JP2004080860A - Motor component and its manufacturing method - Google Patents

Motor component and its manufacturing method Download PDF

Info

Publication number
JP2004080860A
JP2004080860A JP2002234464A JP2002234464A JP2004080860A JP 2004080860 A JP2004080860 A JP 2004080860A JP 2002234464 A JP2002234464 A JP 2002234464A JP 2002234464 A JP2002234464 A JP 2002234464A JP 2004080860 A JP2004080860 A JP 2004080860A
Authority
JP
Japan
Prior art keywords
coil
bent portion
conductive wire
cross
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002234464A
Other languages
Japanese (ja)
Inventor
Hitoshi Oyama
尾山 仁
Tsutomu Ide
井出 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN EI ELECTRONIC IND CO Ltd
SAN-EI ELECTRONIC INDUSTRIES CO Ltd
Sumitomo Electric Industries Ltd
Original Assignee
SAN EI ELECTRONIC IND CO Ltd
SAN-EI ELECTRONIC INDUSTRIES CO Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN EI ELECTRONIC IND CO Ltd, SAN-EI ELECTRONIC INDUSTRIES CO Ltd, Sumitomo Electric Industries Ltd filed Critical SAN EI ELECTRONIC IND CO Ltd
Priority to JP2002234464A priority Critical patent/JP2004080860A/en
Publication of JP2004080860A publication Critical patent/JP2004080860A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor component which can enhance the space factor and to provide its manufacturing method. <P>SOLUTION: This motor component has a core and a plurality of coils 10, which are formed continuous by winding a lead wire on the core. The core is equipped with a ring part and a projection which elongates in the radial direction of the ring part and on which the lead wire is wound. The coil has a straight part 11 and a crooked part 12. The lead wire sectional form of the straight part is rectangular, and the lead wire sectional form of the crooked part is trapezoidal form, with its thickness on the peripheral side of the bend being smaller than that on the inner perimeter side. Then, among two or more coils, the coils of the same phase are coupled with each other via the bend being made by bending the above lead wire, and the sectional form of the bend 80 is trapezoid, with its thickness on the peripheral side of the bend smaller than that on internal perimeter side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、モーター部品とその製造方法に関するものである。特に、高い占積率を実現できるモーター部品とその製造方法に関するものである。
【0002】
【従来の技術】
従来のモーターにおいて、コアにコイルを設けたローターまたはステーターが広く知られている。一般に、ローター又はステーターは、リング部と、そのリング部の径方向に伸びる複数の突起部とを具える。コイルは、前記各突起部に導線を巻き付けて必要なアンペア・ターン数とすることで形成される。そして、この導線には、断面が丸または角の線材が用いられていた。
【0003】
【発明が解決しようとする課題】
しかし、このような導線を用いた場合、各導線間に隙間が生じ、占積率(コイル配置空間の断面における導線面積の比率)を高めることができない。特に占積率を改善でき、かつ連続する複数のコイルを容易に製造する手段が要望されていた。
【0004】
また、通常、導線はエナメル樹脂などの絶縁被覆が施されている。ところが、この絶縁被覆はモーター駆動時の発生熱の発散を妨げる。細径の導線を用いれば、リング部周方向(モーター回転軸の周方向)への導線の積層数が大きくなり、結果的に絶縁被覆の積層数も大きくなって放熱効率が低下し、モーター内部温度の上昇により、より効率低下を招いていた。
【0005】
従って、本発明の主目的は、複数のコイルを連続的に形成し、容易に占積率を高めることができるモーター部品を提供することにある。
【0006】
また、本発明の他の目的は、前記モーター部品の形成に最適なモーター部品の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明では、コイル用に断面が矩形板状の導線を用い、その屈曲の仕方に工夫を施すことで上記の目的を達成する。
【0008】
すなわち、本発明モーター部品は、コアと、コアに導線を巻いて連続的に形成された複数のコイルとを有するモーター部品である。前記コアは、リング部と、リング部の径方向に伸びて前記導線が巻き付けられる突起部とを具える。前記コイルは直線部と屈曲部とを有する。前記直線部の導線断面形状は矩形板状で、前記屈曲部の導線断面形状は屈曲の外周側の厚みが内周側の厚みに比べて小さい台形状である。そして、複数のコイルのうち、同相のコイルは前記導線を折り曲げた折り曲げ部を介して互いに連結され、その折り曲げ部の断面形状は、折り曲げの外周側の厚みが内周側の厚みに比べて小さい台形状であることを特徴とする。
【0009】
また、本発明モータ部品の製造方法は、以下の工程を具えることを特徴とする。
▲1▼圧延で形成された断面が矩形板状の導線を直線状に搬送して直線部を形成すると共に、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延して断面が台形状の屈曲部を形成して、直線部と屈曲部とからなるコイルを形成する工程
▲2▼前記コイルを形成後、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延し、断面が台形状の折り曲げ部をコイル端部に連続して形成する工程
