JP2005521067A - 自動車及び他の商業用途用のパルス圧縮レーダシステム - Google Patents

自動車及び他の商業用途用のパルス圧縮レーダシステム Download PDF

Info

Publication number
JP2005521067A
JP2005521067A JP2003580887A JP2003580887A JP2005521067A JP 2005521067 A JP2005521067 A JP 2005521067A JP 2003580887 A JP2003580887 A JP 2003580887A JP 2003580887 A JP2003580887 A JP 2003580887A JP 2005521067 A JP2005521067 A JP 2005521067A
Authority
JP
Japan
Prior art keywords
output
signal
pulse
coupled
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003580887A
Other languages
English (en)
Other versions
JP4544866B2 (ja
Inventor
グレシャム、ロバート、イアン
エグリ、ロバート、ジョージー
Original Assignee
メイコム インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メイコム インコーポレイテッド filed Critical メイコム インコーポレイテッド
Publication of JP2005521067A publication Critical patent/JP2005521067A/ja
Application granted granted Critical
Publication of JP4544866B2 publication Critical patent/JP4544866B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/18Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/106Systems for measuring distance only using transmission of interrupted, pulse modulated waves using transmission of pulses having some particular characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/26Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave
    • G01S13/28Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses
    • G01S13/284Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses
    • G01S13/288Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the transmitted pulses use a frequency- or phase-modulated carrier wave with time compression of received pulses using coded pulses phase modulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2886Coherent receivers using I/Q processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【解決手段】レーダベースのセンサ検出システムは、出力部で連続波信号を提供するよう作動するマイクロ波発生源10を具備する。パルス形成器13は、発生源の出力部に結合され、物体検出のレンジに従ってレーダシステムの送信エネルギーを増加させる可変長パルスを出力部で提供するよう作動する。変調器16は、変調パルス信号を提供するパルス形成器の出力部に結合される。変調器の出力部に結合された送受信スイッチ18は、第1送信位置及び第2受信位置間で選択的に作動する。送受信スイッチに結合された送信チャンネル25,26,30は、スイッチが送信位置で作動するとパルス信号を送信する。送受信スイッチに結合された受信チャンネルは、スイッチが受信位置で作動すると変調器信号を受信する。第1及び第2電圧マルチプライヤ44,45はそれぞれ、受信位置で変調器信号を受信するローカル発振器入力部、入力信号ポート及び出力ポートを有する。

