JP2006002715A - エンジン制御回路 - Google Patents
エンジン制御回路 Download PDFInfo
- Publication number
- JP2006002715A JP2006002715A JP2004182045A JP2004182045A JP2006002715A JP 2006002715 A JP2006002715 A JP 2006002715A JP 2004182045 A JP2004182045 A JP 2004182045A JP 2004182045 A JP2004182045 A JP 2004182045A JP 2006002715 A JP2006002715 A JP 2006002715A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- power consumption
- battery voltage
- low power
- consumption mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits or control means specially adapted for starting of engines
- F02N11/0862—Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2200/00—Parameters used for control of starting apparatus
- F02N2200/06—Parameters used for control of starting apparatus said parameters being related to the power supply or driving circuits for the starter
- F02N2200/063—Battery voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2250/00—Problems related to engine starting or engine's starting apparatus
- F02N2250/02—Battery voltage drop at start, e.g. drops causing ECU reset
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N2300/00—Control related aspects of engine starting
- F02N2300/30—Control related aspects of engine starting characterised by the use of digital means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】バッテリ電圧が一時的に低下しても低消費電力モードに誤って移行することがないエンジン制御回路を提供する。
【解決手段】バッテリ電圧検知装置162は、バッテリ110の電圧が所定値以下になったときに、検知信号PDをローレベルにする。PDレベル監視装置164は、検知信号PDがローレベルに維持されている時間を測定し、信号PDが所定時間継続してローレベルに維持されたときに、内部のPD監視フラグを‘1’にセットする。CPU165は、検知信号PDをFIQ信号として入力し、FIQ信号がローレベルになるとPD監視フラグをチェックし、PD監視フラグの値が‘1’のときにのみ低消費電力モードに移行する。バッテリ電圧の低下時間が所定時間以上の場合にのみ低消費電力モードに移行するので、バッテリ電圧が一時的に低下しても低消費電力モードに誤って移行することがない。
【選択図】図1
【解決手段】バッテリ電圧検知装置162は、バッテリ110の電圧が所定値以下になったときに、検知信号PDをローレベルにする。PDレベル監視装置164は、検知信号PDがローレベルに維持されている時間を測定し、信号PDが所定時間継続してローレベルに維持されたときに、内部のPD監視フラグを‘1’にセットする。CPU165は、検知信号PDをFIQ信号として入力し、FIQ信号がローレベルになるとPD監視フラグをチェックし、PD監視フラグの値が‘1’のときにのみ低消費電力モードに移行する。バッテリ電圧の低下時間が所定時間以上の場合にのみ低消費電力モードに移行するので、バッテリ電圧が一時的に低下しても低消費電力モードに誤って移行することがない。
【選択図】図1
Description
この発明は、プロセッサを用いてエンジンの動作を制御するエンジン制御回路に関し、より詳細には、該エンジン制御回路の誤動作を防止する技術に関する。
