JP2005516463A - 受信機処理システム - Google Patents

受信機処理システム Download PDF

Info

Publication number
JP2005516463A
JP2005516463A JP2003563116A JP2003563116A JP2005516463A JP 2005516463 A JP2005516463 A JP 2005516463A JP 2003563116 A JP2003563116 A JP 2003563116A JP 2003563116 A JP2003563116 A JP 2003563116A JP 2005516463 A JP2005516463 A JP 2005516463A
Authority
JP
Japan
Prior art keywords
interference
code
receiver
signal
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003563116A
Other languages
English (en)
Other versions
JP4018637B2 (ja
Inventor
フィットン、マイケル・フィリップ
リズビ、クールラム・アリ
チョウ、ユック・チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JP2005516463A publication Critical patent/JP2005516463A/ja
Application granted granted Critical
Publication of JP4018637B2 publication Critical patent/JP4018637B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71075Parallel interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0077Multicode, e.g. multiple codes assigned to one user

Abstract

【課題】 干渉、とくに、W−CDMAの3G移動通信システム内のユーザエンド端末において確認される干渉を低減するためのマルチコードスペクトラム拡散受信機のアーキテクチャおよび方法が記載されている。
【解決手段】 2つ以上の拡散符号の相互相関および自己相関がゼロでないために発生する経路間干渉は、1本の伝送信号ストリームか、または複数のマルチパス成分の場合は、複数本のこのような信号ストリームを推定し、この推定された信号を再拡散し、非直交の干渉の寄与を受信信号から減算することによって抑圧される。この技術は、ビット誤り率を向上する、すなわちディジタル移動通信ネットワークの容量を高める。