Description

本発明は、特に集積回路としての製造に適する短レンジパルス圧縮レーダシステムに関する。
例えば、自動車及び他の商業用途に適する短レンジレーダシステムに対するニーズがある。このようなシステムは、約0.15〜30mのレンジ半径以内又はそれ以上で移動又は静止する他の車両及び物体の接近を検知することができる。自動車用途を有するレーダシステムは、妨害危険又は車道にいる動物又は人間等の障害物を車両の運転手に警告し、自動ブレーキ用のレーダを利用するシステムを有する従来技術で提案されている。
物体レンジ検出に加え、(例えば、約15cm離間している際の)非常に近接する2つの物体間の距離を識別又は決定することができることも有用である。知的レーダ検出システムは、電磁エネルギー用のトランシーバとして作動する多数(1個以上)のセンサを具備する。センサは、規定された空間範囲にわたるアンテナを介して規定された周波数及び電力の電磁エネルギーを送受信するのが典型的である。同様に、システムは、当該範囲内のいかなる照射された物体の部分的な反射からの反響信号を受信する。照射された範囲内に接近して位置する2個以上の物体を決定するセンサ能力は、高解像度レーダ(HRR)という説明的名称となる。
また、従来技術は、指定された高レンジ解像度単パルスレーダシステム(HRRM)についても言及している。例えば、マクグローヒル社発行の「レーダハンドブック」(1990年)と題されたテキストを参照されたい。このテキストは、高解像度システムを含むレーダシステムを説明している。誰でも確かめることができるように、他の商業用途と同様に自動車用レーダに潜在的な大きな市場がある。このような用途には、自動ドア、衛生機器、電子境界検出器すなわちフェンス、電子カメラ焦点、航法装置、駐車補助センサ、及び他の潜在的用途のホストが含まれるが、これらに限定されない。しかし、このような市場を創設するために、要求された性能度合いで作動することができるのみならず、より低コストセンサへの潜在的道筋を与える技術的解決が提供されねばならない。価格低下は、規模経済及び他の確立された大量生産技法をうまく利用されるべきである。さらに、センサの基本設計概念は、意図される最終使用に依って、用途変更及び特注要求を可能にするために複数の差動モードを提供するよう十分に柔軟性を有するべきである。
従来技術は、低コストで高解像度レーダのニーズを認識している。2000年5月23日発行の米国特許第6067040号「商業及び工業用途の低コスト高解像度レーダ」を参照する。この特許は、第1及び第2狭パルス変調器に接続されたパルス繰返し周波数発生器を有する低コスト高解像度レーダベースの検出システムについて説明する。このシステムは、第1狭パルス変調器に接続された送信チャンネルを使用し、所定周波数及び所定持続時間を有するパルス変調器搬送(carrier)ベースの送信信号を放出する。受信チャンネルは第2狭パルス変調器に接続される。受信チャンネルに対して第2パルス変調器の出力を遅延する遅延回路と、物体で反射されたパルス変調搬送ベース送信信号の一部を第2狭パルス変調器の出力と混成するミキサがある。
1999年1月20日の優先日を有する国際出願公開00/43801号「物体からの距離測定用のセンサ」は、物体からの距離を測定するセンサについて説明する。この装置は、搬送信号を発生する発振器を有する。第1変調スイッチは搬送信号のパルスを変調し、第1パルス信号を発生する。第1パルス信号は物体の方向に放出される。第1パルス信号は、物体で反射され、伝搬時間だけ遅延する。発振器及び第1変調器スイッチ間に位置する電力分割器は、第2変調器スイッチに搬送信号を伝送する。第2変調器スイッチは、搬送信号上のパルスを変調すると共に可変遅延により遅延された第2パルス信号を発生する。第2パルス信号の遅延を第1パルス信号の伝搬時間と比較し、伝搬時間を検出し物体に対する距離を決定する。
米国特許第4626853号明細書
本発明の一側面は、発振器及び電力分割器間に位置する第3変調スイッチ用に提供することにより、変調スイッチの通過帯域伝送損失を増加することである。上述した技法から分かるように、上述のシステムに現れる典型的な作動の筋書きはソフト基板上に分配された伝送線要素に結合された個別回路部品の組合せに基づく。これらの従来技術のやり方は、製造許容差の問題とセンサの性能と妥協する作動筋書きとの組合せとなる。個別部品に基づくセンサの設計及び組立は比較的大きな装置となってしまうことが理解されよう。センサの機能的動作は、各付加回路ブロックが追加すると比較的高価であるので、寸法及び交差制約のため制限されている。分配された伝送線回路を使用することは、高周波マイクロ波及びミリ波回路の設計には一般的な技法であるが、回路に定常波が存在する基礎的仮定に基づく。この仮定は短パルス条件下では最早真ではなく、作動の余裕を低減する過渡的で短期の回路効果となり、センサ性能と妥協する。最後に、短パルスセンサの中レンジから長レンジ作動は、2つの問題のために最適ではない。検出された物体の部分的反射からセンサにより受信されるエネルギーは、物体の第4電力のレンジの逆比例関数として変化する。レンジが増加するにつれ、センサの物体を検出する能力は、物体に入射し物体で反射されるエネルギーが大幅に減少する関数として減少する。従来、センサにより伝送され得るエネルギー(電力)量を制限する2つの制限があった。2つの目標間を識別する能力(レンジ識別)はパルス化レーダシステムにおけるパルス長の関数であり、チャープ(chirp)すなわちCW(連続波)レーダシステムにおける周波数変調帯域幅である。より長いパルス長は、センサの能力の結果としての減少した状態でセンサで伝送されるエネルギー量が増加し、接近して位置する物体間を識別する。また、パルス間隔(すなわちパルス繰返し周波数(p.r.f.))は、無差別に減少せず、明確なレンジ測定を維持する必要のために伝送されたエネルギーが増加する。さらに、センサは、センサの電磁スペクトルと同じ電磁スペクトルの部分で電磁エネルギーを生成し伝送する帯域内干渉源に敏感である。干渉源の形態には、CWすなわち他のシステムによりパルス化された伝送、第2センサすなわち同一又は同様の目的で作動するセンサシステムからの相互干渉、送信ポートアンテナ及び受信ポートアンテナ間の不完全な隔離を通した自己妨害電波、及び広帯域熱ノイズがある。
こうして、これらの問題が、例えば自動車産業で使用されるこのようなセンサ装置と共に増加することは容易に理解できる。例えば、1本の高速道路の何百台もの自動車はすべて、同じレーダレンジ又は同様の周波数帯域で作動する信号を生成し受信する。
本発明の一側面に従って、可変長パルスが導入され、より長いレンジでのセンサの送信エネルギーを増加する。拡大した送信パルス上の短持続位相コード化の重ね合わせは、より長いパルス持続の場合のためのセンサの要求レンジ解像度を維持するために使用される。また、位相コード化は、他の信号源からの干渉に対するセンサ免疫を増加するのに有用でもある。さらに、特定の位相コードをレンジの関数として可変とすることにより、レンジの曖昧さと妥協することなく、センサのパルス繰返し周波数を増加することができる。この工程を補完し強化する他の回路機能は、時間にわたり、及び観察の下でレンジゲートの関数として、送信シーケンスのパルス繰返し周波数を変更すること、センサにより任意の場合に送信されるエネルギー量を制御し変更するために使用される可変利得増幅器及びセンサ内でローカル発振器に周波数変調を加えることを含む。センサの受信器は、2段階予検出積分工程を有し、センサが捉えた反射エネルギーが所与の場合に可能な限り大きく、正しい検出決定の可能性を最大にする。
本発明に従ったセンサの増加した機能性は、製造し易さ及びコストの問題を同時に考慮しながら対処できる。本発明の一側面を実施するシステムは、回路機能を、単一のトランシーバ集積回路(IC)か、別体の送信器IC及び受信器ICからなるデュアルICチップセットか、又はこれらの組合せに組み込む。集積回路工程の高い集積能力により、いくつかの回路機能を単一チップ上に近接配置することができる。さらに、小さくした回路寸法及び部品間相互接続距離により、従来のアナログ及び一括回路理論を用いて回路を設計することができる。この技法により、短パルス過度条件では理想的ではない分配回路設計の必要がなくなる。単一端(single-ended)の回路設計も可能であるが、回路はコモンモードノイズ除去を最大にするために平衡回路構造を使用して優先的に設計される。作動強化及び回路密度の増大を達成するのに好適な集積回路工程は、同じ回路の一部としてのバイポーラトランジスタ及びCMOSトランジスタ(BiCMOS)の双方を有する珪素ゲルマニウム(SiGe)工程である。また、有用と考えられる他の適当な技術は、SiGeバイポーラのみの工程、GaAsベース又はInPベースのMESFET、pHEMT又はHBTデバイス等のIII-V族工程である。システムの基本設計概念のため、及びより長いレンジでのセンサの送信エネルギーを基本的に増加させる可変パルス長を使用してシステムが実施される方法のため、このような集積回路技法が使用可能であることが理解されよう。
改良された短レンジレーダシステムは、約0.1mから約30mまで及びそれ以上の半径レンジ内の車両又は物体の接近を検知する自動車及び他の短レンジ商業用途に適する。
本発明の一側面は、従来の集積回路技法を用いて実施できる短レンジレーダシステム用のシステム基本設計概念で実施される。
本発明の更なる側面は、干渉源に対して免疫を増加するレンジの関数としてコード長を変更し得る可変長位相コードを使用することである。短位相コードで長パルスを送信して短レンジ識別を維持する能力と、高い明確なレンジを依然として維持しながら、従来のレーダセンサと比較して比較的高いパルス繰返し周波数を維持する手段として可変長コードを使用する能力である。
図1を参照すると、本発明の一側面に従った高解像度レーダ(HRR)のセンサ基本設計概念が示される。典型的レーダセンサの一般的な作動原理は、物体検出、位置及び速度測定の作動原理である。代表的一レーダにおいて、搬送信号はアンテナを介してセンサから送信される。アンテナは固定されてもよいし、ビームの焦点が電子的又は機械的制御により動的に変動する場所で操縦されてもよい。図1において、個別の送信アンテナ(Tx)30及び受信アンテナ(Rx)31が示される。送信アンテナに隣接するのは、送信された信号を示すTxで指定される矢印である。同様に、Rxで指定される受信アンテナ31での受信信号を示す矢印がある。こうして、送受信に個別のアンテナを使用することができるが、説明される本発明の原理を変更することなく、付加的なスイッチ要素を追加することにより送受信作動を実行するよう単一アンテナを使用することも可能である。
送信された信号Txは、送受信アンテナの平面から、又はセンサの平面からレンジRにおける物体35により部分的に反射される。
送信作動は以下の通りである。図1に示されるように、マイクロ波発生源すなわち発振器10は、連続波(CW)信号である搬送信号を発生する。このCW信号は、自励型(free-running)か、外部参照発振器に対して周波数又は位相がロックされたものかのいずれでもよい。マイクロ波発生源10は、4〜8GHzのC帯域レンジか、8〜12GHz、18〜25GHz又はそれ以上の周波数であるX帯域レンジかで作動するのが典型的であろう。0.15mのレンジを識別する能力は、幅が少なくとも2GHzの周波数スペクトル特性を有する信号を要求する。この信号は、「チャーピング」すなわち2GHz周波数レンジにわたってCW信号を変調すること、或いは0.5ナノ秒又はより短い持続パルスを有することにより達成することができる。こうして、送信器はパルスを送信し、各パルスは、C帯域、X帯域又は他の周波数帯域での作動のために上述の周波数で周波数の持続数だけ持続する。これは、例えば図3(A)の下の波形に示されている。また、マイクロ波発生源は、FM変調器及び周波数矯正モジュール11に結合されている。マイクロ波発生源10が生ずる搬送信号の周波数は、搬送周波数に重ねられた短期変調信号を印加することにより変更可能である。この短期変調信号はFM変調モジュール11が発生する。周波数矯正は、温度の関数又は変位の他の環境要因として規定された周波数レンジ内で発振器周波数を安定化し、上述の周波数又は位相ロック技法を使用して達成可能な制御電圧の或る形態であってもよい。このような作動は、マイクロ波発振器10に関連した電圧制御調整ポートにより実施可能である。発振器のこのような電圧制御は周知であり、標準的技法は可変リアクタンスでバイスの使用であることにより、マイクロ波発生源10の周波数の偏差は、印加された直流又は交流制御信号の大きさに比例する。このような発振器は電圧制御発振器(VCO)と称されることがある。マイクロ波発生源として使用可能な電圧制御発振器の多くの周知例には、バラクタダイオード又は他の可変制御可能なリアクタントデバイスの使用がある。FM変調モジュール11は、マイクロ波発生源10に矯正を提供し、温度、電力供給変動及び他の可変パラメータ等の外的影響の関数として発生源周波数の変動を変更し補償するのに使用される。温度変動に従ったマイクロ波発生源10の出力周波数を安定化させる技法は周知である。マイクロ波発生源10の出力部はバッファ増幅器12の入力部に結合される。バッファ増幅器12の入力部は、切換え過渡電流の関数として出力負荷ネットワーク内の変動から発振器を隔離する目的で発振器10の信号出力部に結合される。増幅器12は、増幅器出力部で搬送信号の大きさを増加する結果となるゲインを与えることができる。増幅器12の主機能は周波数の引き寄せの効果を低減することである。周波数の引き寄せは、負荷ネットワークの大きさ及び位相の一方又は両方が変化する際に発振器が受ける効果である。発振器10は連続波(CW)出力搬送信号を提供する。物体検出に使用される搬送信号(送信されたパルス)は、パルス形成ネットワーク又はパルス形成器13で所定時間発振器又はCW搬送信号を開閉(gating)することにより形成される。パルス形成器13は、吸収性単極単投(SPST)スイッチか単極双投(SPDT)スイッチのいずれかで構成される2又は3ポートスイッチ網の理想的実施として、図1に示される。選択された2アーム3の一方は、合致した又は散逸負荷14に終端される。スイッチの通常状態は、増幅器12の出力部が散逸負荷すなわち抵抗14に結合された状態にある。この状態では、端子1すなわちパルス形成器の入力端子は、散逸負荷14に接続された端子である端子3に接続される。パルス形成器13は、送信パルス間隔の関数として、及びレンジが開閉された時間遅延の関数として、理想スイッチの位置2にエネルギーを向けるよう開閉される。このため、パルス形成器13に結合されると共に所望の作動に従ってパルス形成器の状態を制御するスイッチドライバモジュール15がある。