従来より、マイクロコンピュータ等のプロセッサを用いてエンジン制御を行うシステムが知られており、ECU(Engine Control Unit) と称されている。また、ECUとして、低消費電力モードを有するものが知られている。ECUの低消費電力モードとは、エンジン制御等の動作を停止させて、RAM(Random Access Memory)等に書き込まれたデータの保持等の最低限の動作のみを行うモードである。ECUは、レギュレータ(電圧変換器)を用いて、車載バッテリの出力電圧から電源電圧を生成している。したがって、エンジンが停止されたときにECUを低消費電力モードに移行させることで、車載バッテリの消耗を抑えることができる。エンジンの稼働中/停止中の判断は、例えば、イグナイタ(エンジン点火制御装置)への供給電圧をECU内の電圧検知装置で検知することによって行うことができる。
しかしながら、かかる電圧検知装置は、バッテリ電圧が急激に降下したときに誤動作するおそれがある。電圧検知装置の駆動電圧としても、ECU内の他の回路と同様、バッテリ電圧を変圧して得た電源電圧が使用されるからである。すなわち、バッテリ電圧の急激な低下によって電圧検知装置の駆動電圧が低下した場合、この電圧検知装置は、バッテリ電圧を実際よりもさらに低い電圧であると判断してしまう。そして、電圧検知装置の検知電圧が所定のしきい値電圧よりも低い場合、ECUは、実際にはエンジンが稼働しているにも拘わらず、エンジンが停止したと判断して低消費電力モードに移行してしまう。低消費電力モードに移行した場合、ECUはイグナイタの点火制御を行うことができなくなり、その結果、エンジンが停止する。
車載バッテリの電圧降下は、例えば、自動車エンジンの始動時に発生する。自動車エンジンの始動時には、クランキングが行われるために、セルモータに最大負荷がかかり、バッテリの出力電圧が一時的に降下する。クランキングとは、イグニッションスイッチ(自動車のキー)をターン・オンしてセルモータを回転させることによりエンジンシャフトを強制的に回転させる動作である。例えば12ボルトバッテリの場合、開放電圧は13ボルト程度であるが、クランキング開始時には9ボルト程度まで降下し、エンジン稼働後に徐々に上昇して14ボルト程度で安定する。クランキング開始からバッテリ電圧の安定までの所要時間は、1秒程度である。バッテリ電圧の一時的降下は、気温が低いときほど顕著となる。気温が低いほど、エンジンオイルの粘着度が高くなるためにエンジンシャフトの負荷が増大し、したがって、セルモータの負荷も増大するからである。また、経年変化によってバッテリ自体が劣化した場合にも、新品バッテリでは生じないような不測の電圧降下が発生する場合がある。
上述のように、バッテリ電圧の変圧にはレギュレータが使用される。このため、車載バッテリの電圧変化が緩やかな場合には、ECUの電源電圧は安定している。しかし、レギュレータには過渡応答時間があるため、バッテリ電圧の急激な変動には対応できず、例えば1ミリ秒程度の電圧降下期間が発生する可能性がある。
また、バッテリ電圧の一時的な降下を抑制する方法としては、例えば、補助バッテリや充電用コンデンサでバッテリ電圧の降下分を補う方法が考えられる。しかしながら、このような方法で、上述のようなバッテリ電圧の一時的降下を十分に抑えることは困難である。
ECUの誤動作に対処する技術としては、例えば、下記特許文献1〜3で開示された技術が知られている。
特許文献1は、バッテリ電圧が所定電圧V1以下になると低消費電力モードに移行してRAMデータを保存し、さらに所定電圧V2以下になるとECU内のCPU(Central Processing Unit) をリセットする、ECUを開示している。このようなECUによれば、バッテリ電圧が低下しても、RAMデータを失ったりCPUが暴走したりすることはない(特許文献1の段落0022〜0023等参照)。しかしながら、特許文献1では、バッテリ電圧の誤検知に起因して低消費電力モードへ移行してしまう場合は想定されておらず、したがって、上述のようなエンジン停止等の不都合は当該ECUでは回避できない。
特許文献2は、エンジン始動等に起因してバッテリ電圧が一時的に低下したときに、RAMデータをリセットすることなく、CPUのみをリセットするECUを開示している。このようなECUによれば、バッテリ電圧が低下しても、RAMデータを失ったりCPUが暴走したりすることはない(特許文献2の第4頁左欄第19行〜第31行等参照)。しかしながら、特許文献2は、低消費電力モードを有さないECUに関する技術であり、したがって、低消費電力モードへ誤って移行することに伴うエンジン停止等の不都合は当該ECUでは回避できない。
特許文献3は、バッテリ電圧が一時的に低下したときに、RAMデータを書込/読出禁止状態に設定した後でCPUをリセットするECUを開示している。このようなECUによれば、バッテリ電圧が一時的に低下しても、RAMデータを失ったりCPUが暴走したりすることはない(特許文献3の第3頁右上欄第3行〜第4頁左上欄第6行参照)。しかしながら、特許文献3は、低消費電力モードを有さないECUに関する技術であり、したがって、低消費電力モードへ誤って移行することに伴うエンジン停止等の不都合は当該ECUでは回避できない。
特開平7−114401号公報
特公平7−42888号公報
特開昭62−258154号公報
この発明の解決課題は、バッテリ電圧が一時的に低下しても、低消費電力モードに誤って移行することがないエンジン制御回路を提供することにある。
この発明は、エンジン駆動用バッテリから出力されるバッテリ電圧に応じて通常モードと低消費電力モードとを切り換えるエンジン制御回路に関する。
そして、バッテリ電圧が所定値以下になったときに検知信号を有効レベルにするバッテリ電圧検知手段と、検知信号が有効レベルに維持されている時間を測定する信号監視手段と、当該信号監視手段の測定時間が所定時間に達したときに動作モードを低消費電力モードに切り換えるプロセッサとを備える。
この発明によれば、検知信号の有効状態が所定時間以上継続したときにのみ、動作モードを低消費電力モードに移行させることができる。したがって、バッテリ電圧が一時的に低下しても、誤って低消費電力モードに移行することはない。
以下、この発明の実施の形態について、図面を用いて説明する。なお、図中、各構成成分の大きさ、形状および配置関係は、この発明が理解できる程度に概略的に示してあるにすぎず、また、以下に説明する数値的条件は単なる例示にすぎない。
第1実施形態
以下、この発明の第1実施形態について、図1、図2を用いて説明する。
以下、この発明の第1実施形態について、図1、図2を用いて説明する。
図1は、この実施形態に係るエンジン制御系の構成を概略的に示すブロック図である。図1に示したように、この実施形態のエンジン制御系は、バッテリ110、イグニッションスイッチ120、イグナイタユニット130、イグニッションコイル140、ディストリビュータ/イグナイタ150およびECU160を備えている。
バッテリ110は、通常の車載バッテリ(例えば12ボルト)である。
イグニッションスイッチ120は、バッテリ110からイグナイタユニット130への電源供給をオン/オフするためのスイッチである。また、通常、イグニッションスイッチ120は、セルモータを駆動するためのスイッチを兼ねている。イグニッションスイッチ120の状態は、信号IG1として、ECU160に送られる。
イグナイタユニット130は、ECU160から入力された信号IG2がオンのときに、イグナイタユニット130からイグニッションコイル140への電源供給をオンする。
イグニッションコイル140は、イグナイタユニット130からの入力電圧を、イグニッション(スパークプラグの点火)用の高電圧に変換する。
ディストリビュータ/イグナイタ150は、1個のディストリビュータと複数のイグナイタを含む。ディストリビュータは、イグニッションコイル140から入力された高電圧を、所定のタイミングで各イグナイタに供給する。各イグナイタは、対応するシリンダに設けられたスパークプラグの点火を制御する。ディストリビュータ/イグナイタ150の動作状況は、信号IG3としてECU160に送られる。
ECU160は、イグニッションスイッチ120がオンしているときは通常モードで動作し、且つ、該イグニッションスイッチ120がオフしているときには低消費電力モードで動作する。通常モードでは、ECU160は、エンジン(図示せず)の運転状態を示す情報を各種センサ(図示せず)から取り込み、これらの情報にしたがってイグナイタユニット130等を制御する。一方、低消費電力モードでは、ECU160は、各種データの保持や信号IG1の監視等の、最低限の動作のみを行う。ECU160は、レギュレータ161、バッテリ電圧検知装置162、リセット回路163、PDレベル監視装置164、CPU165、内部バス166および発振器167を備えている。
レギュレータ161は、例えばDC−DC変換器によって構成される。このレギュレータ161は、通常モードのとき、バッテリ110から入力された電圧(例えば12ボルト)から電源電圧VDD(例えば3.3ボルト)および電源電圧VCC(例えば5V)を生成する。電源電圧VDDは例えばリセット回路163に供給され、電源電圧VCCは例えば他の装置162,164,163に供給される。また、レギュレータ161は、低消費電力モードのとき、一部回路への電源供給を停止する。
バッテリ電圧検知装置162は、イグニッションスイッチ120からイグナイタユニット130に供給される電圧を検知する。そして、この検知電圧が第1所定値V0以下になると、検知信号PDを有効レベルにする。さらに、この検知電圧が第2所定値V1(V0>V1)以下になると、検知信号SDを有効レベルにする。上述のように、このバッテリ電圧検知装置162は、レギュレータ161で生成された電源電圧VCCによって駆動される。
リセット回路163は、バッテリ電圧検知装置162から検知信号SDを入力し、この検知信号SDが有効レベルになったときにリセット信号RSTを出力する。
PDレベル監視装置164は、バッテリ電圧検知装置162から、検知信号PDを入力する。PDレベル監視装置164は、検知信号PDの有効期間(有効レベルに維持されている時間)を、タイマ(図示せず)で計測する。そして、この有効期間が所定時間T3を超えたときに、内部のPD監視フラグ(図示せず)をセットする。
CPU165は、PDレベル監視装置164の測定時間が所定時間に達したときに動作モードを低消費電力モードに切り換える。このCPU165は、プロセッサ信号IG1,IG3や各種センサ(図示せず)からエンジン等の状態を示す情報を入力して内部RAM(図示せず)に保存し、これらの情報に基づいてイグナイタユニット130等を制御する。また、CPU165は、リセット回路163からリセット信号RSTを入力したときに、RAMの保存データ等を含む動作全体をリセットする。加えて、CPU165は、FIQ端子から検知信号PDを入力する。一般的なプロセッサは、IRQ(Interrupt ReQuest) とFIQ(First Interrupt reQuest) という2種類の割込信号を受け付けることができる。IRQは、ソフトウエア割り込みであり、非リアルタイムの割り込みを行う。IRQは、例えば照明やワイパーなどの制御に使用される。これに対して、FIQは、ハードウエア割り込みであり、リアルタイムの割り込みを行う。この実施形態では、通常モードから低消費電力モードに移行するか否かを判断する際のトリガとして、FIQ信号を使用する(後述)。
内部バス166は、イグニッションスイッチ120、イグナイタユニット130、ディストリビュータ/イグナイタ150およびPDレベル監視装置164からCPU165への信号送信や、CPU165からからイグナイタユニット130への信号送信に使用される信号バスである。
発振器167は、クロックXTALを生成・出力する。このクロックXTALは、図示しない回路でシステムクロックに変換されて、ECU内の各回路162〜165等に供給される。
次に、図1に示したECU160の動作について、図2のタイミングチャートを用いてを説明する。
イグニッションスイッチ120が押される前、ECU160は低消費電力モードで動作している。このため、CPU165は、内部RAMのデータ保存や信号IG1のチェック等の一部の機能のみが動作しており、他の動作は停止している。レギュレータ161は、バッテリ電圧検知装置162、リセット回路163、PDレベル監視装置164、発振器167等への電源電圧VCCの供給を停止しており、したがって、これらの各構成部の動作も停止している。このため、各種信号PD,RSTやクロックXTALの出力も停止している。なお、発振器167については、完全に動作を停止させるのではなく、低周波数のクロックを出力させるようにしてもよい。
このような状態で、操作者がイグニッションスイッチ120をオンすると(図2のT1参照)、当該イグニッションスイッチ120が押されたことを示す信号IG1が、ハイレベルになる。信号IG1は、内部バス166を介して、CPU165に送られる。CPU165は、信号IG1がハイレベルに立ち上がると、ECU160の動作モードを低消費電力モードから通常モードに移行させる。通常モードに移行すると、レギュレータ161が、バッテリ電圧検知装置162,リセット回路163、PDレベル監視装置164、発振器167等に対する電源電圧VCC,VDDの供給を開始する。
バッテリ電圧検知装置162は、電源電圧VCCの供給開始に伴い、検出動作を開始する。このとき、イグニッションスイッチ120はオンしているので、信号PDの値は無効レベル(ハイレベル)である。また、発振器167は、クロックXTALの出力を開始する。発振器167の動作開始から所定時間(クロックXTALの発振周波数を安定させるために十分な時間)が経過すると、リセット回路163のリセット信号RSTがハイレベルに切り換わる。これにより、ECU160は、リセット状態から解除されて、通常動作を開始する。
また、イグニッションスイッチ120がオンされると、セルモータの動作(クランキング)が開始される。そして、セルモータの動作開始からしばらくすると、このセルモータの負荷が最大になり、これによりバッテリ110の電圧が急激に低下する(図2のT2参照)。なお、イグニッションスイッチ120がオンされてから電圧が低下するまでの経過時間は、ECU160が通常モードに移行するための所要時間と比べて、非常に長い。クランキングは、セルモータという機械的機構の動作であり、電気系統の動作に比べてタイムラグが非常に長いためである。
クランキングが行われると、イグニッションスイッチ120とイグナイタユニット130との間の電圧Vbが一時的に低下するだけでなく、レギュレータ161の生成電圧VCCの値も一時的に低下する。電圧VCCが低下すると、バッテリ電圧検知装置162は、電圧Vbを実際よりも低い電圧であると判断してしまう。すなわち、クランキングの際には、実際の電圧Vbが低下するだけでなく、バッテリ電圧検知装置162の検出電圧が実際の電圧Vbよりも低くなる。ここで、バッテリ電圧検知装置162は、電圧Vbが所定値よりも低くなったとき、エンジン(図示せず)が停止したと判断して信号PDを有効レベルにするように構成されている。したがって、クランキングによる電圧低下量が大きい場合には、バッテリ電圧検知装置162が、エンジンが停止していないにも拘わらず、信号PDを有効レベル(ローレベル)にしてしまう場合がある。信号PDは、PDレベル監視装置164およびCPU165に入力される。なお、クランキングが終了してバッテリ電圧が正常電圧に戻ると、信号PDの電位も無効レベル(ハイレベル)に復帰する。クランキングの開始は、クランク(図示せず)やディストリビュータに角度センサを設けて回転角を測定することによっても検出できるので、このような方法を併用することも可能である。
PDレベル監視装置164は、信号PDが有効レベルになると、内部のタイマを用いて、この信号PDが有効レベルに維持されている時間を計測する。信号PDが有効レベルに維持されている時間が所定時間T3(例えば30ミリ秒)を超えると、PDレベル監視装置164は、内部のPD監視フラグを‘1’(ハイレベル)にセットする。一方、所定時間T3以内に信号PDが無効レベルに戻ったとき、PDレベル監視装置164は、PD監視フラグをセットすることなく、タイマを停止させる。図2の例では、バッテリ電圧の低下はクランキングに起因しており、短時間で復帰するので、信号PDが有効レベルに維持される時間は非常に短い。したがって、PD監視フラグがセットされることなく、タイマは停止する。これに対して、イグニッションスイッチ120がオフされたためにバッテリ電圧が低下した場合には、信号PDの電位は有効レベルに固定され、所定時間T3が経過しても無効レベルに戻らない。このため、PDレベル監視装置164はPD監視フラグをセットする。
CPU165は、信号PDをFIQ端子から入力する。そして、CPU165は、FIQ端子が有効レベルになると、PDレベル監視装置164のPD監視フラグの値を読み出す。そして、当該フラグの値が‘1’の場合は、エンジンが停止したと判断して、ECU160の動作モードを低消費電力モードに移行させる。一方、当該フラグの値が‘0’の場合、ECU160の動作モードを通常モードに維持する。図2の例ではPD監視フラグがセットされないので、低消費電力モードには移行しない。
上述のように、FIQは、ハードウエア割り込みであり、リアルタイムの割り込みを行う。このため、FIQ端子の入力信号電位が有効レベルの間は、CPU165はPD監視フラグ値のチェックを繰り返す。したがって、PDレベル監視装置164が当該フラグの値を‘1’にセットすると、CPU165が直ちに動作モードを低消費電力モードに移行させることになる。一方、当該フラグ値が‘0’のまま信号PD(すなわちFIQ信号)の値が無効レベルに戻った場合、CPU165は、動作モードを通常モードに維持したまま割り込み処理を終了する。
以上説明したように、イグニッションスイッチ120がオフされてエンジンが停止した場合、信号PDは有効レベルに維持されるので、時間T3経過後にPDレベル監視装置164のPD監視フラグは‘1’にセットされ、したがって、CPU165は動作モードを低消費電力モードに移行させる。これに対して、クランキングにより信号PDが一時的に有効レベルになった場合、PD監視フラグがセットさせることなく信号PDが無効レベルに戻るので、CPU165は通常モードを維持する。
したがって、この実施形態によれば、バッテリ110の電圧が一時的に低下しても低消費電力モードに誤って移行することがないECU160を提供することができる。
第2実施形態
次に、この発明の第2実施形態について、図3、図4を用いて説明する。
次に、この発明の第2実施形態について、図3、図4を用いて説明する。
図3は、この実施形態に係るエンジン制御系の構成を概略的に示すブロック図である。図3において、図1と同じ符号を付した構成要素は、それぞれ図1の場合と同じである。