▲3▼折り曲げ部の形成後、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延して断面が台形状の屈曲部を形成して、直線部と屈曲部とからなる別のコイルを連続的に形成する工程
▲4▼前記各コイルの内側に突起部をはめ込む工程
【0010】
このように、矩形板状の導線に対し、幅方向に圧潰程度の異なる圧延を断続的に施すことで、屈曲部と直線部が連続するコイルを製造することができる。
【0011】
矩形板状の導線を用いることで、リング部の径方向、つまりモーター回転軸の周方向への導線の積層をなくして単層とし、占積率が高く、かつ放熱効果の高いモーター部品を得ることができる。
【0012】
導線における台形断面部分は、矩形平板断面部分に比べて断面積が小さくなる傾向があるため、比較的電気抵抗が高く、占積率が下がって放熱面でも不利である。そのため、導線の断面が台形である屈曲部は、リング部端面側(モーター軸方向端面側)になるべく短く設ける。この構成により、比較的電気抵抗が高く発熱の大きい部分の長さを最小限とでき、大きな発熱を避けられると共に、発熱の大きな部分を放熱に有利なモーター軸方向端面側に配置可能である。
【0013】
一方、矩形平板断面の導線で構成される直線部は、各突起部の間に形成された空間に配置されることになるが、突起部と広範囲にわたって接触しているため、熱伝導による効率的な放熱が期待できる。
【0014】
断面が矩形平板状の導線部分は、従来と同様に一対の円筒ローラーの間に被圧延材を通して圧延することで得ることができる。断面が台形状の導線部分は、一対の円錐ローラーの間に断続的に矩形平板状の導線を通すことで得ることができる。そして、この円筒ローラーによる圧延に続いて、円錐ローラーによる圧延を断続的に組み合わせることで、屈曲部と直線部が連続するコイルを得ることができる。つまり、円筒ローラーを経て送られてきた矩形平板状の導線を円錐圧延ローラーに通すと、導線の一方の側縁側を他方の側縁側よりも大きく圧潰されることになる。そのため、導線の一方の側縁側が他方の側縁側に比べて長手方向にも大きく伸ばされることになり、圧潰程度の小さい側縁側を内周、圧潰程度の大きい側縁側を外周として導線は屈曲されることになる。従って、所定時間だけ断続的に円錐ローラーの間隔を閉じて円錐ローラーによる圧延を行えば、矩形平板断面の導線を用いて直線部と屈曲部とを有するコイルを製造することができる。屈曲部の曲げ半径は、円錐ローラーの一端側と他端側の径との差を変えることで、導線一方の側縁側と他方の側縁側の圧潰程度を変えて調整することができる。
【0015】
さらに、コイルが多相モーターに用いられる複数のコイルであれば、同相のコイルは前記屈曲部を形成する方法と同様の手法により折り曲げ部を形成し、複数のコイルを連続的に形成することができる。この折り曲げ部の断面形状も、折り曲げの外周側の厚みが内周側の厚みに比べて小さい台形状である。
【0016】
つまり、一つのコイルを上述した圧延によって成形後、同一の導線を用いて連続して次のコイルを成形する。その際、コイル間に、導線の折り曲げ外周側を内周側よりも大きく圧延して薄くすることで複数のコイルを連結する折り曲げ部を形成すれば、容易に複数のコイルを連続成形することができる。
【0017】
コイルの内側にコアをはめ込む工程は、コアにおける突起部とリング部とを分割可能に構成しておくことが好適である。通常、突起部の先端はリング側に比べて広がった構成であるため、突起部の先端よりコイルをはめ込むことはできない。そのため、リング部に対して突起部を着脱可能に構成しておけば、一旦突起部をリング部から外してコイルを嵌め込み、その後、突起部をリング部に固定することで、ローター又はステーターを構成することができる。
【0018】
また、前記導線は、モーターの回転軸を中心として内周側より外周側に向かうにしたがって、幅を広く厚みを薄く構成することが望ましい。コアにおいて、各突起部の間に形成されて導線が配置される空間は、リング部径方向の外周側の方が内周側よりも周方向の長さが長い。そのため、コアの外周域に配されるコイル部分は、内周域に配されるコイル部分に比べて導線の幅を広くすることで、コイルを配置する空間がリング部の内外周で幅が異なる場合でも占積率を高めることができる。
【0019】
このように、内周側で幅狭肉厚の導線とし、外周側で幅広薄肉の導線とするには、導線を圧延する際に連続的に圧下率を上げて、圧延し始めよりも圧延し終わりの方が厚さの薄い導線を形成する。続いて、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延して断面が台形状の屈曲部を形成すれば良い。
【0020】
以上のようなモーター部品は、モーターのローター又はステーターとして利用することができる。一般に、ローターは、リング部と、そのリング部から外周に向かって放射状に形成された複数の突起部とを具える。ステーターは、リング部と、その中心に向かって突出する複数の突起部とを具える。いずれの場合も、導線は突起部の外周に巻き付けられてコイルを構成する。一般に、突起部はモーター軸方向に長い矩形の断面形状をしていることが多い。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(コイルの基本構成)
連続する複数のコイルを説明する前に、本発明モーター部品を構成する単一のコイルについて説明する。図1(A)はモーター部品に用いるコイルの斜視図、(B)は(A)図におけるX部断面図、(C)は(A)図におけるY部断面図である。
【0022】
図1に示すように、このコイル10は導線1をらせん状に巻いて形成したもので、導線1が直線状に伸びる直線部11と、導線1が屈曲された屈曲部12とを具えている。この直線部11は断面が矩形平板の導線で構成され(図1C)、屈曲部12は導線幅方向の一方の側縁側が他方の側縁側に比べて厚みの小さいほぼ台形状に形成されている。この屈曲部12において、厚みの小さい側縁側がコイルの外周側に位置している。
【0023】
このようなコイルは、図2に示すように、まず一対の円筒ローラー20に被圧延材を通して断面が矩形平板状の導線を形成する。続いて、円筒ローラー20を経て送られてきた導線を、円錐ローラー21を用いて断続的に圧延する。ここでは、導体側縁のうち、コイル外周に相当する側の側縁から幅方向に一部分のみを圧潰するように円錐ローラー21を配置する。円錐ローラー21で圧延された部分は、厚みが小さくなると共に、長手方向にも伸ばされるため、導線は円錐ローラー21で圧延された側を外周として屈曲される。そして、円錐ローラー21を開閉して断続的に導線の圧延を行うようにすれば、矩形平板断面の直線部と、台形断面の屈曲部とを有するコイルを得ることができる。上記の方法によれば、屈曲部の内周側に肉厚部分やしわなどが生じることなく矩形平板状の導線を屈曲させることができる。そして、得られたコイルにエナメルやセラミックス等の絶縁被覆2(図1)を施せば良い。
【0024】
このようなコイルをコアに組み込んでステーターを形成する。図3は一般的なモーターの概略構成図である。
【0025】
図3に示すインナーローター型ブラシレスDCモーターは、中心側にローター30となる磁石を具え、その外周にステーター40を具える。ステーター40は、ローターと同軸状に配されたリング部41と、このリング部41から中心に向かって突出する複数の突起部42とからなるコアを有する。各突起部42は、モーターを軸方向から見た場合、ほぼT型の断面を有し、その外周には導線を巻きつけてコイル10が形成される。通常、コイル10と突起部42との間には絶縁材(図示せず)が介在されている。このモーターでは、ホール素子50を使って磁石の回転位置を検出し、インバータ51にフィードバックしてコイル10への通電を制御する。
【0026】
このようなステーター40に図1のコイル10を装着した状態の部分斜視図を図4に示す。図4における上下方向への矢印はモーター回転軸を示している。この図に示すように、隣接する突起部42同士の間に形成される空間内にコイルの直線部11が配置され、ステーターの端面、つまり前記空間外にコイルの屈曲部12が形成される。T型の突起部にコイルをはめ込むには、リング部41と突起部42とを分割式とすればよい。つまり、リング部41から一旦取り外した突起部42の外周にコイル10を嵌め込み、その後、突起部42をリング部41に固定することでステーター40を構成すれば良い。