パルス形成器13の入力端子1が位置3に接続されると、バッファ増幅器12の出力部は散逸負荷14を介して接地に短絡される。スイッチ入力端子1が出力端子2に接続するようスイッチドライバ15がパルス形成器13を制御すると、バッファ増幅器12からの出力信号は2位相(bi-phase)変調器16の入力端子に方向付けられる。パルス形成スイッチ13は多くの公知回路構成により実施可能である。電界効果トランジスタ(FET)スイッチは周知であり、大規模集積技術は、バイポーラトランジスタ、PINダイオードと同様に多くの他のデバイスを加え、スイッチで使用されるように、MOSシリコンゲートトランジスタにより提供される多くの可能性を巧みに利用する。
パルス形成工程中に、バッファ増幅器12の出力部に発生するCW発振器10の出力は、発生するパルス長に相応する長さだけ、位置2で示されるパルス形成器スイッチの出力路に接続される。パルス長は、スイッチドライバ15が発生する適当な制御信号により決定され、センサにより考慮されるレンジRと2位相変調器16により重ねられる特定位相コードの長さとの関数である。
スイッチドライバ15により実行される2つの異なる機能がある。第1の機能は、ポート2及びポート3間でCW発生源信号を開閉することにより搬送パルスの幅を制御することである。スイッチドライバ15の第2の機能は、パルスのパターンを発生する間隔(すなわちパルス繰返し周波数p.r.f.)を決定することである。理解されるように、センサは、パルス繰返し周波数により決定される周波数でレンジRに位置する物体で複数のパルスを送信する。この周波数は、同様の搬送周波数で作動する発生源及び他のセンサからの相互干渉の効果を低減するよう補助するために、動的に変動可能である。パルス繰返し周波数は、センサにより送信される2パルス間の間隔として定義される。同一のマイクロ波発生源10及びパルス形成ネットワーク13も受信器のローカル発振(LO)機能を形成するために使用されるので、スイッチドライバ15は送信パルスの送信間の時間でパルス形成器13からのパルスを開閉するのに付加的に使用される。
2位相変調器16は変調器ドライバ17により制御される。位相フリップの数及び非変調パルスに対するそれらの極性は、変調器ドライバ17により決定される。2位相変調器16の出力は、Tx/Rxスイッチ又は送受信選択スイッチとして指定されるスイッチ18に向けられる。一旦形成された送信パルスは、マイクロ波発生源10のCW搬送周波数の中心の広帯域周波数ドメイン信号の特性(property)を担う。このため、出力信号パルスは、搬送周波数での中心周波数と、パルス幅がτの場合の1/τのオーダーで展開するフーリエ成分とを具備するフーリエ変換を有する。発生するパルスの性質は図3に関連してさらに説明される。上で指示されるような送信パルスは、搬送パルスの単一又は一連の位相反転を重ねるよう作動する位相変調ネットワーク16の入力部に向けられる。これは、パルスが2位相変調器16を通過することにより達成される。変調器16は、パルス信号の現存位相を保存するか、或いは位相を180°反転させる。指示されたこの作動は、変調器ドライバ17の制御下にある。パルスの振幅特性は、重ねられた位相状態に係わらず、理想的には同一状態を維持する。受信パルスの特性が送信パルスのローカルで発生するコピーと比較される理想的相関受信器としてセンサが作用するために、回路により導入されるいかなる歪も元の送信パルス及び受信機能のために使用されるコピーパルス間で共通(可能な限り)であることが重要である。
指示されたように、位相フリップの数及び非変調パルスに対するフリップの極性は、変調器ドライバ17により決定される。これは、いかなる所与の場合にもセンサの物体検出レンジRの関数であるパルス長の関数である。各位相フリップの長さは、パルス形成ネットワーク13から利用できる最短パルス及びその整数倍に等しい。特に、パルス形成ネットワーク13から利用できる代表的な公称(最短)パルス持続すなわち長さは、単一パルスと考えられセンサの作動の最も基礎的モードと考えられる約400ピコ秒である。最短パルスの特定長は400ピコ秒である必要はないが、センサの要求された所望の解像度に依存しその解像度の関数である。センサは、例えば10mより小さいレンジに関して、近レンジ作動用の位相変調を付加することなく単一のチップパルスを送信する。400ピコ秒パルスに関連するレンジ解像度は約12cmである。
パルス圧縮工程により、レーダセンサは、短パルスのレンジ解像度を同時に維持しながらより大きなパルスを用いて放射エネルギーを増加させる。用いられるパルス圧縮のより特定の形態は、持続時間Tのチップとして指定された長パルスを取って長さτのN個の副パルスに分割する。次に各副パルスの位相が0ラジアンかπラジアンとなるよう選択される。他の側面と同様にパルス様式が図3に示され、続いて説明される。副パルスの位相が0かπかという選択はランダムに行われ、或るレーダ用途に対しては或るシーケンスが好適である。シーケンスの品質を判定する基準は、シーケンスの自動相関関数の時間サイドローブ(time-sidelobe)レベルにアクセスすることによる。シーケンスの時間サイドローブのレベルは、自動相関関数のピーク値と比較して等しく且つ最小レベルであることが望ましい。このようなシーケンスの一つはバーカー(Barker)コードシーケンスとして公知であるが、適当な自動相関関数を有する任意の関数も使用可能である。チップ長(サブパルスの数)に対するこれら時間サイドローブの値及びシーケンスの適当な位相コード化は、図3に示される。
このようにして異なる作動モードで作動する際のレーダセンサは、近レンジ距離にある物体に対してコード長が1(パルス長τ)に等しい単一副パルスからなるチップを送信することができ、(合計パルス長が7τ、11τ又は13τとなる)7、11又は13の副パルスを含むようチップ(コード長)の長さが徐々に増加する。チップ長のこの増加は、レーダレンジが増大すると起こる。これは、パルス形成器及び変調ドライバの制御により自動的に行うことができる。パルス長がいかなるものかを示す例及び対応する位相コードを示す図5の図表は、レンジの関数として変化可能であり、長さτ、3τ、5τ、7τ、11τ及び13τの位相コードのシーケンスを示すが、他の組合せも可能である。
パルス圧縮レーダを実現する際に考慮することは、受信器は受信信号の応答して合致したフィルタを提供するということである。これは、拡大信号が圧縮され、受信器で利用できる信号対ノイズ比を最大にしながら適当な情報が回復されるよう要求される。合致したフィルタ受信器を実現するための技法は、搬送周波数受信信号をベースバンド表現に翻訳するための変換機構として相関器を有することである。合致したフィルタは、周波数領域での衝撃応答が受信信号の複素共役表現である構造として通常定義される。合致したフィルタの時間領域での等価物が相関の工程であることにより、受信信号をその時間遅延したものと積をとり、結果の出力は、特定時間又は所定の時間間隔にわたって積分される。このようにして、送信経路内の送信パルスシーケンスの発生用に使用される同じネットワークも、受信工程又は受信経路に使用される。
図1からわかるように、2位相変調器の出力は、(閉成した)送信位置に示されるTx/Rx選択スイッチ18の入力に向けられる。スイッチ18はスイッチドライバ28によりさらに制御される。スイッチドライバ18は、レンジゲートに依存する時間遅延を発生する。送信工程中に、スイッチ18は出力増幅器25,26に接続する。出力増幅器26は可変ゲイン制御器27に結合してもよく、出力増幅器26の出力は送信アンテナ30に結合される。増幅器26の出力に発生した信号は、レンジでR物体35から部分的に反射された送信信号である。上述した通り、送信経路作動中に、スイッチ18は出力送付茎25,26に接続され、送信パルスは振幅レベルが増大し、送信アンテナ30から放射される。送信パルスの増幅は、もちろん出力増幅器25,26のゲイン又は電力ゲインのためである。送信パルスに印加された増幅量は、周知の技法である可変ゲイン制御器27を調整することにより制御される。このように、増幅器26の出力ゲインは可変ゲイン回路27により制御可能である。スイッチ18動作は、レンジゲートに依存する時間遅延を含むスイッチドライバ28により制御される。送信工程中に、スイッチ18は出力増幅器25,26に接続されるのに対し、受信モード中にスイッチ(破線で示される)は位相変調器16の出力を受信経路に接続する。スイッチドライバ28は、2位相変調器16の出力を受信経路に接続、すなわちローカル発振器(LO)信号により電圧マルチプライヤすなわちミキサ44,45に印加される。適当な位相変調で送信された最後のパルスを複製する第2パルスが形成され、受信経路で組み込まれる電圧マルチプライヤ44,45のローカル発振器ポートに結合される。受信アンテナ31は物体35で反射された信号を受信する。この信号は、この信号を増幅する低ノイズ増幅器40,41の入力部に通される。入力増幅器は、もちろん周知の低ノイズ増幅器デバイスである。2位相変調器16及び送受信スイッチ18からの出力は、任意の周知の電力分割技法を使用して等しい2部分に分割される。第1部分は、移相器43の入力部及び44で指定された第1マルチプライヤのLO入力部に接続される。移相器の出力部は、第2電圧マルチプライヤ45のLO入力部に接続される。各マルチプライヤへの入力は、基本的に増幅された受信信号である低ノイズ増幅器41の出力から派生する。2個の電圧マルチプライヤ44,45は、一方が同相すなわちI信号を提供し、他方が直角位相すなわちQ信号を提供するように使用される。直角位相LO駆動は、2位相変調器16からのLOパルス信号から派生し、搬送周波数で信号を90°遅延させる。この治安は、電圧マルチプライヤ45用の移相器43により提供される。
各電圧マルチプライヤ44,45の出力は積分回路47,48にそれぞれ関連する。これら集積回路は、コンデンサ又は他の記憶デバイスを含んでもよく、増幅器41の出力部における現在の受信信号上で自動相関関数の一部を基本的に実行する。次に、回復された信号情報は、ドップラフィルタ49,50により濾波されてベースバンドのみの信号を生成する。フィルタ50,51からのこれら信号は次に、サンプラ回路51により作動する入力スイッチ52,53に向けられる。濾波された回復後の信号情報は、切換えられて積分及び棄て工程としても指定され、スイッチ出力は第2積分器53,55に印加される。積分器53,55は、Iチャンネル出力及びQチャンネル出力としてそれぞれ指定される。
スイッチを制御するサンプラ51は、パルス繰返し周波数レートでスイッチ52,54を開閉する。スイッチ54の通常状態は、ドップラフィルタ49,50と第2段積分器53,55とを接続しないように開放する。次に、検出決定が為される前に、第2段積分工程を使用して多数のパルスからの累積情報が集められる。レーダセンサが十分に作動する能力は、積分回路解法の増大した積分及び関数能力を活用することにより可能になる位相コード化パルス圧縮スキームを使用することにより強化される。
上述したように、同一のマイクロ波発生源及びパルス形成ネットワークは、受信器のローカル発振器(LO)機能をも遂行するのに使用される。マルチプライヤ45,44は、送受信スイッチング18を介して2位相変調器から実際の出力を受信する。この出力は、マイクロ波発生源10から派生し、ローカル発振器信号である。スイッチドライバ15は、送信パルスの送信間で時折パルス形成器からのパルスを開閉するためにさらに使用される。この第2動作は、可変レートで起こり、考慮しているレンジRの物体35に対する電磁パルスの戻り時間に相応する。センサは、多数のパルスにわたって遅延が一定のままであるモードで作動するので、センサが複数のパルスにより特定長の時間だけ特定のレンジを監視することができる。或いは、遅延は、物体を検索する一連の異なるレンジを走査するか移動中の物体を動的に追跡するセンサに対応する時間の関数として変更可能である。デジタルパルス圧縮技法はフィルタ発生及びレーダ波形の合致した濾波の両方を通常使用することが、もちろん理解されよう。例えば、2進コードの特殊クラスを表現するバーカーコードを使用することは公知である。自動相関関数のピークはNであり、最小ピークサイドローブの大きさは1である。ここでNは、コード上の長さを決定する副パルスの数である。付加情報として、パルス圧縮レーダ下のバーカーコードを説明する「レーダハンドブック」(第2版、1990年発行)の10.17ページ以下を参照されたい。
図3(A)を参照すると、本発明の一側面に従ったパルスシーケンスの一パルスコード化を示す図が示される。パルスは、+1及び−1のレベル(+,−)間を変化可能である。これは、パルスシーケンス中における所定数の搬送波信号の明確な送信に対応する。このため、例えば図3(A)に示されるように、マイクロ波発生源10は、図3(A)の波形60により表現される。マイクロ波発生源の周波数は正弦波形の1サイクルと等価である。バッファ増幅器12に結合されたマイクロ波発振器10は、上述したことに関連したパルス形成器モジュール13により変更される。スイッチドライバ15は信号60を生成する。このため信号66は、マイクロ波発振器の送信のサイクル数を制御し、基本的にはパルス形成器13の出力部(端子2)での信号である。スイッチドライバの出力は、図3(A)に示される信号66である。
図3(B)は、2〜7及び13をも含む11要素バーカーコードのパルス長N、副パルス(チップ)長τを、時間軸を拡大して示す。周知であるように、コードNの長さによって最適の2進コードに対しては、最小ピークサイドローブの大きさを決定することができる。図3(C)の表は、コードNの長さ、第2欄にコードシーケンス、及びデシベル表示のピークサイドローブを示す。このようにして、2の長さNに対しては、ピークサイドローブ比は6である。7の長さNに対しては、ピークサイドローブ比は16.9である。公知のバーカーコードは、一つの最小ピークサイドローブを有するコードである。現在理解されているように、13より大きいバーカーコードはない。このため、バーカーコードを使用する圧縮レーダは、13の最大圧縮比に通常限定されている。