Description

本発明は、概ね、スペクトラム拡散受信機、とくにレーキ受信機において干渉を低減するためのアーキテクチャ、システム、および方法に関する。本発明は、ディジタル移動通信システム、とくに第3世代(third generation, 3G)システムに適用される。
第3世代の移動電話ネットワークでは、無線インターフェイスを横切って移動局と基地局とを通信させるために、符号分割多重アクセス(Code Division Multiple Access, CDMA)スペクトラム拡散信号を使用している。これらの3Gネットワークは(いわゆる2.5Gネットワークと共に)、International Mobile Telecommunications IMT-2000の標準規格(www.itu.int、ここでは、参考文献として取り上げている)に含まれる。第3世代の技術はCDMA(符号分割多重アクセス)を使用し、IMT−2000の標準規格は3つの主要な動作方式を策定した。すなわち、欧州および日本におけるW−CDMA(Wide band CDMA)の直接拡散の周波数分割複信方式(Frequency Division Duplex, FDD)、米国におけるCDMA−2000のマルチキャリアのFDD、中国における時分割二重通信方式のCDMA(Time Division Duplex CDMA, TD-CDMA)および時分割同期方式のCDMA(Time Division Synchronous CDMA)である。
3Gネットワークの無線アクセス部分は、UTRAN(Universal Terrestrial Radio Access Network)と総称されており、UTRANのアクセスネットワークを含むネットワークは、UMTS(Universal Mobile Telecommunication System)ネットワークとして知られている。UMTSシステムは、Third Generation Partnership Project(3GPP, 3GPP2)によって生成された標準規格の対象であり、その技術仕様はwww.3gpp.org.に示されている。これらの標準規格の技術仕様23.101には、一般的なUMTSのアーキテクチャが記載され、25.101には、ユーザおよび無線送信および受信(FDD)バージョン4.00および3.2.2が記載されている。なお、ここでは、これらを参考文献として取り上げている。
図1では、第3世代ディジタル移動電話システムの一般的な構造を、参照符号10で示している。図1において、無線塔12は基地局14に接続され、代わって、基地局14は基地局制御装置16によって制御されている。移動通信装置18(mobile communications device, MD)は、無線または空中インターフェイス20を横切って基地局14と双方向通信をすることが示されていて、無線または空中インターフェイス20は、GSM(Global System for Mobile Communications)ネットワークおよびGPRS(General Packet Radio Service)ネットワークでは、Umインターフェイスとして、CDMA2000およびW−CDMAのネットワークでは、Uuインターフェイスとして知られている。一般に、任意の1時点において、複数の移動装置18が、所与の1基地局に接続されている。基地局は、これらの装置のために働く複数の無線トランシーバを含んでいる。
基地局制御装置16は、複数の他の基地局制御装置(図示されていない)と共に、1移動交換局(mobile switching center, MSC)22に接続される。代わって、複数のこのようなMSCは、ゲートウエイMSC(gateway MSC, GMSC)24に接続され、GMSC24は、移動電話ネットワークを公衆交換電話ネットワーク(public switched telephone network, PSTN)26へ接続する。ホーム位置レジスタ(home location register, HLR)28およびビジター位置レジスタ(visitor location register, VLR)30は、呼のルート設定およびローミングを管理し、他のシステム(図示されていない)は認証、請求書発行を管理する。オペレーション メンテナンスセンター(operation and maintenance center, OMC)29は、基地局および交換局のようなネットワークのインフラストラクチャ素子から統計を収集し、ネットワークのオペレータに、ネットワークの性能についての高レベルの考察を与える。OMCは、例えば、異なる時刻において、ネットワーク、またはネットワークの一部の使用可能容量中のどのくらいの量が使用されているかを判断するのに使用できる。
上述のネットワークのインフラストラクチャは、移動通信装置18と他の移動装置との間、移動通信装置18とPSTN26の間、または移動通信装置18と他の移動装置およびPSTN26の両者との間の回線交換音声接続を本質的に管理している。GPRSのような、いわゆる2.5Gネットワーク、および3Gネットワークは、パケットデータサービスを回線交換音声サービスに追加している。大要、パケット制御装置(packet control unit, PCU)32が基地局制御装置16に加えられ、これが、階層化された一連のスイッチによって、インターネット38のようなパケットデータネットワークへ接続される。GSMベースのネットワークでは、これらは、供給側GPRS支援ノード(serving GPRS support node, SGSN)34およびゲートウエイGPRS支援ノード(gateway GPRS support node, GGSM)36とを含んでいる。図1のシステムおよび別途記載するシステムの両者において、ネットワーク内の素子の機能は、システムの単一の物理ノードか、または別々の物理ノード上にあることが分かるであろう。
移動装置18とネットワークのインフラストラクチャとの通信には、一般に、データ信号と制御信号との両者が含まれる。データには、ディジタル形式に符号化された音声データを含むか、またはデータモデムを用いて、移動装置との間でトランスペアレントにデータを通信してもよい。GSM形式のネットワークでは、GSMのショートメッセージサービス(Short Message Service, SMS)を使用して、テキストおよび他の狭帯域幅のデータも送られる。
2.5Gまたは3Gのネットワークでは、移動装置18は、他の電話と、単純な音声接続よりも高度な接続を行なうことができる。例えば、移動装置18は、付加的に、または代わりに、音声および/またはマルチメディアデータサービス、ウエブブラウジング、eメール、および他のデータサービスにアクセスすることができる。論理上は、移動装置18には、データプロセッサまたはパーソナルコンピュータのような端末装置と直列接続された(加入者識別モジュール(subscriber identity module, SIM)カードを取入れた)移動端末が含まれると考えられる。一般に、移動装置は、ネットワークに接続されると、“常にオン”であり、移動装置と外部データネットワークとの間で、ユーザのデータを、例えば、標準のATコマンドによって、移動端末−端末装置のインターフェイスにおいてトランスペアレントに転送することができる。移動装置18として、従来の移動電話を用いるときは、GSMデータカードのような端末アダプターが必要である。
CDMAスペクトラム拡散通信システムでは、無線周波数の搬送波を変調する前に、ベースバンド信号と、はるかに高速のビットレート(チップレートと呼ばれる)の疑似ランダム拡散系列とを混合することによって、ベースバンド信号を拡散する。受信機では、受信信号と疑似ランダム拡散系列とを相関器へ供給し、一方を他方に対してロックするまでスリップさせることによって、ベースバンド信号を回復する。符号ロックが得られると、これは、アーリーレート追跡ループ(early-late tracking loop)のような符号追跡ループによって維持される。アーリーレート追跡ループは、入力信号が拡散系列に対して早いときか、または遅いときを検出し、変化を補償する。
最初の疑似ランダム拡散系列が分かっているときのみ、ベースバンド信号を回復できるので、このようなシステムは、符号分割多重化形と言われる。スペクトラム拡散通信システムは、異なる拡散系列をもつ多くの送信機の全てが、無線周波数スペクトラムの同じ部分を使用することを可能にし、受信機は、適切な拡散系列を選択することによって、希望信号に“同調”する。
3G移動電話システムでは、直交可変拡散率(Orthogonal Variable Spreading Factor, OVSF)技術を使用し、ベースバンドデータを、拡散符号またはチャネライゼーションコードを使って拡散する。OVSF符号は、長さの異なる符号間の直交性を維持する一方で、拡散率を変更できる。システムの同時のユーザ数を増加するために、ゴールド符号(Gold code)のようなスクランブリングコードによって、データをさらに拡散する。ここでも、拡散符号は相互に実質的に直交しているために、スクランブリングコードは信号のバンド幅を変えないが、異なるユーザからの信号または異なるユーザへの信号の相互の区別を可能にする。チャネライゼーション拡散に加えて、スクランブリングが使用される。すなわちOVSF拡散後に、チップレートの信号をスクランブリングコードによって乗算して、同じチップレートのスクランブルされた符号を生成する。したがって、チップレートは、チャネライゼーションコードによって判断され、このシステムでは、次のスクランブリングによる影響を受けない。したがって、同様に、所与のチップレートに対するシンボルレートも、スクランブリングによる影響を受けない。
3G移動電話システムでは、一般に、基地局から移動局へのダウンリンクと、移動局から基地局へのアップリンクとに対して、異なる拡散率およびスクランブリングコードリンクが用いられる。一般に、チャネライゼーションコードは、4チップないし256チップ長、またはそれに相当する4ないし256の拡散率を有する(しかしながら、他の拡散率を用いてもよい)。アップリンクおよびダウンリンクの無線フレームは、一般に10ミリ秒であり、これは38400チップのスクランブリングコード長に対応するが、アップリンクには、例えば256チップの、より短いフレームが使用されるときもある。通常のチップレートは3.84メガチップ/秒(Mcps)であり、したがってチャネルの最大ビットレートが判断される。例えば、拡散率が16、すなわち1シンボル当りに16チップを使用すると、240キロビット秒のデータレートが得られる。これらの数値は、単に例示的に与えられていることが分かるであろう。移動局との通信に、より高いビットレートが要求されるときは、このようなチャネルを2本以上使用して、いわゆるマルチコード伝送を生成してもよい。マルチコード伝送では、複数のデータチャネルを効率的に並行して使用して、移動局とのデータの送受信の全体的なレートを高める。一般に、マルチコードのデータチャネルは、スクランブリングコードは同じで、チャネライゼーションコードは異なるが、拡散率は同じであることが好ましい。
3G移動電話システムでは、一般に、多数の異なるチャネルが使用され、チャネルの一部は特定のユーザに専用であるが、一部はユーザのグループ、例えば所与のセルまたはセクター内の全ユーザに共通である。既に記載したように、トラヒックは、1本の専用物理制御チャネル(Dedicated Physical Control Channel, DPCH)上で、マルチコード伝送の場合は、複数のこのようなチャネル上で送られる。共通チャネルは、一般に、シグナリングおよび制御情報を送り、システムの無線リンクの物理層でも利用される。したがって、移動局受信機におけるチャネルの推定および等化を可能にするために、共通パイロットチャネル(Common Pilot Channel, CPICH)が用意される。CPICHは、変調されていない符号チャネルを含み、セル別のスクランブリングコードでスクランブルされる。同様に、移動局がネットワークセルの位置を特定するのに使用するために、同期チャネル(Sychnronisation Channel, SCH)が用意される。一次SCHチャネルは、変調されておらず、各セルにおいて同じチャネライゼーション拡散系列を使用して伝送され、セル別のスクランブリングコードは用いられない。同様の二次SCHチャネルも用意されるが、拡散系列の数は制限されている。さらに加えて、制御情報を保持するために、一次共通制御物理チャネル(Primary Common Control Physical Channel, PCCPCH)および二次共通制御物理チャネル(Secondary Common Control Physical Channel, SCCPCH)も用意される。PCCPCHおよびSCCPCHは、チャネライゼーションの拡散符号が分かっている。上述のシグナリングチャネル(CPICH、SCH、およびCCPCH)は、一般に、全移動局によって復号されなければならない。例えば、ネットワークの既知の符号はユーザエンド装置に記憶されているので、一般に、移動局には拡散符号(チャネライゼーションコード、および適宜、スクランブリングコード)が分かる。ここでは、チャネルについての記載は、概ね、物理チャネルについての記載であり、1本以上のネットワークトランスポートチャネルを、このような1本の物理チャネルへマップす
ることができる。3G移動電話ネットワークの関連において、移動局または移動装置は、しばしば端末と呼ばれ、本明細書では、これらの一般的な用語を区別していない。
スペクトラム拡散システムの1つの長所は、これらがマルチパスフェージングに比較的に影響されないことである。マルチパスフェージングは、信号が送信機から受信機へ2本以上の異なるパスをとって伝送され、したがって2つ以上の信号が、異なる時間に、互いに干渉して受信機に到達するときに発生する。一般に、これにより、コーム形の周波数応答が生成され、マルチパスチャネル上の広帯域信号が受信されると、多数の遅延により、受信信号の多数の成分は熊手の歯のようになる。一般に、マルチパスチャネルの数および位置は、とくに送信機または受信機が移動しているときは、時間にしたがって変化する。しかしながら、当業者には、スペクトラム拡散受信機内の相関器が、多数の成分の中の1つ、通常は、最強の直接信号を追跡する傾向があることが分かるであろう。
この技術において知られているように、スペクトラム拡散受信機が、受信信号の対応する複数の個々のマルチパス成分を追跡できるようにするために、複数の相関器が用意される。このようなスペクトラム拡散受信機は、レーキ受信機として知られており、相関器を含む受信機の素子は、しばしばレーキ受信機の“フィンガー”と呼ばれる。一般に、レーキ受信機の各フィンガーからの個々の出力を、各出力に均等に重み付けすることによってか、または合成して、合成された出力の信号対雑音比を最大化する重みを推定することによって、向上した信号対雑音比(またはビット誤り率)が得られる。後者の技術は、最大比率合成(Maximal Ratio Combining, MRC)として知られている。
とくに、多数のユーザを含む領域において、3Gシステムで可能なより高いデータレートを支援できるユーザエンド端末を提供することが、一般に求められている。一般に、CDMAシステムでは、遠近効果(正しくない符号をもつ強力な近傍の信号との相関が、正しい符号をもつより弱くて、より遠方の信号との相関よりも強いこと)のために、アップリンクが制限されると考えられている。しかしながら、その代わりに、3GのCDMAシステムは、非常に非対称のサービスのために、ダウンリンク容量によって制限される。非常に非対称のサービスとして、例えば、インターネットからのウエブページおよび画像データのダウンロードが考えられる。したがって、このようなより高いレートのダウンリンクのデータサービスを支援できる移動端末が、一般に求められている。
より高いデータレートのサービスの支援を容易にするために、基地局における多重アクセス干渉(Multiple Access Interference, MAI)の抑圧を用いて、アップリンクを向上することが知られている。異なるユーザから受信した信号の拡散符号は、通常は完全には直交していないために、多重アクセス干渉が発生する。したがって、基地局内の干渉消去(interference cancellation, IC)受信機は、全ユーザ間で並行して、または順次に、受信信号から減算される多重アクセスの干渉成分を推定することを試みる。消去される多重アクセスの干渉は、2つの実質的に直交する受信信号の同じマルチパス成分間の干渉である。この技術は、セクション11.5.2(“WCDMA for UMTS by H Holma and A Toskala, John Wiley & Sons, 2001”, ISBN0741 48687 6)により詳しく記載されている。
単一データチャネルの異なるマルチパス成分間の干渉を抑圧するための、すなわち経路間自己干渉(Interpath Self-interference, IPI)を抑圧する技術は、NTT Docomoによる文献(“Multipath Interference Canceller (MPIC) for HSDPA and Effect of 64 QAM Data Modulation”,(TSG RAN WG)1 Meeting #18, document (01) 0102)にも記載されており、3GPPのウエブサイトのhttp://www.3gpp.org/ftp/tsg ran/wgl rll/tsgrl 18/docs/pdfs/rl-01-0102.pdfから得られる。
これらの技術は有益であるが、依然として改良の余地がある。とくに、本発明の発明者は、別の干渉成分を推定して、受信信号から消去して、出力信号対雑音比をさらに向上できることを認識した。本発明の発明者は、この干渉成分および他の干渉成分を抑圧するときに、種々の別の技術を適用して、従来技術の構成での干渉成分の消去を含めて、干渉成分の消去を向上できることも認識した。
セル内干渉は、経路間干渉と、チャネライゼーションコード間の直交性が失なわれることとにより発生する。送信機と受信機との間のパスが1本である理想的な環境では、OVSFのチャネライゼーションコードにより、異なる伝送ストリームが互いに(実質的に)直交することが保証される。しかしながら、マルチパスに時間のばらつきがあるときは、異なるマルチパス成分間の自己(または相互)の空間相関はゼロ以外であり、経路間干渉が発生する。
スペクトラム拡散受信機が2つの信号、すなわち1−11−1の第1の拡散符号をもつ第1の信号と、11−1−1の第2の拡散符号をもつ第2の信号とを同時に受信する場合について検討する。これらの2つの拡散符号は、その和が−1になるので、1シンボル期間において実質的に直交している。しかしながら、第2の符号が第1の符号に対してわずかにずれると、非直交成分が増加する。このようなずれは、マルチパスによって生じ、事実上、マルチパスは、第1の信号および第2の信号の両者の遅延成分を、通常は低減電力で、取り込んでいる。例えば、第1の拡散符号について検討すると、符号の非理想的な自己相関特性による遅延した第1の符号と、符号の非理想的な相互相関特性による遅延した第2の符号とから、非直交の寄与が発生する。
ここで図2を参照すると、非理想的な自己相関特性をもつOVSF符号を使用したときの、マルチパス干渉の影響が示されている。図2aには、拡散率が16の、任意に選択されたOVSF符号の自己相関関数200が示されていて、Y軸202上には、相関器の出力が示されていて、X軸204上には、自己相関関数を計算するために相関させた2つの符号のチップ期間Tcにおける遅延ずれが示されている。
図2bは、図2aと同様のグラフであるが、理想的なOVSF符号を使用した2波のマルチパスモデルにおける相関器の理想的な実際の出力が示されている。図2bでは、第1のマルチパス成分に対する相関器の出力は実線206で、第2のマルチパス成分に対する相関器の出力は点線208で示されており、第2のパスは第1のパスに対して0.5の大きさであり、相対的な位相ずれはゼロである。遅延ずれがゼロのときは、相関器の出力は第1のパスからの全エネルギーを含むが、第2のパスからの干渉の寄与はないといった理由で、図2bの応答は理想的である。
ここで図2cを参照すると、図2bの2波のマルチパス方式に、図2aのOVSF符号を用いたときの実際の状況が示されている。ここでも、第1および第2のマルチパス成分の相関器の出力を、実線210および点線212によってそれぞれ示している。図2aの自己相関関数を、両マルチパス成分上に重ね合わせると、その結果、遅延ずれがゼロの相関器の出力が、第1のマルチパスからの大きさが1の望ましい寄与と、第2のマルチパス信号からの相対的な大きさが0.25の干渉の寄与との組み合わせから成ることが分かるであろう。
時間整列していないときは、OVSF符号の相関特性は比較的に劣悪であることが分かっており、このために、W−CDMAの3Gシステムでは、追加の拡散符号が適用される。既に記載したように、3GPPによって特定されているW−CDMAにおいて使用される符号はゴールド符号であり、ゴールド符号は、2つの二値のm系列の38,400チップのセグメントの加算に対する位置に関する法(positionwise modulo)から形成される。図3には、m系列の自己相関特性が示されており、相関関数(correlation function, CF)はy軸300上に示されている。ずれがゼロ以外であるときの最大相関出力は、拡散長の逆数(したがって、Sを拡散長としたとき、−1/S)に比例する。拡散長自体は、符号を生成するのに使用されるシフトレジスタ内の要素のメンバー、nによって判断される。その後の自己相関ピーク間の遅延ずれTは、符号長Sとチップ期間tとの積によって求められる。拡散率が大きいときは、1/Sはゼロになる傾向があり、したがってこの符号は、時間整列していないときに、ゼロの自己相関の理想的な特徴に近付く。しかしながら、拡散率が小さく、対応してデータレートがより高くなると、経路間干渉(Interpath Interference, IPI)は大きくなる。
CDMAシステムの容量は、自己干渉で制限され−したがって、容量とサービス品質との両者に関する性能は、同じセル内か、または隣り合うセル内のユーザから発生する干渉電力によって、かなりの程度まで判断される。したがって、この干渉レベルを低減することによってCDMAシステムの性能を向上することができ、これを実現するための周知の受け入れられている技術は多数あり、不連続伝送およびセクタ化されたアンテナの使用が含まれる。セル内の干渉は、基地局から端末への信号の同期を認識することに基づいて、ある程度は緩和でき、したがってセル内の多重アクセス干渉(Multiple Access Interference, MAI)は、上述のOVSF符号のような、1チップ期間内で整列するときに直交する符号か、または、例えば、米国のIS95(Interim Standard 95)のCDMA電話ネットワークにおいて使用されているウオルシュ符号を使用することによって、緩和することができる。しかしながら、実際には、既に記載したように、モバイル環境の時間分散性により、直交性は相当に損なわれ、その結果MAIが増加する。例えば、一般的な都市環境では、直交性が40%まで損われたことが確認された。セル間の多重アクセス干渉も確認された。
既に記載したように、他の(干渉している)チャネルの特徴が分かっているときは、それらが発生している干渉を抑圧または除去できることが分かっている。他の専用チャネルの場合に、端末は、チャネルの事前の知識をもっている必要はないが、他の技術を使用することができる。したがって、共通チャネルの特徴が、明示的または暗黙的に端末に分かっているときは、共通チャネルから干渉の寄与を取り除くことによって、CDMAシステムの性能を向上することができる。後で参照する特定のチャネルを次に示す。
1.既知の拡散符号と、変調されていない(または、分かっている)拡散符号とをもつ共通チャネル、例えば、CPICHおよびSCH。
2.データで変調される、既知の拡散符号をもつ共通チャネル、例えば、P−CCPCH。
3.従来の単一符号伝送、マルチコード伝送、および送信アンテナダイバーシチシステムのような、(自己干渉を消去できる)既知の拡散符号をもつ専用チャネル。
これらのチャネルは、単に例示的に選択したものであり、別途記載する技術は、これらのチャネルに制限されない。
3GPPによって特定されている専用および共通チャネルの通常の電力レベルは、次の表1にまとめられている(なお、PCCPCHとSCHとは、時分割多重化されているので、SCHに関する数値は、( )内に示されている)。
Figure 2005516463
多数のセルの干渉環境において、CPICH、PCCPCH、およびSCHを完全に消去すると、容量が11%増加する。しかしながら、共通チャネルの消去により、個々の端末の性能が向上することに加えて、全システムの容量をほとんど、または全く劣化することなく、それらにより多くのエネルギーを割り当てることができる。例えば、セル間干渉とセル内干渉との比が2:1.0であると仮定すると、従来のシステムと少なくとも同じ容量が維持される一方で、CPICHおよびSCH/PCCPCHの両者は3デシベル分、増加する。この電力増加により、SCHの場合は、捕捉が向上し、より強いCPICH信号の場合は、チャネルの推定および追跡が向上する。
専用チャネルによって発生する自己干渉を抑圧することもできる。高データレート伝送では、このチャネルには、通常は、相当な量の電力が割り当てられ、一般に相当に低い拡散率で動作する。伝送についてのこれらの態様の両者により、経路間干渉が増加する傾向があり、IPIの消去技術の向上は、マルチパス環境、符号相関特性、および希望の専用チャネルに割り当てられた電力の割合に依存するにも拘わらず、性能を相当に向上する潜在性がある。
端末製造者と、ネットワーク/サービスオペレータとの両者は、向上した干渉消去技術を移動端末に適用することにより、恩恵が得られる。端末製造者は、高データレート伝送を受信する端末の能力が向上するので、恩恵が得られる。オペレータは、アーラン/セルまたは支援できる全データレートの何れかに関して、より高いダウンリンク能力を支援し、したがって追加のサービスを提供できるネットワークが得られることにより、恩恵が得られる。
これまでの記述を考慮すると、とくに移動端末における向上した干渉抑圧技術が、一般に必要とされていることが分かるであろう。
本発明は、第1の態様において、複数のスペクトラム拡散信号によって伝送されるデータを受信するためのマルチコード受信機であって、複数のスペクトラム拡散信号は、対応する複数の拡散符号をもち、拡散符号は、相互に実質的に直交していて、受信機は、符号間干渉を抑圧し:前記複数のスペクトラム拡散信号によって伝送されるデータの複数の推定値を、各前記スペクトラム拡散信号に1つずつ含むデータ推定値の組を供給するためのマルチコードスペクトラム拡散受信機と;前記複数のデータ推定値を再拡散するための複数の再拡散器と;前記複数の拡散符号の各々に少なくとも1つの、複数の干渉抑圧器であって、前記各符号に少なくとも1つの干渉抑圧器の各々が、受信信号から、他の符号のスペクトラム拡散信号の再拡散されたデータ推定値を抑圧するように構成されている複数の干渉抑圧器とを含むマルチコード受信機を提供する。
本発明は、さらに加えて、複数のスペクトラム拡散信号によって伝送されるデータを受信するためのマルチコード受信機において符号間干渉を抑圧する方法であって、複数のスペクトラム拡散信号は、対応する複数の拡散符号をもち、拡散符号は、相互に実質的に直交していて:マルチコードスペクトラム拡散受信機を使用して、前記複数のスペクトラム拡散信号によって伝送されるデータの複数の推定値を、各前記スペクトラム拡散信号に1つずつ含むデータ推定値の組を供給することと;前記複数のデータ推定値を再拡散することと;各符号の受信信号から、他の符号のスペクトラム拡散信号の再拡散されたデータ推定値を抑圧することとを含む方法を提供する。
本発明は、さらに加えて、複数の実質的に直交するマルチコード信号を含む受信信号から、第1のマルチコード信号を復調するように構成されているレーキ受信機のための干渉抑圧器であって:受信信号のための信号入力と;レーキ受信機の各フィンガーに1組ずつの、干渉推定値入力の複数の組と;レーキ受信機の各フィンガーに1つずつの、干渉推定値入力の複数の組と、レーキ受信機の各フィンガーに1つずつの、複数の出力とであって、各出力と入力の各組とが、受信信号のマルチパス成分と関係付けられていて、入力の各組が、第1のマルチコード以外の各マルチコードの干渉推定値の入力を含む、干渉推定値入力の複数の組および複数の出力と;各マルチコードの干渉推定値を加算するための、入力の組の各加算器と;信号入力と各前記出力との間の複数の減算器であって、前記出力が関係付けられているマルチパス成分以外の、各マルチパス成分と関係付けられている入力から、加算された干渉推定値の組を受信するように構成されている複数の減算器とを含む干渉抑圧器を提供する。
本発明は、上述のマルチコード受信機、方法、および干渉抑圧器を実行するためのプロセッサ制御符号を搬送する担体も提供する。このプロセッサ制御符号には、例えば、ディジタル信号プロセッサを制御するための、コンピュータプログラム符号か、または汎用の受信機の集積回路をセットアップして、上述の方法または受信機を実行するための複数のレジスタ値のような他の符号が含まれる。担体には、データキャリアまたは記憶媒体(例えば、ハードまたはフロッピーディスク、CD−またはDVD−ROM、あるいは読み出し専用メモリのようなプログラムメモリ);もしくは光または電気信号の担体が含まれる。当業者には、制御符号が、例えばネットワーク上で、複数の接続された構成要素間でも分配されることが分かるであろう。当業者には、本発明が、専用のハードウエアと、ソフトウエアにおいて実行される機能との組合せによって実行されることも分かるであろう。
当業者には、2つ以上の源から発生している干渉の寄与を抑圧するのに、本発明の上述の態様を組合せてもよいことが分かるであろう。
ここで、本発明のこれらの態様および他の態様を、例示的に、添付の図面を参照して、さらに記載する。
制限がないときは、追加の拡散符号について知らなくても、端末において消去できるチャネル干渉のタイプを、簡単なものから順番に示す。
1.既知の拡散符号をもち、変調が既知か、または変調されていない共通チャネル、例えば、CPICHおよびSCH。変調信号が既知であるので、これは、最も簡単なアプローチである。
2.データによって変調された既知の拡散符号をもつ共通チャネル、例えば、PCCPCH。これらのチャネルによって生成された干渉を消去するために、チャネルを逆拡散し、復調し、伝送データを判断し、その後で、再拡散して、伝送信号の推定値を生成し、希望信号から干渉を抑圧する。しかしながら、これらのチャネルは、一般に、非常に大きい電力を有し、干渉が抑圧されることになる希望の専用チャネルの電力は、一般に5デシベルより大きく、したがって1または複数本のチャネルの検出および干渉の抑圧は、比較的に直接的に行われる。
3.既知の拡散符号をもつ希望の専用チャネル。単一符号内のIPIによって生じる自己干渉を抑圧でき、いくつかの場合において、2本以上の専用チャネルの符号が事前に分かっているときは、他の干渉も抑圧される。このような場合になるのは、例えば、多数の符号を使用して、高データレートのサービスを単一のユーザへ伝送するとき、および多数のサービスを異なる符号へ多重化するときである。ここでも、干渉チャネルを逆拡散し、復調し、再拡散し、その後で干渉を消去する。例えば、時空間ブロック送信ダイバーシチ(space-time block coded transmit diversity, STTD)を使用して、希望信号が多数のストリームにおいて伝送されるときに、この技術を適用することができる。これは、少なくとも、事実上、整合フィルターの多数のバンクを有することによって実現でき、一方の組は第1の推定値をとり、他方の組は、干渉推定値を取去った後で、第2の推定値を計算する。多数の段を用いて、各段において、経路間干渉の寄与の推定値を計算して、次第に向上し、最後の段において、シンボルの推定値を判断し、使用のために出力することもできる。