【0027】
上述のようにステーターを構成すれば、屈曲部12は直線部11に比べ導線断面積が小さいため発熱しやすいが、突起部42で囲まれる空間の外部に配することで効率的な放熱を行うことができる。また、突起部42と直接接する直線部11は、突起部42を通じての熱伝導により放熱を行うことができる。
【0028】
以上の説明では、ステーターにコイルを設けた構成を例として本発明モーター部品の製造方法を説明したが、ローターでも図1に示すコイルを用いることができる。例えば、図5に示すように、リング部61の外周にほぼT型の突起部62が放射状に突出されたコアを用い、この突起部62の外周に図1に示すコイル10を嵌め込めば良い。ローター60の外周にはステーター70となる磁石が配置される。この場合でも、T型の突起部62はリング部61と分割式にすることで、容易にコイル10の嵌め込みを行うことができる。
【0029】
(単一コイルの変形例)
前記基本構成では直線部における厚さが一様のコイルを用いた例について説明したが、リング部径方向の外周側に向かうにしたがって導線が幅広・薄肉となるコイルとしても良い。図6は、幅と厚さが変化する導線を用いたステーターの部分平面図である。この平面図は、モーターの回転軸方向から見た状態を示している。
【0030】
図6に示すように、このコイル10は、リング部内周側における導線が幅狭・肉厚で、同外周側における導線が幅広・薄肉となっている。各突起部42の間に形成される空間は、モーター回転軸方向から見た場合、扇型に形成されている。そのため、突起部42における先端側(リング部内周側)に幅の狭い導線を巻き付け、突起部根元側(リング部外周側)に幅の広い導線を巻き付ければ、前記扇形の空間内に高い占積率でコイル10を収納することができる。
【0031】
このように、内周側と外周側とで導線の厚みと幅が異なるコイル10を形成するには、前記図2における円筒ローラー20での圧下率を連続的に大きくして行くことで実現できる。つまり、圧延し始めは、円筒ローラー20同士の間隔を大きくしておき、圧延が進行するに伴って順次円筒ローラー同士の間隔を狭めていく。それにより、円錐ローラー21に導入される時点の導線の幅を広く、厚さを薄くすることができる。
【0032】
(本発明モーター部品に用いられる複数の連続コイル)
単体のコイルは上述した方法により製造することができ、さらに円錐ローラにより幅方向に不均一な圧延を組み合わせて折り曲げ部を形成することで、一連の導線により、複数のコイルを接続した状態にして形成することができる図7は複数のコイルが折り曲げ部を介して接続された状態を示す説明図である。
【0033】
多相モーターにおける同相のコイル同士は直列に接続することができる。そこで、図7に示すように、導線を折り曲げた折り曲げ部80を介して同相のコイル同士を連結させる。
【0034】
この折り曲げ部80の断面形状は、折り曲げの外周側の厚みが内周側の厚みに比べて小さい台形状とする。折り曲げ部80を形成するには、コイル10の屈曲部12を形成したときと同様に、折り曲げ部外周側となる導線の側縁側を同内周側となる導線の側縁側よりも大きく圧延することにより実現できる。
【0035】
すなわち、図8に示すように、円筒ローラー20の下流に第1円錐ローラー21を設け、さらに下流に第2円錐ローラー22を設ける。第1円錐ローラー21は導体の一方の側縁側を大きく圧潰するようなローラー構造になっているが、第2円錐ローラー22は逆に導体の他方の側縁側を大きく圧潰するようなローラー構造になっている。
【0036】
このような圧延ラインにおいて、まず円筒ローラー20で矩形平板状の導線を形成する。続いて、第1円錐ローラー21により断続的に導線を圧延することで、導体の一方の側縁側が外周となる屈曲部を形成し、直線部と屈曲部とからなるコイルを作製する。さらに、一つ目のコイルが作製されると、今度は第2円錐ローラー22で導体の他方の側縁側を断続的に圧潰して、ほぼ直角に折り曲げられた折り曲げ部を形成する。その際、第1円錐ローラー21による圧延は行わない。そして、折り曲げ部が形成できれば、再度第1円錐ローラー21で断続的な圧延を行うことにより、二つ目のコイルを作製することができる。勿論、同様の工程を連続することで、さらに多くのコイルを連続して形成することもできる。同相コイルを一体成形することによって、コイル製造はもちろん、コイルの突起部への組み込みも容易にすることができる。
【0037】
また、図9に示すように、多相モーターにおける各相のコイル10を独立して作製する場合でも、第2円錐ローラーを用いることで、折り曲げ部80を形成して、コイルから導線の引き出しを行うことができる。
【0038】
【発明の効果】
以上説明したように、本発明モーター部品によれば、直線部を矩形平板断面の導線で構成し、屈曲部を台形断面の導線で構成した複数のコイルが連続されているため、高い占積率と放熱性を得ることができ、多相モーターへの適用が最適である。
【0039】
また、本発明モーター部品の製造方法によれば、矩形平板断面の導線に対して幅方向に不均一な圧延を断続的に行うことにより、直線部を矩形平板断面の導線で構成し、屈曲部や折り曲げ部を台形断面の導線で構成したモーター部品を容易に得ることができる。特に、複数のコイルを一連の導線にて得ることができ、製造性に優れる。
【図面の簡単な説明】
【図1】(A)は本発明モーター部品に用いるコイル単体状態の斜視図、(B)は(A)図におけるX部断面図、(C)は(A)図におけるY部断面図である。
【図2】本発明方法における最初のコイルを製造する工程の説明図である。
【図3】一般的なモーターの概略構成図である。
【図4】ステーターに図1のコイルを装着した状態を示す部分斜視図である。
【図5】ローターに図1のコイルを装着した状態を示す平面図である。
【図6】幅と厚さが変化する導線を用いたステーターの部分平面図である。
【図7】本発明モーター部品に用いる複数のコイルを示す説明図である。
【図8】図7のコイルを製造する工程の説明図である。
【図9】本発明方法を応用した多相モーターのコイルを示す構成図である。
【符号の説明】
1 導線
2 絶縁被覆
10 コイル
11 直線部
12 屈曲部
20 円筒ローラー
21 (第1)円錐ローラー
22 第2円錐ローラー
30 ローター
40 ステーター
41 リング部
42 突起部
50 ホール素子
51 インバータ
60 ローター
61 リング部
62 突起部
70 ステーター
80 折り曲げ部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a motor component and a method for manufacturing the same. In particular, the present invention relates to a motor component capable of realizing a high space factor and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In a conventional motor, a rotor or a stator having a core provided with a coil is widely known. Generally, a rotor or a stator includes a ring portion and a plurality of protrusions extending in a radial direction of the ring portion. The coil is formed by winding a conductive wire around each of the protrusions to obtain a required number of ampere turns. In addition, a wire having a round or square cross section was used for this conductive wire.