図3(D)は、レンジビン対相関を示し、副パルス(チップ)長τの効果を示す。レンジビン中において自動相関は実質的に増加するので、自動相関は容易に実施可能であることがわかる。基本的には、相関工程は、2波形の時間畳み込みのスペクトルはこれら信号のスペクトルの結果に等しいという原理で作動する。同じレンジのサンプルは一つの相関処理器により提供されなければならない。高速フーリエ変換(FFT)におけるサンプル数は、Nに参照波形のサンプル数を加えたものに等しくなるべきである。これら加えられたNサンプルは、参照波形FFTにおいてゼロで埋められている。延長したレンジ範囲について、繰返し相関作業は、隣接作業間のNサンプルのレンジ遅延が要求される。パルスコード化を使用するパルス圧縮スキームを実施する際のシステムの全体側面は、集積回路工程を極端に簡素化し、使用にあたり非常に便利にする。上述したように、レーダシステムの機能性の増加は、図1に示された回路機能を単一のトランシーバ集積回路(IC)、別体の送信器IC及び受信器ICを具備するICチップセット、又はこれら機能の適当な組合せに組み込むことができることにより、高価でない製造及びコストの問題を考慮している。集積回路工程の高い集積能力により、図1に記載された回路機能の全てを単一チップ上に近接させて配置することが可能になる。さらに、部品間の相互接続距離が減少した回路寸法により、回路を従来のアナログ及び一括回路理論を使用して設計することが可能になる。これは、短パルス過渡条件には適当でない分配回路設計の必要性を無くす。
回路は、好適には平衡回路構造を使用してコモンモードノイズ除去を最大化することができる。しかし、単エンドの回路設計も考えられる。回路密度を含む強化作業を達成するのに好適な集積回路工程は、同一回路の一部であるバイポーラトランジスタ及びCMOSトランジスタの両方を有するシリコンゲルマニウム(SiGe)工程である。有用と考えられる他の技法は、シリコンゲルマニウムバイポーラのみの工程、及びMESFET及びpHEMT又はHBTデバイスに基づくガリウム砒素(GaAs)工程である。このため、図1に示されるデバイスを実施するのに使用される回路は、利用可能であると共に周知である。例えば、MOSデバイスは、フィルタと同様にスイッチング技法、変調器、発振器、増幅器、マルチプライヤ、積分器を提供するために利用されてきた。
図2を参照すると、上述したように、送信アンテナ及び受信アンテナの両方として単一アンテナ70を利用する別の実施形態の概略図が示される。スイッチ71,72の送信(Tx)位置は図2に示される。図2に示される位置は、増幅器26(図1参照)の出力部が入力端子75に結合されていることを特定する。この出力は、共通のアンテナ70に直接送信されるであろう。受信モード中に、スイッチ71,72は、アンテナ70が低ノイズ増幅器40に結合されている破線の位置で作動する。図1に関連して増幅器41の出力は電圧マルチプライヤ44,45に進む。また、スイッチ71,72も、例えばモジュール11,15,17,28,27をも制御することができる別体の制御手段すなわち処理器により制御可能であることに留意されよう。上述したように、各モジュールは中央処理要素により、又は内部のタイミングプログラムにより制御可能であることはもちろん理解されよう。
図4を参照すると、単一のトランシーバ集積回路(IC)における集積回路用の代表的レイアウトが示される。チップも別体の送受信ICとして実施可能であることは理解されよう。チップ全体は基本的に、シリコン、ゲルマニウム、シリコン及びゲルマニウムの組合せ、ガリウム砒素、又は他の半導体材料等の代表的には半導体ウエハであるウエハ70上に製造される。図1に示されたモジュールは、利用可能な従来の半導体回路構成により実施することができる。実施には、ショットキーダイオード、PINダイオード及び他のマイクロ波デバイスと同様にFETデバイスも含まれる。これらのデバイスは、制御パルスを使用して切換えることができる。また、多くの回路も、CMOSインバータ技術を使用して実施することができる。上述のシステムは、4〜8GHz又は他の適当なマイクロ波周波数で作動するマイクロ波発生源すなわち発振器71を有することが指摘されよう。マイクロ波発振器71は、ガンデバイスと同様にバイポーラトランジスタ又は電界効果トランジスタも含む多くの異なるデバイスを使用して作ることができる。マイクロ波発生源(図1の参照番号10)に関連した変調器72(図1の参照番号11)は、一領域の発生源上に配置され、最小量の干渉を生ずる。誰もが確認可能であるように、図1に示されたものは、例えば代表的レイアウトを示すために基板70上に示されラベルが付される。送信アンテナ及び受信アンテナは標準的なアンテナアレーを表現しており、ICの一部である必要はなく、別体のアンテナ構造又はICデバイスとすることができることにも留意されたい。いかなるレーダセンサ、アンテナ構造の基本的部分もIC上に含まれないかもしれないが、より大きな組立体の一部になることができる。
チップ70は、送信アンテナ結合器すなわち送信アンテナ経路80及び受信アンテナ結合器すなわち受信アンテナ経路81を具備する。また、基板70上に配置されるのは図2のアンテナスイッチ82である。アンテナスイッチ82は図2に示されたように作動する。電圧マルチプライヤ等の他の部品は参照番号85(図1の44,45)で示される。送信スイッチ85は、干渉を低減するためチップのほぼ中央領域に配置される。図1に示される増幅器、フィルタ、スイッチ及び他のデバイスは、FET又は他のデバイスを使用して実施可能である。例えば、1985年IEEEプレス発行のテキスト「モノリシックマイクロ波集積回路」を参照されたい。また、2001年IEEEプレス発行のテキスト「マイクロ波回路概論」も参照されたい。両テキストは共に、発振器、増幅器、送受信モジュール、並びに低ノイズ増幅器及び他のデバイスを有する回路における回路用途を示す。当業者であれば、使用可能な多数の回路構成があることを理解し実感するであろう。また、図4は集積回路のほぼ拡大した表現であり、このような回路は例えばミリメートルレンジで極端に小さいことがもちろん理解されよう。
また、図4に示されるのは、タイミング関係を変更し又は所望の間隔でスイッチングが起こることをさらに確保するために、スイッチングを制御し又は種々のドライバ又はスイッチを駆動するための処理器モジュール87である。パルス長及びパルス数に対して与えられるチップはレーダレンジの関数であることが明らかであるので、どのように間隔が選択されるかは当業者に明白である。受信器チャンネルすなわち受信器経路はチップの下半分に基本的に閉じ込められているのに対し、送信器チャンネルすなわち送信器経路はチップの上半分に閉じ込められていることが図4でわかる。上に示される単一チップと同様に、2個の別体のチップも実施可能であることが理解されよう。これら2個のチップは、例えば異なる技術を使用して異なるウエハ上に作ることができる。例えば、或る部品はより電力の大きな送信チップ用にガリウム砒素部品として製造可能であるのに対し、シリコン製造はより電力の小さいモジュール用に与えることができる。
図5は、センサにより送信されるパルス長がレンジの関数としていかの増加するかの一例を示す図表である。パルス上に重ねられるパルスコードも変化し得ることが図5から理解されよう。このため、図5において、レンジはX軸にメートルで示されるのに対し、コード長と同様にパルス幅もY軸に示される。
このようにして、高解像度レーダシステム用の送信器は、所定周波数での連続波信号を出力に提供するためのマイクロ波発振器と、発振器の出力部に結合された入力部及び第1及び第2切換え可能な出力部を有するパルス形成器とを具備することにより、発振器信号を、パルス形成器の制御端子に印加される制御信号に従っていずれかの出力部に印加可能である。パルス形成器の制御端子に結合された出力部を有するスイッチドライバは、第1及び第2出力部間でパルス形成器の出力部を選択的に切換えるよう作動し、所望のパルス間隔を示しレンジ開閉時間遅延に従って選択された発振器の多数のサイクルを具備するパルスを第1出力部に提供する。2位相変調器は、パルス形成器の第1出力部に結合された入力部を有し、2位相変調信号を出力部に提供する。2位相変調器の出力部に結合されたアンテナは、選択された物体レンジに従って2位相変調信号を送信する。
さらに、位相コード化されたパルス圧縮信号を送信するための送信器を有するタイプの高解像度レーダ用の受信器は、送信信号を遮断し受信アンテナへの信号の一部を妨害する位置にある物体からの反射信号を受信することができ、出力部で信号を提供する受信アンテナを具備する。第1及び第2電圧マルチプライヤは、ローカル発振器入力ポート、受信信号入力ポート及び出力ポートをそれぞれ有する。ここで、受信アンテナの出力部は、第1及び第2マルチプライヤの受信入力ポートに結合される。送信器信号に同期するマイクロ波発振器は、所定周波数での連続波信号を出力部に提供する。パルス形成器が、発振器の出力部並びに第1及び第2切換え可能な出力部に結合された入力部を有することにより、発振器信号は、パルス形成器の制御端子に印加される制御信号に従っていずれかの出力部に印加できる。スイッチドライバは、パルス形成器の制御端子に結合された出力部を有し、第1及び第2出力部間でパルス形成器の出力を選択的に切換えるよう作動し、所望のパルス間隔を示し且つレンジ開閉時間遅延に従って選択された多数の発振器サイクルを具備するパルスを第1出力部に提供する。2位相変調器は、パルス形成器の第1出力部に結合され2位相変調信号を出力部に提供する入力部と、2位相変調器の出力部に結合された入力部を有し出力部で位相をシフトする移相器とを有する。移相器の出力部は、第1電圧マルチプライヤのローカル発振器入力ポートに結合される。2位相変調器の出力部は第2電圧マルチプライヤのローカル発振器入力ポートに直接結合され、第1変調器の出力ポートは直角位相出力(Q)信号を提供し、第2電圧マルチプライヤの出力ポートは同相(I)出力信号を提供する。電圧マルチプライヤからのI信号及びQ信号に応答する自動相関器は、物体の存在及び距離を示す検出信号を提供するために信号を処理する。
さらにまた、レーダベースのセンサ検出システムは、出力部で連続波信号を提供するよう作動するマイクロ波発生源を具備する。パルス形成器は、発生源の出力部に結合され、物体検出のレンジに従ってレーダシステムの送信エネルギーを増加する可変長パルスを出力部に提供するよう作動する。変調器は、変調パルス信号を提供するためにパルス形成器の出力部に結合される。変調器の出力部に結合された送受信スイッチは、第1送信位置及び第2送信位置間で選択的に作動する。送受信スイッチに結合された送信チャンネルは、スイッチが送信位置で作動する際にパルス信号を送信する。送受信スイッチに結合された受信チャンネルは、スイッチが受信位置で作動する際に変調器信号を受信する。第1及び第2電圧マルチプライヤは、受信位置で変調器信号を受信するためのローカル発振器入力部、入力信号ポート及び出力ポートをそれぞれ有する。受信器チャンネルは、出力部からの反射送信信号を受信し、電圧マルチプライヤの受信信号入力ポートに受信信号を印加する。電圧マルチプライヤの出力ポートに結合された自動相関器は、受信信号を相関し、物体の検出及び位置を示す出力信号を生成する。
このようにして、可変長パルスを提供するレーダシステムは、より長いレンジにおけるセンサの送信位置の送信エネルギーを増加させる。拡張送信パルス上には短期間持続位相コード化の重なりがあり、より長いパルス持続時間の場合に必要とされるセンサのレンジ解像度を維持するのに使用される。また、位相コード化は、他の発生源からの干渉に対するセンサの免疫を増加させるために使用される。送信パルスに印加される位相コード化は、適当な不明確レンジを維持しながら、レーダ用の通常のパルス繰返し周波数よりも大きくなるようさらに免疫を与えるためにレンジ又は距離の関数として変更可能である。工程を補完し強化する他の回路関数には、送信シーケンスのパルス繰返し周波数を変えること、センサ内でローカル発振器に周波数変調を加えること、いかなる場合にもセンサにより送信されるエネルギー量を制御し変更するために可変ゲイン増幅器がある。センサの受信器部は、2段予検出積分工程を使用し、センサにより捕捉された反射エネルギーを所与の場合でできる限り大きくし、正しい検出決定の可能性を最大にする。センサの機能性の増大は、低コスト製造及び簡単な走査の問題を考慮しながら対処される。従って、或る機能を、単一のトランシーバ集積回路(IC)又は別体の送信器及び受信器からなる二重ICチップセットのいずれかに組み込むことができる。集積回路工程の高い集積能力により、いくつかの回路機能を単一チップ上に近接して配置することができる。
上述の実施形態を参照して本発明を説明したが、本発明の真髄から逸脱することなく、種々の変形及び変更が可能である。従って、このような変形及び変更の全ては、添付請求項の範囲内にあると考えられる。
本発明の一側面に従ったパルスコード化されたパルス圧縮レーダセンサのブロック図である。 本発明の一側面に従った単一アンテナを提供するために使用される送受信スイッチの別の実施形態のブロック図である。 (A)ないし(D)は、図1に示されたパルスコード化されたパルス圧縮レーダセンサの作動を説明するために必要な表を含む、一連のタイミングチャート及び波形を示す図である。 本発明の一側面に従ったレーダセンサ用の典型的な集積回路レイアウトの平面図である。 レンジの一関数、パルスに付加された位相コードも変化すると、センサにより伝送されるパルス長が増加する様子の一例を示すグラフである。
符号の説明
10 マイクロ波発生源
11 FM変調器
13 パルス形成器
14 散逸負荷
15 スイッチドライバ
16 2位相変調器
17 変調器ドライバ
18 送受信スイッチ
26 出力増幅器
27 可変ゲイン制御器
28 スイッチドライバ
30 送信アンテナ
31 受信アンテナ
43 移相器
44,45 電圧マルチプライヤ
47,48 積分器
49,50 ドップラフィルタ