PDレベル監視装置301は、バッテリ電圧検知装置162から、検知信号PDを入力する。PDレベル監視装置301は、検知信号PDの有効期間(有効レベルに維持されている時間)を、タイマ(図示せず)で計測する。そして、この有効期間が所定時間T4を超えたときに、PD監視フラグを‘1’にセットするとともに、CPU165に対して割込信号FIQを出力する。
次に、図3に示したECU160の動作について、図4のタイミングチャートを用いてを説明する。
イグニッションスイッチ120が押される前の動作は、第1実施形態と同様である。すなわち、ECU160は低消費電力モードで動作しているため、一部の機能のみが動作し、他の動作は停止している。
操作者がイグニッションスイッチ120をオンすると(図4のT1参照)、第1実施形態と同様、信号IG1がCPU165に送られ、ECU160の動作モードが低消費電力モードから通常モードに移行する。これにより、信号PDは無効レベル(ハイレベル)になり、発振器167はクロックXTALの出力を開始し、所定時間後にリセット信号RSTが解除される。
そして、セルモータの動作開始からしばらくすると、第1実施形態と同様、クランキングが行われバッテリ電圧が一時的に低下する(図4のT2参照)。
バッテリ電圧が低下すると、エンジンが停止していないにも拘わらず、バッテリ電圧検知装置162が信号PDを有効レベル(ローレベル)にする場合がある。この実施形態では、この信号PDは、PDレベル監視装置301のみに入力される。
PDレベル監視装置301は、信号PDが有効レベルになると、内部のタイマを用いて、この信号PDが有効レベルに維持されている時間を計測する。信号PDが有効レベルに維持されている時間が所定時間T4を超えると、PDレベル監視装置301は、PD監視フラグを‘1’にセットする。PD監視フラグがセットされると、PDレベル監視装置301は、割込信号FIQを出力する。一方、所定時間T4以内に信号PDが無効レベルに戻ったとき、PDレベル監視装置301は、割込信号FIQを出力することなく、タイマを停止させる。図4の例では、バッテリ電圧の低下がクランキングに起因しているので、第1実施形態と同様、PD監視フラグがセットされることなく、割込信号FIQが出力されることもない。
CPU165は、第1実施形態と同様、FIQ信号が有効レベルになると、PDレベル監視装置301のPD監視フラグの値を読み出す。そして、当該フラグの値が‘1’の場合は、エンジンが停止したと判断して、動作モードを低消費電力モードに移行させる。一方、当該フラグの値が‘0’の場合は、通常モードを維持させる。図4の例ではPD監視フラグがセットされないため、FIQ信号が有効レベルになることはない。
このように、この実施形態によっても、第1実施形態と同様、バッテリ110の電圧が一時的に低下しても低消費電力モードに誤って移行することがないECU160を提供することができる。
上述の第1実施形態では、信号PDがCPU165のFIQ端子に直接入力されていた。このため、CPU165は、信号PDが有効レベルにある間、継続的にPD監視フラグの値をチェックしていた。したがって、第1実施形態では、信号PDが有効レベルになると、他の割り込み(例えば信号IRQによる割り込み)が制限される。これに対して、この実施形態では、信号PDが所定時間継続的に有効レベルになったとき(すなわち、低消費電力モードに移行すべきとき)にのみCPU165に対するFIQが発生するので、他の割り込みを制限することはない。
なお、この実施形態では、CPU165として、第1実施形態と同じ動作のCPUを使用した。このため、この実施形態でも、第1実施形態と同様、FIQ信号が有効レベルになった後でCPU165にPD監視フラグの値を読み出させている。しかしながら、この実施形態においては、FIQ信号が有効レベルになると直ちに低消費電力モードへの移行を行うように、CPU165を動作させてもよい。
110 バッテリ
120 イグニッションスイッチ
130 イグナイタユニット
140 イグニッションコイル
150 ディストリビュータ/イグナイタ
160 ECU
161 レギュレータ
162 バッテリ電圧検知装置
163 リセット回路
164,301 PDレベル監視装置
165 CPU
166 内部バス
167 発振器
120 イグニッションスイッチ
130 イグナイタユニット
140 イグニッションコイル
150 ディストリビュータ/イグナイタ
160 ECU
161 レギュレータ
162 バッテリ電圧検知装置
163 リセット回路
164,301 PDレベル監視装置
165 CPU
166 内部バス
167 発振器
Claims (4)
- エンジン駆動用バッテリから出力されるバッテリ電圧に応じて通常モードと低消費電力モードとを切り換えるエンジン制御回路であって、
前記バッテリ電圧が所定値以下になったときに検知信号を有効レベルにするバッテリ電圧検知手段と、
前記検知信号が有効レベルに維持されている時間を測定する信号監視手段と、