ここで図4を参照すると、既知のW−CDMAレーキ受信機400が示されており、この受信機400では、CPICHを使用して、復調された専用データチャネル(DPCH)および同報通信チャネル(PCCPCH)へ適用するためのチャネル推定値を計算する。受信機400は、アンテナ402を有し、専用物理データチャネル(Dedicated Physical Data Channel, DPCH)、PCCPCH、およびCPICHのスペクトラム拡散信号を受信する。アンテナ402が受信した信号は、ダウンコンバータ404へ入力され、ダウンコンバータ404では、信号を、逆拡散のために中間周波数(Intermediate Frequency, IF)またはベースバンドへダウンコンバートする。通常は、この時点で、信号はアナログ−対−ディジタルコンバータによってディジタル形式にされ、専用の、またはプログラム可能なディジタル信号プロセッサの何れかによってディジタル領域で処理される。大きさおよび位相の両者の情報を保存するために、信号は、通常はIおよびQチャネルを含むが、簡潔化のために、これらは図4には示されていない。この受信機、および一般に、以下で記載する受信機では、アナログまたはディジタル領域、あるいはこれらの両者の領域における信号処理が用いられる。しかしながら、通常は、処理の多くはディジタル形式で行われるので、図4にブロックで示されている機能素子は、一般に、適切なソフトウエアによって実行されるか、または機能の幾つかにおいて特定の集積回路が使用可能である場合は、これらの集積回路内のレジスタを適切にプログラミングして、要求される機能を実行するためのアーキテクチャまたは機能、あるいはこの両者を構成することによって実行される。
再び図4を参照すると、受信機400は、3つのレーキフィンガー406、408、および410を含み、各レーキフィンガー406、408、および410は、レーキ合成器412への出力を有し、レーキ合成器412は、合成された復調信号出力414を供給し、出力414は移動端末内でさらに処理される。各レーキフィンガーの主な素子は対応しており、簡潔化のために、レーキフィンガー406の素子のみが示されている。
レーキフィンガー406の入力には、符号追跡器416が接続され、符号追跡器416は、スペクトラム拡散符号を、逆拡散のために追跡する。符号追跡器416には、整合フィルターまたはアーリーレート追跡ループのような従来の手段が用いられ、DPCH、PCCPCH、およびCPICHのチャネルは、ほぼ同期するので、復号追跡器416は、これらの信号の中の1つのみを追跡すればよいが、CPICHは、一般に、信号レベルが比較的に高いので、通常は除かれる。符号追跡器416の出力は、PCCPCHの符号生成器418、CPICHの符号生成器420、およびDPCHの符号生成器422を制御し、これらの符号生成器は、対応するチャネル信号と相互相関する拡散符号を生成し、スペクトラム拡散信号を逆拡散する。したがって、3つの逆拡散器424、426、428が用意され、各逆拡散器は、レーキフィンガーの入力に接続され、符号生成器418、420、422の中の1つからの出力を受信して、適切な信号(チャネライゼーションコードおよびスクランブリングコードの両者)を逆拡散する。当業者には分かるように、これらの逆拡散器は、一般に、乗算器および加算器のような、相互相関器を含む。
CPICHのパイロット信号は変調されず、したがってこれが逆拡散されると、結果の信号は、レーキ受信機のフィンガーによって追跡されるCPICHの信号を伝送したマルチパスチャネルの減衰および位相ずれに対応する大きさおよび位相をもつ。したがって、この信号は、CPICHのチャネルの、とくに、レーキフィンガーが逆拡散するこのチャネルのマルチパス成分の、チャネル推定値を含む。この推定値を、さらに処理することなく使用してもよいが、推定値を、時間において、すなわち1つ以上のシンボルの時間間隔において平均し、推定値の雑音を低減し、精度を高めるのが好ましい。この機能は、チャネル推定430によって行われる。長い期間で平均すると、雑音のレベルは低減するが、このやり方では、例えば、受信機が高速道路上の自動車内の端末において動作しているときに遭遇するような、チャネル状態の変化に迅速に応答する受信機の能力も低下してしまう。
チャネル推定値は、位相を反転するために共役をとられ、必要であれば、ゼロの減衰が1(unity)の大きさに対応するように正規化され、この形態では、共役信号は、単に、別の受信信号を乗算して、チャネル推定値を適用または補正するのに使用される。したがって、乗算器432および434は、チャネル推定ブロック430からのチャネル推定値を、同報通信制御チャネルのPCCPCHと、希望のデータチャネルのDPCHとへそれぞれ適用する。次に、希望のデータチャネルは、レーキ合成器412によって従来のやり方で合成され、各フィンガーからの同報通信チャネルの出力、例えば、レーキフィンガー406からの同報通信チャネルの出力も、第2のレーキ合成器(図4には示されていない)において合成され、復調されたPCCPCH制御チャネル信号が出力される。
次に、図5を参照すると、チップレベルで干渉を消去する変形スペクトラム拡散レーキ受信機500が示されている。図5の一般的な構成は、上述のCPICH、SCH、およびPCCPCHのチャネルような、3Gシステムの共通チャネルから干渉を消去するのに適している。図5の受信機の素子およびアーキテクチャには、他のより複雑なスペクトラム拡散受信機も取入れることができ、その例は、別途記載する。制御チャネルの信号電力は、専用データチャネルの信号電力よりも大きいことが多いので、一般に、制御チャネルから専用チャネルへの干渉の寄与が取り除かれるが、基本的には、制御チャネルから専用データチャネルへの干渉を取り除くのに、この技術が使用される。図5の受信機は、一方の拡散符号をもつ一方のチャネル、例えば制御チャネルから、他方の実質的に直交する拡散符号をもつ他方のチャネル、例えば専用チャネルへの干渉を抑圧するように構成されている。しかしながら、符号は実質的に直交しているので、第1の見積もりにおいて、全信号は直交しているので、1マルチパス成分内には干渉はなく、このために、1マルチパス成分内で一方の信号を他方の信号から減算する必要はない。しかしながら、マルチパス成分は、送信機から異なるパスをとって、したがって、異なる遅延を加えて、受信機に到達するので、これらのマルチパス成分間で直交性は損われているが、図5の受信機が抑圧することを意図されている干渉は、本質的に、概念上で直交している拡散符号をもち、かつ2つの異なるマルチパス成分において受信機に到達する2つの信号間の干渉である。
別途記載するように、共通チャネルからそれ自体へのIPIの干渉の寄与を抑圧することもできる。この場合は、干渉の初期推定値を生成し、受信信号から取り除き、共通チャネルおよび専用チャネルの推定値を向上する。
図5をさらに詳しく参照すると、受信機500は、従来のスペクトラム拡散受信機と同様に、アンテナ502およびダウンコンバータ(図示されていない)を含んでいる。受信信号は、干渉推定器504と、符号ずれ追跡ブロック506と、チャネル推定器ブロック508と、遅延素子510および干渉消去装置(interference cancellation unit, IC unit)512とを経由して、複数のレーキフィンガー514へ送られる。符号ずれ追跡ブロック506は、受信信号のN個のマルチパス成分を追跡し、干渉推定器504と、レーキフィンガー514と、複数の再拡散器516とへN個の出力を供給する。N個のマルチパス成分の各々は、自分と関係付けられている異なる遅延をもち、符号追跡ブロック506は、N個の追跡ループを、レーキ受信機によって処理される各マルチパス成分に1つずつ、効果的に供給するように構成されている。同様のやり方で、チャネル推定器508は、複数、すなわちN個のチャネル推定出力を、処理される各マルチパス成分に1つずつ供給する。チャネル推定器508は、複数のCPICHの符号生成器および対応する複数の逆拡散器を含み、したがって、符号ずれ追跡ブロック506からN個の符号追跡入力(図示されていない)も受信することが好ましい。したがって、チャネル推定器508は、従来のやり方で、図4を参照して記載したように、例えば、複数のチャネル推定器の各々を使用して動作する。
干渉推定器504の機能は、関連する伝送信号の推定値を、信号が変調されるときはシンボルレベルで供給することである。CPICHの推定値が必要なときは、逆拡散されたCPICH信号は、チャネル推定器508によって供給される信号と、ほぼ同じであるので、干渉推定器は、事実上、不要になる。より複雑な信号からの干渉を推定するときは、干渉推定器は、複数のレーキフィンガーか、または効果的に、もう1つのレーキ受信機を含んでもよい。したがって、PCCPCHまたはマルチコード信号のような、より複雑な信号を推定するときは、干渉推定器は、チャネル推定値をレーキフィンガー出力へ供給するのに、干渉推定器の各レーキフィンガーごとに、符号追跡器506からの入力と、チャネル推定器508からの入力とが必要であることが分かるであろう。干渉推定器の出力505は、例えば、レーキ受信機合成器の硬判定出力からのときは、単一のビットラインであり、または、例えば、干渉推定器504内の複数のレーキフィンガーからの個別の出力からのときは、複数のビットラインである。複数のビットラインを有する場合は、チャネル推定値は軟判定出力であると示唆されるので、干渉推定器504はチャネル推定器508からの入力を必要としない。干渉推定器504がレーキ受信機を含むときは、この受信機は、レーキフィンガー514と同数のレーキフィンガーをもつ必要はないことも分かるであろう。
干渉推定器504からの出力505は、複数の再拡散器516へ入力される。1つ(または複数)の出力505は、シンボルレベルの、CPICH、PCCPCH、などのような、1つ以上の伝送信号の1つ(または複数)の推定値を含む。これらは、再拡散器516によって再拡散され、レーキフィンガー514によって復号される異なるマルチパス成分に対する適切な遅延を加えて、複数の干渉推定値の出力が供給される。各干渉推定値は、適切な伝送信号の推定値に、送信機から受信機へのマルチパス成分の遅延に対応する遅延を加えたものである。しかしながら、マルチパス成分の全てが同じ信号レベル(または位相)で受信機に到達するわけではなく、したがって複数の乗算器518において、推定値を、チャネル推定器508からの対応する出力によって乗算することによって、マルチパス成分の相対電力を補正する。その結果は、複数の干渉推定値520であり、干渉推定値520は、好ましくは、レーキフィンガー514によって処理される受信信号の各マルチパス成分に1つずつ与えられる。
複数の干渉推定信号520の複数の入力が、干渉消去装置(interference cancellation unit, IC装置)512へ供給される。干渉消去装置512への別の入力522は、遅延素子510が、干渉推定プロセスによって取り込まれる遅延を考慮に入れて、受信信号を遅延することによって得られる。干渉消去装置512は、複数の出力524を、各マルチパス成分に1つずつもち、各出力は、複数の入力信号から、関連する推定値を減算または抑圧したものを含んでいる。干渉消去装置512については、より詳しく別途記載するが、大要、推定の干渉の寄与において、1つのマルチパス成分を、それ以外の全マルチパス成分から、抑圧するか、または取り除くものである(1マルチパス成分内では、信号は実質的に直交しているので、そのマルチパス成分自体から推定値を取り除く必要はない)。干渉消去装置512の出力524は、レーキフィンガー514の入力へ供給され、各出力は、対応するレーキフィンガーへ供給される。さらに加えて、各レーキフィンガーは、符号追跡ブロック506およびチャネル推定器508からも1つずつ入力を受取り、したがって各レーキフィンガーは、関連する干渉推定値が抑圧されている入力と、レーキフィンガーが処理するマルチパス成分に適したずれをもつチャネルおよび符号追跡とを受取る。レーキフィンガー514は、N個のレーキフィンガー出力526をもち、レーキ合成器528へ入力を供給し、次に、レーキ合成器528は、合成された(干渉を抑圧された)出力信号530を供給する。レーキ合成器528は、等利得合成または最大比率合成のような従来のやり方で動作する。
図5の受信機は、共通チャネルの干渉抑圧の一般的な形を示しており、大要、干渉の寄与を推定し、再拡散し、希望信号から減算するものである。大要、符号追跡器506は、一方の符号の他方の符号に対する遅延を計算し、次に、これに、適切なチャネル推定値によって重み付けをし、減算するものである。“干渉”信号がデータで変調されるとき、干渉推定器504は、このデータが何であるかの推定を判断し、データを適切に再拡散できるようにする。しかしながら、“干渉”信号が変調されず、したがってデータを保持していないときは、このステップを省略することができる。受信信号に何らかの符号追跡を適用しなければならないが、入力信号を処理した後で、符号追跡を反復すると、関連するマルチパスの遅延をより正確に判断できることが分かるであろう。このような後者の向上した推定は、1マルチパス成分内の互いに直交する信号を消去せず、好ましいと判断される。その理由は、1マルチパス成分内の互いに直交する信号は、互いに実質的に干渉せず、加えて、例えばCPICHのパイロット信号が処理の早い段階において全て取除かれると、このCPICHのパイロット信号を後で符号追跡器の追跡に使用できないからである。
“部分”消去と対照的な、“完全”消去のオプションについては別途記載するが、“完全”消去(すなわち、実質的に直交する成分であっても、全成分を消去する)が適用されるときでも、直交信号の少なくとも一部分を戻して、その後の符号追跡、チャネル推定、および他の機能を簡単にするのが好ましい。
発明者には、逆拡散が線形動作であるので、逆拡散後に、干渉の影響を消去できることも分かるであろう。この場合は、信号を逆拡散し、干渉を計算し、干渉信号を希望信号からシンボルレベルで減算する前に、希望信号符号と干渉信号符号と(適切であれば、チャネル推定値と)を相互相関させる。ここで、シンボルレベルにおける干渉消去の動作の例を、CPICHのパイロット信号を参照して記載するが、当業者には、逆拡散の相関動作が線形であるために、基本的な概念を、他の信号からの干渉の消去に適用できることが分かるであろう。しかしながら、拡散符号は多数のシンボルをまたぐので、希望信号と干渉信号との相互相関は、各シンボルごとに再び計算する必要がある。
シンボルレベルにおける干渉消去の背景にある計算について検討するのは有益であり、CPICHのパイロット信号を使用して、シンボルレベルの干渉消去を例示する。
受信信号r(t)について検討する。受信信号r(t)は、チャネル応答c(t)で畳込まれた伝送データを含んでいる。受信機が受信する信号は、簡単な例において、符号sによって拡散された1データストリームb(n)を、パイロットチャネルsP(t)と共に含むものと仮定する。なおは、シンボル間隔nにおける信号を示す。
Figure 2005516463
このチャネルの畳込みは、存在するL個のマルチパス成分に対して行なう。(逆拡散された)整合フィルターの出力、y(t)は、受信信号を、希望の拡散符号、この場合はsd(t)、によって乗算することによって生成され、したがってy(t)は式2によって得られる。
Figure 2005516463
とくに、1つのマルチパス、kにおいて、標本の整合フィルターの出力、y について検討する。y は、受信信号によって乗算された遅延ずれをもつ拡散符号に対応する。
Figure 2005516463
式3は、3つの項を有し、第1の項は、希望の成分に対応し、第2の項は、希望のマルチパス上の希望の符号と異なるマルチパス上の希望の符号との、すなわちkが1に等しくないときの自己経路間干渉に対応する。式3内の最後の成分は、希望のデータ符号と干渉のパイロット符号との間の相互相関干渉である。相互相関は、kが1に等しいとき、したがって同じマルチパス上では、OVSF符号の直交性のために、ゼロであるときであることが分かるであろう。
Figure 2005516463
式5において、最初の2つの項は、式4の最初の2つの項と同じであり、式4の第3の項は拡張され、減算される干渉の寄与は、式5の最後の項に明示的に書かれている。この最後の項は、(データの項b(n)を除いて)希望のデータとパイロットチャネル符号との相互相関を含み、加算には、kが1に等しい項が含まれているが、厳密に言えば、この項はゼロであるので、必要ないことが分かるであろう。式5から、希望信号を再拡散した後で、不要の成分を減算することによって、言い換えると、シンボルレベルの希望信号から不要の成分を減算することによって、シンボルレベルの干渉消去を実現できることが分かるであろう。希望の符号に、希望のマルチパスに対応するずれをもたせたものを、不要の符号に、不要のマルチパスに対応するずれをもたせたものよって乗算することによって、不要の干渉成分を含む信号が生成される。
図6には、3つのマルチパス成分に対してシンボルレベルの干渉消去を行なうW−CDMAのレーキ受信機600が示されていて、受信機のレーキフィンガーの1つが詳しく示している。
受信機600では、入力アンテナ602が入力信号を受信し、入力信号は符号追跡ブロック604、チャネル推定ブロック606、および(この例では)3つのレーキフィンガー608へ供給される。符号追跡ブロック604は、入力信号の3つのマルチパス成分の符号を追跡し、これらの3つのマルチパスの遅延ずれを含む3つの対応する出力を供給する。符号追跡ブロックの出力は、パイロット符号生成器610およびデータ符号生成器612へ入力を供給する。パイロット符号生成器610は、3つのパイロット(CPICH)符号を、受信機によって処理される各マルチパス成分ごとに1つずつ生成し、3つの符号はマルチパス成分に対応する遅延ずれをもつ。パイロット符号生成器610からの出力610aは、第1のマルチパス成分であり、出力610bは、第2のマルチパス成分であり、出力610cは、第3のマルチパス成分である。同様に、生成器612は、3つのデータチャネル拡散符号を、各マルチパス成分ごとに1つずつ供給する。データ符号生成器612の出力612aは、第1のマルチパス成分であり、出力612bは、第2のマルチパス成分であり、出力612cは、第3のマルチパス成分である。受信機600の例示的な実施形態では、3つのレーキフィンガー608a、608b、608cがあり、各レーキフィンガーは、実質的に同じ機能をもつが、異なる組の入力信号を受信する。全てのレーキフィンガーは、アンテナ602からの入力信号614と、各マルチパスに対するチャネル推定値606a、606b、606cとを受信する。レーキフィンガー608aは、受信信号の第1のマルチパス成分を逆拡散し、データ符号生成器612から、第1のマルチパス成分のための、適切なずれをもたせた1つのデータチャネル拡散符号612aを受信する。レーキフィンガー608aは、他の全てのマルチパス成分、この場合は、ライン610bおよび610c上の第2および第3のマルチパス成分に対応する遅延ずれをもたせたパイロット拡散符号も受信する。普通は、各レーキフィンガーは、レーキフィンガーが処理しているマルチパス成分に対応するずれをもたせたデータ符号と、他の全てのマルチパス成分のパイロット符号とを受信する。
ここで、レーキフィンガー608の1つをより詳しく記載する。他のレーキフィンガーは、このレーキフィンガーに符合する。相互相関器616を使用して、受信信号入力614を、受信信号の第1のマルチパス成分に適切なずれをもたせたデータ符号612aと相関させ、シンボルレベルの出力618を得て、遅延装置620によって出力618を遅延させ、逆拡散された受信信号と干渉推定値とを整列させる。相互相関器622および624は、レーキフィンガーによって処理されるマルチパス信号のデータ拡散符号612aを、干渉推定値が計算される他のマルチパス成分の各パイロット符号拡散信号610cおよび610bと相互相関させる。次に、乗算器626および628において、相互相関器622および624からの各出力を、チャネル推定値606cおよび606bによってそれぞれ乗算し、その結果をライン630上で合成(加算)して、式5の最終項を生成する。簡潔にするために、相互相関器と乗算器とに同じ記号が使用されているが、当業者には、相互相関は乗算と加算とを含むことが分かるであろう。同様に、便宜を図って、式5の最終項は“ライン630”上に存在すると記載したが、実際には、レーキフィンガーはソフトウエアにおいて実行されることが多く、したがって干渉項は、図示されているように1物理ライン上には存在せず、むしろ、計算の中間項として存在し、例えばレジスタ内に記憶される。
相互相関器622および624によって行われる相互相関のために、干渉推定値630はシンボルレベルの推定値であり、既に記載したように、遅延信号618もシンボルレベルの信号であることが分かるであろう。干渉消去装置(interference cancellation unit, IC unit)632は、シンボルレベルの受信信号から、シンボルレベルの干渉推定値を減算して、干渉が抑圧されたシンボルレベルの出力を供給するように動作する。その後で、このシンボルレベルの信号は、乗算器636によって、第1のマルチパス成分606aのチャネル推定値と乗算され、その結果は、レーキ合成器638への1つの入力へ供給される。レーキ合成器638への他の入力は、他のフィンガー608bおよび608cから供給され、3つのレーキフィンガーからの信号は合成され、復調された出力信号640が供給される。
図6の受信機600において、干渉推定器は、本質的に、パイロット符号生成器610、データ符号生成器612、相関器622、624、および乗算器626、628を含んでいる。異なる信号からの干渉を消去するために、パイロット符号生成器610を、異なる符号生成器と置換してもよいことが分かるであろう。同様に、PCCPCHのようなデータ搬送信号のときは、符号生成器610を、各マルチパス成分の再拡散されたデータを推定するための手段に置換してもよく、このような手続きについては、PCCPCHの干渉消去に関連して別途記載する。
図6のアーキテクチャでは、希望信号および干渉信号の両者は逆拡散されるので、ある観点では、図5の構造よりも、より複雑である。しかしながら、相関器622および624の各々が行う相互相関は、単に、モジューロ2エディションによって容易に行うことができる2つの二値拡散符号を乗算することを含むので、実際には、受信機を実行するのはより簡単であることが多い。さらに加えて、実施形態では、多数の遅延ずれにおいて、相互相関行列を予め計算してもよい。1シンボルにおいて干渉の寄与の平均をとり、フィンガーの出力から減算し、さらに1シンボルにおいて平均をとって、干渉消去装置632の複雑さを軽減してもよい。
図7および8には、図5および図6の受信機に適した干渉消去装置が示されており、ここで、より詳しく記載することにする。一般に、干渉消去装置は、要求される性能と複雑さとの折り合い、受信機の設計において使用可能なチャネル推定値および干渉推定値の品質、並びに無線チャネルの構成にしたがって選択することができる。これから記載する技術は、チップレベルおよびシンボルレベルの両者の消去に適用することができる。しかしながら、シンボルレベルの消去を用いるときは、希望のマルチパス成分の干渉信号が、希望のマルチパス成分上に確実に残るようにすることは比較的に重要ではなく、これは、直列の消去を用いるか、または並列の消去を用いるかが比較的に重要ではなく、したがって、これから記載する、より簡単な完全消去技術か、またはハイブリッド完全消去技術を用いることができることを示唆している。
最初に図7aを参照すると、これは、簡単な干渉消去構造700を示しており、全てのマルチパス成分からの干渉の寄与702は、加算器704において加算され、減算器706によって受信信号701から減算される。次に、減算器706からの1つの出力は、スプリッタ(分波器)708によって、レーキ受信機の各フィンガーに1つずつ、すなわち受信機によって処理される各マルチパス成分に1つずつ、複数の出力710に分割される。加算および減算は、ハードウエアではなく、むしろソフトウエアにおける演算であり、したがって、例えば減算器706は、受信信号701から、加算器704からの出力705を減算して、結果707を与える減算を含むことが分かるであろう。
図7aの構成では、同じ信号が入力から全てのレーキ受信機のフィンガーへ向かって減算されるので、(N個のフィンガーにおいて)1サンプル当りに必要とされる演算数は、(チャネル推定値を再拡散して、適用するための)N回の複素乗算、N個の入力の1回の複素加算、および1回の減算である。しかしながら、拡散符号が二値であるときは、再拡散のためのN回の複素乗算は、N回の複素加算になる。
図7aのアプローチでは、干渉信号が、希望のマルチパス成分と同じ遅延をもっていても、干渉信号を加算する。したがって、この成分において、妨害波は希望信号と直交するので、性能は向上しない。これは、全符号が相互に実質的に直交しているときは、1パスチャネル内で、セル内干渉が発生しないといった事実から分かるであろう。特定のパス上の希望信号から、そのパス上の干渉信号を取り除くことを検討するときに、同じ理由が適用され−したがって、これらの2つの信号は直交しているので、ここでも、性能の向上は実質的に実現されない。このアプローチには、例えば、フィンガーがチャネル推定値を再計算するのに、CPICH信号を必要とする場合に、干渉を抑圧された出力は、次のレーキフィンガーにおいて使用できないといった欠点もある。
図7bは、干渉信号の並列消去を適用した第2の干渉消去器720が示されており、すなわち1つのマルチパスからの干渉の寄与は、受信信号のそのマルチパス成分からは除去または抑圧されないが、受信信号の他の全てのマルチパス成分からは除去または抑圧される。したがって、図7bにおいて、干渉消去器720は、複数の干渉推定入力722a、722b、722c、および複数の減算器724a、724b、726a、726b、728a、728bを有する。各干渉入力、例えば入力722bは、複数の関係付けられた減算器、例えば、減算器726a、726bを有し、受信信号701の関連するマルチパス成分から干渉推定値を減算する。干渉消去器は、出力730、すなわちレーキ受信機の各フィンガーごとに1つの出力730a、730b、730cを有する。したがって、例えば、出力730bは、受信信号701から、減算器724aによってマルチパス1からの干渉推定値722aを減算し、さらに減算器728bによってマルチパスNからの干渉推定値722cを減算したものである。
図7bの干渉消去器720の性能は、図7aの全消去器700の性能に類似しているが、干渉消去器720は、各マルチパス成分上に直交の“干渉”信号を残して、後で処理するのに使用できるようにしている。しかしながら、図7bの干渉消去器720は、より複雑であり、図7aの消去器700と比較して、より多くの計算が必要である。
Figure 2005516463
次に、図7cを参照すると、これは、直列または逐次消去アーキテクチャをもつ干渉消去器740を示している。干渉消去器740は、逐次消去形式で、希望のマルチパスよりも大きい信号電力をもつマルチパスのみから、干渉の寄与を減算するのに用いられる。したがって、事実上、マルチパス成分は分類され、マルチパス1は最強の信号をもち、マルチパス2は次に強い信号をもち、マルチパスNは最も弱い信号をもち−言い換えると、マルチパス成分は、信号強度の大きさ順に配置される。おおよその干渉消去は、マルチパス1のパス2および3への経路間干渉の作用を消去し、パス2のパス3への干渉の作用を消去するが、パス2および3のパス1へのIPIの作用を無視することによって達成できる。したがって、図7cにおいて、第1のマルチパス成分の出力744aは、受信信号701のみから成り、第2のマルチパス成分、すなわち第2のレーキフィンガーへの出力744bは、減算器746によって、受信信号701から、第1のマルチパス成分からの干渉の寄与の推定値742aを減算したものである。同様に、N番目のマルチパス成分の出力744c(この場合は、第3のレーキフィンガーへの第3のマルチパス成分)は、減算器748によって、信号出力744bから、第2のマルチパスからの干渉推定値742bを減算したものであり、信号出力744bは、受信信号701から、第1のマルチパス成分からの干渉推定値742aを既に減算したものである。
図7cの構成は、図7bの干渉消去器720と比較して、僅かに性能が劣るが、そのアーキテクチャはより簡単であり、n個のフィンガーにおける1チップ当りの演算には、チャネル推定値を再拡散して適用するためのN−1回の複素乗算(または、二値の拡散符号の場合は、加算)と、N−1回の複素減算とが必要である(すなわち、図7cの消去器740の場合は、2+1+0である)。しかしながら、2つ以上のマルチパスが同様の大きさである場合か、または最も強いパスから最も弱いパスへの順序付けが、例えばシャドウイングおよびマルチパスフェージングのために、迅速に変化すると予測される場合か、あるいはこの両者の場合は、図7cの干渉消去器740は、一般に好ましくない。
図7dは、並列消去素子と逐次消去素子との両者を含むハイブリッドアーキテクチャの干渉消去器760を示している。大要、干渉消去器760のアーキテクチャは、干渉消去器740のアーキテクチャに対応していて、複数のマルチパス成分のための複数の干渉推定入力762a、762b、762cと、複数のマルチパス成分を抽出するための対応する複数のレーキフィンガーによって処理される複数の干渉抑圧された出力764a、764b、764cとを含む。同様に、各干渉推定入力は、減算器の関係付けられている組と接続され、1つのマルチパス信号の推定値を、他の全てのマルチパス成分の信号から減算する。したがって入力762aは、減算器766a、766bと関係付けられていて、入力762bは、減算器768a、768bと関係付けられていて、入力726cは、減算器770a、770bと関係付けられている。同様に、各出力は、減算器の関係付けられている組をもつと考えられる。例えば、出力764bは減算器766aおよび770bと関係付けられている。しかしながら、図7dの干渉消去器760は、各減算器と関係付けられている重み付け手段をもち、適切なマルチパス成分から干渉の寄与の推定値を減算する前に、それに重み付けする。したがって、減算器766a、766bは重み772a、772bと、減算器768a、768bは重み774a、774bと、減算器770a、770bは重み776a、776bと関係付けられている。各重み付け手段は、重み、好ましくは実の重みによって入力を乗算するように動作し、基準化された入力信号を供給する。重み付け手段は、ハードウエアの乗算器またはソフトウエアの乗算の演算を含む。加えられる重みに依存して、干渉消去器760は干渉消去器720か、または干渉消去器740の何れかに似るので、図7dのアーキテクチャは、ハイブリッドと呼ばれる。図7dに示されているように、干渉消去器は、受信信号701を複数の成分へ分割するためのスプリッタ(分波器)778も含んでおり、スプリッタ778の後で、干渉を抑圧する処理を行なう。
図7dのアーキテクチャは、劣悪な品質のチャネル推定値が全消去動作へ与える影響を最小化するのに役立つ。したがって、これが得るマルチパス成分の信号品質が良好であるか、または劣悪であるか、すなわち搬送波対干渉および雑音比が高いか、または低いかに依存して、干渉の寄与の推定値に重み付けすることができる。一般に、信号チャネルまたはマルチパス成分の信号レベルが、劣悪であるときは、干渉推定値は劣悪になり、受信信号からこの劣悪な推定値を減算すると、干渉を抑圧するのではなく、むしろ取込んでしまうことがある。したがって、この情況では、推定値が不良であることが分かっているときは、干渉の寄与の推定値の一部のみか、またはそれを基準化したものを減算するのが好ましく、その理由は、こうすることにより、受信信号全体を向上する可能性が高く、過度な劣化がもたらされないからである。対照的に、干渉の寄与の推定値を強力な信号から求めたときは、推定値が正確である信頼度が大きいので、推定値を受信信号からほぼ完全に消去することができる。