Claims (20)

  1. 所定周波数での連続波信号を出力部に提供するためのマイクロ波発振器と、
    該発振器の前記出力部に結合された入力部と、第1及び第2切換え可能な出力部とを有するパルス形成器であって、前記発振器信号を、パルス形成器の制御端子に印加される制御信号に従っていずれかの出力部に印加可能であるパルス形成器と、
    該パルス形成器の前記制御端子に結合された出力部を有し、前記第1及び第2出力部間で前記パルス形成器の前記出力部を選択的に切換えるよう作動し、所望のパルス間隔を示しレンジ開閉時間遅延に従って選択された前記発振器の多数のサイクルを具備するパルスを第1出力部に提供するスイッチドライバと、
    前記パルス形成器の第1出力部に結合された入力部をし、2位相変調信号を出力部に提供する2位相変調器と、
    選択された物体レンジに従って前記2位相変調信号を送信するために前記2位相変調器の前記出力部に結合されたアンテナと
    を具備することを特徴とする、高解像度レーダシステム用の送信器。
  2. 前記位相変調器の前記出力に結合された入力部、前記アンテナに結合された出力部、及びゲイン制御入力部を有する増幅器と、
    前記増幅器のゲイン及び送信信号の大きさを変更するために前記増幅器の前記ゲイン制御入力部に結合された可変ゲイン制御回路と
    をさらに具備することを特徴とする請求項1記載の送信器。
  3. 前記選択された物体レンジの関数として、前記変調器の位相反転の数を制御するために前記変調器に結合された変調ドライバをさらに具備することを特徴とする請求項2記載の送信器。
  4. 前記パルス形成器が前記第2出力部に切換わる際に前記発振器信号を散逸させるために前記パルス形成器の前記第2切換え可能出力部に結合される散逸負荷をさらに具備することを特徴とする請求項1記載の送信器。
  5. 温度変化又は電源変動を補償する方向に前記発振器信号の周波数を変更するために前記発振器に結合されたFM変調回路をさらに具備することを特徴とする請求項1記載の送信器。
  6. 前記発振器、前記パルス形成器、前記スイッチドライバ、前記2位相変調器及び前記アンテナは、共通の基板上に形成され送信器集積回路を提供することを特徴とする請求項1記載の送信器。
  7. パルスコード化されたパルス圧縮信号を送信するための送信器を有するタイプの高解像度レーダ用の受信器であって、
    送信信号を遮断し受信アンテナへの信号の一部を妨害する位置にある物体からの反射信号を受信することができ、出力部で前記信号を提供する受信アンテナと、
    ローカル発振器入力ポート、前記受信アンテナの前記出力部に結合された受信信号入力ポート、及び出力ポートをそれぞれ有する第1及び第2電圧マルチプライヤと、
    送信器信号に同期し、所定周波数での連続波信号を出力部に提供するマイクロ波発振器と、
    前記発振器の前記出力部並びに第1及び第2切換え可能な出力部に結合された入力部を有することにより、前記発振器の信号は、パルス形成器の制御端子に印加される制御信号に従っていずれかの出力部に印加できるパルス形成器と、
    該パルス形成器の前記制御端子に結合された出力部を有し、前記第1及び第2出力部間で前記パルス形成器の出力を選択的に切換えるよう作動し、所望のパルス間隔を示し且つレンジ開閉時間遅延に従って選択された多数の発振器サイクルを具備するパルスを前記第1出力部に提供するスイッチドライバと、
    前記パルス形成器の前記第1出力部に結合され2位相変調信号を出力部に提供する入力部を有する2位相変調器と、
    該2位相変調器の前記出力部に結合された入力部を有し出力部で位相をシフトする移相器であって、該移相器の前記出力部は前記第1電圧マルチプライヤの前記ローカル発振器入力ポートに結合され、前記2位相変調器の前記出力部は前記第2電圧マルチプライヤの前記ローカル発振器入力ポートに直接結合され、前記第1変調器の前記出力ポートは直角位相出力(Q)信号を提供し、前記第2電圧マルチプライヤの前記出力ポートは同相(I)出力信号を提供する移相器と、
    前記電圧マルチプライヤからの前記I信号及び前記Q信号に応答し、前記物体の存在及び距離を示す検出信号を提供するために前記信号を処理する自動相関器と
    を具備することを特徴とする受信器。
  8. 入力部及び出力部をそれぞれ有する第1及び第2積分器であって、該第1積分器の前記入力部は前記第1電圧マルチプライヤの前記出力部に結合され、前記第2積分器の前記入力部は前記第2電圧マルチプライヤの前記出力部に結合された第1及び第2積分器と、
    入力部及び出力部をそれぞれ有する第1及び第2ドップラフィルタであって、該第1ドップラフィルタの前記入力部は前記第1積分器の前記出力部に結合され、前記第2ドップラフィルタの前記入力部は前記第2積分器の前記出力部に結合された第1及び第2ドップラフィルタとをさらに具備し、
    該ドップラフィルタの前記出力部は、パルス繰返しレートで切換えられたスイッチング回路の入力部に結合されて前記物体に関する情報を示す出力信号を提供することを特徴とする請求項7記載の受信器。
  9. 出力部に連続波信号を提供するよう作動するマイクロ波発生源と、
    該マイクロ波発生源の出力部に結合され、物体識別のレンジに従ってレーダシステムの送信エネルギーを増大させる可変長パルスを出力部に提供するよう作動するパルス形成器と、
    出力部に変調パルス信号を提供するために前記パルス形成器の前記出力部に結合される変調器と、
    前記変調器の前記出力部に結合され、第1の送信位置及び第2の受信位置間を選択的に作動する送受信スイッチと、
    該送受信スイッチが前記送信位置で作動する際に前記パルス信号を送信するために前記送受信スイッチに結合された送信チャンネルと、
    前記送受信スイッチが前記受信位置で作動する際に前記変調器信号を受信するために前記送受信スイッチに結合された受信チャンネルと、
    前記受信位置で前記変調器信号を受信するためのローカル発振器入力部、入力信号ポート及び出力ポートをそれぞれ有する第1及び第2電圧マルチプライヤと、
    出力部から送信された反射信号を受信すると共に該受信された信号を前記電圧マルチプライヤの前記受信信号入力ポートに印加するための受信器チャンネルと、
    前記受信信号を相関するために前記電圧マルチプライヤの前記出力ポートに結合され前記物体の検出及び位置を示す出力信号を生成する相関器と
    を具備することを特徴とするレーダベースセンサ検出システム。
  10. 前記変調器は、前記物体検出レンジを示す所望のパルス長の関数として一連の位相反転を提供するための2位相変調器であることを特徴とする請求項9記載のシステム。
  11. 前記パルス形成器は、前記印加された発振器信号を開閉するよう作動するスイッチドライバを有することを特徴とする請求項9記載のシステム。
  12. 単一アンテナと、
    該アンテナに結合されると共に送信位置及び受信位置間で作動するスイッチとをさらに具備し、
    前記送信位置は前記送信チャンネルに結合され、
    前記受信位置は前記受信チャンネルに結合され、
    前記スイッチングは、前記送信及び受信位置間で作動して送信動作及び受信動作の両方のために前記単一アンテナを使用することを特徴とする請求項9記載のシステム。
  13. 前記可変長パルスは、接近したレンジ距離を有する物体のための単一副パルスからなると共に前記レンジ距離が増大すると7,11又は13副パルスからなる増加した長さチップからなるチップで構成されることを特徴とする請求項9記載のシステム。
  14. 物体のレンジ距離の関数として、時間遅延に従って前記送信位置及び受信位置間の切換えを制御するために前記送受信スイッチに結合されたスイッチドライバをさらに具備することを特徴とする請求項12記載のシステム。
  15. 前記受信チャンネルは、前記受信信号に応答して合致したフィルタを提供することを特徴とする請求項9記載のシステム。
  16. 前記合致フィルタの応答は、前記受信信号の複素共役である周波数領域での衝撃応答を有することを特徴とする請求項15記載のシステム。
  17. 前記送信チャンネルは、前記送受信スイッチの前記送信位置に結合された入力部と、送信アンテナに結合された出力部とを有する出力増幅器を具備し、
    該増幅器は、前記送信パルス信号の大きさを制御するための可変ゲイン制御器を有することを特徴とする請求項9記載のシステム。
  18. 前記パルス形成器は、前記マイクロ波発生源出力部を前記変調器に結合する第1位置と、前記マイクロ波発生源出力部を散逸負荷に結合して前記マイクロ波信号を前記負荷に向かせる第2位置との間で作動するスイッチを具備し、
    変調器ドライバは、前記スイッチに結合されると共に、前記第1及び第2位置間で前記スイッチを制御するよう作動することを特徴とする請求項9記載のシステム。
  19. 前記パルス形成器からの前記パルス幅は、所望の物体レンジに従って前記変調器ドライバにより制御されると変化することを特徴とする請求項10記載のシステム。
  20. 前記マイクロ波発生源、前記パルス形成器、前記変調器、前記送受信スイッチ、前記送信チャンネル、前記受信チャンネル、前記第1及び第2電圧マルチプライヤ、並びに前記自動相関器は、共通の基板上に形成され、レーダベースセンサ集積回路(IC)を提供することを特徴とする請求項9記載のシステム。
JP2003580887A 2002-03-22 2003-03-19 自動車及び他の商業用途用のパルス圧縮レーダシステム Expired - Fee Related JP4544866B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/104,633 US6587072B1 (en) 2002-03-22 2002-03-22 Pulse radar detection system
PCT/US2003/008564 WO2003083507A1 (en) 2002-03-22 2003-03-19 Pulse compression radar system for automotive and other commercial applications