[0003]
[Problems to be solved by the invention]
However, when such a conductor is used, a gap is generated between the conductors, and the space factor (the ratio of the conductor area in the cross section of the coil arrangement space) cannot be increased. In particular, there has been a demand for a means capable of improving the space factor and easily manufacturing a plurality of continuous coils.
[0004]
Usually, the conductor is coated with an insulating material such as an enamel resin. However, this insulating coating hinders the dissipation of generated heat when the motor is driven. If a small-diameter wire is used, the number of stacked wires in the circumferential direction of the ring (the circumferential direction of the motor rotation shaft) increases, and as a result, the number of stacked insulating coatings also increases, lowering the heat dissipation efficiency and reducing the heat dissipation inside the motor. The increase in temperature caused a further decrease in efficiency.
[0005]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a motor component in which a plurality of coils are continuously formed and a space factor can be easily increased.
[0006]
It is another object of the present invention to provide a method for manufacturing a motor component that is optimal for forming the motor component.
[0007]
[Means for Solving the Problems]
In the present invention, the above object is achieved by using a conductive wire having a rectangular plate-like cross section for the coil and devising a manner of bending the conductive wire.
[0008]
That is, the motor component of the present invention is a motor component having a core and a plurality of coils formed continuously by winding a conductive wire around the core. The core includes a ring portion and a protrusion extending in a radial direction of the ring portion and around which the conductive wire is wound. The coil has a straight portion and a bent portion. The cross-sectional shape of the straight portion is a rectangular plate, and the cross-sectional shape of the bent portion is a trapezoid in which the thickness on the outer peripheral side of the bend is smaller than the thickness on the inner peripheral side. And, among the plurality of coils, the coils of the same phase are connected to each other via a bent portion obtained by bending the conductive wire, and the cross-sectional shape of the bent portion is such that the thickness on the outer peripheral side of the bend is smaller than the thickness on the inner peripheral side. It has a trapezoidal shape.
[0009]
Further, a method of manufacturing a motor component according to the present invention includes the following steps.
{Circle around (1)} A linear wire with a rectangular cross section formed by rolling is conveyed linearly to form a linear portion, and one of the side edges of the wire is intermittently rolled to be larger than the other. Forming a coil having a trapezoidal cross section to form a coil composed of a straight portion and a bent portion. (2) After forming the coil, one side edge of the conductive wire is intermittently connected to the other side edge. (3) a step of forming a bent portion having a trapezoidal cross section continuously at the coil end portion after forming the bent portion, so that one side edge side of the conductive wire is intermittently shifted to the other side edge side. A step of forming a bent portion having a trapezoidal cross-section by rolling to a greater extent and continuously forming another coil composed of a straight portion and a bent portion; (4) a step of fitting projections inside each coil; [0010]
As described above, by rolling the rectangular plate-shaped conductive wire intermittently with different crushing degrees in the width direction, it is possible to manufacture a coil in which the bent portion and the linear portion are continuous.
[0011]
The use of a rectangular plate-shaped conductor eliminates the lamination of the conductor in the radial direction of the ring, that is, the circumferential direction of the motor rotation shaft, and forms a single layer to obtain a motor component having a high space factor and a high heat dissipation effect. be able to.
[0012]
The trapezoidal cross section of the conductor has a tendency to have a smaller cross sectional area than the rectangular flat plate cross section, and therefore has relatively high electrical resistance and a low space factor, which is disadvantageous also on the heat radiation surface. Therefore, the bent portion having a trapezoidal cross section of the conductive wire is provided as short as possible on the end face side of the ring portion (the end face side in the motor axial direction). With this configuration, it is possible to minimize the length of the portion having relatively high electric resistance and large heat generation, to avoid large heat generation, and to arrange the large heat generation portion on the end face in the motor axial direction which is advantageous for heat radiation.
[0013]
On the other hand, the straight portion composed of the conductive wire having a rectangular flat plate cross section is arranged in the space formed between the projections, but is in contact with the projections over a wide range, so that efficient heat conduction is achieved. High heat dissipation can be expected.
[0014]
The conducting wire portion having a rectangular flat cross section can be obtained by rolling the material to be rolled between a pair of cylindrical rollers as in the conventional case. A conducting wire portion having a trapezoidal cross section can be obtained by intermittently passing a conducting wire of a rectangular flat plate between a pair of conical rollers. Then, by rolling the conical roller intermittently after the rolling by the cylindrical roller, a coil having a continuous bent portion and a straight portion can be obtained. That is, when a rectangular flat conductive wire sent through a cylindrical roller is passed through a conical rolling roller, one side edge of the conductive wire is crushed more than the other side edge. Therefore, one side edge side of the conductive wire will be greatly extended in the longitudinal direction as compared with the other side edge side, and the conductive wire will be bent with the side edge side with a small crush degree as the inner circumference and the side edge side with a large crush degree with the outer circumference. Will be. Therefore, if the rolling by the conical roller is performed while the interval between the conical rollers is intermittently closed for a predetermined time, a coil having a straight portion and a bent portion can be manufactured using a conductive wire having a rectangular flat plate cross section. The bending radius of the bent portion can be adjusted by changing the difference between the diameter of one end and the other end of the conical roller, thereby changing the degree of crushing of one side edge of the conductor and the other side edge.
[0015]
Furthermore, if the coil is a plurality of coils used in a multi-phase motor, the coil of the same phase may form a bent portion by the same method as the method of forming the bent portion, and the plurality of coils may be formed continuously. it can. The cross-sectional shape of the bent portion is also a trapezoidal shape in which the thickness on the outer peripheral side of the bend is smaller than the thickness on the inner peripheral side.
[0016]
That is, after one coil is formed by the above-described rolling, the next coil is formed continuously using the same conductive wire. At this time, if the bent portion connecting the plurality of coils is formed between the coils by rolling the outer circumference of the conductive wire larger than the inner circumference and making it thinner, it is easy to continuously form the plurality of coils. it can.
[0017]
In the step of fitting the core inside the coil, it is preferable that the projecting portion and the ring portion of the core are configured to be splittable. Usually, since the tip of the projection is wider than the ring side, the coil cannot be fitted from the tip of the projection. Therefore, if the projection is configured to be detachable from the ring, once the projection is removed from the ring, the coil is fitted, and then the projection is fixed to the ring, thereby configuring the rotor or the stator. can do.
[0018]
Further, it is preferable that the conductive wire is configured to be wider and thinner from the inner peripheral side toward the outer peripheral side with the rotation axis of the motor as a center. In the core, the space formed between the protrusions and in which the conductive wire is arranged has a circumferential length longer on the outer circumferential side in the ring portion radial direction than on the inner circumferential side. For this reason, the coil portion arranged in the outer peripheral region of the core has a wider width of the conducting wire than the coil portion arranged in the inner peripheral region, so that the space for disposing the coil has a different width at the inner and outer periphery of the ring portion. Even in this case, the space factor can be increased.
[0019]
As described above, in order to form a thin conductor on the inner peripheral side and a thin conductor on the outer peripheral side, when rolling the conductor, the rolling reduction is continuously increased when the conductor is rolled, and the conductor is rolled from the beginning. The end forms a thinner conductor. Subsequently, one side edge side of the conductive wire may be intermittently rolled larger than the other side edge side to form a bent portion having a trapezoidal cross section.
[0020]
The motor component as described above can be used as a rotor or a stator of the motor. Generally, the rotor includes a ring portion and a plurality of protrusions radially formed from the ring portion toward the outer periphery. The stator includes a ring portion and a plurality of protrusions projecting toward the center. In either case, the conductor is wound around the outer periphery of the projection to form a coil. In general, the projection often has a rectangular cross section that is long in the motor axis direction.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
(Basic configuration of coil)
Before describing a plurality of continuous coils, a single coil constituting the motor component of the present invention will be described. 1A is a perspective view of a coil used for a motor component, FIG. 1B is a cross-sectional view of a part X in FIG. 1A, and FIG. 1C is a cross-sectional view of a part Y in FIG.
[0022]
As shown in FIG. 1, the coil 10 is formed by spirally winding the conductive wire 1 and includes a straight portion 11 in which the conductive wire 1 extends linearly, and a bent portion 12 in which the conductive wire 1 is bent. . The straight portion 11 is formed of a conductive wire having a rectangular flat plate in cross section (FIG. 1C), and the bent portion 12 is formed in a substantially trapezoidal shape in which one side in the width direction of the wire is smaller in thickness than the other side. . In the bent portion 12, the side edge with a small thickness is located on the outer peripheral side of the coil.
[0023]
In such a coil, as shown in FIG. 2, first, a material to be rolled is passed through a pair of cylindrical rollers 20 to form a conducting wire having a rectangular flat plate cross section. Subsequently, the conductive wire sent through the cylindrical roller 20 is intermittently rolled using the conical roller 21. Here, among the conductor side edges, the conical roller 21 is arranged so as to crush only a part in the width direction from the side edge corresponding to the outer periphery of the coil. The portion rolled by the conical roller 21 is reduced in thickness and elongated in the longitudinal direction, so that the conductive wire is bent with the side rolled by the conical roller 21 as the outer periphery. If the conical roller 21 is opened and closed to roll the conductor intermittently, a coil having a linear portion having a rectangular flat plate cross section and a bent portion having a trapezoidal cross section can be obtained. According to the above-described method, the rectangular flat conductive wire can be bent without causing a thick portion or wrinkles on the inner peripheral side of the bent portion. Then, an insulating coating 2 (FIG. 1) such as enamel or ceramics may be applied to the obtained coil.
[0024]
Such a coil is incorporated into a core to form a stator. FIG. 3 is a schematic configuration diagram of a general motor.
[0025]
The inner rotor type brushless DC motor shown in FIG. 3 has a magnet that becomes the rotor 30 on the center side and a stator 40 on the outer periphery. The stator 40 has a core including a ring portion 41 arranged coaxially with the rotor and a plurality of protrusions 42 projecting from the ring portion 41 toward the center. Each of the protrusions 42 has a substantially T-shaped cross section when the motor is viewed from the axial direction, and a coil is formed by winding a conductive wire around its outer periphery. Usually, an insulating material (not shown) is interposed between the coil 10 and the protrusion 42. In this motor, the rotational position of the magnet is detected by using the Hall element 50 and fed back to the inverter 51 to control the energization of the coil 10.