図7dの干渉消去器760では、各IPIの干渉の寄与の推定値を、(これが得るマルチパス成分を除く)任意のマルチパス成分から減算することができる。減算前に、γx、yを加えて、重み付けを行なう。なお、xを、希望のレーキフィンガーとし、yを、干渉を起こしているマルチパスとする。γを1に設定すると、図7dの干渉消去器が、全ての重みがゼロの並列消去に相当し、システムは、従来のレーキ受信機に似て、したがって、消去器を、図7cのように直列または逐次消去器として動作するように再構成することができる。既に記載したように、このアーキテクチャの1つの長所は、劣悪な品質の干渉推定値には、小さい、またはゼロの重みをあたえ、よりよい干渉推定値には、より大きい重みを与えることができることである。同一レーキフィンガー上での干渉マルチパスの消去、すなわち、例えば、第1のマルチパス成分を処理しているレーキフィンガーにおいて、信号から、マルチパス1からの推定値を消去することを含めてもよいが、役に立たない場合は、省くのが好ましい。したがって、γ1,1=γ2,2=γn,n=0である。
電力消費を低減することが重要である場合の実施形態では、可能であれば、または適切であれば、重みを事実上ゼロに設定でき、したがって、関係する減算を行う必要は無くなる。図7dの干渉消去器760に必要な演算数は、再拡散するための最大N回の複素乗算、または二値拡散符号の場合は、加算であるが、γx、y=γ1、y=γ2、y=0であるときは、この数は、重み付けを行うための最大N(N−1)回の複素乗算、および最大N(N−1)回の複素減算に低減する。
図7eには、図7dの干渉消去器760を簡略化した干渉消去器780が示されている。要するに、干渉の寄与の推定値の重みを全レーキ受信機フィンガーにおいて同じに設定することによって、すなわち図7eの重みγを、干渉消去器760の重みに関して、
γ=γ1、y=γ2、y=γx、y
に設定することによって、干渉消去器760から、干渉消去器780が得られる。
したがって、干渉消去器780は、複数の重み786a、786b、786cを、各マルチパス成分の干渉の寄与の推定値782a、782b、782cに、1つずつ含む。これらの重み付けされた干渉の寄与の推定値を加算器788において加算して、単一の合成された干渉推定値790を生成し、干渉推定値790は、減算器792によって受信信号701から減算される。その後で、スプリッタ794は、この干渉抑圧信号784の同じものを、レーキ受信機の各フィンガーへ供給する。
干渉消去器780のアーキテクチャは、消去を行うのに必要な乗算数を相当に低減する。したがって、再拡散するための最大N回の複素乗算(または二値拡散符号の場合は、加算)(γx,y=γ1,y=γ2,y=0であるときは、Nはより小さくなる)、重み付けを行うための最大N回の複素乗算、および最大N(N−1)の複素減算が必要とされる。
図8には、図7eの干渉消去器780の変形である干渉消去器800が示されている。図8の干渉消去器800の構造が、どのように図7aないし7eの干渉消去器の構造から導き出されるかを示すために、干渉消去器780から引き継いでいる特徴に、図7eと同じ参照番号を与えた。各マルチパス成分ごとに、そのマルチパス成分を処理しているレーキフィンガーにおいて、マルチパス成分に重み付けして、受信信号から減算したものを、その信号へ再び加算することが分かるであろう。したがって、加算器802は、786aにおいてマルチパス1からの干渉推定値782aにγを重み付けしたものを、減算器792からの出力784へ再び加算し、この出力808aを、受信信号の第1のマルチパス成分を処理するレーキ受信機のフィンガーへ供給する。同様に、加算器804は、干渉推定値782bに重み付けしたものを、既に減算された出力784へ再び加算して、出力808bを供給し、加算器806は、干渉推定成分782cを、既に減算されたものに再び加算して、出力808cを供給する。
したがって、図8の構成では、全パスからの干渉の寄与を加算して、受信信号から減算して、計算数を低減するが、(直交の)干渉信号を存在させ、この信号を、対応する(直交の)干渉を抑圧されたパスに再び加算する。例えば、逐次の向上したCPICHベースのチャネル推定が望ましいときは、これは、干渉を抑圧された信号の処理をさらに容易にする。干渉消去器800は、ハイブリッドまたは並列の消去に用いてもよく、並列消去では、重み(γ)は1に設定される。実行の複雑さは、消去器を実行するための計算によって判断される。この計算は、各パスごとに、再拡散するための最大N回の複素乗算(または二値拡散符号の場合は、加算)(γx、y=γ1、y=γ2、y=0であるときは、Nはより小さい)、重み付けするための最大N回の複素乗算、N回の複素減算、および干渉信号を再び加算するためのN回の複素加算を含む。
Figure 2005516463
Figure 2005516463
ここで図9を参照すると、CPICH消去を行なうW−CDMAのレーキ受信機900が示されている。同じアーキテクチャは、任意のチャネル、すなわち、事前の伝送データ、例えば一次および二次のSCHのチャネルに適用することができる。図9は、専用チャネルから共通パイロットチャネルを消去するための1つの受信機アーキテクチャを示しているが、図5の一般的なアーキテクチャに基づく他のアーキテクチャを用いることもできる。図9において、受信信号904は、受信アンテナ902から複数のレーキフィンガー906の各々へ供給される。大要、受信機900のアーキテクチャの背後にある概念は、CPICHを再構成し、経路間干渉を取り除くようなやり方で、それを受信信号904から抑圧することである。
図9の受信機では、変形レーキフィンガー906を使用して、受信信号の対応するマルチパス成分に対する干渉推定値908を得る。既に記載したように、これらの干渉推定値は干渉消去装置910へ個々に(または、他の実施形態では、合成して)供給され、干渉消去装置910は複数の出力912をレーキフィンガー906へ再び供給する。干渉消去された出力912は、抑圧された非直交のCPICHの干渉推定値をもち、したがって、レーキフィンガー906によって通常のやり方で逆拡散され、各マルチパス成分ごとに、向上した逆拡散された信号出力914を供給することができる。これらの向上した出力は、従来のやり方で、レーキ合成器916によって合成され、マルチパス成分から干渉を抑圧されたものを使用して、合成出力を生成するので、ビット誤り率の低下した合成復調出力918が供給される。
受信機900のレーキフィンガー906a、906b、906cは実質的に同じである。したがって、例えば、レーキフィンガー906aは、CPICH符号追跡器920、920’、およびチャネル推定器922、922’を含み、両者は、受信信号904から入力を受取る。符号追跡器920は、レーキフィンガー906aによって処理されるマルチパス成分の符号を追跡し、チャネル推定器922は、CPICHのパイロット信号を逆拡散することによって、そのマルチパス成分のチャネル推定値を供給する。図9には、符号追跡器920およびチャネル推定器922が、2つずつ示されており、その理由は、これらのブロックが2回使用されるからであり、1回は干渉の寄与の推定に、もう1回(これらのブロックの主要な方)は専用データチャネル信号を回復するのに使用される。しかしながら、実際には、これらの機能素子は1つだけ用意されていることが多く、これらのブロックからの出力は、信号回復のために再使用されるが、干渉消去装置910によって取入れられる遅延を考慮に入れて、時間遅延を加えて、出力をずらしている素子920’’および922’’を点線によって示している。
符号追跡およびチャネル推定は従来のやり方で行われ、チャネル推定器922の出力は、逆拡散されたCPICHであり、チャネル推定器922の出力は、次に、再拡散器924によって、レーキフィンガー906aによって処理されるマルチパス成分に対応するずれを加えて、符号追跡器920からの出力を使用して、再拡散される。再拡散されたこのマルチパス成分のCPICH信号926は、干渉の寄与の推定値908の中の1つを、干渉消去装置910へ供給する。他の2つのレーキフィンガー906bおよび906cにおいて、干渉推定値926は、受信信号から減算される。
レーキフィンガー906aにおいて干渉消去装置910からの出力912は、DPCH符号生成器928からのDPCH符号によって、逆拡散器930において相関させられる。次に、逆拡散器930の出力は、乗算器932において、逆拡散された出力を、チャネル推定器922’からのチャネル推定値の共役によって乗算することによって、マルチパス成分のチャネル応答によって変更され、レーキフィンガーの出力914はレーキフィンガー合成器916へ供給される。レーキフィンガー906aの信号回復部分は、一般的な従来のやり方で動作することが分かるであろう。
受信機900の干渉の計算および消去の段階または部分では、次のステップを行う。
1.例えば、遅延ロックループによって、CPICHの符号ずれを計算する。
2.CPICHからチャネル推定値を計算する。
3.このマルチパスのCPICH信号を、遅延(符号位置)、大きさ、および位相に対する特定の値で再拡散する。
4.全部でN個のフィンガーにおいて、ステップ1ないし3を反復する。
5.例えば、上述の干渉消去方式を使用して、受信信号から、再拡散されたCPICHをN回減算して、推定干渉を取り除く。
これにより、干渉消去装置の出力上に示されているN個の信号が得られる。次の段階では、希望信号を回復し、このタスクを実行するためのステップを次に示す。
6.符号ずれを計算する。これは、再び行っても、または上述のステップ1からの前の推定値を使用してもよい。
7.正しい符号ずれの希望符号で逆拡散する。
8.チャネル推定値を計算する。これは、再び行っても、または上述のステップ2からの前の推定値を使用してもよい。
9.チャネル推定値を適用する。
10.全部でN個のフィンガーにおいて、ステップ6ないし10を繰返す。
11.全部でN個のフィンガーを加算する。
ステップ6において、符号追跡が再び行われるときは、パイロット信号が希望信号から消去されているかどうかに依存して、DPCHまたはCPICHのチャネルに対して行なわれる。前の推定値を使用するときは、干渉消去装置における待ち時間を補償するのに、遅延を取入れる必要がある。
上述のステップは、例えば、ソフトウエア無線プロセッサまたはディジタル無線プロセッサのためのファームウエアとして、図9の受信機を実行するための機能を行なうソフトウエアにおいて実行されるアルゴリズムを記載していることが分かるであろう。その代わりに、受信機を実行する特定用途向け集積回路のためのフィールドプログラマブルゲートアレイの機能上の定義を書込むのに、このアルゴリズムを用いてもよい。
図10には、2つのチャネル推定器を備えたW−CDMAのレーキ受信機1000が示されており、第1のチャネル推定器1002では、推定干渉を減算する前に、CPICHからの干渉の寄与の推定値を生成し、第2のチャネル推定器1004では、CPICHの干渉を干渉抑圧器1006によって減算した後で、CPICHの干渉を推定するための第2のチャネル推定値を生成する。したがって、図10に示されている受信機1000では、干渉を2回推定し、最初の推定の干渉の寄与を、受信信号から減算した後に、もう1回推定する。しかしながら、別途記載するように、第1のチャネル推定器を省いて、干渉消去器1006の後に第2のチャネル推定器1004があっても、第2のチャネル推定器1004を使用して、干渉消去器1006に干渉推定値を供給してもよい。大要、これは、CPICHは変調されないために可能であり、したがってマルチパス環境が定常であるときは、チャネルを推定することができ、すなわちCPCIHを逆拡散して、1時点においてCPICHの干渉の寄与の推定値を求めることができ、後でこの推定値を使用して、受信信号から干渉の寄与を減算して、より正確な干渉推定値を生成する。ソフトウエアの言語では、スペクトラム拡散受信機1000は、実際には反復的に動作している。図10の受信機は、図示されているように、CPICHの消去を2回使用し、より詳しくは、CPICHの消去のさらに多くのステップの中の1つを実行して、戻りを少なくする法則にしたがって、干渉推定値を連続的に向上することができる。さらに加えて、干渉消去の反復アプローチでは、実際には、チャネル推定および干渉消去の動作を2回以上行って、よりコンパクトなアーキテクチャで、より向上した出力信号を得る。
反復の消去後チャネル/干渉推定技術は、CPICHのパイロット信号に使用するのに制限されず、変調されていない潜在的に干渉するスペクトラム拡散信号に適用されることが分かるであろう。この技術は、定常のマルチパス環境に制限されないが、より早い時点からの推定値を使用して、より後の時点における干渉の寄与を推定するので、迅速に変化するマルチパス環境では、より頻繁な干渉推定が必要となることも分かるであろう。また、チャネル/干渉推定値は、より短い時間期間において平均される傾向があり、したがって、雑音をより多く含むことが示唆される。しかしながら、実際には、一般に、迅速に変化するマルチパス環境においても、十分に正確な推定を行うことができる。その理由は、一般に、マルチパス環境の変化よりも速く、十分に正確なチャネル/干渉推定値を求めることができるからである。
ここで、図10をより詳しく参照すると、スペクトラム拡散信号は、アンテナ1008によって受信され、ダウンコンバータ1010によって周波数を下げられ、複数のチャネル推定器1012a、1012b、1012cへ入力され、各チャネル推定器では、受信信号からのマルチパス成分の推定の干渉の寄与を出力するように働く。したがって、既に記載したように、各チャネル推定器は、CPICH符号生成器1014と、逆拡散器1016と、チャネル推定値、ここではCPICHの推定値、すなわち干渉推定値を計算するための手段1018とを含み、チャネル推定器1012aからは干渉推定出力1020a、推定器1012b、1012cからは出力1020b、1020cを供給する。チャネル推定処理では、干渉推定値に遅延を取り込むので、受信信号もメモリ1022内に一時的に保持され、受信信号を干渉推定値と整列させる。既に記載したように、受信機は、符号追跡もCPICH符号生成器1014に組込んでいるが、簡潔化のために、これは図10には示されていない。干渉消去器1006は、遅延された受信信号から、干渉の寄与の推定値1020a、1020b、1020cを減算して、出力1024を、第2のチャネル/干渉推定器1004へを供給する。出力1024は、チャネル推定器1004の各レーキフィンガーのための個別の出力を含むか、またはチャネル推定器1004のレーキフィンガーが符号追跡を含むときは、出力1024は、全マルチパス成分の合成出力信号を含む。この場合は、レーキフィンガーは、この合成信号からマルチパス成分を追跡および抽出できる。干渉の寄与の推定値1020a、1020b、1020cは、受信信号から減算される前に再拡散されるが、簡潔化のために、これらの再拡散器は図示されておらず、干渉消去器1006の中か、さもなければ図7aないし7eおよび8に示されているものの中の1つの中に組込まれていると仮定する。
第2のチャネル/干渉推定器1004は、3つの同様のレーキフィンガー1026a、1026b、1026cを含んでいる。これらの各々は、出力1028a、1028b、1028cをレーキ合成器1030へ供給し、代わって、レーキ合成器1030は、合成された復調出力信号1032を供給する。簡潔化のために、レーキフィンガー1026aのみについて詳しく記載することにする。
レーキフィンガー1026aは、符号追跡器1036と、1対の逆拡散器1038と、1040とへの入力1034を含む。符号追跡器1036は、CPICH符号生成器1042と、DPCH符号生成器1044とへ出力を供給し、代わって、CPICH符号生成器1042は拡散器1038へ出力を供給し、DPCH符号生成器1044は逆拡散器1040へ出力をそれぞれ供給する。したがって、逆拡散器1038は、入力1034からCPICH信号を逆拡散するように動作し、逆拡散器1040は、同じく入力1034に対してDPCHチャネル上のデータを逆拡散するように動作する。チャネル推定器1046は、逆拡散されたCPICH信号を使用して、例えば、1つ以上のシンボルにおいて平均することによって、チャネル推定値を計算し、ライン1048上にチャネル推定出力を供給する。既に記載したように、このチャネル推定出力の共役を、乗算器1050への入力へ供給し、逆拡散器1040の出力を修正して、チャネル特性を補償し、出力1028aをレーキ合成器1030へ供給する。
チャネル推定が適用するマルチパス成分に適切な遅延ずれをもたせたチャネル推定値を再拡散することによって、チャネル推定器1046の出力1048を使用して、CPICHパイロット信号からDPCHチャネル信号への干渉の寄与の推定値を得ることができる。言い換えると、CPICHチャネルは変調されていないので、逆拡散されたCPICH信号は、関連するマルチパス成分の干渉推定値を含んでおり、チャネル推定器1046によって平均をとる必要がある。したがって、干渉推定ブロック1012aからの出力1020aの代わりに、レーキフィンガー1026aからの出力1048を使用して、干渉消去器1006への入力を得る。同様に、推定器1012bからのチャネル推定出力1020bの代わりに、レーキフィンガー1026bからのチャネル推定出力を使用してもよく、推定器1012cからの出力1020cの代わりに、レーキフィンガー1026cからのチャネル推定出力を用いてもよい。受信機アーキテクチャ内にこのようなループを生成することは、チャネル推定値を計算するレーキフィンガー1026が、干渉の寄与のCPICHが既に抑圧されている信号に働いて、向上したチャネル/干渉推定値が得られるといった特長がある。
チャネル推定器1046は、1つ以上のシンボルにおいて平均をとることができるが、このような場合は、干渉推定値は、事実上、1つ以上のシンボル分、遅れることが分かるであろう。推定値を判断する期間は、拡散率に依存して変化する。その理由は、より小さい拡散率が使用されるときは、シンボル期間は短くなり、より多くのシンボルにおいて平均をとることが適切になるからである。その代わりに、移動平均を用いて、例えば、推定点前、およびオプションで推定点後に、固定または可変のチップ数、nを使用して、1シンボル期間当りの、1チャネル/干渉推定値を計算してもよい。
CPICHチャネルからの干渉の消去について記載してきたが、他の変調されていないチャネル、例えば一次および二次のSCHのチャネルから、干渉を消去するのにも、この技術を使用してもよいことが分かるであろう。これまでの記載から、図10の受信機アーキテクチャ1000は、少なくとも3つの動作モード、すなわち消去前チャネル推定方式、消去前および消去後のチャネル推定方式、および既に詳しく記載した消去後チャネル方式を提供することが分かるであろう。消去前チャネル推定方式では、レーキフィンガー1026a、1026b、1026c内のチャネル推定器の代わりに、チャネル推定器1012a、1012b、1012cを使用し、したがって、CPICH符号生成器1042、逆拡散器1038、およびチャネル推定器1046を含むチャネル推定器を省いてもよい。したがって、受信機は単純になるが、IPIの寄与が抑圧される前に、チャネルが生成されるので、チャネル推定値の精度が下がるという犠牲を払うことになる。図10には、消去前および消去後のチャネル推定のアーキテクチャの受信機が示されていて、第1の推定値は、干渉消去前に、チャネル推定器1012a、1012b、1012cによって生成され、第2の向上した推定値は、干渉消去後に、レーキフィンガー1026a、1026b、1026cにおいて計算される。この構成では、レーキフィンガー処理に、向上したチャネル推定値を供給するが、この受信機は、基本的な消去前チャネル推定受信機よりも、より複雑である。消去後チャネル推定受信機では、チャネル推定器1012a、1012b、1012cは省かれ、レーキフィンガー1026a、1026b、1026c内のチャネル推定器を使って、予め計算されたチャネル推定値を干渉消去器において使用して、レーキフィンガーと干渉消去器1006との両者のためのチャネル推定値を計算する。この構成では、受信機の複雑さが緩和され、さらに加えて、予め計算されたチャネル推定値は、短期間において有効である可能性が依然として高いので、チャネル推定値が向上するといった長所をもつ。希望のCPICH信号は各マルチパス成分上に残っていて、他のパスからのCPICHのIPIのみが抑圧されているので、チャネル推定値は、引き続きレーキフィンガー1026a、1026b、1026cによって計算される。
対応するやり方では、干渉消去の前、干渉消去の後、または干渉消去の前および後の両者において、図10の受信機アーキテクチャの符号追跡、例えば、遅延ロック符号追跡ループ(Delay Locked Code Tracking Loop, DLL)を実行することができる。消去前符号追跡を実行するために、DLLを、干渉消去器1006の前に、すなわちブロック1002内でのみ使用し、レーキフィンガー1026a、1026b、1026cにおいて、同じ遅延推定値を使用する。遅延計算(DLL)と、レーキフィンガーにおける遅延推定値の使用との間に遅延を、整数のシンボルになるように置くことも好ましい。この場合は、受信機の消去前および消去後の消去素子1002、1004において、チャネライゼーションコードを時間整列させることもできる。この消去前符号追跡アプローチは、既に記載したように、消去前チャネル推定か、または消去前または消去後のチャネル推定と最良に組合わされる。
代わりのアーキテクチャでは、符号追跡は、干渉消去前および干渉消去後に行われる。すなわちチャネル推定ブロック1012において行われ、再びレーキフィンガー1026において行われる。したがって、最初に、干渉消去の前に、第1の符号追跡推定値を生成し、その後で、干渉消去後に、遅延位置を再び計算する。これは、干渉の寄与を抑圧した後で、データを拡散するための符号追跡を行うので、レーキフィンガーにおける遅延位置推定を向上し、したがって向上した品質のデータを出力する傾向がある。このアプローチを、上述の消去前および消去後のチャネル推定手続きと組合せることが好ましい。
このアプローチでは、干渉消去の前および後の一方または他方のみにおいて符号追跡を行うのに対して、干渉消去の前および後の両者において符号追跡を実行し、レーキフィンガーの前に、3つの相関器を追加する必要があるので、アーキテクチャが複雑になるといった欠点がある。このために、上述の消去後チャネル推定に対応するやり方で、消去後符号追跡を適用することが好ましい。こうすることにより、レーキフィンガー内にのみ符号追跡器を構成することができ、チャネル推定ブロック1012a、1012b、1012c内に符号追跡を含む必要がなくなる。したがって、例えば、この構成では、レーキフィンガー1026a内の符号追跡器1036の出力を用いて、チャネル推定ブロック1012a内のCPICH符号生成器1014と、レーキフィンガー1026a内のCPICH符号生成器1042およびDCPH符号生成器1044とを駆動することができる。同様に、他の2つのレーキフィンガー1026b、1026c内の符号追跡器を用いて、チャネル推定器1012b、1012c内のCPICH符号生成器を駆動することができる。消去後符号追跡を、消去前または消去後のチャネル推定に使用できることが分かるであろう。
図11ないし14は、専用のDPCHのデータチャネルのビット誤り率に対する、CPICHの共通パイロット信号の干渉消去の効果の例を示している。グラフは、ユーザ端末において干渉消去技術を適用することによって、ユーザエンドにおいて実現できる容量の増加とサービス品質の向上とを示している。
図は、異なるユーザデータレートの2本のパスのフェージング伝搬状態において実行されたシミュレーション結果を示している。図11および12は、3GPPの技術仕様25.101バージョン3.2.2に定められているケース1、すなわち280ナノ秒の小さい遅延スプレッドをもつ等しくないパスのモデルに関係していて、図13および14は、3GPPのケース4、すなわち488ナノ秒の遅延スプレッドをもつ2本の等しいパスに関係している。3GPPのケース1およびケース4の仕様は、移動端末の速度が1ミリビット秒ではなく、20ミリビット秒であると仮定されていることを除いて、シミュレーションにおいて用いられている。図11および13は、低ユーザデータレート、すなわち12.2キロビット秒のベアラ(sf=128)に関係し、図12および14は、高ユーザデータレート、すなわち384キロビット秒のベアラ(sf=8)に関係し、異なる拡散率の影響が示されている。ユーザを単一と仮定し、簡潔化のために、2本のチャネル、すなわちCPICH(共通パイロットチャネル)とDPCH(専用物理チャネル)のみについて交差チャネルのIPIを検討し、示されている結果には、前方誤り訂正符号化の影響は含まれていない。
次の表3では、シミュレーションに使用されたパラメータを示している。
Figure 2005516463
図11ないし14の全てにおいて、x軸1102は、DPCH信号の信号対雑音比を表現し、y軸1100は、DPCHチャネルから復調されたデータのビット誤り率を表現している。これらの図の各々には、5本の曲線が示されていて、曲線1104は、Additive White Galcion Noise(AWGN)干渉の影響を示し、曲線1106は、干渉消去されないときの影響が示されていて、曲線1108は、順次干渉消去(図7c参照)の影響を示し、曲線1110は、並列干渉消去(図7b参照)の影響を示し、曲線1112は、干渉がない、すなわちCPICHのチャネルが存在しないときの影響を示している。曲線1106(干渉消去なし)と曲線1112(干渉なし)とは、干渉消去システムの性能の理論上の下限と上限とを表現していることが分かるであろう。DPCHのIPIから生じる自己干渉は、図11ないし14の目的において検討されていない。
図11ないし14の2つの部分のモデルにおいて、第1のパス上のDPCH信号は、他方のパス上のDPCH信号およびDPICH信号の両者からのIPIに遭遇してしまう。その理由は、分散性のマルチパス環境のために非直交であるからである。同様に、第1のパス上のDPCHおよびCPICHの符号から、他方のパス上のDPCH信号へのIPIの寄与がある。図11ないし14から、干渉があるときは、等しいパスモデル(ケース4、図13および14)は、等しくないパスモデル(ケース1、すなわち図11および12)よりも劣悪に動作することが分かるであろう。その理由は、電力がDPCHよりも7デシベル高いCPICHからのIPIの寄与が相当に大きいからである。したがって、マルチパス成分が強度においてほぼ同じであるケース4のような情況では、経路間干渉はより有益である傾向がある。理論上は、希望チャネルの希望パスへのIPIの寄与は、不要のパスの振幅に対しては正比例し、希望チャネルおよび不要チャネルの拡散率に対しては逆比例する。
高処理利得、すなわち低データレート伝送では、IPIの寄与の値は相当に小さいので、CPICHのIPIは性能をあまり劣化しない。その理由は、符号の固有の処理利得が、存在する干渉を抑圧するからである。例えば、拡散率が128の処理利得は21デシベルであり、干渉が21デシベル分、抑圧されることを示唆している。対照的に、SFが8のときは、処理利得は、わずか9デシベルである。
IPIの影響は、低処理利得(または高データレート)伝送では、より顕著である。エラーフロアは、レーキ受信機によって捕捉される全信号エネルギーを使用しても、5×10−5(ケース1)および8×10−5(ケース4)である。2本の経路間の電力レベル差は、ケース1では−10デシベルであるのに対して、ケース4では0デシベルであるので、等振幅のパス(ケース4、図13および14)は、等しくないパス(ケース1、図11および12)よりも、比較的に高レベルのIPIが取込んでしまうために、劣悪に動作する。
順次干渉消去では、並列干渉消去よりも、差が小さいので、BERの下限は、3×10−5(ケース1)および5×10−5(ケース4)よりも低い。この方式を、等しいパスモデル(ケース4、図13および14)に対して使用すると、2本の等強度のパスの一方のIPIの寄与が、事実上消去されるので、等しいパスモデルは、等しくないパスモデル(ケース1、図11および12)よりも劣悪に動作する。
並列干渉消去では、CPICHのIPIの影響を実質的になくすことによって、受信機の性能が相当に向上する。これは、−10−3のBERでは、性能が1.5ないし2デシベル向上することに相当し、BERの値がより低いときは、性能は、より大きく(例えば、10−4では、4.5デシベルまで)向上する。
干渉消去方式の性能は、低拡散システムでは、IPIによって制限されることが、数値結果から同様に示されている。したがって、シミュレートされた消去方式の両者は、システムの性能の向上に効率的に働くことが分かる。順次消去技術は、等振幅のパスモデルに適用されても、または不等振幅のパスモデルに適用されても、誤りの下限を一様にする効果がある。しかしながら、並列消去は、パイロットチャネルのIPIの寄与を実質的に完全に取り除き、データ容量を大幅に向上する。ハイブリッド干渉消去システムは、同様の利益を生むと予測される。
既に記載したように、付加的に、または代わりに、CPICH以外のチャネルからの干渉を、DPCHから消去することができる。次に、P−CCPCH(一次共通制御物理チャネル)の例を使用して記載するが、当業者には、上述の技術を、非決定性データを使用して他の共通チャネルに適用できることが分かるであろう。
概念は、大要、専用チャネルを受信する前に、同報通信されるP−CCPCHチャネルを逆拡散(および復調)することである。その後で、計算されたPCCPCH信号を再拡散し、全チャネル応答によって重み付けし、専用チャネル受信パスから減算する。ここでも、多数の段階において、専用チャネルの受信パスから減算する干渉推定値が生成される。
各マルチパス成分のP−CCPCH信号を、逆拡散後に、個々に再拡散して、各レーキフィンガーからP−CCPCHの異なるソフト推定値を供給することができる。これを、合成前の干渉推定値の判断と呼ぶことにする。
その代わりに、P−CCPCHの推定値を、逆拡散後に、合成して、複合推定値を生成してもよく、複合推定値はより正確になる傾向がある。その後で、この複合値を多数のストリームへ、各ストリームが個々のマルチパス/フィンガーに対応しているように、分割し、その後で、各ストリームを再拡散し、適切なマルチパスのチャネル推定値によって重み付けし、関連するマルチパス遅延に対応するずれを与える。その後で、希望信号から、これらの再拡散された干渉推定値を減算して、性能を向上する。これを、合成器後の干渉推定技術と呼ぶことにする。この方法の代わりでは、復調、レーキ受信、および復調を行って、相当により正確な干渉推定値を生成する。しかしながら、この代わりの方法には、推定に、相当な待ち時間を取り込むといった欠点がある。
処理電力の使用可能度およびチャネル状態の異なる、とくに信号対雑音比ような要因に依存して、合成前の干渉推定技術を用いるか、または合成後の干渉推定技術を用いるかを選択する。例えば、P−CCPCHの合成された推定値を使用すると、マルチパス成分からの干渉推定値の品質を向上するが、同時に、高電力のマルチパス成分に対応する干渉推定値を劣化する。干渉推定値は、本質的にチャネルの大きさおよび位相を含んでいるので、合成器前の推定技術を使用すると、干渉の寄与を減算する前に、干渉推定値へチャネルの大きさ/位相を加える必要がなくなることも分かるであろう。
干渉消去動作において、希望信号から、P−CCPCHの不正確な推定値を減算するとき、信号対雑音比(signal-to-noise ratio, SNR)の値が低い場合は、合成器後の干渉推定を用いると、いくつかの環境において性能が劣化する。この潜在的な欠点に対処するために、適応アーキテクチャを用いて、性能を最適化し、SNRの値が低いときは、合成器前の干渉推定を使用し、信号対雑音比がより高いときは、より高い電力信号を使って合成器後の干渉推定を使用する。ここで、これらの異なる方法をより詳細に検討し、図15aには、合成器前の干渉推定技術を適用するのに適したアーキテクチャのスペクトラム拡散受信機1500が示されている。