Publications (2)

Publication Number Publication Date
JP2005521067A true JP2005521067A (ja) 2005-07-14
JP4544866B2 JP4544866B2 (ja) 2010-09-15

Family

ID=22301514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003580887A Expired - Fee Related JP4544866B2 (ja) 2002-03-22 2003-03-19 自動車及び他の商業用途用のパルス圧縮レーダシステム

Country Status (8)

Country Link
US (2) US6587072B1 (ja)
EP (1) EP1490708B1 (ja)
JP (1) JP4544866B2 (ja)
KR (1) KR101012258B1 (ja)
CN (1) CN100354650C (ja)
AU (1) AU2003220420A1 (ja)
DE (1) DE60305674T2 (ja)
WO (1) WO2003083507A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510894A (ja) * 2002-12-19 2006-03-30 ティーアールダブリュー・リミテッド レーダ装置における温度補償改善
JP2007316066A (ja) * 2006-05-23 2007-12-06 Korea Advanced Inst Of Science & Technology 距離測定センサ及びこれを用いた距離測定方法
JP2012510055A (ja) * 2008-11-24 2012-04-26 オートリブ エー・エス・ピー・インク レーダー信号処理方法およびレーダー信号処理装置
JP2013538344A (ja) * 2010-08-03 2013-10-10 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 自動車における運転者支援システムの超音波センサを作動させる方法、運転者支援システム、および自動車
JP2013543111A (ja) * 2010-09-09 2013-11-28 日本テキサス・インスツルメンツ株式会社 テラヘルツ位相アレイシステム
JP2014119447A (ja) * 2012-12-13 2014-06-30 Industrial Technology Research Institute パルスレーダー測距装置およびその測距アルゴリズム
WO2023007597A1 (ja) * 2021-07-28 2023-02-02 日本電気株式会社 物体検出装置、物体検出システム及び物体検出方法