[0026]
FIG. 4 is a partial perspective view showing a state where the coil 10 of FIG. 1 is mounted on such a stator 40. Arrows in the vertical direction in FIG. 4 indicate the motor rotation axis. As shown in this figure, the linear portion 11 of the coil is arranged in the space formed between the adjacent protrusions 42, and the bent portion 12 of the coil is formed on the end face of the stator, that is, outside the space. In order to fit the coil into the T-shaped protrusion, the ring 41 and the protrusion 42 may be divided. That is, the stator 40 may be configured by fitting the coil 10 around the outer periphery of the protrusion 42 once removed from the ring 41, and then fixing the protrusion 42 to the ring 41.
[0027]
When the stator is configured as described above, the bent portion 12 has a smaller conductor cross-sectional area than the straight portion 11 and thus easily generates heat. However, efficient heat radiation is achieved by disposing the bent portion 12 outside the space surrounded by the protrusion 42. be able to. Further, the linear portion 11 that is in direct contact with the protrusion 42 can radiate heat by heat conduction through the protrusion 42.
[0028]
In the above description, the method of manufacturing the motor component of the present invention has been described by taking the configuration in which the coil is provided on the stator as an example, but the coil shown in FIG. 1 can also be used for the rotor. For example, as shown in FIG. 5, a core having a substantially T-shaped projection 62 radially protruding from an outer periphery of a ring portion 61 may be used, and the coil 10 shown in FIG. . A magnet serving as a stator 70 is arranged on the outer periphery of the rotor 60. Also in this case, the coil 10 can be easily fitted by forming the T-shaped projection 62 into a split type with the ring portion 61.
[0029]
(Modification of single coil)
In the basic configuration, an example in which a coil having a uniform thickness in the straight portion is used has been described. However, a coil having a wider and thinner conductive wire toward the outer periphery in the radial direction of the ring portion may be used. FIG. 6 is a partial plan view of a stator using a conductive wire having a variable width and thickness. This plan view shows a state viewed from the rotation axis direction of the motor.
[0030]
As shown in FIG. 6, in the coil 10, the conductor on the inner peripheral side of the ring is narrow and thick, and the conductor on the outer peripheral side is wide and thin. The space formed between the projections 42 is formed in a fan shape when viewed from the motor rotation axis direction. For this reason, if a narrow conductive wire is wound around the distal end side (the inner peripheral side of the ring portion) of the protrusion 42 and a wide conductive wire is wound around the base side (the outer peripheral side of the ring portion), the space occupied by the fan is increased. The coil 10 can be stored at the moment.
[0031]
As described above, the formation of the coil 10 having different thicknesses and widths of the conductor wire on the inner peripheral side and the outer peripheral side can be realized by continuously increasing the rolling reduction of the cylindrical roller 20 in FIG. . That is, at the beginning of rolling, the interval between the cylindrical rollers 20 is increased, and the interval between the cylindrical rollers is gradually reduced as the rolling progresses. Thereby, the width of the conducting wire at the time of being introduced into the conical roller 21 can be widened and the thickness can be reduced.
[0032]
(A plurality of continuous coils used in the motor part of the present invention)
A single coil can be manufactured by the method described above, and furthermore, by forming a bent portion by combining non-uniform rolling in the width direction with a conical roller, a series of conductive wires, in a state where a plurality of coils are connected. FIG. 7 that can be formed is an explanatory view showing a state in which a plurality of coils are connected via a bent portion.
[0033]
In-phase coils in a multi-phase motor can be connected in series. Therefore, as shown in FIG. 7, the coils of the same phase are connected to each other via a bent portion 80 obtained by bending a conductive wire.
[0034]
The cross-sectional shape of the bent portion 80 is a trapezoidal shape in which the thickness on the outer circumferential side of the bending is smaller than the thickness on the inner circumferential side. In order to form the bent portion 80, similarly to the case where the bent portion 12 of the coil 10 is formed, the side edge side of the conductive wire which is the outer peripheral side of the bent portion is rolled larger than the side edge side of the conductive wire which is the inner peripheral side thereof. Can be realized by
[0035]
That is, as shown in FIG. 8, the first conical roller 21 is provided downstream of the cylindrical roller 20, and the second conical roller 22 is further provided downstream. The first conical roller 21 has a roller structure that greatly crushes one side edge of the conductor, while the second conical roller 22 has a roller structure that greatly crushes the other side edge of the conductor. ing.
[0036]
In such a rolling line, a rectangular flat conductive wire is first formed by the cylindrical roller 20. Subsequently, the conductive wire is intermittently rolled by the first conical roller 21 to form a bent portion in which one side edge of the conductor is an outer periphery, thereby producing a coil including a straight portion and a bent portion. Further, when the first coil is manufactured, the other side edge side of the conductor is intermittently crushed by the second conical roller 22 to form a bent portion bent substantially at a right angle. At this time, rolling by the first conical roller 21 is not performed. Then, if the bent portion can be formed, the second coil can be manufactured by performing intermittent rolling again with the first conical roller 21. Of course, by repeating the same process, more coils can be formed continuously. By integrally forming the in-phase coil, not only the coil can be manufactured, but also the coil can be easily incorporated into the protrusion.
[0037]
Also, as shown in FIG. 9, even when the coils 10 of each phase in the multi-phase motor are independently manufactured, the bent portion 80 is formed by using the second conical roller, and the lead wire is drawn from the coil. It can be carried out.
[0038]
【The invention's effect】
As described above, according to the motor part of the present invention, the linear portion is formed by the conductor having the rectangular flat plate cross section, and the bent portion is formed by the conductor having the trapezoidal cross section. It is possible to obtain heat dissipation and it is most suitable for application to a polyphase motor.
[0039]
According to the method of manufacturing a motor component of the present invention, the linear portion is formed of a conductive wire having a rectangular flat plate cross-section by intermittently performing uneven rolling in the width direction on the conductive wire having a rectangular flat cross-section. And a motor part in which the bent portion is formed of a conducting wire having a trapezoidal cross section can be easily obtained. In particular, a plurality of coils can be obtained with a series of conducting wires, and the manufacturability is excellent.
[Brief description of the drawings]
1A is a perspective view of a single coil used for a motor component of the present invention, FIG. 1B is a cross-sectional view of an X part in FIG. 1A, and FIG. 1C is a cross-sectional view of a Y part in FIG. .
FIG. 2 is an explanatory view of a step of manufacturing a first coil in the method of the present invention.
FIG. 3 is a schematic configuration diagram of a general motor.
FIG. 4 is a partial perspective view showing a state where the coil of FIG. 1 is mounted on a stator.
FIG. 5 is a plan view showing a state where the coil of FIG. 1 is mounted on a rotor.
FIG. 6 is a partial plan view of a stator using a conductor having a variable width and thickness.
FIG. 7 is an explanatory view showing a plurality of coils used for the motor component of the present invention.
FIG. 8 is an explanatory diagram of a step of manufacturing the coil of FIG. 7;
FIG. 9 is a configuration diagram showing a coil of a polyphase motor to which the method of the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Conductor 2 Insulation coating 10 Coil 11 Straight part 12 Bent part 20 Cylindrical roller 21 (First) conical roller 22 Second conical roller 30 Rotor 40 Stator 41 Ring part 42 Projection part 50 Hall element 51 Inverter 60 Rotor 61 Ring part 62 Projection Part 70 Stator 80 Bending part

Claims (2)

コアと、導線を巻いて連続的に形成された複数のコイルとを有するモーター部品であって、
前記コアは、リング部と、リング部の径方向に伸びて前記導線が巻き付けられる突起部とを具え、
前記コイルは直線部と屈曲部とを有し、
前記直線部の導線断面形状は矩形板状で、前記屈曲部の導線断面形状は屈曲の外周側の厚みが内周側の厚みに比べて小さい台形状であり、
複数のコイルのうち、同相のコイルは前記導線を折り曲げた折り曲げ部を介して互いに連結され、
その折り曲げ部の断面形状は、折り曲げの外周側の厚みが内周側の厚みに比べて小さい台形状であることを特徴とするモーター部品。
A motor component having a core and a plurality of coils formed continuously by winding a conductive wire,
The core includes a ring portion, and a protrusion that extends in a radial direction of the ring portion and around which the conductive wire is wound,
The coil has a straight portion and a bent portion,
The conductive wire cross-sectional shape of the straight portion is a rectangular plate shape, and the conductive wire cross-sectional shape of the bent portion has a trapezoidal shape in which the thickness on the outer peripheral side of the bend is smaller than the thickness on the inner peripheral side,
Among the plurality of coils, the coils of the same phase are connected to each other via a bent portion obtained by bending the conductive wire,
A motor component, wherein the cross-sectional shape of the bent portion is a trapezoidal shape in which the thickness on the outer circumferential side of the bending is smaller than the thickness on the inner circumferential side.
圧延で形成された断面が矩形板状の導線を直線状に搬送して直線部を形成すると共に、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延して断面が台形状の屈曲部を形成して、直線部と屈曲部とからなるコイルを形成する工程と、
前記コイルを形成後、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延し、断面が台形状の折り曲げ部をコイル端部に連続して形成する工程と、
折り曲げ部の形成後、断続的に前記導線における一方の側縁側を他方の側縁側に比べて大きく圧延して断面が台形状の屈曲部を形成して、直線部と屈曲部とからなる別のコイルを連続的に形成する工程と、
前記各コイルの内側に突起部をはめ込む工程とを有することを特徴とするモーター部品の製造方法。
The cross section formed by rolling forms a straight portion by conveying a rectangular plate-shaped conductor linearly, and intermittently rolling one side edge side of the conductor wire larger than the other side edge to form a cross section. Forming a trapezoidal bent portion, forming a coil consisting of a straight portion and a bent portion,
After forming the coil, a step of rolling one side edge side of the conductive wire intermittently larger than the other side edge side intermittently, and forming a bent portion having a trapezoidal cross section continuously at the coil end portion,
After the formation of the bent portion, one side edge side of the conductive wire is intermittently rolled larger than the other side edge side to form a trapezoidal bent portion, and another portion including a straight portion and a bent portion is formed. Forming a coil continuously;
Fitting a protruding portion inside each of the coils.
JP2002234464A 2002-08-12 2002-08-12 Motor component and its manufacturing method Pending JP2004080860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234464A JP2004080860A (en) 2002-08-12 2002-08-12 Motor component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234464A JP2004080860A (en) 2002-08-12 2002-08-12 Motor component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004080860A true JP2004080860A (en) 2004-03-11

Family

ID=32019271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234464A Pending JP2004080860A (en) 2002-08-12 2002-08-12 Motor component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004080860A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221912A (en) * 2006-02-16 2007-08-30 Sawafuji Electric Co Ltd Armature for rotary electric machine
JP2007288983A (en) * 2006-04-20 2007-11-01 Sumitomo Electric Ind Ltd Stator and manufacturing method of the same
WO2007125838A1 (en) * 2006-04-28 2007-11-08 Mitsubishi Cable Industries, Ltd. Linear member, and stator structure
JP2007317636A (en) * 2006-04-28 2007-12-06 Mitsubishi Cable Ind Ltd Linear member, and stator structure
WO2008087994A1 (en) * 2007-01-17 2008-07-24 Toyota Jidosha Kabushiki Kaisha Coil production method, coil of motor, and stator of motor
WO2008114763A1 (en) * 2007-03-12 2008-09-25 Toyota Jidosha Kabushiki Kaisha Edgewise bending processing method for rectangular wire and bending processing apparatus
WO2009069723A2 (en) * 2007-11-29 2009-06-04 Toyota Jidosha Kabushiki Kaisha Winding apparatus
JP2009131103A (en) * 2007-11-27 2009-06-11 Hitachi Ltd Rotary machine and manufacturing method for stator
JP2009283591A (en) * 2008-05-21 2009-12-03 Toyota Motor Corp Winding method, winding device, and stator
US8030812B2 (en) 2008-02-13 2011-10-04 Hitachi, Ltd. Rotating electric apparatus and method for connecting stator coils thereof
US8269387B2 (en) 2007-10-19 2012-09-18 Toyota Jidosha Kabushiki Kaisha Coil for rotating electric machine having bent drawn-out ends
WO2013187501A1 (en) * 2012-06-15 2013-12-19 HONGO Takenobu Coiled member and coil device
JP5791800B2 (en) * 2012-06-21 2015-10-07 三菱電機株式会社 Electric motor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007221912A (en) * 2006-02-16 2007-08-30 Sawafuji Electric Co Ltd Armature for rotary electric machine
JP2007288983A (en) * 2006-04-20 2007-11-01 Sumitomo Electric Ind Ltd Stator and manufacturing method of the same
US7928626B2 (en) 2006-04-28 2011-04-19 Mitsubishi Cable Industries, Ltd. Linear material and stator structure
WO2007125838A1 (en) * 2006-04-28 2007-11-08 Mitsubishi Cable Industries, Ltd. Linear member, and stator structure
JP2007317636A (en) * 2006-04-28 2007-12-06 Mitsubishi Cable Ind Ltd Linear member, and stator structure
US9003647B2 (en) 2006-04-28 2015-04-14 Mitsubishi Cable Industries, Ltd. Method and apparatus for manufacturing a flat-type wire
US8053943B2 (en) 2006-04-28 2011-11-08 Mitsubishi Cable Industries, Ltd. Linear material and stator structure
US8049390B2 (en) 2006-04-28 2011-11-01 Mitsubishi Cable Industries, Ltd. Linear material and stator structure
WO2008087994A1 (en) * 2007-01-17 2008-07-24 Toyota Jidosha Kabushiki Kaisha Coil production method, coil of motor, and stator of motor
JP2008178199A (en) * 2007-01-17 2008-07-31 Toyota Motor Corp Manufacturing method for coil, coil of motor, and stator of motor
CN101606302B (en) * 2007-03-12 2011-11-09 丰田自动车株式会社 Edgewise bending processing method for rectangular wire and bending processing apparatus
JP2008228435A (en) * 2007-03-12 2008-09-25 Toyota Motor Corp Method and apparatus for bending rectangular material edgewise
WO2008114763A1 (en) * 2007-03-12 2008-09-25 Toyota Jidosha Kabushiki Kaisha Edgewise bending processing method for rectangular wire and bending processing apparatus
JP4626623B2 (en) * 2007-03-12 2011-02-09 トヨタ自動車株式会社 Edgewise bending method and processing apparatus for flat rectangular material
DE112008002806B4 (en) * 2007-10-19 2014-12-04 Toyota Jidosha Kabushiki Kaisha Rotating electrical machine
US8269387B2 (en) 2007-10-19 2012-09-18 Toyota Jidosha Kabushiki Kaisha Coil for rotating electric machine having bent drawn-out ends
JP2009131103A (en) * 2007-11-27 2009-06-11 Hitachi Ltd Rotary machine and manufacturing method for stator
WO2009069723A2 (en) * 2007-11-29 2009-06-04 Toyota Jidosha Kabushiki Kaisha Winding apparatus
WO2009069723A3 (en) * 2007-11-29 2009-09-24 Toyota Jidosha Kabushiki Kaisha Winding apparatus
US20100180977A1 (en) * 2007-11-29 2010-07-22 Toyota Jidosha Kabushiki Kaisha Winding apparatus
US8030812B2 (en) 2008-02-13 2011-10-04 Hitachi, Ltd. Rotating electric apparatus and method for connecting stator coils thereof
USRE46265E1 (en) 2008-02-13 2017-01-03 Hitachi, Ltd. Rotating electric apparatus and method for connecting stator coils thereof
JP2009283591A (en) * 2008-05-21 2009-12-03 Toyota Motor Corp Winding method, winding device, and stator
WO2013187501A1 (en) * 2012-06-15 2013-12-19 HONGO Takenobu Coiled member and coil device
JP5791800B2 (en) * 2012-06-21 2015-10-07 三菱電機株式会社 Electric motor
JPWO2013190677A1 (en) * 2012-06-21 2016-02-08 三菱電機株式会社 Electric motor

Similar Documents

Publication Publication Date Title
JP3971692B2 (en) Slotless permanent magnet type rotating electrical machine and method for manufacturing windings thereof
JP6165260B2 (en) Rotating electric machine
WO2014034157A1 (en) Rotary electric machine and manufacturing method therefor
JP5314908B2 (en) Rotating electric machine stator and rotating electric machine
JP2004080860A (en) Motor component and its manufacturing method
JP4029519B2 (en) Vehicle alternator stator
JP2003070197A (en) Stator coil and motor using the same, manufacturing method of stator coil and motor, and coil unit and manufacturing method thereof
JP2012143068A (en) Stator of rotary electric machine and method of manufacturing the same
JP2009131103A (en) Rotary machine and manufacturing method for stator
JP2006014530A (en) Coil and its manufacturing method
JP2009011064A (en) Stator of rotating electric machine, and manufacturing method thereof
JP2015116108A (en) Rotary electric machine
US9819238B2 (en) Rotary electric machine having stator with coil conductors having different cross-sectional width
CN113039704A (en) Stator and motor using the same
US20040007933A1 (en) Assembly type stator structure having flat wire wound coils
TWI517524B (en) Alternator stator and stator winding
JP2012095488A (en) Rotor for rotary electric machine and rotary electric machine using the same
JP2004080861A (en) Motor component and motor
JP6324015B2 (en) Manufacturing method of rotating electrical machine
JP2012090441A (en) Conductive wire coated with insulating film, and rotary electric machine
JP6747834B2 (en) Stator
JP6500669B2 (en) DC motor and method of manufacturing the same
WO2021117320A1 (en) Coil and motor comprising same
JP2002325382A (en) Manufacturing method of dynamo-electric machine and dynamo-electric machine
JP5901503B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081002