図15aにおいて、アンテナ1502は受信信号1504を複数のレーキフィンガー1506a、1506b、1506cへ供給する。受信信号は、時間遅延装置1508を経由して、干渉消去装置1510へも供給される。干渉消去装置1510は、各レーキフィンガーに1つずつの、複数の干渉消去入力1512と、同様に各レーキフィンガーに1つずつの、対応する複数の出力1514をとを含む。
例示のレーキフィンガー1506は、符号追跡器1516とチャネル推定器1518とを含み、両者には受信信号1504から入力を受け取り、既に記載したように、チャネル推定器1518は、(符号追跡器1516から入力を受信する)CPICH符号生成器、逆拡散器、およびチャネル推定器を含み、チャネル推定器は、1つ以上のシンボルにおいて逆拡散されたCPICH符号の平均をとる。図9を参照して記載したやり方と同様のやり方で、レーキフィンガーにおいて、符号追跡器1516とチャネル推定器1518とからの出力を2回以上使用する。これは、第2の符号追跡器1516'および第2のチャネル推定器1518’によって図示されている。しかしながら、既に記載したように、これらのブロック1516’、1518’は、単に、受信機アーキテクチャ内でこれらのブロックからの出力信号を再使用することを簡便に示しているだけである。図15aにおいて、符号追跡器1516’と1516との時間ずれは、時間遅延素子1520によって明示的に示されるが、チャネル推定において、これは、短い時間期間上では実質的に一定であるので、このような時間遅延は必要ない。
符号追跡器1516の出力は、同報通信チャネル推定ブロック1522へ入力され、同報通信チャネル推定ブロック1522内では、逆拡散器1526は、第1の入力をPCCPCH符号生成器1524から供給され、第2の入力を受信信号から受取る。逆拡散された同報通信チャネルの出力は、再拡散器1528へ供給され、再拡散器1528は、符号追跡器1516からの出力を使用して、フィンガー1506aによって処理されるマルチパス成分に対応するずれをもつ、同報通信チャネルを再拡散する。その後で、この再拡散された干渉推定値は、干渉消去装置1510の入力1512へ供給される。適切な干渉消去装置については、既に記載されている。
レーキフィンガー1506aにおいて逆拡散された同報通信チャネルは、乗算器1530において共役のチャネル推定値によって乗算され、出力はPCCPCHのレーキ合成器1534へ供給される。合成器1534は、他のレーキフィンガーからの信号も受信して、復調された同報通信チャネルの出力1506を供給する。同様に、干渉消去装置1510からの適切な出力1514は、レーキフィンガー1506aへ再び供給され、ここでは、逆拡散器1540において、この信号を、DPCH符号生成器1538からのDPCH符号と相関させることによって、逆拡散される。その後で、乗算器1542は、チャネル推定値と逆拡散信号とを用いて、出力信号をDPCHレーキ合成器1544へ供給する。DPCHレーキ合成器は、レーキフィンガー1506b、1506cからの入力も受取り、合成された復調出力信号1546を供給する。
動作において、レーキ受信機は、受信機のこの第1のフィンガーからの第1のマルチパス成分のPCCPCHの推定値を供給し、この推定値を再拡散し、他の全フィンガー、例えばフィンガー1506b、1506cの信号からそれを減算する。この第1のフィンガーからの再拡散されたPCCPCHの推定値は、この第1のフィンガーによって復号されたDPCHのマルチパス成分と直交しているので、第1のフィンガーへ戻された信号からの推定値を減算する必要はない。対応するやり方では、第2のフィンガーからの再拡散されたPCCPCHの推定値に、第2のフィンガーによって処理されるマルチパス成分に適した遅延を加えたものを、受信信号から干渉を消去して第1のフィンガーへ戻した信号から減算し、同様に、第2のフィンガーを除く他の全フィンガーの信号からも減算する。図15aのアーキテクチャは、合成器前の干渉推定技術を実行していることが分かるであろう。図15bに示されているような、このアーキテクチャの変形では、合成器後の干渉消去技術を実行する。図15bにおいて、レーキフィンガー素子の多くは、図15aのレーキフィンガー素子に対応していて、同じ参照符号は、同じ素子を示している。
アーキテクチャにおける主な違いは、図15aの再拡散器1528の位置と比較したときの、再拡散器1528a、1528b、1528cの位置に関係する。図15bから、3つの再拡散器1528a、1528b、1528cが、各レーキフィンガーに1つずつ与えられていることと、以前のように、これらの各再拡散器は、レーキフィンガーの1つからの符号追跡器からの1つの入力を受取ることとが分かるであろう。したがって、以前のように、これらの各再拡散器は、再拡散された信号に、受信機が処理するマルチパス成分の1つに対応する遅延ずれをもたせたものを供給する。しかしながら、図15aでは、各フィンガーと関係付けられている再拡散器が、そのフィンガーごとに、逆拡散された同報通信チャネル(すなわち、そのマルチパス成分)を受信する一方で、図15bのアーキテクチャでは、レーキ合成された同報通信チャネル信号1536が、各再拡散器1528a、1528b、1528cへの入力として供給される。したがって、同報通信制御チャネルのこの1つの合成推定値の3つに、対応するレーキフィンガーが処理するマルチパス成分に対応する遅延をもたせたものが供給される。以前のように、これらの3つの推定値は、対応する入力1512a、1512b、1512cを、干渉消去装置1510へ供給する。
この受信機が行う干渉消去手続きも、次に示すアルゴリズムを使用しても実行される。
1.符号ずれを計算する(CPICHの消去手続きの項目1と組合せてもよい)。
2.チャネル推定値を計算する(CPICHの消去における項目1と組合せてもよい)。
3.希望であれば、CPICHの干渉の寄与を減算する。
4.全部でN個のフィンガーおいて、1ないし3を反復する。
5.全部でN個のフィンガーにおいてP−CCPCHを計算し、1シンボルにおいて各々を平均する。
6.合成前の干渉推定値が要求されるときは、項目9へ進む。
7.合成器後の干渉推定値が要求されるときは、全部でN個のフィンガーにおいて最大比合成(maximal ratio combining, MRC)または他の合成アルゴリズムを実行する。
8.N個のチャネル推定値を干渉推定値へ適用して、各々が各マルチパス/フィンガーに対応しているN個の干渉信号を求める。
9.P−CCPCH符号をもつ、全部でN個の信号を、N個のマルチパス/フィンガーの各々に関係付けられている遅延ずれを取込んで、再拡散する。
10.受信信号から、N個の再拡散されたP−CCPCHを減算して、(例えば、上述の消去方式を使用して)推定値を取り除く。
これにより、干渉消去装置の出力に示されているN個の信号が得られる。次の段階では、希望信号を回復する。
11.符号ずれを計算する。これは、再び行なっても、または上述の項目1からの前の推定値を使用してもよい。(符号追跡を再び行うときは、パイロット信号が希望信号から消去されたかどうかに依存して、DPCHまたはCPICHのチャネルに対して行なう。前の推定値を使用するときは、遅延を取込んで、干渉消去装置における待ち時間を補償する);
12.正しいずれの希望の符号で逆拡散する。
13.チャネル推定値を計算する。これは再び行なっても、または上述の項目2からの前の推定値を使用してもよい。
14.チャネル推定値を適用する。
15.全部でN個のフィンガーに対して、11ないし15を反復する。
16.全部でN個のフィンガーを加算する。
同報通信チャネル消去プロセスによって取込まれる追加の遅延、およびバッファリングに要求される追加の遅延は、PCCPCHの平均をとる期間に依存する。一般に、シンボル期間よりも長い期間で平均をとる必要はない。平均化演算、合成、および(行われる場合は)チャネルの重み付け、干渉信号の再拡散および加算によって、少しの追加の待ち時間が取込まれることになる。追加の遅延は比較的に短く、したがって追加の緩衝は比較的に短いことが分かるであろう。
上述では、PCCPCHからDPCHへの経路間干渉の抑圧について記載した。しかしながら、CPICH(またはSCH、あるいはCPICHおよびSCHの両者)を減算した後に、PCCPCHを検出するときは、これらのチャネルからのIPIの寄与も抑圧される。したがって、これには、同報通信チャネル自体を向上するといった追加の長所をもつが、一般にPCCPCHは比較的に高電力で伝送されるので、この重要性は比較的に小さい。
この技術をさらに改良したものでは、チャネルの初期推定を行なって、この推定値を減算して、別の整合フィルターバンクを含めることによって、PCCPCHから自己干渉IPIを取り除き、品質が向上しているであろう新しい推定値を計算することもできる。この場合に、合成前の干渉推定技術を適用することが好ましい。
ここで、とくに専用DPCHチャネルにおける自己干渉の消去について検討する。ここでは、専用チャネルの初期推定を行ない、これを再拡散して、重み付けし、自己干渉の寄与の推定値を形成する。次に、第2の整合フィルターバンクを用いて、最終的な推定値を計算する。多数の段を連結し、最初の段では、干渉推定値を計算し、次第に精度を高め、最後の段では、出力するためのシンボル推定値を計算する。自己干渉消去では、データの推定値は、それ自体、すなわち直交拡散符号をもつチャネルからではなく、データチャネル自体から求めた推定値自体から減算されることが分かるであろう。
大要、図2aないし2cを参照して既に記載したように、時間整列していないときに、ゼロ以外の自己相関関数によって、DPCH(または、他のチャネル)によって、それ自体に発生する経路間干渉(Interpath Interference, IPI)を抑圧する。相関器の最初のバンク、すなわち、事実上は、合成器を含まないレーキ受信機を使用して、各マルチパスに対する信号の初期推定値を生成する。これらの信号推定値を、各マルチパスごとに再拡散し、希望信号から減算し、干渉を抑圧する。
例えば、パスAおよびBを含む、2つの部分から成るモデルの場合について検討する。初期検出器は、AおよびBに対して別々の推定値を生成する。これらの推定値は、それぞれ、AおよびBごとに、適切な符号ずれを加えて再拡散される。その後で、これらの再拡散された信号を、希望信号から、入力からBを減算したものからフィンガーAへの計算された干渉の寄与、または入力からAを減算したものからフィンガーBへの計算された干渉の寄与と共に、減算する。
この技術を使用すると、チャネル情報は、逆拡散−統合−再拡散の処理を経て本質的に保持されるので、初期検出器では、チャネル推定値は明示的に使用されない。
図16を参照すると、自己IPI抑圧を取入れたスペクトラム拡散受信機1600が示されている。アンテナ1602は、受信信号1604を、符号ずれ追跡器1606、チャネル推定器1608、遅延器1610、および複数の従来のレーキフィンガー1614へ供給する。遅延器1610は、出力を干渉消去装置1612へ供給する。
各レーキフィンガー1614は、逆拡散された出力1616を供給する。逆拡散された出力1616は、受信したDPCH信号のマルチパス成分を逆拡散したものを含んでいる。各レーキフィンガーは、符号追跡器1606からの複数の出力の1つを受信し、符号追跡器からの同等の出力は、各レーキフィンガーの再拡散器へも供給される。したがって、再拡散器1618は、逆拡散されたDPCH信号を再拡散したものを複数、生成し、各マルチパス成分に1つの再拡散が、レーキフィンガー1614によって処理される。チャネル推定器1608は、各マルチパス成分に1つのチャネル推定値を供給し、各再拡散された信号は、複数の乗算器1620を使用して、対応するチャネル推定値によって乗算され、各レーキフィンガー1614に1つずつの、複数の干渉推定値を干渉消去装置1612へ供給する。遅延器1610は、レーキフィンガー1614と、再拡散およびチャネル推定の処理とによって取込まれる遅延を補償する。干渉消去器は、受信信号から非直交の干渉成分を抑圧し、複数の出力1624を第2の複数のレーキフィンガー1626へ供給し、第2の複数のレーキフィンガー1626は、従来のやり方で干渉を抑圧された入力を復号する。レーキフィンガー1626は、複数の出力をレーキ合成器1628へ供給し、レーキ合成器1628は、信号を合成して、合成された復調出力信号1630を供給する。レーキフィンガー1614の数は、レーキフィンガー1626の数と同じであれば好都合であるが、この場合は、必ずしもそうでなくてもよい。
これまでに記載した干渉消去器、とりわけ、図7b、7c、および8の干渉消去器も、図16の受信機1600と共に用いられるが、これらの干渉消去器の中でも、図7dの干渉消去器が好ましい。
図16に示されている受信機アーキテクチャを変更して、既に記載したCPICHまたはPCCPCH、あるいはこの両者の(もしくは、関係する)干渉抑圧技術を取入れてもよく、(例えば、図5と図16とを比較すると)これらの異なる信号を抑圧するためのアーキテクチャは類似しているので、図16のアーキテクチャは、これにとくに適している。とくに、当業者には、これらの技術の両者には、少なくともいくつかの対応する機能素子が必要であるので、IPI干渉と自己IPI干渉との両者が抑圧されるとき、これらの共通の機能素子を共用すると、全体的な受信機設計の複雑さが緩和されることが分かるであろう。図16には、2段のIPI抑圧を行なうスペクトラム拡散が示されている。当業者には、より多くの干渉抑圧段を連結してもよいが、それらが実行される場合は、例えば、図7d、7e、または8に示した干渉抑圧技術を使用して、各段に異なる干渉抑圧の重みが加えられることが分かるであろう。したがって、4つの段を使用し、最後の段で3つの干渉消去器を用いる場合に、よりよい推定値が得られるときは、消去度は、最後の干渉消去段へ向かって向上する。例えば、図7eの干渉消去装置において、減算された干渉推定値の重みは、全フィンガーに対して0.3、0.6、および10に設定される。
専用チャネルにおける経路間干渉の計算および抑圧は、次のアルゴリズムによって実行される。
1.符号ずれを計算する(CPICH消去手続きの項目1と組合わせてもよい)。
2.希望であれば、CPICHの干渉の寄与を減算する(これにより、よりよいIPI推定値が得られる)。
3.希望のDPCHの初期推定値を計算し、1シンボルにおける平均をとる。
4.全部でN個のフィンガーにおいて、1ないし3を反復する。
5.希望のDPCH符号をもつ全部でN個の信号を、N個のマルチパス/フィンガーの各々と関係付けられた遅延ずれを取入れて、再拡散する。
6.例えば、既に記載した消去方式の中の1つを使用して、遅延させた受信信号から、N個の再拡散されたDPCHを減算して、経路間干渉の推定値を取り除く。
これにより、干渉消去装置1612の出力上に示されているN個の信号1624が得られる。次の段では、希望信号を回復する。
7.符号ずれを計算する。これは、再び行っても、または上述の項目1からの前の推定値を使用することもできる。(符号追跡を再び行なうときは、これは、希望信号からパイロット信号が消去されたか、どうかに基づいて、DPCHまたはCPICHのチャネルに対して行なわれる。前の推定値を使用するときは、遅延を取込んで、最初のレーキ受信機および干渉消去装置における待ち時間を補償する)。
8.希望であれば、P−CCPCHおよびCPICHの干渉を減算する。
9.正しい符号ずれの希望の符号で逆拡散する。
10.チャネル推定値を計算する(これは、CPICHの消去におけるチャネル推定値と組み合わされる)。
11.チャネル推定値を適用する。
12.全部でN個のフィンガーにおいて、7ないし10を反復する。
13.全部でN個のフィンガーを加算する。
次に、マルチコード受信機内における干渉消去について記載する。マルチコード受信機では、単一のデータストリームを、複数の別々の、より低いデータレートのストリームへ分割することによって、高いデータレートを実現する。例えば、240キロビット秒のデータストリームは、低拡散率の1本のストリームとして伝送されるか、またはより大きい拡散率の、この場合は、1シンボル当り48チップの、3本の別々の80キロビット秒のストリームとして伝送される。これらの3本の別々のより低速のストリームは、直交しているので、1つのマルチパス成分内では、相互に干渉しないが、DPCHチャネルに対するCPICH/PCCPCHの影響に関連して記載したのと同様に、経路間干渉が発生するが、マルチコード伝送の相対的な信号強度は概ね同じである一方で、共通チャネルは、一般に、DPCHチャネルよりも、比較的に高い電力で伝送される。
図17には、従来のマルチコード受信機1700が示されており、受信機1700は、受信アンテナ1702およびダウンコンバータ1704を含み、ダウンコンバータ1704は、ダウンコンバートされた受信信号1706を供給する。この受信信号は、複数のレーキフィンガーへ供給され、各レーキフィンガーは、所与のマルチパス成分に対するマルチコード信号の全てを復号する。図17では、簡潔化のために、1つのレーキフィンガー1708のみが示されている。レーキフィンガー1708は、入力として受信信号1706を受け取り、各マルチコードに1つずつの、3つの出力1710a、1710b、および1710cを、3つの対応するレーキ合成器1712、1714、および1716へ供給する。各レーキ合成器1712、1714、1716は、レーキ受信機の他のフィンガーの全てからの入力も受信して、これらを合成し、合成された復調信号出力を供給する。したがって、示されているマルチコード受信機は、3つの符号a、b、cを復調するための回路を有し、3つの変調された出力1718、1720、1722が符号a、符号b、および符号cによって保持される3つのデータ信号に対してそれぞれ与えられている。
ここでレーキフィンガーをより詳しく参照すると、各符号に対して、同じマルチパス成分が検出されるので、3つの全符号に対して、共通の符号追跡器1724(例えば、遅延ロック符号追跡ループ)を使用することができる。しかしながら、各マルチコードチャネルごとに、別々の符号生成器および逆拡散器(相関器)が必要であり、図17では、各符号a、b、cに対して、DPCH符号生成器1726、1728、1730および逆拡散器1732、1734、1736がそれぞれ必要である。通常のやり方では、チャネル推定器(図示されていない)は、各マルチパスごとにチャネル推定値を供給し、これは、符号a、b、cごとに、乗算器1738、1740、および1742を使用して、共役チャネル推定値を逆拡散信号によって乗算することによって、3つの逆拡散符号の各々へ適用され、関連する出力信号1710a、1710b、および1710cが供給される。
図18は、この一般のマルチコード受信機構造に基づいて、どのようにして、各符号から干渉の寄与の推定値を計算し、その後で、適切な位置を減算できるかを示している。
図18では、スペクトラム拡散受信機1800は、アンテナ1802およびダウンコンバータ1804を含み、受信信号1806を、図17に示されているタイプの従来のマルチコードレーキ受信機1700へ供給する。受信機1700を使用して、全ての、この例では、3つの、符号a、b、cに対する初期推定値1808a、1808b、および1808cをそれぞれ計算する。この推定値は、1つのフィンガーか、または多数のレーキフィンガーを使用して、復号前または復号後に、生成することができる。例えば、ターボまたは畳込み復号器は、復号して(その後で、再符号化して)、向上した推定値を形成するのに使用できるが、これは、不要の大きい遅延を取り込むことがある。さらに加えて、既に記載したのと同様のやり方で、この初期推定値は、レーキフィンガーからの出力を合成する前(合成前)でも、または、レーキフィンガーの出力を合成した後(合成後)でも得られる。合成後の推定値は、図17に示されているタイプの従来のレーキ受信機を初期推定に用いるときに得られ、合成前の推定値は、合成信号ではなく、図17の受信機の各レーキフィンガーからの出力1710a、1710b、および1710cを使用して、各符号の複数の推定値を、処理される各マルチパス成分に1つずつ与えることによって得られる。
符号a、b、cの各々の初期推定値は、複数の再拡散器によって再拡散される。再拡散器は、簡潔化のために、再拡散ブロック1810として示されていて、再拡散ブロック1810では、その後で、再拡散された推定値を、各フィンガーのための計算されたチャネル推定値によって重み付けする(合成前の場合は、この重み付けは、ソフトな判定の合成前のレーキフィンガーの出力において行われることが示唆される)。これにより、複数の受信信号1806から減算するための複数の干渉推定値1812が得られる。
図18の受信機1800は、複数の干渉消去器レーキフィンガーを、処理される各マルチパス成分に1つずつ含み、これらの中の1つの例示的なフィンガー1814が示されている。フィンガー1814は、図17の受信機1700のレーキフィンガー1708と同様のやり方で、受信信号のマルチパス成分の1つにおける符号a、b、cの各々に出力1816a、1816b、1816cを供給する。レーキ受信機1800の他のフィンガーは、受信信号の他のマルチパス成分の符号a、b、cの出力を供給する。各レーキフィンガーからの符号a出力は、符号aのレーキ合成器1818において合成され、符号aの出力1824が供給される。符号bのレーキフィンガーの出力は、符号bのレーキ合成器1820において合成され、符号cの出力1826が供給される。レーキフィンガーからの符号cの出力は、符号cのレーキ合成器1822において合成され、符号c1828が供給される。
例示的なレーキフィンガー1814は、符号追跡器1830を含み、符号追跡器1830は、出力を、各DPCHマルチコードa、b、およびCの符号生成器1832、1834、1836へ供給する。次に、これらは、適切な遅延をもつ拡散符号出力を、逆拡散器1838、1840、および1842へ供給し、逆拡散器1838、1840、および1842の出力は、各乗算器1844、1846、および1848へ供給され、乗算器1844、1846、および1848は、適切なチャネル推定値を適用して、レーキフィンガーから出力1816a、1816b、および1816cを生成する。この点で、レーキフィンガー1814は、図17のレーキフィンガー1708に対応するやり方で動作する。しかしながら、レーキフィンガー1814には、さらに加えて、干渉抑圧器1850a、1850b、1850cも構成されており、干渉抑圧器1850a、1850b、1850cは、受信信号1806から入力を受け取り、逆拡散器1838、1840、1842の各々へ出力を供給する。干渉抑圧器1850aは、符号aの受信パスから、符号bおよびcの再拡散推定値を減算し、干渉抑圧器1850bおよび1850cも同様に、各場合において、符号bおよびcの受信パスから、それ以外の符号からの再拡散干渉推定値を減算する。この干渉消去処理を、全フィンガーにおいて、かつ全符号に対して行なって、出力1824、1826、および1828において、伝送信号のよりよい推定値を供給することが好ましい。図18には、明示的に示されていないが、再拡散された各干渉推定値は、マルチパスに適した遅延を加えて、干渉推定値が適用されているフィンガーへ供給されることが分かるであろう。これは、再拡散ブロック1810によって実行される。マルチコード干渉の影響を判断して、抑圧する手続きは、次のアルゴリズムを使用して、実行される。ここでは、N個のフィンガーおよびk個のマルチコードについて記載する。
1.各フィンガーごとに、符号ずれを計算する(CPICH消去手続きの項目1と組合せてもよい)。全マルチコードにおいて、符号ずれは同じであると仮定する。
2.希望であれば、CPICHの干渉の寄与を減算する(マルチコード干渉のよりよい推定値が得られる)。
3.このフィンガーにおいて、希望のDPCHのk個の初期推定値を計算して、それぞれ、1つのシンボルにおける平均をとる。
4.全部でN個のフィンガーにおいて、1ないし3を反復する(これは、k個の符号の各々に対してN個の推定値を与える)。
5.合成前の干渉推定値が要求されるときは、項目10へ進む。
6.合成器後の干渉推定値が要求されるときは、全部でN個のフィンガーにおいて(レーキ合成、例えば、MRCを行なって)マルチコード干渉のk個の推定値を与える。
7.N個のチャネル推定値を計算する(CPICHの消去手続きの項目1と組合わせてもよい)。
8.N個のチャネル推定値をk個の干渉推定値へ適用して、各マルチパス/フィンガーにおいてkずつ、したがってNk個の干渉信号を求める。
9.全部でN個の信号を、N個のマルチパス/フィンガーの各々と関係付けられている遅延ずれを加えて、希望のDPCHのマルチコードで、再拡散する。
10.kN個の再拡散されたDPCHを、遅延させた受信信号から減算して、マルチコード干渉の推定値を取り除く。N個のフィンガーの各々において、出力はk個以下であり、各出力は、1つのマルチコードに対応する。上述では、適切な消去方式について記載してきたが、これからは、図19を参照して、干渉抑圧器の例について、さらに記載する。
図19aおよび19bは、干渉抑圧に関して、図18のレーキ受信機1800で使用するのに適した干渉消去器1900および1950の例を示している。図19aの構成では、合成前または合成後の干渉推定値を使用して、マルチコード干渉を消去する。図19aには示されていないが、この方法には、干渉消去推定値を減算する前に、重み付けする方式か、または、他の消去方式、例えば、または図7を参照して既に記載した“全消去”方式を含んでもよい。図19bの干渉消去器1950のアーキテクチャは、合成前の干渉推定値が与えられている場合に使用するのに適していて、マルチコード干渉および経路間干渉(すなわち、マルチコードから、それ自体への自己干渉)の両者を消去できる。合成器前の干渉推定値が使用可能であるとき、図19aの構成ではなく、図19bの構成は、より多くの干渉を抑圧できるので、好ましいことが分かるであろう。
より詳しくは、マルチコード干渉消去器1900は、各マルチコードに対して、受信信号入力1902と1組の減算器1904、1906、1908とをもつ。減算器の各組は対応しており、マルチコードaのための減算器の組1904について記載することにする。干渉消去器1900は、マルチコードaに対して、レーキ受信機の各フィンガーごとに1つずつ、出力の組1910a、1910b、1910cを有し、同様に、マルチコードbに対して、レーキ受信機への出力の組1912a、1912b、1912cを有し、マルチコードcに対して、受信機への出力の別の組1914a、1914b、1914cを有する。干渉消去器1900は、干渉推定値が得られる各マルチパス成分に1組ずつ、入力の組1916、1918、1920を有する。これらの入力の組の各々は、各符号の干渉推定値の入力である。示されている例では、符号aに対して入力1916a、1918a、1920aを含み、符号bおよび符号cに対しても同様である。
マルチコードaのレーキ受信機の減算器の組1904は、(符号aではなく)符号bおよびcの各マルチパス成分の干渉推定値を受信する。同様に、マルチコードbの受信機の組1906は、符号aおよびcからの干渉推定値の入力を受け取り、マルチコードcの受信機の組1908は、符号aおよびbの各マルチパス成分からの干渉推定値の入力を受取る。
マルチコードaの受信機の減算器1904の組を参照すると、干渉推定値の入力の各組1916、1918、1920は、関係付けられている加算器1922、1924、1926を有し、他のマルチコードからの干渉推定値を加算し、マルチコードaの場合は、マルチコードbおよびcの推定値を加算する。その後で、これらの加算された推定値は、マルチコード受信機aのレーキフィンガーの信号から減算される。既に記載したように、マルチパス1からの加算された干渉の寄与は、他の全マルチパス成分のレーキフィンガーの信号、すなわち、図に示されているように、レーキフィンガー2、Nの信号から減算される。同様に、第2のマルチパス成分からの加算された干渉の寄与は、第2のマルチパス成分の全マルチパス成分の組を処理するレーキフィンガーの信号から減算される、など。同じ一般的なパターンが、他のマルチコードのレーキ受信機のレーキフィンガーの減算器1906、1908の組において繰り替えされる。
図19bの干渉消去器1950は、図7dの干渉消去器760にほぼ対応しており、したがって、この干渉消去器の付加的な特徴のみを詳しく記載する。これらの特徴には、各マルチパス成分に1つずつ、干渉推定値の入力の組1952、1954、1956が与えられていることが含まれる。これらの入力の組の各入力は、各マルチコードに1つの干渉推定値の入力、例えば、符号aのマルチパス成分1、2、Nに対して干渉推定値の入力1952a、1954a、1956aを含む。入力の各組1952、1954、1956は、関係付けられている加算器1958、1960、1962を有し、各マルチパス成分ごとに、マルチコード受信機の全符号に対する干渉推定値の入力信号を加算する。したがって、例えば、加算器1958は、(示されている例において)全部で3つの符号a、b、cの受信信号の第1のマルチパス成分から求められる干渉推定値を加算する。
各加算器の出力は、干渉消去器の残りへ、入力を供給する。この干渉消去器は、図7dの干渉消去器に対応している。したがって、例えば、加算器1958の出力は、実際には、信号を、図7dの入力762、などへ供給する。
上述の干渉消去技術は、時空間ブロック送信ダイバーシチ(space-time block coded transmit diversity, STTD)のスペクトラム拡散受信機に関連して、適用することができる。空間時間送信ダイバーシティでは、2本の送信アンテナと1本の受信アンテナとを使用し、2本の送信アンテナは直交データストリームを送信する。2シンボルの時間間隔中に、2つの複素変調シンボルS、Sが、2本のアンテナから送信される。第1のシンボルの時間間隔中に、第1のアンテナはSを送信し、第2のアンテナは−S を送信し、第2のシンボル時間間隔中に、第1のアンテナはSを送信し、第2のアンテナはS を送信する。ここでは、共役演算“”は、信号の位相またはQ成分を反転し、演算の組み合わせ“−”は、信号のI成分を反転することによって行なうことができる。第1のアンテナからの信号は、本質的に、シンボルの正規のストリームであり、第2の送信アンテナからの信号は、2本の受信アンテナを有することにほぼ相当するダイバーシチを与える。STTD情報を復号するために、第2のアンテナからの信号を反転および共役し、シンボルの対を、時間上で分波し、その後で、結果のシンボルストリームを、第1のアンテナからのシンボルストリームと合成する。STTDの符号化および復号化についての背景情報は、Alamouti、他の米国特許第6,185,258号に記載されており、米国特許第6,185,258号は、ここでは参考文献として取入れられる。
2本のアンテナからの信号は、1マルチパス成分内で実質的に直交しているが、上述と同様に、これは、異なるマルチパス成分間の直交性である。したがって、第2のアンテナから、第1のアンテナからの信号への干渉の寄与、または第1のアンテナから、第2のアンテナからの信号への干渉の寄与が生じる。拡散率が4、タップチャネルが2で、各パスごとに大きさが等しい場合に、相互相関による他方のアンテナからの(他のマルチパス成分に対する)干渉は、希望のアンテナ信号において6デシベル未満である。
大要、送信されたSTTDストリームの推定値を計算し、これを再符号化して、再拡散し、その後で、非直交成分を減算することによって、この干渉の寄与を抑圧することができる。当業者には、この技術を、既に記載したマルチコードまたはIPI、あるいはこの両者の消去技術と組み合わせてもよく、希望信号から他のマルチパスへの干渉も抑圧されることが分かるであろう。
図20aは、STTDのスペクトラム拡散受信機2000を示しており、相対するアンテナが干渉抑圧を行ない、STTDの干渉推定値はレーキ合成後方式によって計算される。