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142170A1 (de) * 2001-08-29 2003-03-20 Bosch Gmbh Robert Pulsradaranordnung
US6693557B2 (en) 2001-09-27 2004-02-17 Wavetronix Llc Vehicular traffic sensor
US6587072B1 (en) * 2002-03-22 2003-07-01 M/A-Com, Inc. Pulse radar detection system
GB0215967D0 (en) * 2002-07-09 2003-02-12 Bae Systems Plc Improvements in or relating to range resolution
US7474705B2 (en) * 2002-08-16 2009-01-06 Wisair Ltd Scalable ultra-wide band communication system
DE10241463A1 (de) * 2002-09-06 2004-03-18 Robert Bosch Gmbh Radarmessvorrichtung, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben einer Radarmessvorrichtung
JP3688255B2 (ja) * 2002-09-20 2005-08-24 株式会社日立製作所 車載用電波レーダ装置及びその信号処理方法
WO2004029562A2 (en) * 2002-09-27 2004-04-08 Innovatum, Inc. Apparatus and method using continuous -wave radiation for detecting and locating targets hidden behind a surface
DE10256620A1 (de) * 2002-12-03 2004-07-08 Daimlerchrysler Ag Radarsystem mit integrierter Datenübertragung
DE10258097A1 (de) * 2002-12-11 2004-07-01 Robert Bosch Gmbh Einrichtung zur Abstands- und Geschwindigkeitsmessung von Objekten
US6967574B1 (en) * 2003-01-21 2005-11-22 The Johns Hopkins University Multi-mode electromagnetic target discriminator sensor system and method of operation thereof
US6917327B2 (en) * 2003-03-11 2005-07-12 M/A Com, Inc. Adding error correction and coding to a radar system
US20040227661A1 (en) * 2003-05-12 2004-11-18 Godsy Robert C. Doppler radar system for measuring range, speed, and relative direction of movement of an object
US20070020013A1 (en) * 2003-06-27 2007-01-25 Mcalindon Peter J Apparatus And Method For Generating Data Signals
US7701382B2 (en) * 2003-09-15 2010-04-20 Broadcom Corporation Radar detection circuit for a WLAN transceiver
US8190162B2 (en) * 2003-09-15 2012-05-29 Broadcom Corporation Radar detection circuit for a WLAN transceiver
US7702291B2 (en) * 2003-09-15 2010-04-20 Broadcom Corporation Radar detection from pulse record with interference
JP3973036B2 (ja) * 2003-10-09 2007-09-05 富士通株式会社 パルスレーダ装置
DE10350553A1 (de) * 2003-10-29 2005-06-02 Robert Bosch Gmbh Vorrichtung sowie Verfahren zum Erfassen, zum Detektieren und/oder zum Auswerten von mindestens einem Objekt
US7098845B2 (en) * 2004-05-18 2006-08-29 M/A-Com, Inc. Apparatus for generating an integrator timing reference from a local oscillator signal
DE102004051276A1 (de) * 2004-06-22 2006-01-12 Robert Bosch Gmbh Radarsensor zur Ermittlung des Abstands und der Relativgeschwindigkeit von Objekten
US7145384B2 (en) 2004-07-13 2006-12-05 M/A-Com, Inc. Pulse length matched filter
US7474257B2 (en) * 2004-11-08 2009-01-06 The United States Of America As Represented By The Secretary Of The Navy Multistatic adaptive pulse compression method and system
DE102004059332A1 (de) * 2004-12-09 2006-06-14 Robert Bosch Gmbh Radar-Transceiver
US7535407B2 (en) * 2005-03-15 2009-05-19 Prairielands Energy Marketing, Inc. Apparatus using continuous-wave radiation for detecting and locating targets hidden behind a surface
US7199747B2 (en) * 2005-05-03 2007-04-03 M/A-Com, Inc. Generating a fine time offset using a SiGe pulse generator
DE102005046044A1 (de) * 2005-09-27 2007-03-29 Robert Bosch Gmbh Radar-Sensor
US8248272B2 (en) * 2005-10-31 2012-08-21 Wavetronix Detecting targets in roadway intersections
US7573400B2 (en) * 2005-10-31 2009-08-11 Wavetronix, Llc Systems and methods for configuring intersection detection zones
US8665113B2 (en) 2005-10-31 2014-03-04 Wavetronix Llc Detecting roadway targets across beams including filtering computed positions
CN100356192C (zh) * 2005-11-30 2007-12-19 东南大学 构造低峰值旁瓣雷达脉冲压缩波形的方法
KR100668363B1 (ko) * 2005-12-08 2007-01-16 한국전자통신연구원 Mmic를 이용한 밀리미터파 대역 레이더 센서용 rf송수신기
JP4242912B2 (ja) * 2006-01-25 2009-03-25 日本電信電話株式会社 受信器、トランシーバ、および電界通信システム
US7991550B2 (en) * 2006-02-03 2011-08-02 GM Global Technology Operations LLC Method and apparatus for on-vehicle calibration and orientation of object-tracking systems
KR101171015B1 (ko) * 2006-02-03 2012-08-08 삼성전자주식회사 신호 변환 장치 및 이를 구비한 위치 인식 시스템
US20070182623A1 (en) * 2006-02-03 2007-08-09 Shuqing Zeng Method and apparatus for on-vehicle calibration and orientation of object-tracking systems
CN101042435B (zh) * 2006-03-23 2011-03-23 欧姆龙汽车电子株式会社 单脉冲式雷达装置
US7623062B2 (en) * 2006-08-01 2009-11-24 Autoliv Asp, Inc. System and method for target detection with a radar antenna
RU2321341C1 (ru) * 2006-10-06 2008-04-10 Игорь Яковлевич Иммореев Импульсный сверхширокополосный датчик
JP2010515878A (ja) 2006-12-06 2010-05-13 カーセン テクノロジーズ コーポレイション 危険な対象および物体を検出するためのシステムおよび方法
US8013780B2 (en) 2007-01-25 2011-09-06 Magna Electronics Inc. Radar sensing system for vehicle
JP2009025959A (ja) * 2007-07-18 2009-02-05 Mazda Motor Corp 車両の障害物検知装置
EP2051100A1 (en) * 2007-10-19 2009-04-22 Ford Global Technologies, LLC A method and system for presence detection
EP2051098A1 (en) * 2007-10-19 2009-04-22 Ford Global Technologies, LLC A method and system for presence detection
JP4564041B2 (ja) * 2007-11-27 2010-10-20 本田技研工業株式会社 車両の走行制御装置
US7541972B1 (en) 2007-12-07 2009-06-02 Src, Inc. RF attenuation circuit
CN101470202B (zh) * 2007-12-26 2012-05-23 清华大学 一种脉冲多普勒雷达系统及其信号处理方法
RU2392852C2 (ru) * 2008-02-19 2010-06-27 Закрытое Акционерное Общество "Нанопульс" Импульсный сверхширокополосный датчик дистанционного мониторинга дыхания и сердцебиения
RU2369323C1 (ru) 2008-02-20 2009-10-10 Игорь Яковлевич Иммореев Импульсный сверхширокополосный датчик
US20100265121A1 (en) 2008-09-02 2010-10-21 Preco Electronics, Inc. Short Distance Range Resolution in Pulsed Radar
US7889118B1 (en) * 2008-09-22 2011-02-15 Rockwell Collins, Inc. Radar system and method using pulse compression
US8436766B1 (en) 2009-11-06 2013-05-07 Technology Service Corporation Systems and methods for suppressing radar sidelobes using time and spectral control
US8928524B1 (en) * 2009-11-06 2015-01-06 Technology Service Corporation Method and system for enhancing data rates
JP5617292B2 (ja) * 2010-03-23 2014-11-05 富士通株式会社 送受信装置およびイメージング装置
JP5307068B2 (ja) * 2010-03-31 2013-10-02 古河電気工業株式会社 レーダ装置
WO2012027783A1 (en) * 2010-08-29 2012-03-08 Goldwing Design & Construction Pty Ltd Method and apparatus for a metal detection system
TWI480836B (zh) * 2012-10-17 2015-04-11 Ind Tech Res Inst 微波動作偵測器
US9448053B2 (en) 2010-09-20 2016-09-20 Industrial Technology Research Institute Microwave motion sensor
EP2450823B1 (de) * 2010-11-04 2013-07-17 Keba Ag Detektion eines an einem für die Authentifizierung verwendeten Eingabemittel angebrachten Fremdkörpers
US8687679B2 (en) * 2010-11-05 2014-04-01 Raytheon Company Datalink system architecture using OTS/COTS modem for MIMO multipath sensing networks
EP2678709B1 (en) 2011-02-21 2018-03-28 Transrobotics, Inc. System and method for sensing distance and/or movement
US8391336B2 (en) * 2011-03-07 2013-03-05 A.P.M. Automation Solutions Ltd Variable length ranging and direction-finding signals constructed from bandlimited kernels and sparse spreading sequences
JP5938737B2 (ja) * 2011-06-01 2016-06-22 パナソニックIpマネジメント株式会社 レーダ装置
US8698670B2 (en) * 2011-06-01 2014-04-15 Panasonic Corporation High speed high resolution wide range low power analog correlator and radar sensor
JP5806005B2 (ja) * 2011-06-10 2015-11-10 古野電気株式会社 妨害信号除去装置、レーダ装置、及び妨害信号除去方法
US8902101B1 (en) 2011-09-28 2014-12-02 Rockwell Collins, Inc. System for and method of wind shear detection
DE102011054242B3 (de) 2011-10-06 2012-11-22 Technische Universität Berlin Schaltungsanordnung für ein Frontend eines FMCW Radar-Transceivers, FMCW Radar-Transceiver und Verfahren zum Betreiben
US20130088393A1 (en) * 2011-10-06 2013-04-11 Toyota Motor Engineering & Manufacturing North America, Inc. Transmit and receive phased array for automotive radar improvement
EP4339645A2 (en) * 2011-10-19 2024-03-20 Balu Subramanya Directional speed and distance sensor
KR101233745B1 (ko) * 2011-11-24 2013-02-18 국방과학연구소 거리 측정 장치 및 방법
DE102012201990B4 (de) * 2012-02-10 2023-02-16 Robert Bosch Gmbh Radarsensor mit Überwachungsschaltung
CN102749618B (zh) * 2012-07-19 2014-01-29 浙江大学 利用差分与叉乘模块测量物体运动轨迹的方法和系统
EP2904420A4 (en) 2012-10-05 2016-05-25 Transrobotics Inc SYSTEMS AND METHODS FOR HIGH RESOLUTION DISTANCE DETECTION AND APPLICATIONS
US8994585B2 (en) * 2012-10-23 2015-03-31 Texas Instruments Incorporated Fine grained duty cycling and timing control for pulsed radar
CN102998659B (zh) * 2012-12-07 2014-10-22 清华大学 基于脉间调制的多普勒频谱赋形方法及系统
US9412271B2 (en) 2013-01-30 2016-08-09 Wavetronix Llc Traffic flow through an intersection by reducing platoon interference
US9405003B2 (en) * 2013-02-26 2016-08-02 Panasonic Corporation Radar apparatus
JP6179897B2 (ja) * 2013-12-25 2017-08-16 パナソニックIpマネジメント株式会社 超音波センサ
US20150204969A1 (en) * 2014-01-17 2015-07-23 SpotterRF LLC Target spotting and tracking apparatus and method
CN104199025B (zh) * 2014-09-18 2017-02-15 中国科学院电子学研究所 超宽带伪随机编码雷达系统
EP2998700B2 (de) 2014-09-18 2022-12-21 Hexagon Technology Center GmbH Elektrooptischer Distanzmesser und Distanzmessverfahren
US9841499B2 (en) * 2014-10-09 2017-12-12 Honeywell International Inc. Intrusion detector and method for improved sensitivity
US10324169B2 (en) * 2015-04-06 2019-06-18 The United States Of America As Represented By The Secretary Of The Navy. Digital compensation for amplifier-induced instability
EP3289430B1 (en) 2015-04-27 2019-10-23 Snap-Aid Patents Ltd. Estimating and using relative head pose and camera field-of-view
FR3036532B1 (fr) * 2015-05-21 2018-07-27 Richard Al Hadi Procede et systeme de generation et de detection d'ondes electromagnetiques centimetriques, millimetriques ou submillimetriques, notamment terahertz
DE102016008390B3 (de) * 2016-07-09 2017-05-24 Oliver Bartels Detektor für Chirp Impulse mit kurzer Latenzzeit und hoher zeitlicher Präzision
EP3394636B1 (de) 2015-10-16 2023-04-19 BARTELS, Oliver Funkbasierte positionsbestimmung mit hoch genauer verzögerung im transponder
US10502824B2 (en) 2015-11-09 2019-12-10 Infineon Technologies Ag Frequency modulation scheme for FMCW radar
CN105572643B (zh) * 2015-12-22 2018-04-03 河海大学 一种对抗射频存储转发干扰的雷达信号发射方法
EP3211444B1 (en) * 2016-02-29 2019-06-12 Nxp B.V. Radar system
WO2017149526A2 (en) 2016-03-04 2017-09-08 May Patents Ltd. A method and apparatus for cooperative usage of multiple distance meters
US10620298B2 (en) 2016-08-26 2020-04-14 Infineon Technologies Ag Receive chain configuration for concurrent multi-mode radar operation
US10816655B2 (en) * 2016-12-07 2020-10-27 Texas Instruments Incorporated In-phase (I) and quadrature (Q) imbalance estimation in a radar system
CN116545488A (zh) * 2017-03-28 2023-08-04 高通股份有限公司 基于距离的传输参数调节
US10554233B2 (en) * 2017-08-03 2020-02-04 International Business Machines Corporation Reconfigurable radar transmitter
KR102016942B1 (ko) * 2017-09-20 2019-09-02 연세대학교 산학협력단 차량용 라이다 센서 및 라이다 센서의 동작 방법
US10353058B2 (en) * 2017-10-06 2019-07-16 Osram Opto Semiconductors Gmbh Signal processing unit and method for time of flight measurement
KR102455634B1 (ko) 2018-01-22 2022-10-17 삼성전자주식회사 레이더를 이용한 오브젝트 거리 결정 방법 및 장치
US10305611B1 (en) 2018-03-28 2019-05-28 Qualcomm Incorporated Proximity detection using a hybrid transceiver
KR102093363B1 (ko) * 2018-04-12 2020-03-25 주식회사 만도 레이더 시스템 및 이를 위한 송신 장치
JPWO2020008720A1 (ja) * 2018-07-06 2021-11-04 ソニーグループ株式会社 測距装置およびウィンドシールド
US11789117B2 (en) * 2018-09-27 2023-10-17 Ay Dee Kay Llc Active reflector with oscillation inhibition
US10725175B2 (en) 2018-10-30 2020-07-28 United States Of America As Represented By The Secretary Of The Air Force Method, apparatus and system for receiving waveform-diverse signals
CN109856650B (zh) * 2019-01-15 2020-11-13 中国科学院国家天文台 基于相位条纹的码相位测量方法
US11175394B2 (en) 2019-03-27 2021-11-16 Raytheon Company Binary to quad phase generator
US11703593B2 (en) 2019-04-04 2023-07-18 TransRobotics, Inc. Technologies for acting based on object tracking
WO2020236988A1 (en) * 2019-05-22 2020-11-26 Tactual Labs Co. Millimeter wave array
RU2710021C1 (ru) * 2019-05-29 2019-12-24 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Способ картографирования с помощью синтеза апертуры
KR20210002989A (ko) * 2019-07-01 2021-01-11 삼성전자주식회사 사물 인식을 위한 골레이 시퀀스 길이 조절 방법 및 그 전자 장치
DE102019122156A1 (de) * 2019-08-19 2021-02-25 Infineon Technologies Ag Vorrichtung und verfahren zum senden eines radarsignals
US10911094B1 (en) * 2019-11-26 2021-02-02 Semiconductor Components Industries, Llc Chirp sequence synthesis in a dynamic distribution network
KR102488870B1 (ko) * 2020-12-28 2023-01-13 연세대학교 산학협력단 거리 측정 장치 및 임펄스 iq 신호 부정합 교정 장치
TWI771103B (zh) * 2021-07-14 2022-07-11 立積電子股份有限公司 雷達裝置及其訊號接收方法
CN115313847B (zh) * 2022-08-24 2024-01-30 四川杰诺创科技有限公司 一种电磁兼容的毫米波发射机高压电源及其产生方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912372A (ja) * 1982-06-28 1984-01-23 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン「あ」エス・エヌ・ウ・セ・エム・ア−“ 近距離レ−ダ
US4626853A (en) * 1984-07-20 1986-12-02 Westinghouse Electric Corp. Pulse compression radar signal processor
JPH02165086A (ja) * 1988-12-20 1990-06-26 Japan Radio Co Ltd レーダ装置
JPH02201286A (ja) * 1989-01-31 1990-08-09 Japan Radio Co Ltd 測距装置
JPH10261917A (ja) * 1997-03-19 1998-09-29 Fujitsu Ltd ミリ波送受信装置
JP2000009833A (ja) * 1998-06-24 2000-01-14 Mitsubishi Electric Corp 自動車用衝突防止レーダ装置
JP2001042029A (ja) * 1999-08-03 2001-02-16 Omron Corp パルスレーダおよび距離測定方法
US6535161B1 (en) * 2000-11-28 2003-03-18 Mcewan Technologies, Llc Loop powered radar rangefinder
JP2003518261A (ja) * 1999-12-22 2003-06-03 イノベイティブ テクノロジー ライセンシング エルエルシー リレーアシストによる追跡のための位置確認システム