当該信号監視手段の測定時間が所定時間に達したときに動作モードを前記低消費電力モードに切り換えるプロセッサと、
を備えることを特徴とするエンジン制御回路。 - 前記信号監視手段が、前記測定時間が前記所定時間に達したときに監視フラグをセットし、且つ、
前記プロセッサが、前記検知信号を割込信号として入力し、当該割込信号が有効レベルのときに前記監視フラグの値を読み出して、該監視フラグがセットされている場合に前記動作モードを前記低消費電力モードに切り換える、
ことを特徴とする請求項1に記載のエンジン制御回路。 - 前記信号監視手段が、前記測定時間が前記所定時間に達すると割込信号を出力し、且つ、
前記プロセッサが、該割込信号を入力すると前記動作モードを前記低消費電力モードに切り換える、
ことを特徴とする請求項1に記載のエンジン制御回路。 - 前記割込信号がハードウエア割り込みの割込信号であることを特徴とする請求項2または3に記載のエンジン制御回路。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004182045A JP2006002715A (ja) | 2004-06-21 | 2004-06-21 | エンジン制御回路 |
US11/151,430 US7181340B2 (en) | 2004-06-21 | 2005-06-14 | Engine control circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004182045A JP2006002715A (ja) | 2004-06-21 | 2004-06-21 | エンジン制御回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006002715A true JP2006002715A (ja) | 2006-01-05 |
Family
ID=35481706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004182045A Pending JP2006002715A (ja) | 2004-06-21 | 2004-06-21 | エンジン制御回路 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7181340B2 (ja) |
JP (1) | JP2006002715A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045395A (ja) * | 2005-07-15 | 2007-02-22 | Denso Corp | 代替入力制御方法および代替入力制御装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004126162A (ja) * | 2002-10-01 | 2004-04-22 | Canon Inc | 画像形成装置 |
US20090050856A1 (en) * | 2007-08-20 | 2009-02-26 | Lex Kosowsky | Voltage switchable dielectric material incorporating modified high aspect ratio particles |
CN101916220B (zh) * | 2010-08-27 | 2012-05-09 | 上海交通大学 | 集群内中央处理器功耗的监测系统 |
JP5904167B2 (ja) * | 2013-07-17 | 2016-04-13 | 株式会社デンソー | リセット信号制御装置 |
CN104679709A (zh) * | 2013-11-27 | 2015-06-03 | 英业达科技有限公司 | 计算机系统 |
US9644593B2 (en) * | 2014-01-29 | 2017-05-09 | Nxp Usa, Inc. | Cold-crank event management |
JP7024463B2 (ja) * | 2018-02-01 | 2022-02-24 | 株式会社Gsユアサ | 管理装置、蓄電装置、蓄電素子の管理方法 |
US11129106B2 (en) * | 2019-01-31 | 2021-09-21 | Denso International America, Inc. | Systems and methods for a transceiver that performs network functions on behalf of a device in a low-power mode |
JP2023006247A (ja) * | 2021-06-30 | 2023-01-18 | 三菱重工エンジン&ターボチャージャ株式会社 | エンジン診断システム、エンジン診断方法、プログラム、データ中継装置およびデータ分析装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62258154A (ja) | 1986-05-01 | 1987-11-10 | Hitachi Ltd | デ−タ・バツクアツプ装置 |
JPH0742888B2 (ja) * | 1988-07-27 | 1995-05-15 | 株式会社日立製作所 | エンジン制御装置 |
JPH0742888A (ja) | 1993-08-03 | 1995-02-10 | Kirin Bibaretsuji Kk | 継手装置 |
JPH07114401A (ja) | 1993-10-20 | 1995-05-02 | Hitachi Ltd | Ramバックアップ回路 |
JP4083614B2 (ja) * | 2003-03-28 | 2008-04-30 | 本田技研工業株式会社 | エンジン制御ユニット |
-
2004
- 2004-06-21 JP JP2004182045A patent/JP2006002715A/ja active Pending
-
2005
- 2005-06-14 US US11/151,430 patent/US7181340B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045395A (ja) * | 2005-07-15 | 2007-02-22 | Denso Corp | 代替入力制御方法および代替入力制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US7181340B2 (en) | 2007-02-20 |
US20050283304A1 (en) | 2005-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1950398B1 (en) | Electronic control apparatus | |
JP4404125B2 (ja) | 電子制御装置及び信号監視回路 | |
US7181340B2 (en) | Engine control circuit | |
JP4665846B2 (ja) | マイクロコンピュータ及び電子制御装置 | |
JP4387391B2 (ja) | 蓄電装置 | |
US7305283B2 (en) | On-vehicle electronic control device | |
JP3799014B2 (ja) | 車載用情報機器 | |
JP5676902B2 (ja) | 情報処理装置及び情報処理装置の制御方法 | |
JP4472963B2 (ja) | 時間計測機能付制御装置 | |
US11586518B2 (en) | Thermal event prediction in hybrid memory modules | |
JPH07114401A (ja) | Ramバックアップ回路 | |
JP3859916B2 (ja) | 回路装置 | |
JP6665632B2 (ja) | 電子制御装置 | |
US20230030558A1 (en) | Electronic control unit, information processing method, and non-transitory storage medium | |
JP6227945B2 (ja) | 自動車用電子制御装置 | |
JP6207991B2 (ja) | 車両用制御装置 | |
JP2011174421A (ja) | エンジン始動制御装置 | |
JP5936671B2 (ja) | 情報処理装置及び情報処理装置の制御方法 | |
KR100267312B1 (ko) | 러닝 리셋 이후 아이들 속도 제어장치 및 그 방법 | |
JP2022053165A (ja) | 電子制御装置 | |
JP5803466B2 (ja) | 情報処理装置、データ記録方法 | |
JP2011221670A (ja) | 電源制御システム | |
JP2010116077A (ja) | バッテリ劣化判定装置 | |
JP2013124604A (ja) | 電子制御装置 | |
JPH0227684B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080730 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081202 |