受信機2000は、受信信号2004のための受信アンテナ2002をもち、受信信号2004は、符号ずれ追跡器2006、チャネル推定器2008、および遅延器2010へ供給され、遅延器2010を経て干渉消去器2012、2014へ供給される。符号ずれ追跡器2006は、既に記載したように、複数の符号ずれ出力を供給し、チャネル推定器2008は2組のチャネル推定値を供給し、各組のチャネル推定値は、受信信号の複数のマルチパス成分のための、複数の推定値を含んでいる。第1の組の推定値は、第1の送信アンテナ(first transmit antenna, Ant1)からの信号に与えられ、第2の組の推定値は、第2の送信アンテナ(second transmit antenna, Ant2)からの信号に与えられる。受信信号2004は、複数の、すなわちM個の従来のSTTDレーキフィンガー2016へも供給され、STTDレーキフィンガー2016は、対応する複数の対の出力2018a、2018bを、従来のSTTDレーキ合成器2020へ供給し、STTDレーキ合成器2020は、信号S1およびS2の出力推定値を、STTD符号器2022へ供給する。STTD符号器2022は、伝送されたシンボルS1、S2の推定値を符号化し、STTD出力ストリーム2024a、2024bを複数の再拡散器2026へ供給する。レーキフィンガー2016の目的は、伝送されたシンボルの推定値を与えることであり、希望の推定値の品質に依存して、1つ以上の任意の数のSTTDレーキフィンガーを用いることができることが分かるであろう。
再拡散器2026は、2つのSTTDの符号化されたデータストリームの推定値を受信することに加えて、符号追跡器2006からも入力を受信し、符号化されたSTTDデータストリームの推定値を再拡散したものを、レーキ受信機2000によって処理される各マルチパス成分ごとに1つずつ、複数、供給する。この複数のマルチパス成分の1つの組2028aは、乗算器2030によって、第1のアンテナのチャネル推定値と乗算され、アンテナ1から、アンテナ2から受信した信号への干渉の組2034aが供給され、複数の再拡散されたマルチパス成分の第2の組2028bは、乗算器2032によって、第2のアンテナからのチャネルのチャネル推定値の組と乗算され、アンテナ2から、アンテナ1から受信した信号への干渉の推定値の組2034bが供給される。干渉推定値2034aおよび2034bは、干渉消去装置2012および2014へそれぞれ供給され、干渉抑圧される予定の出力2036bおよび2036aが供給される。干渉抑圧された信号2036aは、受信信号に、抑圧される第2の送信アンテナからの非直交の推定の干渉の寄与を加えたものを含み、同様に、信号2036bは、抑圧される第1のアンテナからの推定の干渉を含んでいる。信号2036a、2036bは、1組の変形STTDレーキフィンガー2038へ供給され、変形STTDレーキフィンガー2038は、複数の出力をSTTDレーキ合成器2040へ供給し、STTDレーキ合成器2040は、シンボルS1およびS2の(干渉抑圧された)シンボル出力2042および2044をそれぞれ供給する。
図20bは、第2のSTTDスペクトラム拡散受信機2050を示しており、これは、図20aと概ね同じであるが、レーキ合成前の干渉推定値を使用している。したがって、伝送されたシンボルの初期推定値を与えるためのレーキフィンガー2016は、シンボルS1およびS2の、複数の出力2052aおよび2052bを供給し、シンボルS1およびS2は、合成されるのではなく、対応する複数、すなわちN個のSTTD符号器2054への入力を与える。代わって、これらの符号器は、複数の推定のSTTDの出力のストリーム2056a、2056bを、各送信アンテナごとに1つずつ供給し、STTDの出力のストリーム2056a、2056bは、複数の再拡散器2026によって再拡散される。図20aでは、再拡散器2026の各々は、同じ入力2024a、2024bを受信する一方で、図20bの構成では、再拡散器2026の各々は、STTD符号器2054の1つからの1対の出力と、符号ずれ追跡器2006からの対応する符号ずれ信号とを受信する。したがって、初期推定値を生成するのに使用されるSTTDレーキフィンガー2016の数は、受信信号を復号して、復号された出力を供給するのに使用されるSTTD復号器2038の数と同じであり、したがって干渉推定値は、受信機によって処理される信号の各マルチパス成分ごとに得られる。
図21aは、従来のSTTD復号器のレーキフィンガー2100の一部分を示しており、簡潔化のために、逆拡散器は省かれている。STTD復号器および逆ロテータ2102は、受信STTDシンボルR1,jおよびR2,j(なお、jはマルチパス成分を示す)の対が受信し、1組の出力をSTTD合成器2104へ供給し、次に、STTD合成器2104は、S1およびS2のシンボル出力2106aおよび2106bを供給する。STTD復号器および逆ロテータ2102は、1対のチャネル推定器2108aおよび2108b(または、そこからの入力)を含み、第1および第2の送信アンテナからの関連するチャネルのチャネル推定値を供給する。R1,j信号は入力2110aにおいて受信され、R2,j信号は入力2110bにおいて受信される。R1,j信号2110aは、チャネル1の推定2108aの共役2112によって乗算され2120a、出力2124aが供給され、R2,j信号2110bは共役をとられ2114、チャネル2の推定2108bによって乗算され2122a、出力2126aが供給され、R2,j信号2110bも、チャネル1の推定2108aの共役2112によって乗算され2122b、R1,j信号2110aは反転され2116、共役をとられ2180、チャネル2の推定2108bによって乗算され2120b、出力2124bが供給される。信号出力2124aおよび2126aは、加算器2128によって加算され、シンボル1の出力2106aが供給され、信号出力2126bおよび2124bは、加算器2130によって加算され、シンボル出力2106bが供給される。
図21bは、STTDの復号器フィンガー2150の変形部分を示している。ここでも、STTDフィンガーは、STTD復号器および逆ロテータ2152、およびSTTD合成器2154を含み、STTD合成器2154は、S12156aおよびS22156bをそれぞれ供給する。STTD復号器および逆ロテータ2152は、1対の入力2160aおよび2160bを有し、図20aの受信機2000内に示されている干渉を抑圧された信号2036a、2036bを受信する。入力2160aからの信号は、1対の加算器2162a、2162bへ供給され、2シンボルにおいて入力信号が加算される。各シンボルはMチップを有し、第1および第2のシンボル期間においてそれぞれの出力A1,jおよびA2,jを供給する(なお、Mを、図20aの受信機のレーキフィンガー2016の数と混同すべきではない)。同様に、入力2160bは、加算器2164aおよび2164bにおいて加算され、出力B1,jおよびB2,jが供給される。信号A1,jおよびA2,jの両者は、各乗算器2166a、2166bを使用して、第1の送信アンテナからのチャネルのチャネル1推定2158aの共役2170によって乗算される。信号B2,jは、共役をとられ2176、第2の送信アンテナからのチャネルのためのチャネル推定2158bによって乗算され2168b、B1,j信号は、反転され2172、共役をとられ2174、この第2のチャネル推定2158bによって乗算される2168a。その後で、これらの計算結果は、加算器2178および2180において加算され、各シンボル出力2156aおよび2156bが供給される。
図20aおよび20bの受信機における干渉消去器2012および2014は、図7および8に示されている技術を用いてもよいが、干渉推定の寄与に重み付けをする干渉消去器(例えば、図7b、7e、および8の干渉消去器)が好ましい。とくに、STTDの動作の一部として行われるAlamouti変換を損うことなく、図7aおよび7eの全消去方式を適用することができる。図21bのSTTD復号器フィンガー2150をここでも用いてもよいが、全ての干渉の寄与は、全パスから減算されているので、各入力において、送信アンテナからの直交信号が最早存在していないときは、僅かに異なって動作する。全消去を適用する1つの特長は、干渉消去器の複雑さが相当に緩和されることである。
図20aおよび20bの受信機構成と関係付けられている遅延(および、ここではバッファリングに必要な遅延)は、干渉の寄与の最初の計算によって決まる。受信アーキテクチャの変形では、干渉推定値は、初期検出器におけるSTTDの復号化/Nの符号化によってではなく、直接に生成されるが、このアプローチでは、STTDと関係付けられているダイバーシチ利得を十分に利用していない。干渉の寄与が判断されると、これは、(緩衝された)希望信号から直接に減算でき、概して、ここでは、第2の変形STTDの計算を行なうことができる処理速度が制限される。
希望であれば、複雑さを増すといった犠牲を払うが、STTD(およびIPI)干渉消去の多数の段を連結すると、性能が向上することが分かるであろう。
図20aの受信機2000のレーキ合成後の推定値の干渉消去手続きは、次のアルゴリズムを使用して実行される。
1.符号ずれを計算する(CPICHの消去手続きの項目1と組合せてもよい)。
2.希望であれば、CPICHの干渉の寄与を減算する(これにより、よりよいSTTDのIPIの推定値が得られる)。
3.希望のDPCHの初期推定値を計算して、STTD受信機に適用する(このプロセスは、2シンボルで行なわれる)。MとNとが同数であるときは、初期検出器に、M個のフィンガーが使用されるが、複雑さを緩和するために、MはNよりも少なくてもよい。
4.全部でM個のフィンガーにおいて、1ないし3を反復する。
5.全部で2M個のフィンガーにおいて、レーキ合成(例えば、MRC)およびSTTD復号を行なって、伝送シンボルの対の推定値を得る。
6.2シンボルの時間間隔において、STTDの符号化を行なって、アンテナ上で伝送される信号の推定値を得る。
7.N個のチャネルの推定値を計算する(CPICHの消去の項目1と組合せてもよい)。
8.N個のチャネルの推定値を2個の干渉推定値へ供給して、各シンボルの各アンテナのN個に対して干渉信号(すなわち、シンボルの各対に対して、4N個の干渉推定値)を得る。
9.全部で4N個の信号を、N個のマルチパス/フィンガーの各々と関係付けられている遅延ずれを加えて、希望のDPCHマルチコードで再拡散する。
10.例えば、既に記載した干渉消去方式を使用して、遅延された受信信号から、再拡散されたSTTD DPCHを減算して、STTDの干渉の推定値を取り除く。
これにより、(図21に示されている)変形STTDフィンガーへの入力が得られる。次の段では、希望信号を回復する。
11.符号ずれを計算する。これは、再び行なっても、または上述の項目1からの前の推定値を使用してもよい。(符号追跡を再び行なうときは、パイロット信号が希望信号から消去されたかどうかに依存して、DPCHか、またはCPICHのチャネルに対して実行される。前の推定値を使用するときは、遅延を取入れて、最初のレーキ受信機および干渉消去装置における待ち時間を補償する)。
12.希望であれば、P−CCPCHおよびCPICHの干渉を減算する。
13.正しい符号ずれの希望の符号で逆拡散する。
14.チャネル推定値を計算する(これは、CPICHの消去におけるチャネル推定値と組み合わされることが好ましい)。
15.チャネル推定値を適用する。
16.全部でN個のフィンガーにおいて、ステップ11ないし15を反復する。
17.全部でN個のフィンガーを加算する。
図20bのレーキ受信機2050のレーキ合成前推定手続きは、次のアルゴリズムによって実行され、N個のフィンガーからの出力は、合成されない。
1.符号ずれを計算する(CPICH消去における項目1と組合せてもよい)。
2.希望であれば、CPICHの干渉の寄与を減算する(これにより、よりよいSTTDのIPIの推定値が得られる)。
3.希望のDPCHの初期推定値を計算して、STTD受信機へ適用する(このプロセスは、2シンボルで行なわれる)。
4.全部でN個のフィンガーにおいて、1ないし3を反復する。
5.全部でN個のフィンガーにおいてSTTDの符号化を個々に行なって、2シンボルの時間間隔において、アンテナ上で伝送される信号の推定値を得る。
6.N個のマルチパス/フィンガーの各々と関係付けられている遅延ずれを加えて、全信号を希望のDPCHマルチコードで再拡散する。
7.例えば、上述の消去方式を使用して、遅延された受信信号から、再拡散されたSTTDのDPCHを減算して、STTDの干渉の推定値を取り除く。これは、専用のチャネルのIPIの消去に関連して記載したように、希望のアンテナ信号によるので、IPIの減算と組合せてもよい。
これにより、(図21に示されている)変形STTDフィンガーへの入力が得られる。次の段では、希望信号を回復する。
8.(既に記載したように)合成後の推定値に対して、項目11ないし17を反復する。
Figure 2005516463
しかしながら、図20aおよび20bの変形STTD受信機において、干渉消去について、2つの入力があり、Rではなく、(それぞれ、アンテナ1および2に対して)AおよびBで示すことにする。ここでは、(2シンボルにおける)2つの入力が示される。両方の場合において、希望信号から、(チャネル推定値と組み合わされた)伝送シンボルの推定値が減算される。
Figure 2005516463
したがって、この構成は、例えば、相対するアンテナの干渉が抑圧されているシンボルS1の表現を与える。
Figure 2005516463
したがって、干渉の寄与を減算しても、従来の受信機システムと比較して、単一のパスを使って動作するシステムの性能は劣化しない。シンボルS2に対して、同様の表現が得られる。したがって、全体的な性能を劣化せずに、相対するアンテナの信号を完全に消去する(すなわち、例えば、図7aの構成を使用する)ことができることが分かるであろう。したがって、これは、全ての干渉の減算プロセスを簡単にする。
Figure 2005516463
したがって、チャネル推定値に対して干渉消去を適用する(CPICHに対してIPIを抑圧する)と、理想的には、よりよい推定値が得られ、STTDの復号器の出力において信号品質を向上する。この性能利得は、一方の送信アンテナストリームから他方の送信アンテナストリームへ(または、この逆)IPIを抑圧することによって正確になるといった長所に付加されることに注意すべきである。
既に記載した干渉消去技術を組合せると、受信信号の品質をさらに向上することができる。ここでは、いくつかの例示的な組み合わせを記載するが、当業者には、明示的に記載されている組合せ以外の組合わせも可能であることが分かるであろう。
図22は、CPICH、SCH、およびP−CCPCHからの干渉の寄与が抑圧される受信機2200を示す。受信機は、次のアルゴリズムを実行する。
(i)符号ずれを計算する。
(ii)チャネル推定値を計算し、これを使用して、CPICHおよびSCHのチャネルを向上する(CPICH/SCHの消去についてのこれまでの記載を参照)。
(iii)P−CCPCHを計算する(PCCPCHの消去についてのこれまでの記載を参照)。
(iv)例えば、ハイブリッド形の全消去を使用して、CPICH、SCH、およびP−CCPCHを取り除く(すなわち、複雑さは最小であるが、重み付けが行なわれる。図7e参照)。例えば、異なるチャネルの関連する信号電力に依存して、適用される重み付けは、干渉推定値の品質に依存することが好ましい。
(v)既に生成されたチャネル推定値および符号ずれを使用して、専用チャネルを計算する(その代りに、より複雑な予備のチャネル推定器/符号追跡器を使用して、よりよい推定値を得てもよい)。
図23は、改良形のスペクトラム拡散受信機2300を示しており、スペクトラム拡散受信機2300も、干渉抑圧を向上することを目的として、上述で消去後のチャネル推定値と呼ぶものを用いて、CPICH、SCH、PCCPCHから干渉の寄与を抑圧する。受信機は、次のアルゴリズムを実行する。
(i)符号ずれを計算する。
(ii)前または以前のチャネル推定値および(適切な遅延を加えた)前の符号ずれを使用して、P−CCPCHを計算する(PCCPCHの消去についてのこれまでの記載を参照)。存在する雑音のレベルに依存して、合成前または合成後の干渉推定を選択する(例えば、SNRが低いときは、合成器前を使用し、SNRが高いときは、合成後を使用する)。
(iii)前のチャネル推定値を使用して、CPICHおよびSCHのチャネルを向上する(CPICH/SCHの消去についてのこれまでの記載を参照)。
(iv)好ましくは、ハイブリッド形の消去を使用して、CPICH、SCH、およびP−CCPCHの干渉推定値を取り除く(図7d参照)。適用される重みは、干渉推定値の品質に依存する。例えば、異なるチャネルの相対的な信号電力に依存することが好ましい。(この方法では、共通チャネルからIPIを抑圧するが、特定のパスからは、それらを取り除かない)。
(v)(干渉を取り除かれた)修正された入力信号から、新しいチャネル推定値および符号ずれを計算して、推定値を向上する(CPICHが取り除かれなかったときは、新しいチャネル推定値、すなわち他のパスに対するCPICHIPIのみを計算することができる)。
(vi)専用のチャネル出力を計算する。
図24は、スペクトラム拡散受信機2400を示しており、スペクトラム拡散受信機2400では、専用チャネルの干渉のある特定の部分を消去するが、希望のDPCH符号から、それ自体へのIPIは消去しない。図24の受信機では、STTDおよびマルチコードの干渉の寄与が抑圧される。受信機は、次のアルゴリズムを実行する。
(i)符号ずれを計算する。
(ii)チャネル推定値を計算し、これを使用して、CPICHおよびSCHのチャネルを向上する(CPICCH/SCHの消去についてのこれまでの記載を参照)。
(iii)P−CCPCHを計算する(PCCPCHの消去についてのこれまでの記載を参照)。(存在する雑音のレベルに依存して、合成前または合成後の干渉推定を選択する−例えば、SNRが低いときは、合成器前を使用し、SNRが高いときは、合成器後を使用する)。
(iv)マルチコードの専用チャネルの推定値を計算する(マルチコードの干渉消去についてのこれまでの記載を参照)−ここでも、合成器前か、または合成器後の推定を使用することができる。
(v)レーキ合成の前か、またはレーキ合成およびSTTD受信/合成の後を除いて、STTDの受信および合成の前か、またはSTTDの受信/合成の後の何れかに生成された干渉推定値を使用して、STTDのアンテナストリームの推定値を計算する(STTDの干渉消去についてのこれまでの記述を参照)。
(vi)ハイブリッド全消去を使用して、共通チャネル、マルチコード、およびSTTDの干渉推定値を取り除く。(図7eおよび図9a参照)。適用される重み付けは、干渉推定値の品質に依存する。この例では、特定のフィンガーにおける希望のマルチコードからのIPIは抑圧されない。
(vii)既に生成されたチャネル推定値および符号ずれを使用して、専用チャネルを計算する(その代りに、さらに複雑な予備のチャネル推定器/符号追跡器を使用して、よりよい推定値を得てもよい)。
図25は、スペクトラム拡散受信機2500を示しており、スペクトラム拡散受信機2500は、図24の受信機2400に類似しているが、付加的に、希望のDPCHチャネルおよび符号から生じる経路間干渉を抑圧するように構成されている(図16と、専用チャネルのIPI抑圧についての付随する記載とを参照)。受信機は、次のアルゴリズムを実行する。
(i)符号ずれを計算する。
(ii)(適切な遅延を加えて)前または以前のチャネル推定値および前の符号ずれを使用してP−CCPCHを計算する(PCCPCHの消去についてのこれまでの記載を参照)。存在する雑音レベルに依存して、合成前または合成後の干渉推定を選択する(例えば、SNRが低いときは、合成器前を使用し、SNRが高いときは、合成器後を使用する)。
(iii)前のチャネル推定値を使用して、CPICHおよびSCHのチャネルを向上する(上述のCPICH/SCHの消去についての記載を参照)。
(iv)合成器前の推定値を使用して、マルチコードの専用チャネルの推定値を計算する(マルチコードの消去についてのこれまでの記載を参照)。
(viii)レーキ合成の前か、またはレーキ合成およびSTTD受信/合成の後を除いて、STTD受信および合成の前か、またはSTTD受信/合成の後の何れかに生成された干渉推定値を使用して、STTDのアンテナストリームの推定値を計算する(STTDの消去についてのこれまでの記述を参照)。
(ix)ハイブリッド消去を使用して、共通チャネル、DPCHのIPIのマルチコード、およびSTTD干渉推定値を取り除く(図7dおよび19b参照)。適用される重み付けは、干渉推定値の品質に依存する。(この方法は、使用可能なチャネルからIPIを抑圧するが、特定のパスからは、それらを取り除かない)。
(x)(干渉を取り除かれた)修正入力信号から、新しいチャネル推定値および符号ずれを計算して、推定値を向上する。
(xi)新しいチャネル推定および符号ずれを使用して、専用チャネルの出力を計算する。
全体的な概念は、大要、拡散符号のゼロ以外の相互および自己相関によって生じる経路間干渉を取り除くことである。経路間の直接干渉によってか、あるいはマルチコードの影響または送信ダイバーシチから、取り除かれる干渉源は、CPICHおよびPCCPCHのような既知の共通チャネルか、または希望信号自体である。上述の技術の何れの組合せが適用されるかに依存して、これらの干渉の寄与の一部または全てが取り除かれる。
これらのタイプの技術を適用する長所は、比較的に小さいように見えるが、重要であり、端末を、干渉に対して性能を向上させるか、または容量を大きくする。確認された直交性の損失が大きく、例えば40%であるときは、セル内電力の40%(−4デシベル)が、干渉として確認されることが示唆される。これらの数値を、3GPPに記載されている標準の試験電力に適用すると、多くの場合に、セル内干渉電力は、セル間干渉電力よりも大きいことが示唆される。セル内干渉電力の約20%が、共通チャネルに割り当てられるので、これは干渉の相当な部分を構成する。
例えば、データレートが384キロビット秒であり、かつ希望のBERが10−2である3GPPのケース1(すなわち、高品質、高レートの目標)を採用するとき、セル内電力の約60%が、高レートのユーザに割り当てられ、残りの電力は、他のユーザ(20%)と共通チャネル(20%)との間で分割される。したがって、共通チャネルを消去することによって、セル内干渉が3デシベル分低減される。干渉の全体的な低減は、セル間電力対セル内電力の比に依存するが、1ないし2デシベルである可能性が高い。これは、25ないし60%のスループットの増加にほぼ対応する。これらの概算値は、専用チャネルのIPI(または、その除去)の影響を含まないが、これを含めると、より複雑になるといった犠牲を払うが、性能がより大きく向上することになる。
これまで、直列、並列の消去、またはハイブリッド構造(異なる干渉の寄与が異なって重み付けされる)を含めて、多数の干渉消去構造を記載してきた。これらは、ユーザエンドのセルラ移動通信端末にとくに適している。行われる重み付けは、干渉推定値における信頼度に依存し、ゼロ(すなわち、信頼度がなく、このフィンガーの干渉は減算されない)から、1(すなわち、信頼度が最高であり、干渉の寄与の全てが抽出される)の範囲にわたる。各フィンガーおよび各干渉の寄与に異なる重みを加えてもよい。記載されている全消去方法では、必要な処理数はより少ないが、信号が取り除かれる(したがって、この信号は、消去後に使用できない)。この方法の適用についても記載される。干渉の減算は、(一般に、干渉信号を再拡散することによって)チップレベルにおいて、または(希望の符号と不要符号とに相互相関を適用することによって)シンボルレベルにおいて行なうことができる。前のチャネルの推定値を使用して、干渉を消去する場合は、別の技術が記載されている。これは、新しい、より正確な推定を行なうことができ、一方で、チャネル推定器のより多くの処理を必要とせずに、専用チャネルから干渉を消去する。伝送データ(例えば、同報通信チャネル、および専用チャネル)についての事前の知識がないときは、“よりソフトな”、“ソフトな”、または“ハードな”判定を使用して、干渉を消去することができる。“よりソフトな”判定は、合成前(すなわち、1フィンガー/マルチパスに対し、1回のソフトな判定)に対応し、“ソフトな”判定は、ソフトな出力を使用した合成後に対応し、および“ハードな”判定は、ハードな判定を使用した合成後に対応する。消去は、専用チャネルにおいて確認される経路間干渉(IPI)に適用される。性能を最大限に活用するために、減算される干渉の寄与の重み付けを取入れる。IPI消去の多数の段を取入れて、減算するための干渉推定値の精度を向上する。マルチコードのDPCHへ適用される干渉消去についても記載されている。ここでは、一方のマルチコードから他方のマルチコードへの干渉の寄与が取り除かれる。さらに加えて、マルチコードからそれ自体への干渉が抑圧されるときは、これを、(上述の)IPI消去と組み合わせることができる。専用チャネルに対する干渉消去は、多数の(すなわち、2つ以上の)段で行われ、最初の段では、干渉信号のより正確な表現を生成し、最後の段では、使用されるシンボル推定値を計算する。
STTDへ適用される干渉消去が記載されている。ここでは、2本の伝送ストリーム間で消去して、直交性が損われることにより生じる干渉を取り除く。干渉の計算および消去のためのアーキテクチャと、全干渉の全消去のための方法が記載されている。相対する送信アンテナストリームが、全フィンガー/マルチパスから全て消去されるときでも、直交性が維持されることが証明されている。多数の段(すなわち、(a)STTDの受信および合成の前、(b)STTDの受信/合成の後であるが、レーキ合成の前、または(c)レーキ合成およびSTTDの受信/合成の後)において生成される推定値を使用して、STTDに干渉消去を適用することができる。(b)および(c)の場合において、受信機内の信号を、STTD符号化され、伝送信号を向上し、干渉を抑圧する。これらの消去技術の例示的な組み合わせについても記載されている。もちろん、当業者は、多くの他の効果的な代わりを生成することができ、本発明は、記載されている実施形態に制限されず、特許請求項の意図および技術的範囲内の変更を含む。
一般的な3Gの移動電話システムの構造を示すグラフ。 OVSF符号の自己相関関数を示すグラフ。 2つのマルチパス成分をもつ信号に対する、理想的な相関器出力を示すグラフ。 2つのマルチパス成分をもつ信号に対する、例示的な実際の相関器出力を示すグラフ。 m系列の自己相関関数を示すグラフ。 既知のW−CDMAレーキ受信機を示す図。 チップレベルで干渉を消去するW−CDMAレーキ受信機の一般的な構造を示す図。 シンボルレベルで干渉を消去するW−CDMAのレーキ受信機を示す図。 完全消去の干渉消去器の構造を示す図。 並列消去の干渉消去器の構造を示す図。 直列消去の干渉消去器の構造を示す図。 ハイブリッド直列−並列消去のための干渉消去器の構造を示す図。 ハイブリッド完全消去の干渉消去器の構造を示す図。 代わりのハイブリッド干渉消去装置の構造を示す図。 EPICHの消去のW−CDMAレーキ受信機を示す図。 CPICHの消去位置のオプションをもつW−CDMAのレーキ受信機を示す図。 12.2キロビット秒の3Gの移動電話システムのビット誤り率の性能を、干渉が消去されているときと、干渉が消去されていないときとについて示すグラフ。 384キロビット秒の3Gの移動電話システムのビット誤り率の性能を、干渉を消去したときと、干渉を消去しないときとについて示すグラフ。 12.2キロビット秒で、大きいマルチパス遅延拡散を行う3G移動電話システムのビット誤り率の性能を、干渉を消去したときと、干渉を消去しないときとについて示すグラフ。 384キロビット秒で、大きいマルチパス遅延拡散を行う3G移動電話システムのビット誤り率の性能を、干渉を消去したときと、干渉を消去しないときとについて示すグラフ。 合成前の推定値で、PCCPCHを消去するWCDMAレーキ受信機を示す図。 合成後の推定値で、PCCPCHを消去するWCDMAレーキ受信機を示す図。 専用データチャネルにおいて経路間干渉を消去するためのCDMDAレーキ受信機のアーキテクチャを示す図。 既知のWCDMAのマルチコードのレーキ受信機を示す図。 マルチコードの干渉を消去するW−CDMAのマルチコードのレーキ受信機を示す図。 合成器前および合成器後の干渉推定値に使用するためのマルチコード干渉消去器を示す図。 合成器後の推定値に使用するためのマルチコードおよび経路間干渉消去器を示す図。 レーキ合成後の推定値で干渉を消去するSTTDレーキ受信機を示す図。 レーキ合成前の推定値で干渉を消去するSTTDレーキ受信機を示す図。 干渉を消去するレーキ受信機のフィンガーのための従来のSTTD復号器を示す図。 干渉を消去するSTTDレーキ受信機のための変更されたSTTD復号器のフィンガーを示す図。 PCCPCH、SCH、およびCPICHを消去する端末のためのレーキ受信機を示す図。 CPICHの干渉推定が向上し、PCCPCH、SCH、およびCPICHを消去する端末のためのレーキ受信機を示す図。 共通チャネル、STTD、およびマルチコードの干渉を消去する端末のためのレーキ受信機を示す図。 共通チャネル、STTD、マルチコード、DPCHのIPIを消去する端末のためのレーキ受信機を示す図。
符号の説明
10・・・第3世代ディジタル移動電話システムの一般的な構造、12・・・無線塔、18・・・移動通信装置(MD)、20・・・無線または空中インターフェイス、22・・・移動交換局(MSC)、24・・・ゲートウエイMSC(GMSC)、26・・・公衆交換電話ネットワーク(PSTN)、28・・・ホーム位置レジスタ(HLR)、29・・・動作および管理局(OMC)、
30・・・ビジター位置レジスタ(VLR)、32・・・パケット制御装置(PCU)、34・・・供給側GPRS支援ノード(SGSN)、36・・・ゲートウエイGPRS支援ノード(GGSN)、200・・・自己相関関数、202・・・相関器出力、300・・・相関関数、204・・・遅延ずれ、400,500,600,900,1000,1500,1600,1800,2000,2050,2200,2300,2400,2500・・・スペクトラム拡散レーキ受信機、402,502,602,902,1008,1502,1602,1702,1802,2002・・・アンテナ、404,1010,1704,1804・・・ダウンコンバータ、412,528,638,916,1030,1534,1544,
1628,1712,1714,1716,1818,1820,1822,2020,2040・・・レーキ合成器、432,434,518,626,
628,636,932,1050,1530,1542,1620,1738,1740,1742,1844,1846,1848,2030,2032,2120,2122,2166,2168・・・乗算器、512,632,700,720,740,760,780,800,910,1510,1612,1900,1950,
2012,2014・・・干渉消去装置(IC装置)、616,622,624・・・相関器、704,788,802,804,806,
1922,1924,1926,1958,1960,1962,2128,2130,2162,2164,2178,2180・・・加算器、706,724,
726,728,746,748,766,768,770,792,1904,1906,1908・・・減算器、708,778,794・・・スプリッタ、772,774,776,786・・・重み、1006,1850・・・干渉抑圧器、1104・・・AWAGN干渉、1106・・・干渉消去されない、1108・・・順次干渉消去、1110・・・並列干渉消去、1112・・・干渉消去なし、1700・・・マルチコード受信機、2100,2150・・・レーキフィンガー、2112,2114,2118,2170,2174,2176・・・共役。

Claims (17)

  1. 複数のスペクトラム拡散信号によって伝送されるデータを受信するためのマルチコード受信機であって、複数のスペクトラム拡散信号は、対応する複数の拡散符号をもち、拡散符号は、相互に実質的に直交していて、受信機は、符号間干渉を抑圧し:
    前記複数のスペクトラム拡散信号によって伝送されるデータの複数の推定値を、各前記スペクトラム拡散信号に1つずつ含むデータ推定値の組を供給するためのマルチコードスペクトラム拡散受信機と;
    前記複数のデータ推定値を再拡散するための複数の再拡散器と;
    前記複数の拡散符号の各々に少なくとも1つの、複数の干渉抑圧器であって、前記各符号に少なくとも1つの干渉抑圧器の各々が、受信信号から、他の符号のスペクトラム拡散信号の再拡散されたデータ推定値を抑圧するように構成されている複数の干渉抑圧器とを含むマルチコード受信機。
  2. 複数のレーキフィンガーを含み、各レーキフィンガーが、前記複数の干渉抑圧器と、各前記複数の拡散符号の各々に1つずつの、複数のレーキ合成器とを含む請求項1記載のマルチコード受信機。
  3. 前記マルチコードスペクトラム拡散受信機が、マルチコードレーキ受信機を含む請求項1または2記載のマルチコード受信機。
  4. 前記マルチコードスペクトラム拡散受信機が、データ推定値の複数の組を供給するように構成されていて、各組が、受信信号のマルチパス成分に対応していて、前記複数の再拡散器が、各前記組の各前記データ推定値に1つの再拡散器を含み、前記レーキフィンガーの各々が、再拡散された前記データ推定値の組を受信するように構成されている請求項2記載のマルチコード受信機。
  5. 各前記データ推定値をチャネル応答推定値によって変更するためのチャネル推定器をさらに含む請求項1ないし4の何れか1項記載のマルチコード受信機。
  6. 前記干渉抑制器が、前記再拡散されたデータ推定値に重み付けするための調節可能な重みを含む請求項1ないし5の何れか1項記載のマルチコード受信機。
  7. 前記マルチコードスペクトラム拡散受信機が、請求項1ないし6の何れか1項記載のマルチコード受信機を含む請求項1ないし6の何れか1項記載のマルチコード受信機。
  8. 空間時間送信ダイバーシチSTTD受信のために構成されていて、かつ異なる送信アンテナから受信したスペクトラム拡散信号間の干渉を抑制するための手段をさらに含む請求項1記載のマルチコード受信機。
  9. 移動通信システムに適していて、前記移動通信システムのパイロットまたは制御チャネルからの干渉を抑制するための手段をさらに含む請求項1ないし8の何れか1項記載のマルチコード受信機。
  10. 請求項1ないし9の何れか1項記載のマルチコード受信機を実行するためのプロセッサ制御符号を搬送する担体。
  11. 複数のスペクトラム拡散信号によって伝送されるデータを受信するためのマルチコード受信機において符号間干渉を抑圧する方法であって、複数のスペクトラム拡散信号は、対応する複数の拡散符号をもち、拡散符号は、相互に実質的に直交していて:
    マルチコードスペクトラム拡散受信機を使用して、前記複数のスペクトラム拡散信号によって伝送されるデータの複数の推定値を、各前記スペクトラム拡散信号に1つずつ含むデータ推定値の組を供給することと;
    前記複数のデータ推定値を再拡散することと、
    各符号の受信信号から、他の符号のスペクトラム拡散信号の再拡散されたデータ推定値を抑圧することとを含む方法。
  12. 請求項11記載の方法を実行するためのプロセッサ制御符号を搬送する担体。
  13. 複数の実質的に直交するマルチコード信号を含む受信信号から、第1のマルチコード信号を復調するように構成されているレーキ受信機のための干渉抑圧器、とくに、請求項1記載のレーキ受信機のための干渉抑圧器であって:
    受信信号のための信号入力と;
    レーキ受信機の各フィンガーに1組ずつの、干渉推定値入力の複数の組と;
    レーキ受信機の各フィンガーに1つずつの複数の出力であって、各出力と入力の各組とが、受信信号のマルチパス成分と関係付けられていて、入力の各組が、第1のマルチコード以外の各マルチコードの干渉推定値の入力を含む、複数の出力と;
    各マルチコードの干渉推定値を加算するための、各入力の組の加算器と;
    信号入力と各前記出力との間の複数の減算器であって、前記出力が関係付けられているマルチパス成分以外の、各マルチパス成分と関係付けられている入力から、加算された干渉推定値の組を受信するように構成されている複数の減算器とを含む干渉抑圧器。
  14. マルチコードレーキ受信機のための干渉抑圧器であって、マルチコードレーキ受信機は、各前記マルチコード信号に1つずつの、複数のレーキ受信機を含み、干渉抑圧器は、複数の干渉抑圧器を含み、各々が、請求項13に記載されていて、かつ共通の前記信号入力を共用する干渉抑圧器。
  15. 前記干渉推定入力において干渉推定値入力に重み付けするための複数の重み付け手段をさらに含む請求項13または14記載の干渉抑圧器。
  16. 各前記重み付け手段が、調節可能な重みをもつ請求項15記載の干渉抑圧器。
  17. 請求項13ないし16の何れか1項記載の干渉抑圧器を実行するためのプロセッサ制御符号を搬送する担体。
JP2003563116A 2002-01-25 2003-01-24 受信機処理システム Expired - Fee Related JP4018637B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0201730A GB2384665B (en) 2002-01-25 2002-01-25 Reciever processing systems
PCT/JP2003/000673 WO2003063376A1 (en) 2002-01-25 2003-01-24 Signal processing system in a cdma receiver