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757331A (en) * 1965-07-26 1973-09-04 North American Rockwell Phase-coded pulse compression apparatus
US3680104A (en) * 1970-07-22 1972-07-25 Us Navy Phase reversal pulse modulator and pulse compression filter for a coherent radar
GB1469624A (en) * 1974-04-08 1977-04-06 Int Standard Electric Corp Large area motion sensor using pseudo-noise technique
US4328495A (en) 1980-04-28 1982-05-04 Honeywell Inc. Unambiguous doppler radar
US5115247A (en) 1988-02-16 1992-05-19 Honeywell Inc. Frequency modulated, phase coded radar
US4952939A (en) * 1989-02-16 1990-08-28 Seed Willian R Radar intrusion detection system
DE19512904C2 (de) * 1995-04-06 1998-07-16 Dornier Gmbh Verfahren zur Bestimmung der Zwischenfrequenzenabweichung bei Frequenz-Puls-Radarsystemen
US5731781A (en) * 1996-05-20 1998-03-24 Delco Electronics Corp. Continuous wave wideband precision ranging radar
JPH1078481A (ja) * 1996-09-02 1998-03-24 Mitsubishi Electric Corp 航空機搭載用レーダ装置
US6067040A (en) * 1997-05-30 2000-05-23 The Whitaker Corporation Low cost-high resolution radar for commercial and industrial applications
JP3946852B2 (ja) * 1998-02-20 2007-07-18 三菱電機株式会社 レーダ装置およびこのレーダ装置における目標相対距離・相対速度探索方法
CN1298107A (zh) * 1999-12-01 2001-06-06 中国科学院电子学研究所 通过雷达频率带宽复用提高分辨率的方法及电路
US6930631B2 (en) * 2001-11-28 2005-08-16 M/A-Com, Inc. Sensor front-end with phase coding capability
US6587072B1 (en) * 2002-03-22 2003-07-01 M/A-Com, Inc. Pulse radar detection system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912372A (ja) * 1982-06-28 1984-01-23 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン「あ」エス・エヌ・ウ・セ・エム・ア−“ 近距離レ−ダ
US4626853A (en) * 1984-07-20 1986-12-02 Westinghouse Electric Corp. Pulse compression radar signal processor
JPH02165086A (ja) * 1988-12-20 1990-06-26 Japan Radio Co Ltd レーダ装置
JPH02201286A (ja) * 1989-01-31 1990-08-09 Japan Radio Co Ltd 測距装置
JPH10261917A (ja) * 1997-03-19 1998-09-29 Fujitsu Ltd ミリ波送受信装置
JP2000009833A (ja) * 1998-06-24 2000-01-14 Mitsubishi Electric Corp 自動車用衝突防止レーダ装置
JP2001042029A (ja) * 1999-08-03 2001-02-16 Omron Corp パルスレーダおよび距離測定方法
JP2003518261A (ja) * 1999-12-22 2003-06-03 イノベイティブ テクノロジー ライセンシング エルエルシー リレーアシストによる追跡のための位置確認システム
US6535161B1 (en) * 2000-11-28 2003-03-18 Mcewan Technologies, Llc Loop powered radar rangefinder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510894A (ja) * 2002-12-19 2006-03-30 ティーアールダブリュー・リミテッド レーダ装置における温度補償改善
JP4680600B2 (ja) * 2002-12-19 2011-05-11 ティーアールダブリュー・リミテッド レーダ装置における温度補償改善
JP2007316066A (ja) * 2006-05-23 2007-12-06 Korea Advanced Inst Of Science & Technology 距離測定センサ及びこれを用いた距離測定方法
JP2012510055A (ja) * 2008-11-24 2012-04-26 オートリブ エー・エス・ピー・インク レーダー信号処理方法およびレーダー信号処理装置
JP2013538344A (ja) * 2010-08-03 2013-10-10 ヴァレオ・シャルター・ウント・ゼンゾーレン・ゲーエムベーハー 自動車における運転者支援システムの超音波センサを作動させる方法、運転者支援システム、および自動車
US9702974B2 (en) 2010-08-03 2017-07-11 Valeo Schalter Und Sensoren Gmbh Method for operating an ultrasonic sensor of a driver assistance system in a motor vehicle, driver assistance system, and motor vehicle
JP2013543111A (ja) * 2010-09-09 2013-11-28 日本テキサス・インスツルメンツ株式会社 テラヘルツ位相アレイシステム
JP2014119447A (ja) * 2012-12-13 2014-06-30 Industrial Technology Research Institute パルスレーダー測距装置およびその測距アルゴリズム
US9239377B2 (en) 2012-12-13 2016-01-19 Industrial Technology Research Institute Pulse radar ranging apparatus and ranging algorithm thereof
WO2023007597A1 (ja) * 2021-07-28 2023-02-02 日本電気株式会社 物体検出装置、物体検出システム及び物体検出方法

Also Published As

Publication number Publication date
DE60305674T2 (de) 2007-05-31
JP4544866B2 (ja) 2010-09-15
CN1646935A (zh) 2005-07-27
KR101012258B1 (ko) 2011-02-08
CN100354650C (zh) 2007-12-12
US6587072B1 (en) 2003-07-01
US20030193430A1 (en) 2003-10-16
US6879281B2 (en) 2005-04-12
EP1490708A1 (en) 2004-12-29
EP1490708B1 (en) 2006-05-31
DE60305674D1 (de) 2006-07-06
WO2003083507A1 (en) 2003-10-09
AU2003220420A1 (en) 2003-10-13
KR20040094845A (ko) 2004-11-10

Similar Documents

Publication Publication Date Title
JP4544866B2 (ja) 自動車及び他の商業用途用のパルス圧縮レーダシステム
Bourdoux et al. PMCW waveform and MIMO technique for a 79 GHz CMOS automotive radar
US4308473A (en) Polyphase coded mixer
JP2990097B2 (ja) 連続波広帯域精密距離測定レーダ装置
US6067040A (en) Low cost-high resolution radar for commercial and industrial applications
AU2002333123B2 (en) Spread spectrum radar with leak compensation at baseband
WO2001027861A2 (en) Homodyne swept-range radar
EP1163705A2 (en) Short pulse microwave transceiver
US8854254B2 (en) Ultra-wideband short-pulse radar with range accuracy for short range detection
US20050200516A1 (en) Retrodirective noise-correlating (RNC) radar methods and apparatus
US20080246650A1 (en) Short Range Radar and Method of Controlling the Same
US6496139B1 (en) Method for simulating echo signals for doppler radar systems
Yang et al. A 24-GHz CMOS UWB radar transmitter with compressed pulses
EP1736795A1 (en) Short pulse radar and control method thereof
US7161526B2 (en) Broadband radar and modulator, in particular for microwave switching over a very short period
US6911934B2 (en) Apparatus, method and articles of manufacture for sequential lobing high resolution radar
Aghasi et al. Millimeter-wave radars-on-chip enabling next-generation cyberphysical infrastructures
US7064703B2 (en) Methods and apparatus for randomly modulating radar altimeters
EP4187280A1 (en) A method for performing radar measurements and a radar device
EP0467245B1 (en) Pulsed radar with a single FSK oscillator
US7274922B2 (en) Circuit arrangement for generating an IQ-signal
US4297702A (en) Polyphase coded fuzing system
JP2008249498A (ja) レーダ装置
Wambacq et al. Millimeter-wave radar SoC integration in CMOS
Ju et al. Design and implementation of a hybrid digital and RF front‐end module for 24‐GHz intelligent transport system pulse‐doppler radar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090313

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090414

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091208

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees