235 A JP2004190235 A JP 2004190235A JP 2004190235 A JP2004190235 A JP 2004190235A JP 2006014530 A JP2006014530 A JP 2006014530A
Authority
JP
Japan
Prior art keywords
base material
coil
long material
longitudinal direction
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190235A
Other languages
Japanese (ja)
Inventor
Jun Sato
佐藤  淳
Toshiyuki Sonoda
敏之 園田
Shinichi Iizuka
慎一 飯塚
Kazutsugu Kusabetsu
和嗣 草別
Hitoshi Oyama
仁 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004190235A priority Critical patent/JP2006014530A/en
Publication of JP2006014530A publication Critical patent/JP2006014530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Metal Rolling (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor coil and its manufacturing method that easily increase a space factor. <P>SOLUTION: The coil covers the one wound spirally edgewise on a long material 3 whose cross-section is flat. One end side of this long material 3 is wider but thinner than the other side and the cross-sectional area of the long material 3 is virtually constant over its longitudinal direction. This structure eliminates the stacked layers of the long material in the circumferential direction of a motor rotating shaft, and forms a single layer, which increases the space factor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コイルとその製造方法に関するものである。特に、高い占積率を実現できるモータコイルに関するものである。   The present invention relates to a coil and a manufacturing method thereof. In particular, the present invention relates to a motor coil that can realize a high space factor.

従来のモータにおいて、コアにコイルを設けたローターまたはステータが広く知られている。一般に、ローター又はステータは、リング部と、そのリング部の径方向に伸びる複数の突起部とを具える。コイルは、前記各突起部に導線を巻き付けて必要なアンペア・ターン数とすることで形成される。そして、この導線には、断面が丸または角の線材が用いられていた(例えば非特許文献1)。   In a conventional motor, a rotor or a stator having a coil provided on a core is widely known. In general, a rotor or a stator includes a ring portion and a plurality of protrusions extending in the radial direction of the ring portion. The coil is formed by winding a conductive wire around each of the protrusions to obtain the required number of ampere turns. In addition, a wire having a round or square cross section has been used for this conductive wire (for example, Non-Patent Document 1).

「イラスト・図解 小型モータのすべて」見城尚志、佐渡友茂著 技術評論社 平成13年5月25日初版発行 P91 図3.29"Illustrations and illustrations All about small motors" by Naoshi Mijo and Tomoshi Sado Technical Review Company May 25, 2001 First edition published P91 Figure 3.29

しかし、このような導線を用いた場合、各導線間に隙間が生じ、占積率(コイル配置空間の断面における導線面積の比率)を高めることができない。   However, when such a conducting wire is used, a gap is generated between the conducting wires, and the space factor (the ratio of the conducting wire area in the cross section of the coil arrangement space) cannot be increased.

また、通常、導線はエナメル樹脂などの絶縁被覆が施されている。ところが、この絶縁被覆はモータ駆動時の発生熱の発散を妨げる。細径の導線を用いれば、リング部周方向(モータ回転軸の周方向)への導線の積層数が大きくなり、結果的に絶縁被覆の積層数も大きくなって放熱効率が低下し、モータ内部温度の上昇により、より効率低下を招いていた。   Usually, the conductive wire is provided with an insulating coating such as enamel resin. However, this insulation coating prevents the heat generated when the motor is driven. If thin conductors are used, the number of conductors stacked in the circumferential direction of the ring (circumferential direction of the motor rotating shaft) will increase, resulting in an increase in the number of insulation coatings and lower heat dissipation efficiency. The increase in temperature caused a further decrease in efficiency.

従って、本発明の主目的は、容易に占積率を高めることができるモータコイルとその製造方法を提供することにある。   Accordingly, a main object of the present invention is to provide a motor coil and a manufacturing method thereof that can easily increase the space factor.

また、本発明の他の目的は、放熱性に優れるモータコイルとその製造方法を提供することにある。   Another object of the present invention is to provide a motor coil excellent in heat dissipation and a manufacturing method thereof.

本発明では、断面が扁平状の長尺材(導線)を用い、その長尺材の形態と屈曲の仕方に工夫を施すことで上記の目的を達成する。   In the present invention, the above object is achieved by using a long material (conductive wire) having a flat cross section and devising the form and bending method of the long material.

本発明コイルは、断面が扁平の長尺材をエッジワイズ巻きにて螺旋状に巻いたコイルである。この長尺材は、その一端側よりも他端側の方が、幅が大きく厚みが小さくなっている。そして、長尺材の断面積は長手方向にわたって実質的に一定であることを特徴とする。   The coil of the present invention is a coil in which a long material having a flat cross section is spirally wound by edgewise winding. The long material has a larger width and a smaller thickness on the other end side than on one end side. And the cross-sectional area of a long material is characterized by being substantially constant over a longitudinal direction.

このコイルは、扁平板状の長尺材を用いてエッジワイズ巻きすること構成される。エッジワイズ巻きとは、長尺材の厚み方向がコイルの径方向に沿うのではなく、長尺材の幅方向がコイルの径方向に沿う巻き方である。この構成により、モータ回転軸の周方向への長尺材の積層をなくして単層とし、占積率を高くできる。加えて、モータ回転軸の周方向への長尺材の積層をなくして単層とすれば、長尺材に形成した絶縁被覆も積層されることがなく、放熱効果の高いコイルを得ることができる。   This coil is configured to be edgewise wound using a flat plate-like long material. Edgewise winding is a winding method in which the thickness direction of the long material does not extend along the radial direction of the coil, but the width direction of the long material extends along the radial direction of the coil. With this configuration, it is possible to eliminate the lamination of long materials in the circumferential direction of the motor rotation shaft and to make a single layer, and to increase the space factor. In addition, if the lamination of the long material in the circumferential direction of the motor rotation shaft is eliminated to form a single layer, the insulation coating formed on the long material is not laminated, and a coil having a high heat dissipation effect can be obtained. it can.

また、一端側よりも他端側の方が、幅が大きく厚みが小さくなっているが、断面積は長手方向にわたって実質的に一定の長尺材を用いることで、長尺材の抵抗を長手方向にわたって均一にでき、かつコアのスロット形状に対応した形のコイルを得ることができる。一般に、モータのコアは、リング部と、リング部の径方向に伸びて長尺材が巻き付けられる突起部とを具える。この各突起部の間に形成されて長尺材が配置される空間がスロットである。このスロットは、通常、リング部外周側の方が内周側よりも周方向の長さが長い。そのため、コアの外周域に配される長尺材の幅を内周域に配される長尺材の幅よりも広くすることで、スロットの形状に適合したコイルを得ることができ、スロットの周方向距離が内外周で異なる場合でも占積率を高めることができる。   In addition, the width of the other end is larger and the thickness is smaller on the other end than the one end, but the cross-sectional area is substantially constant over the longitudinal direction. It is possible to obtain a coil that can be made uniform over the direction and has a shape corresponding to the slot shape of the core. Generally, the core of a motor includes a ring portion and a protrusion portion that extends in the radial direction of the ring portion and is wound with a long material. A slot formed between the protrusions and in which the long material is disposed is a slot. This slot is usually longer in the circumferential direction on the outer peripheral side of the ring portion than on the inner peripheral side. Therefore, by making the width of the long material arranged in the outer peripheral region of the core wider than the width of the long material arranged in the inner peripheral region, a coil suitable for the shape of the slot can be obtained. The space factor can be increased even when the circumferential distance is different between the inner and outer circumferences.

一方、本発明コイルの製造方法は、長手方向にわたって幅が増加し厚みが減少するが断面積は変わらない扁平断面の長尺材を準備する工程と、前記長尺材を円錐ローラで連続的または断続的に圧延して屈曲部を形成し、長尺材を螺旋状のコイルに成形する工程とを有することを特徴とする。   On the other hand, the coil manufacturing method of the present invention comprises a step of preparing a long material having a flat cross section in which the width increases in the longitudinal direction and the thickness decreases but the cross-sectional area does not change, and the long material is continuously or conically with a conical roller. A step of intermittently rolling to form a bent portion, and forming a long material into a spiral coil.

この製造方法は、予め長手方向にわたって幅が増加し厚みが減少するが断面積は変わらない扁平断面の長尺材を準備しておく。代表的な長尺材の断面形状は長方形である。この長尺材を形成する手段としては、塑性加工と、材料の除去を伴う機械加工とが利用できる。塑性加工には、圧延、圧延とプレスの組合せ、プレスのみなどが挙げられる。材料の除去を伴う機械加工には、切削や研削が挙げられる。   In this manufacturing method, a long material having a flat cross section in which the width increases in the longitudinal direction and the thickness decreases but the cross sectional area does not change is prepared in advance. The cross-sectional shape of a typical long material is a rectangle. As means for forming the long material, plastic working and machining with material removal can be used. Examples of the plastic working include rolling, a combination of rolling and pressing, and only pressing. Machining with material removal includes cutting and grinding.

圧延を用いる場合、長手方向に均一な断面形状を有する母材を準備し、圧下率を順次大きくしてこの母材を圧延すればよい。   In the case of using rolling, a base material having a uniform cross-sectional shape in the longitudinal direction is prepared, and the base material may be rolled by sequentially increasing the rolling reduction.

圧延とプレスを組み合わせる場合、上記の圧下率を順次大きくした圧延の後、得られた圧延材の長手方向に圧縮率を順次変化させて圧延材をプレスすればよい。   In the case of combining rolling and pressing, the rolling material may be pressed by sequentially changing the compression rate in the longitudinal direction of the obtained rolled material after rolling with the above-described reduction ratios sequentially increased.

プレスのみを行う場合、長手方向に均一な断面形状を有する母材を準備し、この母材の長手方向に圧縮率を順次変化させて母材をプレスすればよい。   When only pressing is performed, a base material having a uniform cross-sectional shape in the longitudinal direction may be prepared, and the base material may be pressed by sequentially changing the compression rate in the longitudinal direction of the base material.

切削や研削を行う場合、適宜な切削(研削)工具を用いて母材を切削(研削)し、長手方向にわたって幅が増加し厚みが減少するが断面積は変わらない扁平断面の長尺材を形成すれば良い。切削(研削)を行なう場合、母材の形状は特に限定されない。通常は長手方向に均一な断面形状を有する母材が利用される。   When performing cutting or grinding, the base material is cut (grinded) using an appropriate cutting (grinding) tool, and a long material with a flat cross section whose width increases and decreases in thickness but does not change in cross-sectional area is obtained. What is necessary is just to form. When cutting (grinding), the shape of the base material is not particularly limited. Usually, a base material having a uniform cross-sectional shape in the longitudinal direction is used.

このような長尺材をエッジワイズ巻きするには円錐ローラを用いる。この長尺材を円錐ローラに通すと、長尺材の一方の側縁側が他方の側縁側よりも大きく圧潰されることになる。そのため、長尺材の一方の側縁側が他方の側縁側に比べて長手方向にも大きく伸ばされることになり、圧潰程度の小さい側縁側を内周、圧潰程度の大きい側縁側を外周として長尺材は屈曲されることになる。   In order to edgewise wind such a long material, a conical roller is used. When this long material is passed through the conical roller, one side edge side of the long material is crushed more than the other side edge side. Therefore, one side edge side of the long material is greatly extended in the longitudinal direction as compared with the other side edge side, and the long side edge side with a small degree of crushing is the inner circumference and the side edge side with a large degree of crushing is the outer circumference. The material will be bent.

従って、円錐ローラで連続的に長尺材を圧延すれば、ほぼ円筒状のコイルを形成することができる。また、所定時間だけ断続的に円錐ローラの間隔を閉じて円錐ローラによる圧延を行えば、円錐ローラで圧延されている間のみ長尺材が屈曲されて屈曲部を形成し、圧延されていないときは直線部が形成されるため、ほぼ楕円筒状のコイルを形成することができる。屈曲部の曲げ半径は、円錐ローラの一端側と他端側の径との差を変えることで、長尺材一方の側縁側と他方の側縁側の圧潰程度を変えて調整することができる。   Therefore, if a long material is continuously rolled with a conical roller, a substantially cylindrical coil can be formed. In addition, when rolling with a conical roller is performed by intermittently closing the interval between the conical rollers for a predetermined time, the long material is bent to form a bent portion only while being rolled with the conical roller, and is not rolled. Since a straight portion is formed, a substantially elliptical cylindrical coil can be formed. The bending radius of the bent portion can be adjusted by changing the difference between the diameters of the one end side and the other end side of the conical roller to change the degree of crushing on one side edge side and the other side edge side of the long material.

ここで、直線部は長尺材の断面形状のままであるが、屈曲部は外周側が大きく圧壊されるため、その断面形状は台形状になる。この台形断面の屈曲部は、直線部の断面に比べて断面積が小さくなる傾向があるため、比較的電気抵抗が高く、占積率が下がって放熱面でも不利である。そのため、屈曲部は、リング部端面側(モータ軸方向端面側)になるべく短く設ける。この構成により、比較的電気抵抗が高く発熱の大きい部分の長さを最小限とでき、大きな発熱を避けられると共に、発熱の大きな部分を放熱に有利なモータ軸方向端面側に配置可能である。   Here, the straight portion remains the cross-sectional shape of the long material, but the bent portion is greatly crushed on the outer peripheral side, so that the cross-sectional shape becomes trapezoidal. The bent portion of the trapezoidal cross section tends to have a smaller cross-sectional area than the cross section of the straight portion. Therefore, the electric resistance is relatively high, and the space factor is lowered, which is disadvantageous in terms of heat dissipation. Therefore, the bent portion is provided as short as possible on the end surface side of the ring portion (end surface side in the motor axial direction). With this configuration, the length of the portion with relatively high electrical resistance and large heat generation can be minimized, and large heat generation can be avoided, and the large heat generation portion can be disposed on the end surface side in the motor axial direction which is advantageous for heat dissipation.

一方、矩形断面の長尺材で構成される直線部は、コアの各突起部の間に形成された空間に配置されることになる。そのため、直線部は突起部と広範囲にわたって接触し、熱伝導による効率的な放熱が期待できる。   On the other hand, the linear part comprised by the elongate material of a rectangular cross section will be arrange | positioned in the space formed between each projection part of a core. For this reason, the linear portion is in contact with the protruding portion over a wide range, and efficient heat dissipation by heat conduction can be expected.

さらに、上記の本発明製造方法の変形例として、多数のコイルを効率よく製造することもできる。つまり、本発明の別の製造方法は、次の工程を含むことを特徴とする。   Furthermore, as a modification of the manufacturing method of the present invention, a large number of coils can be manufactured efficiently. That is, another manufacturing method of the present invention includes the following steps.

長手方向に均一な断面形状を有する母材を準備する工程。
圧下率の昇順変化と降順変化を交互に繰り返して前記母材を圧延し、幅が狭く厚みが大きい狭幅部と幅が広くて厚みが小さい拡幅部とが交互に長手方向に繰り返し現われる圧延材を得る工程。
この圧延材を円錐ローラで連続的または断続的に圧延して屈曲部を形成し、複数の螺旋体が連結した成形体を得る工程。
この成形体における狭幅部と拡幅部とで切断して複数のコイルを得る工程。
A step of preparing a base material having a uniform cross-sectional shape in the longitudinal direction.
Rolling material in which the base material is rolled by alternately repeating ascending and descending changes in rolling reduction, and a narrow portion having a small width and a large thickness and a wide portion having a large width and a small thickness are alternately repeated in the longitudinal direction. Obtaining.
A step of rolling the rolled material continuously or intermittently with a conical roller to form a bent portion to obtain a formed body in which a plurality of spiral bodies are connected.
A step of obtaining a plurality of coils by cutting the narrow portion and the wide portion in the formed body.

上述したように、一端側よりも他端側の方が、幅が大きく厚みが小さくなっており、断面積は長手方向にわたって実質的に一定の長尺材をエッジワイズ巻きすればコイルを一つずつ製造することができる。この長尺材を得る際に、圧下率の昇順変化と降順変化を交互に繰り返して母材を圧延すれば、幅が狭く厚みが大きい狭幅部と幅が広くて厚みが小さい拡幅部とが交互に長手方向に繰り返し現われる圧延材を得ることができる。この圧延材を、円錐ローラを用いてエッジワイズ巻きすれば、複数のコイルが連結した状態の成形体を得ることができる。このような成形体が得られれば、後に狭幅部と拡幅部とで切断することにより、複数のコイルを容易に得ることができる。   As described above, the width of the other end side is smaller than the one end side, and the thickness is smaller and the cross-sectional area is one coil if a substantially constant length material is wound edgewise along the longitudinal direction. Can be manufactured one by one. When obtaining this long material, if the base material is rolled by alternately repeating the ascending change and descending change in rolling reduction, a narrow part having a large width and a wide part having a large width and a small thickness are obtained. A rolled material that appears alternately in the longitudinal direction can be obtained. If this rolled material is edgewise wound using a conical roller, a molded body in which a plurality of coils are connected can be obtained. If such a molded body is obtained, a plurality of coils can be easily obtained by later cutting the narrow portion and the wide portion.

以上説明したように、本発明コイルによれば、モータを構成するコアのスロット形状に適合したコイルであるため、占積率を高めることができ、かつ放熱性にも優れる。特に、コイルを構成する長尺材の断面積が長手方向にわたって一定であるため、長尺材の抵抗を全長にわたって均一化できる。   As described above, according to the coil of the present invention, since the coil is adapted to the slot shape of the core constituting the motor, the space factor can be increased and the heat dissipation is excellent. In particular, since the cross-sectional area of the long material constituting the coil is constant over the longitudinal direction, the resistance of the long material can be made uniform over the entire length.

また、本発明コイルの製造方法は、コアのスロット形状に適合したコイルを容易に形成することができる。   Further, the coil manufacturing method of the present invention can easily form a coil suitable for the slot shape of the core.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

圧延による本発明コイルの製造方法を説明する。
まず、図1(A)に示すように、断面が正方形の棒状体からなる母材を用意する。ここでは銅製の母材を用意している。
A method for producing the coil of the present invention by rolling will be described.
First, as shown in FIG. 1 (A), a base material made of a rod-shaped body having a square cross section is prepared. Here, a copper base material is prepared.

次に、図1(B)に示すように、この母材1を圧延する。圧延は、母材1を厚み方向に押圧する上下ローラ2Aと、母材1を幅方向に押圧する左右ローラ2Bの合計2対のローラを用いる。上下ローラ2Aでは母材1の厚みを薄くし、左右ローラ2Bでは母材1の幅が円滑に広がるように圧延材の幅を規制する。   Next, this base material 1 is rolled as shown in FIG. Rolling uses a total of two pairs of rollers, an upper and lower roller 2A that presses the base material 1 in the thickness direction and a left and right roller 2B that presses the base material 1 in the width direction. The upper and lower rollers 2A reduce the thickness of the base material 1, and the left and right rollers 2B control the width of the rolled material so that the width of the base material 1 is smoothly expanded.

この圧延を多段階にわたって行い、図1(C)に示すように、一端側は厚みが大きく幅が小さいが、他端側は厚みが小さく幅が大きい長尺材3を形成する。このとき、長尺材3の長手方向にわたって断面積が一定となるように順次圧下率を変化させて圧延を行う。この圧延により、断面が長方形の扁平な長尺材3が形成される。図1(C)では長尺材の長手方向における厚みと幅の変化を誇張して示している(後述する図7C、図8C、図9Cでも同じ)が、実際の長尺材のサイズは、厚みの大きい側で厚さ2mm、幅2mm、厚みの小さい側で厚さ1mm、幅4mm程度である。   This rolling is performed in multiple stages, and as shown in FIG. 1 (C), a long material 3 having a large thickness and a small width on one end side but a small thickness and a large width on the other end side is formed. At this time, rolling is performed by sequentially changing the rolling reduction so that the cross-sectional area is constant over the longitudinal direction of the long material 3. By this rolling, a flat long material 3 having a rectangular cross section is formed. In FIG. 1 (C), the change in thickness and width in the longitudinal direction of the long material is exaggerated (the same applies to FIGS. 7C, 8C, and 9C described later), but the actual size of the long material is The thick side is 2mm thick and 2mm wide, and the thin side is 1mm thick and 4mm wide.

そして、得られた長尺材3を円錐ローラで押圧して屈曲させる。この円錐ローラで長尺材を圧延する状態を図2に示す。長尺材3を挟み込む円錐ローラ4は、同ローラ4軸方向の一端側が細径側、他端側が太径側となるように並列されている。この円錐ローラ4の間に断面が矩形の長尺材を挟みこむと、太径側の圧縮量が細径側の圧縮量よりも大きいため、太径側で圧延された箇所が長尺材3の長手方向に大きく伸び、結果的に長尺材3は屈曲される。つまり、円錐ローラ3の太径側で圧縮された箇所が屈曲の外周側、同ローラの細径側で圧縮された箇所が屈曲の内周側となる。従って、円錐ローラによる圧延を連続して行えば、長尺材は図1(D)に示すように屈曲し続けて円錐ローラ4から螺旋状に送り出され、コイルを構成することができる。   Then, the obtained long material 3 is pressed and bent by a conical roller. FIG. 2 shows a state in which a long material is rolled by this conical roller. The conical rollers 4 sandwiching the long material 3 are arranged in parallel so that one end side in the axial direction of the roller 4 is a small diameter side and the other end side is a large diameter side. If a long material having a rectangular cross section is sandwiched between the conical rollers 4, the compression amount on the large diameter side is larger than the compression amount on the small diameter side, so the portion rolled on the large diameter side is the long material 3 The long material 3 is bent as a result. That is, the portion compressed on the large diameter side of the conical roller 3 is the outer peripheral side of the bend, and the portion compressed on the small diameter side of the roller is the inner peripheral side of the bend. Therefore, if rolling by the conical roller is continuously performed, the long material continues to bend as shown in FIG. 1 (D) and is sent out spirally from the conical roller 4 to form a coil.

このような円錐ローラを用いた圧延により得られるコイルの概略形状を図3に示す。図3は本発明コイルを部分的に切欠いた模式図である。図3に示すように、このコイル10は、長尺材3を螺旋状にエッジワイズ巻きして、中空の円錐台状に形成されたものである。つまり、コイル10の細径側は、長尺材3の厚みが大きく幅が小さい。逆に、コイル10の太径側は長尺材3の幅が大きく厚みが小さい。また、長尺材3の断面積は長手方向のいずれの箇所でも実質的に同一である。そして、得られたコイル10にエナメルやセラミックス等の絶縁被覆(図示せず)を施せばよい。   FIG. 3 shows a schematic shape of a coil obtained by rolling using such a conical roller. FIG. 3 is a schematic view in which the coil of the present invention is partially cut away. As shown in FIG. 3, the coil 10 is formed in a hollow frustum shape by winding a long material 3 edgewise in a spiral shape. That is, on the small diameter side of the coil 10, the long material 3 has a large thickness and a small width. On the contrary, on the large diameter side of the coil 10, the long material 3 has a large width and a small thickness. Further, the cross-sectional area of the long material 3 is substantially the same at any location in the longitudinal direction. Then, the obtained coil 10 may be provided with an insulating coating (not shown) such as enamel or ceramics.

このようなコイル10をコアに組み込んでステータを形成する。図4は一般的なモータの概略構成図である。図4に示すインナーローター型モータは、中心側にローター30となる磁石を具え、その外周にステータ40を具える。ステータ40は、ローターと同軸状に配されたリング部41と、このリング部41から中心に向かって突出する複数の突起部42とからなるコアを有する。各突起部42は、モータを軸方向から見た場合、ほぼT型の断面を有し、その外周には長尺材を巻きつけてコイル10が形成される。通常、コイル10と突起部42との間には絶縁材(図示せず)が介在されている。このモータでは、ホール素子50を使って磁石の回転位置を検出し、インバータ51にフィードバックしてコイル10への通電を制御する。   Such a coil 10 is incorporated into a core to form a stator. FIG. 4 is a schematic configuration diagram of a general motor. The inner rotor type motor shown in FIG. 4 includes a magnet that becomes the rotor 30 on the center side and a stator 40 on the outer periphery thereof. The stator 40 has a core including a ring portion 41 arranged coaxially with the rotor, and a plurality of protrusions 42 protruding from the ring portion 41 toward the center. Each protrusion 42 has a substantially T-shaped cross section when the motor is viewed from the axial direction, and a coil 10 is formed by winding a long material around the outer periphery thereof. Usually, an insulating material (not shown) is interposed between the coil 10 and the protrusion 42. In this motor, the rotational position of the magnet is detected using the Hall element 50 and fed back to the inverter 51 to control energization to the coil 10.

上記のステータに本発明コイルを用いた状態のステータの部分平面図を図5に示す。このコイル10は、リング部内周側における長尺材が幅狭・肉厚で、同外周側における長尺材が幅広・薄肉となっている。各突起部42の間に形成される空間は、モータ回転軸方向から見た場合、扇型に形成されている。そのため、突起部42における先端側(リング部内周側)に幅の狭い長尺材を配し、突起部根元側(リング部外周側)に幅の広い長尺材を配すれば、前記扇形の空間内に高い占積率でコイル10を収納することができる。さらに、長尺材の断面積が長手方向で実質的に同一であるため、電気抵抗も長手方向に均一で、全長にわたって均等な発熱をさせることができる。   FIG. 5 shows a partial plan view of the stator in which the coil of the present invention is used for the stator. In the coil 10, the long material on the inner peripheral side of the ring portion is narrow and thick, and the long material on the outer peripheral side is wide and thin. The space formed between the protrusions 42 is formed in a fan shape when viewed from the motor rotation axis direction. Therefore, if a narrow long material is arranged on the front end side (ring portion inner peripheral side) of the protruding portion 42 and a wide long material is arranged on the protruding portion base side (ring portion outer peripheral side), the fan-shaped The coil 10 can be stored in the space with a high space factor. Furthermore, since the cross-sectional area of the long material is substantially the same in the longitudinal direction, the electrical resistance is uniform in the longitudinal direction, and uniform heat generation can be achieved over the entire length.

本発明コイル10をステータの突起部42にはめ込むには、突起部42とリング部41とを別部品として用意しておけばよい。つまり、リング部41から取り外した状態の突起部42の外周にコイル10を嵌め、その状態で突起部42をリング部41に固定すれば良い。ステータを構成するリング部41と突起部42とを別部品として構成しておけば、コイル10をコアに容易に組み込むことができる。   In order to fit the coil 10 of the present invention into the protrusion 42 of the stator, the protrusion 42 and the ring 41 may be prepared as separate parts. That is, the coil 10 may be fitted to the outer periphery of the protrusion 42 in a state removed from the ring portion 41, and the protrusion 42 may be fixed to the ring portion 41 in that state. If the ring part 41 and the projecting part 42 constituting the stator are configured as separate parts, the coil 10 can be easily incorporated into the core.

なお、本例ではステータに本発明コイルを用いた場合を説明したが、もちろんロータとしても利用できる。例えば、リング部の外周側に突出する複数の突起部を形成し、この突起部の外側にコイルをはめ込む場合などである。その場合、ステータとなる磁石が突起部の外周側に配されることになる。   In the present example, the case where the coil of the present invention is used for the stator has been described, but it can of course be used as a rotor. For example, it is a case where a plurality of protrusions protruding on the outer peripheral side of the ring portion are formed and a coil is fitted on the outside of the protrusion. In that case, the magnet which becomes a stator is arranged on the outer peripheral side of the protrusion.

実施例1では円錐ローラによる圧延を連続的に行ったため、コイルの1ターンの形状が円形のコイルが形成されたが、円錐ローラによる圧延を断続的に行えば、コイルの1ターンの形状が楕円状のコイルを形成することもできる。つまり、断続的に円錐ローラによる圧延を行えば、円錐ローラで圧延されている箇所は屈曲部となり、同ローラで圧延されていない箇所は直線部となる。このため、コイルの1ターンは直線部の両端部に屈曲部がつながって楕円状に構成される。   In Example 1, since the rolling with the conical roller was continuously performed, a coil having a circular shape with one turn of the coil was formed. However, when the rolling with the conical roller was intermittently performed, the shape of the one turn of the coil was elliptical. A coil can also be formed. That is, if rolling is performed intermittently with a conical roller, a portion rolled by the conical roller becomes a bent portion, and a portion not rolled by the roller becomes a straight portion. For this reason, one turn of the coil is formed in an elliptical shape with bent portions connected to both ends of the linear portion.

図6にコイルの1ターンが楕円状のコイルをコアに装着した状態を示す。図6に示すように、このコイル10は、直線部11の両端部に屈曲部12が連続して楕円状に形成されたターンを繰り返すことで螺旋状に形成され、コアの突起部42にはめ込まれる。この場合、屈曲部12のみ断面形状が台形状となり、断面形状が矩形のままである直線部12に比べて断面積も小さい。そのため、屈曲部12の電気抵抗は直線部11に比べて大きく発熱しやすいが、ステータの軸方向端面に屈曲部12を露出させることで効率的な発熱を可能にしている。   FIG. 6 shows a state where one turn of the coil is mounted on the core. As shown in FIG. 6, the coil 10 is formed in a spiral shape by repeating a turn in which a bent portion 12 is continuously formed in an elliptical shape at both ends of the linear portion 11, and is fitted into the protruding portion 42 of the core. It is. In this case, only the bent portion 12 has a trapezoidal cross-sectional shape, and the cross-sectional area is smaller than that of the straight portion 12 where the cross-sectional shape remains rectangular. For this reason, the electric resistance of the bent portion 12 is larger than that of the straight portion 11, and heat is easily generated. However, the bent portion 12 is exposed at the end surface in the axial direction of the stator, thereby enabling efficient heat generation.

実施例1では圧延のみにより長尺材を得たが、本例では圧延とプレスを組み合わせて長尺材を形成する方法を説明する。図7は本発明方法の説明図で、(A)は母材の斜視図、(B)は母材を圧延する状態を示す説明図、(C)はさらに圧延した母材をプレスする状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。   In Example 1, a long material was obtained only by rolling, but in this example, a method of forming a long material by combining rolling and pressing will be described. FIG. 7 is an explanatory view of the method of the present invention, (A) is a perspective view of the base material, (B) is an explanatory view showing a state of rolling the base material, and (C) is a state of pressing the further rolled base material. Explanatory drawing shown, (D) is explanatory drawing which shows the state which rolls the obtained elongate material with a conical roller.

本例でも、図7(A)、(B)に示すように、母材1を用意し、その母材1を圧延するところまでは実施例1と同様である。本例では、その圧延材をパンチ5でプレスすることで一端側は厚みが大きく幅が小さいが、他端側は厚みが小さく幅が大きい長尺材3を形成する。このとき、圧延材の長手方向にわたって断面積が一定となるように順次圧縮率を変えてプレスを行う。このプレスにより、断面が長方形の扁平な長尺材3が形成される。   Also in this example, as shown in FIGS. 7A and 7B, the same procedure as in Example 1 is performed until the base material 1 is prepared and the base material 1 is rolled. In this example, the rolled material is pressed with a punch 5 to form a long material 3 having a large thickness and a small width on one end side but a small thickness and a wide width on the other end side. At this time, pressing is performed by sequentially changing the compression ratio so that the cross-sectional area is constant over the longitudinal direction of the rolled material. By this pressing, a flat long material 3 having a rectangular cross section is formed.

このような長尺材3が形成できたら、実施例1と同様に円錐ローラ4で圧延して螺旋状に屈曲させ、コイルを形成する。   When such a long material 3 can be formed, it is rolled with a conical roller 4 and bent in a spiral shape in the same manner as in Example 1 to form a coil.

実施例3では圧延とプレスの組合せにより長尺材を得たが、本例ではプレスのみにより長尺材を形成する方法を説明する。図8は本発明方法の説明図で、(A)は母材の斜視図、(B)は母材をプレスする状態を示す説明図、(C)はさらに母材をプレスする状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。   In Example 3, a long material was obtained by a combination of rolling and pressing, but in this example, a method of forming a long material only by pressing will be described. FIG. 8 is an explanatory view of the method of the present invention, (A) is a perspective view of the base material, (B) is an explanatory view showing a state of pressing the base material, (C) is an explanation showing a state of further pressing the base material FIG. 4D is an explanatory view showing a state in which the obtained long material is rolled with a conical roller.

本例でも、図8(A)に示すように、母材を用意する点は実施例1、2と同様である。本例では、この母材をパンチ5でプレスする。その際、順次プレスの圧縮率を変えてプレスを行う。つまり、順次長尺材3の厚みを小さくし、幅を広げるようにプレスを行なう。ただし、長尺材3の断面積は長手方向にわたって同一とする。このプレスにより、一端側は厚みが大きく幅が小さいが、他端側は厚みが小さく幅が大きく、長手方向にわたって断面積が一定となる長尺材3を形成する。   Also in this example, as shown in FIG. 8A, the point that the base material is prepared is the same as in Examples 1 and 2. In this example, this base material is pressed with a punch 5. At that time, the press is performed by sequentially changing the compression ratio of the press. That is, pressing is performed so that the thickness of the long material 3 is successively reduced and the width is increased. However, the cross-sectional area of the long material 3 is the same in the longitudinal direction. By this pressing, a long material 3 having a large thickness and a small width on one end side, a small thickness and a large width on the other end side, and a constant cross-sectional area in the longitudinal direction is formed.

このような長尺材3が形成できたら、実施例1と同様に円錐ローラ4で圧延して螺旋状に屈曲させ、コイルを形成する。   When such a long material 3 can be formed, it is rolled with a conical roller 4 and bent in a spiral shape in the same manner as in Example 1 to form a coil.

実施例1〜5では圧延やプレスといった塑性加工により長尺材を得たが、本例では切削により長尺材を形成する方法を説明する。図9は本発明方法の説明図で、(A)は母材の斜視図、(B)は母材を切削した状態を示す説明図、(C)はさらに母材を切削した状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。   In Examples 1 to 5, a long material was obtained by plastic working such as rolling or pressing. In this example, a method of forming a long material by cutting will be described. FIG. 9 is an explanatory view of the method of the present invention, (A) is a perspective view of the base material, (B) is an explanatory view showing a state where the base material is cut, and (C) is an explanation showing a state where the base material is further cut. FIG. 4D is an explanatory view showing a state in which the obtained long material is rolled with a conical roller.

本例でも、図9(A)に示すように、母材を用意する点は実施例1、2と同様である。本例では、この母材を切削する(図9B、C)。その際、母材1の長手方向にわたって幅が増加し厚みが減少するが断面積は変わらないように切削を行なう。この切削により、一端側は厚みが大きく幅が小さいが、他端側は厚みが小さく幅が大きく、長手方向にわたって断面積が一定となる長尺材3を形成する。   Also in this example, as shown in FIG. 9A, the point that the base material is prepared is the same as in Examples 1 and 2. In this example, this base material is cut (FIGS. 9B and 9C). At that time, cutting is performed so that the width increases in the longitudinal direction of the base material 1 and the thickness decreases but the cross-sectional area does not change. By this cutting, the long material 3 having a large thickness and a small width on one end side, a small thickness and a large width on the other end side, and a constant cross-sectional area in the longitudinal direction is formed.

このような長尺材3が形成できたら、実施例1と同様に円錐ローラ4で圧延して螺旋状に屈曲させ、コイルを形成する。   When such a long material 3 can be formed, it is rolled with a conical roller 4 and bent in a spiral shape in the same manner as in Example 1 to form a coil.

次に、実施例1〜5では1本の長尺材から一つのコイルを作製する方法を説明したが、本例では1本の長尺材から複数のコイルを効率的に作製する方法を説明する。   Next, in Examples 1-5, although the method of producing one coil from one elongate material was demonstrated, in this example, the method of producing several coils efficiently from one elongate material is demonstrated. To do.

本例でも実施例1と同様に圧下率を順次上げて母材の圧延を行う。この圧延により、圧延開始側は厚みが大きく幅が小さいが、圧延進行側は厚みが小さく幅が大きい状態に母材を加工できる。次に、このまま連続して圧下率を順次下げて圧延を行う。この圧延により、圧延進行側ほど厚みが大きく幅が小さい状態に母材が加工される。つまり、圧下率の昇順変化と降順変化とを交互に繰り返せば、図10に示すように、幅が狭く厚みが大きい狭幅部6Aと幅が広くて厚みが小さい拡幅部6Bとが交互に長手方向に繰り返し現われる圧延材6を得ることができる。   In this example as well, the base material is rolled while increasing the rolling reduction in the same manner as in Example 1. By this rolling, the rolling start side has a large thickness and a small width, but the rolling progress side can process the base material in a state where the thickness is small and the width is large. Next, the rolling is continuously performed while the rolling reduction is successively reduced. By this rolling, the base material is processed into a state in which the thickness is larger and the width is smaller toward the rolling progress side. In other words, if the ascending order change and descending order change of the rolling reduction are repeated alternately, as shown in FIG. 10, the narrow width portion 6A having a narrow width and a large thickness and the wide width portion 6B having a wide width and a small thickness are alternately elongated. A rolled material 6 that repeatedly appears in the direction can be obtained.

このような圧延材を実施例1と同様に円錐ローラで圧延すれば、圧延材6は螺旋状に屈曲され、複数のコイルが連結した成形体が形成される。この成形体における狭幅部6Aと拡幅部6Bとで切断すれば、多数のコイルを効率的に作製することができる。   If such a rolled material is rolled with a conical roller in the same manner as in Example 1, the rolled material 6 is spirally bent, and a formed body in which a plurality of coils are connected is formed. By cutting the narrow portion 6A and the wide portion 6B in this molded body, a large number of coils can be efficiently produced.

以上説明したように、本発明によれば、占積率と放熱効率の高いモータを構成することができる。従って、本発明は電気自動車やハイブリッドカーなどの駆動モータなどに利用することが期待される。   As described above, according to the present invention, a motor with a high space factor and high heat dissipation efficiency can be configured. Therefore, the present invention is expected to be used for drive motors of electric vehicles and hybrid cars.

図1(A)は母材の斜視図、(B)は母材を圧延する状態を示す説明図、(C)はさらに母材を圧延する状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。1A is a perspective view of a base material, FIG. 1B is an explanatory view showing a state of rolling the base material, FIG. 1C is an explanatory view showing a state of further rolling the base material, and FIG. It is explanatory drawing which shows the state which rolls a elongate material with a conical roller. 図2は円錐ローラを長尺材で圧延する状態を示す説明図である。FIG. 2 is an explanatory view showing a state in which the conical roller is rolled with a long material. 図3は本発明コイルを部分的に切欠いた模式図である。FIG. 3 is a schematic view in which the coil of the present invention is partially cut away. 図4は一般的なモータの概略構成図である。FIG. 4 is a schematic configuration diagram of a general motor. 図5は本発明コイルを用いたステータの部分平面図である。FIG. 5 is a partial plan view of a stator using the coil of the present invention. コイルの1ターンが楕円状のコイルをコアに装着した状態を示す部分斜視図である。It is a fragmentary perspective view which shows the state which mounted | wore with the coil whose 1 turn of an coil is elliptical. 図7は本発明方法の説明図で、(A)は母材の斜視図、(B)は母材を圧延する状態を示す説明図、(C)はさらに圧延した母材をプレスする状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。FIG. 7 is an explanatory view of the method of the present invention, (A) is a perspective view of the base material, (B) is an explanatory view showing a state of rolling the base material, and (C) is a state of pressing the further rolled base material. Explanatory drawing shown, (D) is explanatory drawing which shows the state which rolls the obtained elongate material with a conical roller. 図8は本発明方法の説明図で、(A)は母材の斜視図、(B)は母材をプレスする状態を示す説明図、(C)はさらに母材をプレスする状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。FIG. 8 is an explanatory view of the method of the present invention, (A) is a perspective view of the base material, (B) is an explanatory view showing a state of pressing the base material, (C) is an explanation showing a state of further pressing the base material FIG. 4D is an explanatory view showing a state in which the obtained long material is rolled with a conical roller. 図9は本発明方法の説明図で、(A)は母材の斜視図、(B)は母材を切削した状態を示す説明図、(C)はさらに母材を切削した状態を示す説明図、(D)は得られた長尺材を円錐ローラで圧延する状態を示す説明図である。FIG. 9 is an explanatory view of the method of the present invention, (A) is a perspective view of the base material, (B) is an explanatory view showing a state where the base material is cut, and (C) is an explanation showing a state where the base material is further cut. FIG. 4D is an explanatory view showing a state in which the obtained long material is rolled with a conical roller. 図10は狭幅部と拡幅部とを有する長尺材の平面図である。FIG. 10 is a plan view of a long material having a narrow portion and a wide portion.

符号の説明Explanation of symbols

1 母材 2A 上下ローラ 2B 左右ローラ 3 長尺材 4 円錐ローラ
5 パンチ 10 コイル 11 直線部 12 屈曲部 40 ステータ
41 リング部 42 突起部 50 ホール素子 51 インバータ
1 Base material 2A Vertical roller 2B Left and right roller 3 Long material 4 Conical roller
5 Punch 10 Coil 11 Linear part 12 Bent part 40 Stator
41 Ring part 42 Projection part 50 Hall element 51 Inverter

Claims (7)

断面が扁平の長尺材をエッジワイズ巻きにて螺旋状に巻いたコイルであって、
この長尺材は、その一端側よりも他端側の方が、幅が大きく厚みが小さくなっており、その断面積は長手方向にわたって実質的に一定であることを特徴とするコイル。
A coil in which a long material having a flat cross section is spirally wound by edgewise winding,
The coil is characterized in that the long material has a larger width and a smaller thickness on the other end side than on one end side, and its cross-sectional area is substantially constant in the longitudinal direction.
長手方向にわたって幅が増加し厚みが減少するが断面積は変わらない扁平断面の長尺材を準備する工程と、
前記長尺材を円錐ローラで連続的または断続的に圧延して屈曲部を形成し、長尺材を螺旋状のコイルに成形する工程とを有することを特徴とするコイルの製造方法。
A step of preparing a long material having a flat cross section in which the width increases in the longitudinal direction and the thickness decreases but the cross-sectional area does not change; and
And a step of forming the bent portion by continuously or intermittently rolling the long material with a conical roller, and forming the long material into a spiral coil.
前記長尺材を準備する工程は、
長手方向に均一な断面形状を有する母材を準備する工程と、
圧下率を順次大きくして前記母材を圧延する工程とを含むことを特徴とする請求項2に記載のコイルの製造方法。
The step of preparing the long material includes
Preparing a base material having a uniform cross-sectional shape in the longitudinal direction;
The method for manufacturing a coil according to claim 2, further comprising a step of rolling the base material by sequentially increasing a rolling reduction.
前記長尺材を準備する工程は、
長手方向に均一な断面形状を有する母材を準備する工程と、
圧下率を順次変化させて前記母材を圧延する工程と、
得られた圧延材の長手方向に圧縮率を順次変化させて前記圧延材をプレスする工程とを含むことを特徴とする請求項2に記載のコイルの製造方法。
The step of preparing the long material includes
Preparing a base material having a uniform cross-sectional shape in the longitudinal direction;
Rolling the base material by sequentially changing the rolling reduction; and
The method for manufacturing a coil according to claim 2, further comprising a step of pressing the rolled material by sequentially changing a compression ratio in a longitudinal direction of the obtained rolled material.
前記長尺材を準備する工程は、
長手方向に均一な断面形状を有する母材を準備する工程と、
この母材の長手方向に圧縮率を順次変化させて前記母材をプレスする工程とを含むことを特徴とする請求項2に記載のコイルの製造方法。
The step of preparing the long material includes
Preparing a base material having a uniform cross-sectional shape in the longitudinal direction;
The method for manufacturing a coil according to claim 2, further comprising: pressing the base material by sequentially changing a compression rate in a longitudinal direction of the base material.
前記長尺材を準備する工程は、
母材を準備する工程と、
この母材に対し、母材材料の除去を伴う機械加工をする工程とを含むことを特徴とする請求項2に記載のコイルの製造方法。
The step of preparing the long material includes
Preparing the base material;
The method for manufacturing a coil according to claim 2, further comprising a step of machining the base material with removal of the base material.
長手方向に均一な断面形状を有する母材を準備する工程と、
圧下率の昇順変化と降順変化を交互に繰り返して前記母材を圧延し、幅が狭く厚みが大きい狭幅部と幅が広くて厚みが小さい拡幅部とが交互に長手方向に繰り返し現われる圧延材を得る工程と、
この圧延材を円錐ローラで連続的または断続的に圧延して屈曲部を形成し、複数の螺旋体が連結した成形体を得る工程と、
この成形体における狭幅部と拡幅部とで切断して複数のコイルを得る工程とを有することを特徴とするコイルの製造方法。
Preparing a base material having a uniform cross-sectional shape in the longitudinal direction;
Rolling material in which the base material is rolled by alternately repeating ascending and descending changes in rolling reduction, and a narrow portion having a small width and a large thickness and a wide portion having a large width and a small thickness are alternately repeated in the longitudinal direction. Obtaining
Rolling the rolled material continuously or intermittently with a conical roller to form a bent portion, and obtaining a molded body in which a plurality of spiral bodies are connected; and
And a step of cutting the narrow portion and the wide portion in the formed body to obtain a plurality of coils.
JP2004190235A 2004-06-28 2004-06-28 Coil and its manufacturing method Pending JP2006014530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190235A JP2006014530A (en) 2004-06-28 2004-06-28 Coil and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190235A JP2006014530A (en) 2004-06-28 2004-06-28 Coil and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006014530A true JP2006014530A (en) 2006-01-12

Family

ID=35781087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190235A Pending JP2006014530A (en) 2004-06-28 2004-06-28 Coil and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006014530A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125838A1 (en) * 2006-04-28 2007-11-08 Mitsubishi Cable Industries, Ltd. Linear member, and stator structure
JP2007317636A (en) * 2006-04-28 2007-12-06 Mitsubishi Cable Ind Ltd Linear member, and stator structure
JP2008030116A (en) * 2006-07-05 2008-02-14 Mitsubishi Cable Ind Ltd Method of manufacturing flat square wire
JP2008125298A (en) * 2006-11-14 2008-05-29 Mosutetsuku:Kk Wire material, and manufacturing jig thereof
JP2008212952A (en) * 2007-02-28 2008-09-18 Mitsubishi Cable Ind Ltd Method of manufacturing rectangular wire
WO2008156127A1 (en) * 2007-06-13 2008-12-24 Toyota Jidosha Kabushiki Kaisha Rotating electric machine cooling structure
KR100941848B1 (en) * 2007-12-12 2010-02-11 주식회사 포스코 Method of roughing mill for slab' gap
JP2013009593A (en) * 2006-04-28 2013-01-10 Mitsubishi Cable Ind Ltd Stator structure
WO2013187501A1 (en) * 2012-06-15 2013-12-19 HONGO Takenobu Coiled member and coil device
WO2015052964A1 (en) * 2013-10-08 2015-04-16 三菱電機株式会社 Rotary electric machine and production method therefor
WO2015124922A1 (en) 2014-02-18 2015-08-27 Yasa Motors Limited Machine cooling systems
KR20160059527A (en) * 2014-11-18 2016-05-27 한국생산기술연구원 Magnetic core structure and electric mechanical apparatus including the same
CN108114979A (en) * 2016-11-30 2018-06-05 保时捷股份公司 For producing the method and apparatus of conductor section
WO2019064713A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Method for manufacturing wire material, device for manufacturing wire material, wire material, and motor
KR20190037733A (en) * 2017-09-29 2019-04-08 한국생산기술연구원 Manufacturing methodes of coil
KR20200008930A (en) * 2018-07-17 2020-01-29 경창산업주식회사 Method for Manufacturing Pre-Form of Cooling Jacket of Driving Motor of Transmission
WO2020080481A1 (en) * 2018-10-18 2020-04-23 パナソニックIpマネジメント株式会社 Coil mounting structure
JP2020137384A (en) * 2019-02-26 2020-08-31 株式会社Ihi stator
WO2021117320A1 (en) * 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 Coil and motor comprising same
WO2022044223A1 (en) * 2020-08-27 2022-03-03 株式会社Ihi Stator

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7928626B2 (en) 2006-04-28 2011-04-19 Mitsubishi Cable Industries, Ltd. Linear material and stator structure
JP2007317636A (en) * 2006-04-28 2007-12-06 Mitsubishi Cable Ind Ltd Linear member, and stator structure
JP2013009593A (en) * 2006-04-28 2013-01-10 Mitsubishi Cable Ind Ltd Stator structure
US9003647B2 (en) 2006-04-28 2015-04-14 Mitsubishi Cable Industries, Ltd. Method and apparatus for manufacturing a flat-type wire
EP2017854A4 (en) * 2006-04-28 2017-02-22 Mitsubishi Cable Industries, Ltd. Linear member, and stator structure
WO2007125838A1 (en) * 2006-04-28 2007-11-08 Mitsubishi Cable Industries, Ltd. Linear member, and stator structure
US8053943B2 (en) 2006-04-28 2011-11-08 Mitsubishi Cable Industries, Ltd. Linear material and stator structure
US8049390B2 (en) 2006-04-28 2011-11-01 Mitsubishi Cable Industries, Ltd. Linear material and stator structure
JP2008030116A (en) * 2006-07-05 2008-02-14 Mitsubishi Cable Ind Ltd Method of manufacturing flat square wire
JP4584940B2 (en) * 2006-07-05 2010-11-24 三菱電線工業株式会社 Manufacturing method of flat wire
JP2008125298A (en) * 2006-11-14 2008-05-29 Mosutetsuku:Kk Wire material, and manufacturing jig thereof
JP4624334B2 (en) * 2006-11-14 2011-02-02 スミダ電機株式会社 Wire rod, wire manufacturing jig, and wire rod manufacturing method
JP4584944B2 (en) * 2007-02-28 2010-11-24 三菱電線工業株式会社 Manufacturing method of flat wire
JP2008212952A (en) * 2007-02-28 2008-09-18 Mitsubishi Cable Ind Ltd Method of manufacturing rectangular wire
WO2008156127A1 (en) * 2007-06-13 2008-12-24 Toyota Jidosha Kabushiki Kaisha Rotating electric machine cooling structure
US8093769B2 (en) 2007-06-13 2012-01-10 Toyota Jidosha Kabushiki Kaisha Cooling structure for rotating electric machine
KR100941848B1 (en) * 2007-12-12 2010-02-11 주식회사 포스코 Method of roughing mill for slab' gap
WO2013187501A1 (en) * 2012-06-15 2013-12-19 HONGO Takenobu Coiled member and coil device
JPWO2013187501A1 (en) * 2012-06-15 2016-02-08 武延 本郷 Coiled member and coil device
WO2015052964A1 (en) * 2013-10-08 2015-04-16 三菱電機株式会社 Rotary electric machine and production method therefor
CN105612679A (en) * 2013-10-08 2016-05-25 三菱电机株式会社 Rotary electric machine and production method therefor
US10164490B2 (en) 2013-10-08 2018-12-25 Mitsubishi Electric Corporation Rotary electric machine and manufacturing method therefor
WO2015124922A1 (en) 2014-02-18 2015-08-27 Yasa Motors Limited Machine cooling systems
KR101693813B1 (en) 2014-11-18 2017-01-09 한국생산기술연구원 Magnetic core structure and electric mechanical apparatus including the same
KR20160059527A (en) * 2014-11-18 2016-05-27 한국생산기술연구원 Magnetic core structure and electric mechanical apparatus including the same
JP2018089694A (en) * 2016-11-30 2018-06-14 ドクター エンジニール ハー ツェー エフ ポルシェ アクチエンゲゼルシャフトDr. Ing. h.c. F. Porsche Aktiengesellschaft Method and apparatus for manufacturing conductor segment
CN108114979A (en) * 2016-11-30 2018-06-05 保时捷股份公司 For producing the method and apparatus of conductor section
US10566885B2 (en) 2016-11-30 2020-02-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and device for producing a conductor segment
JPWO2019064713A1 (en) * 2017-09-28 2020-11-26 日本電産株式会社 Wire rod manufacturing method, wire rod manufacturing equipment, wire rod and motor
WO2019064713A1 (en) * 2017-09-28 2019-04-04 日本電産株式会社 Method for manufacturing wire material, device for manufacturing wire material, wire material, and motor
US11478840B2 (en) 2017-09-28 2022-10-25 Nidec Corporation Manufacturing method of wire rod, manufacturing apparatus of wire rod, wire rod, and motor
JP7056666B2 (en) 2017-09-28 2022-04-19 日本電産株式会社 Wire rod manufacturing method, wire rod manufacturing equipment, wire rod and motor
CN111033644A (en) * 2017-09-28 2020-04-17 日本电产株式会社 Method for manufacturing wire rod, device for manufacturing wire rod, and motor
CN111033644B (en) * 2017-09-28 2021-07-27 日本电产株式会社 Method for manufacturing wire rod, device for manufacturing wire rod, and motor
KR102064759B1 (en) * 2017-09-29 2020-01-13 한국생산기술연구원 Manufacturing methodes of coil
KR20190037733A (en) * 2017-09-29 2019-04-08 한국생산기술연구원 Manufacturing methodes of coil
KR102122352B1 (en) 2018-07-17 2020-06-12 경창산업주식회사 Method for Manufacturing Pre-Form of Cooling Jacket of Driving Motor of Transmission
KR20200008930A (en) * 2018-07-17 2020-01-29 경창산업주식회사 Method for Manufacturing Pre-Form of Cooling Jacket of Driving Motor of Transmission
CN112868164A (en) * 2018-10-18 2021-05-28 松下知识产权经营株式会社 Coil mounting structure
WO2020080481A1 (en) * 2018-10-18 2020-04-23 パナソニックIpマネジメント株式会社 Coil mounting structure
EP3869672A4 (en) * 2018-10-18 2021-12-08 Panasonic Intellectual Property Management Co., Ltd. Coil mounting structure
US11929654B2 (en) 2018-10-18 2024-03-12 Panasonic Intellectual Property Management Co., Ltd. Coil mounting structure
JP2020137384A (en) * 2019-02-26 2020-08-31 株式会社Ihi stator
JP7331380B2 (en) 2019-02-26 2023-08-23 株式会社Ihi stator
WO2021117320A1 (en) * 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 Coil and motor comprising same
WO2022044223A1 (en) * 2020-08-27 2022-03-03 株式会社Ihi Stator
EP4203244A4 (en) * 2020-08-27 2024-05-22 IHI Corporation Stator

Similar Documents

Publication Publication Date Title
JP2006014530A (en) Coil and its manufacturing method
JP6165260B2 (en) Rotating electric machine
JP6049566B2 (en) Rotating electric machine
JP5885176B2 (en) Manufacturing method of armature winding for electric machine
US20070145854A1 (en) Motor
JP6917853B2 (en) Radial gap type rotary electric machine, its manufacturing equipment and its manufacturing method
JPH11252842A (en) Molded coil element, its manufacture, core, its manufacture and dynamoelectric machine
JP5774082B2 (en) Rotating electric machine
EP3806298B1 (en) Method and device for manufacturing electric apparatus coil
JP5821606B2 (en) Manufacturing method of stator of rotating electric machine
JP6153143B2 (en) Rotating electric machine and method for manufacturing coil of rotating electric machine
JP2010239721A (en) Rotary electric machine
WO2004045048A1 (en) Slotless rotary electric machine and manufacturing method of coils for such a machine
WO2015174277A1 (en) Rotating electric machine and method for manufacturing same
JP2004080860A (en) Motor component and its manufacturing method
US20150155749A1 (en) Method of manufacturing a laminated winding and a laminated winding
JPS5915459B2 (en) electromechanical magnetic circuit
JP2008228434A (en) Manufacturing method for coil
JP2007082282A (en) Stator core, motor using the same and manufacturing method for the same
JP2012217279A (en) Stator core for rotary electric machine, the rotary electric machine, and manufacturing method of the stator core for the rotary electric machine
JPS62277038A (en) Rotary electric machine
JP4482295B2 (en) Manufacturing method of coil for electric equipment
JP2003189558A (en) Method for manufacturing stator of dynamo-electric machine
JP2004080861A (en) Motor component and motor
JP2000358348A (en) Ac generator for vehicle