Publications (2)

Publication Number Publication Date
JP2005516463A true JP2005516463A (ja) 2005-06-02
JP4018637B2 JP4018637B2 (ja) 2007-12-05

Family

ID=9929746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003563116A Expired - Fee Related JP4018637B2 (ja) 2002-01-25 2003-01-24 受信機処理システム

Country Status (5)

Country Link
US (1) US7295597B2 (ja)
JP (1) JP4018637B2 (ja)
CN (1) CN100342663C (ja)
GB (1) GB2384665B (ja)
WO (1) WO2003063376A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440492B2 (en) 2003-06-26 2008-10-21 Nec Corporation Interference canceller for CDMA mobile stations
JP2015536074A (ja) * 2012-09-21 2015-12-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無線ネットワーク中の周波数追跡ループ

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190749B2 (en) 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US8611311B2 (en) 2001-06-06 2013-12-17 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US7796574B2 (en) * 2002-09-10 2010-09-14 Texas Instruments Incorporated Multi-carrier reception for ultra-wideband (UWB) systems
US7697595B2 (en) * 2006-05-11 2010-04-13 Tensorcomm Incorporated Interference cancellation in variable codelength systems for multi-access communication
US8005128B1 (en) 2003-09-23 2011-08-23 Rambus Inc. Methods for estimation and interference cancellation for signal processing
KR100943272B1 (ko) * 2003-02-18 2010-02-23 삼성전자주식회사 디지털 통신 시스템의 채널 추정 장치 및 그의 채널 추정방법
US6944142B2 (en) * 2003-05-13 2005-09-13 Interdigital Technology Corporation Method for soft and softer handover in time division duplex code division multiple access (TDD-CDMA) networks
JP4763599B2 (ja) * 2003-06-13 2011-08-31 シーメンス アクチエンゲゼルシヤフト 移動無線通信システム用の電力制御装置
US7310367B2 (en) * 2003-10-17 2007-12-18 Qualcomm Incorporated Data demodulation for a CDMA communication system
US7437135B2 (en) * 2003-10-30 2008-10-14 Interdigital Technology Corporation Joint channel equalizer interference canceller advanced receiver
US8432952B2 (en) * 2003-11-24 2013-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for DS-CDMA interference suppression using code-specific combining
GB2411546B (en) * 2004-02-27 2007-05-30 Toshiba Res Europ Ltd Channel Estimation in a CDMA Receiver
JP2005311797A (ja) * 2004-04-22 2005-11-04 Tektronix Japan Ltd 逆拡散方法
AU2005202332A1 (en) * 2004-06-07 2005-12-22 Nec Australia Pty Ltd Method for decoding channelisation code set information in a spread spectrum receiver
US8599972B2 (en) 2004-06-16 2013-12-03 Telefonaktiebolaget L M Ericsson (Publ) SIR estimation in a wireless receiver
US7773950B2 (en) 2004-06-16 2010-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Benign interference suppression for received signal quality estimation
CN100370709C (zh) * 2004-06-29 2008-02-20 华为技术有限公司 一种多输入多输出系统的多码接收机
US8315212B2 (en) 2004-08-13 2012-11-20 Broadcom Corporation Energy based communication path selection
EP1633096A1 (fr) * 2004-08-26 2006-03-08 St Microelectronics S.A. Détermination de fréquences de porteuses et de symboles dans un signal
GB2418104B (en) * 2004-09-09 2007-03-28 Toshiba Res Europ Ltd An uplink interference cancelling CDMA base station uses the transmission timing of a new mobile station compared with that of other mobile stations
US7715806B2 (en) 2004-10-06 2010-05-11 Broadcom Corporation Method and system for diversity processing including using dedicated pilot method for closed loop
US8406251B2 (en) * 2004-10-06 2013-03-26 Broadcom Corporation Method and system for processing multipath clusters
US8422955B2 (en) 2004-12-23 2013-04-16 Qualcomm Incorporated Channel estimation for interference cancellation
US8406695B2 (en) 2004-12-23 2013-03-26 Qualcomm Incorporated Joint interference cancellation of pilot, overhead and traffic channels
US8099123B2 (en) * 2004-12-23 2012-01-17 Qualcomm Incorporated Adaptation of transmit subchannel gains in a system with interference cancellation
US8442441B2 (en) * 2004-12-23 2013-05-14 Qualcomm Incorporated Traffic interference cancellation
ATE526730T1 (de) * 2005-03-21 2011-10-15 Ericsson Telefon Ab L M Bestimmung eines detektionssignals in einem spreizspektrumnachrichtenübertragungssystem
KR20060110426A (ko) * 2005-04-19 2006-10-25 삼성전자주식회사 단말 주파수 망을 이용하는 디지털 방송 시스템에서 데이터송수신 방법 및 장치와 그 시스템
ES2282012B1 (es) * 2005-05-26 2008-09-16 Vodafone España, S.A. Sistema de localizacion e identificacion de un usuario de un equipo movil dentro de una zona predeterminada.
KR100698125B1 (ko) 2005-06-28 2007-03-26 엘지전자 주식회사 간섭 제거 방법과, 그를 위한 통신단말기
US7865158B2 (en) * 2005-07-26 2011-01-04 Interdigital Technology Corporation Method and apparatus for automatically correcting receiver oscillator frequency
GB2430123B (en) * 2005-09-09 2008-01-23 Toshiba Res Europ Ltd A quantum communication system
US7729235B2 (en) * 2005-09-27 2010-06-01 Mediatek Inc. Method and apparatus for OVSF code generation
US8472877B2 (en) 2005-10-24 2013-06-25 Qualcomm Incorporated Iterative interference cancellation system and method
US8385388B2 (en) 2005-12-06 2013-02-26 Qualcomm Incorporated Method and system for signal reconstruction from spatially and temporally correlated received samples
US8493953B1 (en) 2006-02-14 2013-07-23 L-3 Communications Method and device for mitigation of multi-user interference in code division multiple access
EP2030335A1 (en) * 2006-05-29 2009-03-04 Nxp B.V. Low-cost and low-complexity inner communication receiver for receive diversity
US8831139B2 (en) * 2006-12-01 2014-09-09 Broadcom Corporation Method and system for delay matching in a rake receiver
US8009777B2 (en) * 2007-06-15 2011-08-30 Icera, Inc. Processing data in a digital communications system
US8249540B1 (en) 2008-08-07 2012-08-21 Hypres, Inc. Two stage radio frequency interference cancellation system and method
DE102009017552B3 (de) * 2009-04-17 2010-09-30 Sew-Eurodrive Gmbh & Co. Kg Vorrichtung und Verfahren zur berührungslosen Übertragung elektrischer Leistung und Information
JP5803429B2 (ja) * 2011-08-25 2015-11-04 富士通株式会社 受信装置
CN106301614A (zh) * 2015-06-01 2017-01-04 富士通株式会社 多径时延估计装置、方法以及接收机
US10601529B2 (en) * 2017-01-24 2020-03-24 Corning Optical Communications LLC Suppressing an uplink radio frequency (RF) interference signal(s) in a remote unit in a wireless distribution system (WDS) using a correction signal(s) relative to the uplink RF interference signal(s)

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5553062A (en) 1993-04-22 1996-09-03 Interdigital Communication Corporation Spread spectrum CDMA interference canceler system and method
CN1078988C (zh) * 1995-06-13 2002-02-06 Ntt移动通信网株式会社 Cdma解调装置
US6067292A (en) * 1996-08-20 2000-05-23 Lucent Technologies Inc Pilot interference cancellation for a coherent wireless code division multiple access receiver
JPH10190495A (ja) * 1996-12-20 1998-07-21 Fujitsu Ltd 干渉キャンセラ
US6201799B1 (en) 1997-05-01 2001-03-13 Lucent Technologies, Inc Partial decorrelation for a coherent multicode code division multiple access receiver
JP3274388B2 (ja) * 1997-07-25 2002-04-15 株式会社東芝 Rake受信機とこのrake受信機を備えたスぺクトラム拡散通信装置
KR100277925B1 (ko) * 1997-12-22 2001-02-01 서평원 직접확산코드분할다중접속시스템의다중사용자검파장치및방법
JP3305639B2 (ja) 1997-12-24 2002-07-24 株式会社エヌ・ティ・ティ・ドコモ 直接拡散cdma伝送方式におけるrake受信機
JP2967571B1 (ja) * 1998-05-01 1999-10-25 日本電気株式会社 Cdmaマルチユーザ受信装置と通信システム
GB2341757B (en) 1998-09-21 2003-07-02 Fujitsu Ltd Code-division multiple access mobile comunications networks
EP0994570A1 (en) * 1998-10-12 2000-04-19 Sony International (Europe) GmbH Spread spectrum channel estimator with inter-path interference cancellation
US6570909B1 (en) * 1999-07-09 2003-05-27 Nokia Mobile Phones Interference suppression in a CDMA receiver
US6404760B1 (en) * 1999-07-19 2002-06-11 Qualcomm Incorporated CDMA multiple access interference cancellation using signal estimation
US6798737B1 (en) * 1999-10-06 2004-09-28 Texas Instruments Incorporated Use of Walsh-Hadamard transform for forward link multiuser detection in CDMA systems
JP3638107B2 (ja) 1999-12-09 2005-04-13 Kddi株式会社 スペクトル拡散信号復調装置
JP3515033B2 (ja) * 2000-01-19 2004-04-05 松下電器産業株式会社 干渉信号除去装置及び干渉信号除去方法
US7103095B2 (en) * 2000-03-06 2006-09-05 Texas Instruments Incorporated Spread spectrum code correlator
JP2001251278A (ja) 2000-03-06 2001-09-14 Japan Radio Co Ltd 干渉キャンセル装置
JP2001267982A (ja) 2000-03-22 2001-09-28 Matsushita Electric Ind Co Ltd Sttdエンコーディング方法およびダイバシティ送信機
JP2001339326A (ja) 2000-05-30 2001-12-07 Texas Instr Inc <Ti> スペクトル拡散干渉打消し
US8290098B2 (en) * 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
US7133435B2 (en) * 2001-06-20 2006-11-07 Texas Instruments Incorporated Interference cancellation system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440492B2 (en) 2003-06-26 2008-10-21 Nec Corporation Interference canceller for CDMA mobile stations
JP2015536074A (ja) * 2012-09-21 2015-12-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無線ネットワーク中の周波数追跡ループ

Also Published As

Publication number Publication date
US7295597B2 (en) 2007-11-13
CN100342663C (zh) 2007-10-10
US20040017843A1 (en) 2004-01-29
GB0201730D0 (en) 2002-03-13
JP4018637B2 (ja) 2007-12-05
GB2384665B (en) 2004-11-17
WO2003063376A1 (en) 2003-07-31
GB2384665A (en) 2003-07-30
CN1515087A (zh) 2004-07-21

Similar Documents

Publication Publication Date Title
JP4018637B2 (ja) 受信機処理システム
JP3981082B2 (ja) 受信機処理システム
JP4018636B2 (ja) 受信機処理システム
US9036748B2 (en) Interference cancellation in variable codelength systems for multi-access communication
US7697594B2 (en) Method and apparatus for regenerative based interference cancellation within a communication system
US11296808B2 (en) Advanced signal processors for interference cancellation in baseband receivers
WO2005086369A1 (en) Successive interference cancellation in a generalized rake receiver architecture
US20050213529A1 (en) Channel estimation in a CDMA receiver
EP1304815A2 (en) A code division multiple access downlink receiver
GB2384662A (en) CDMA receivers with subtractive suppression of interpath interference (IPI) and multiple access interference (MAI)
GB2384661A (en) CDMA receivers with subtractive suppression of interpath interference (IPI) and multiple access interference (MAI)
Priantoro Studies on multipath interference canceller for orthogonal code-multiplexed channels in W-CDMA forward link

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees