JP2005353968A - 閉ループ制御装置、光学素子駆動装置及び露光装置 - Google Patents

閉ループ制御装置、光学素子駆動装置及び露光装置 Download PDF

Info

Publication number
JP2005353968A
JP2005353968A JP2004175325A JP2004175325A JP2005353968A JP 2005353968 A JP2005353968 A JP 2005353968A JP 2004175325 A JP2004175325 A JP 2004175325A JP 2004175325 A JP2004175325 A JP 2004175325A JP 2005353968 A JP2005353968 A JP 2005353968A
Authority
JP
Japan
Prior art keywords
signal
control
gain
loop
closed loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004175325A
Other languages
English (en)
Inventor
Yoshiyuki Okada
芳幸 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004175325A priority Critical patent/JP2005353968A/ja
Publication of JP2005353968A publication Critical patent/JP2005353968A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】 高速で、高精度にて、かつ安定に動作する閉ループ制御装置を提供する。
【解決手段】 流体の圧力または流量のどちらかを制御する制御弁と、該制御弁からの流体圧力により伸縮する流体封入手段と、制御対象からの制御量を検出する制御量検出手段と、制御量の目標値と前記制御量検出手段からの信号との差を入力信号とする第1の補償手段と、該第1の補償手段の出力信号と前記制御量検出手段からの信号との差を入力信号とする第2の補償手段と、前記第2の補償手段への入力信号を検出する偏差信号検出手段とを有し、前記第1の補償手段により主制御ループを構成し、前記第2の補償手段により副制御ループを構成し、前記制御量の目標値が変化した際に前記偏差信号検出手段により前記副制御ループのゲインに相関した信号を検出する。
【選択図】 図1

Description

本発明は、半導体露光装置の投影光学系等における倍率、収差、及び歪み等の光学特性を調整するための光学素子駆動装置などに関し、特に閉ループ制御手段により構成された閉ループ制御装置、該制御装置を備える光学素子駆動装置及びこの駆動装置を備える露光装置等に関する。
半導体露光装置では、投影レンズが露光光を吸収すること等により熱変形や屈折率変化が発生し、露光結像特性を劣化させてしまうため、予め測定または計算された、「露光時間−レンズ露光倍率曲線」に基づいて特定レンズを光軸方向に駆動して露光結像特性を補正する手段が用いられてきた。光軸方向に駆動可能な光学素子駆動装置としては、例えば、特開平9−106944号公報に開示されたものがある。この光学素子駆動装置の駆動手段は、小型と、軽量化を図るため、伸縮可能な流体封入手段と該流体封入手段内部の流体体積または圧力を制御する制御手段により構成されていた。
一方、ICやLSI等の半導体集積回路は、益々パターンが微細化し、それに伴い露光結像特性の高精度化が要求されている。具体的には、ショット毎に投影レンズを駆動して露光結像特性を補正することが望まれ、高速、高精度であり、かつ安定に動作する投影レンズ駆動装置が必要となっている。
投影レンズ駆動装置は、高速で、高精度にて、かつ安定に動作させるには、各構成要素の伝達関数が変化することなく安定でなければならず、更にそれらの特性に対し最適なサーボ設計を施す必要がある。しかしながら、上記従来技術では、光軸方向に駆動可能な光学素子駆動手段として、流体、例えば、空気等の気体(圧縮性流体)や油等の液体(非圧縮性流体)と、流体の圧力または流量を制御する制御弁と、伸縮可能な流体封入手段を用いているため、駆動手段全体として個々の入出力ゲインが大きく異なり、高速で、高精度にて、かつ安定に投影レンズを駆動することができないという問題があった。
空気の圧力または流量を制御する制御手段の一例を図13に示す。制御弁部20は、3方向ポートを有する制御弁24と、この制御弁24に一定圧の空気を供給するための圧力レギュレータ22と、それらを結ぶ配管部26と、制御弁24を流体封入手段により構成される機構部30と結ぶ配管部27と、制御弁24からの排気を行う配管28により構成される。
制御弁24は、電気的な入力信号に従い開閉状態を調節し、空気の圧力または流量を制御する。一般に、流体の圧力または流量を制御する制御弁は、その入出力特性において大きな非線型性を示し、個々の制御弁においてゲイン、即ち、制御弁部20の制御弁24への入力電気信号に対する機構部30の出力圧力特性が異なることが広く知られており、個々の制御弁のゲインのばらつきは、数十%から数百%ある。また、流体封入手段においても、機械的な加工精度や部品特性のばらつき等により、個々のゲインは数十%前後ばらつき、これらにより駆動手段全体としてのゲインは数倍前後ばらついてしまう。
このような駆動手段のゲインを補正する従来技術例を図14に示す。この従来技術は、広く一般的であるため、より汎用的な制御ブロック図として説明する。
目標値に対する機構部570からの制御量はセンサ580により検出され、必要に応じて増幅部590にて信号増幅が行われ、加減算器595により目標値との差がとられる。この差信号は偏差信号と呼ばれ、制御部500に入力され、必要に応じてゲイン部550にて信号増幅される。制御部500は、一般的に、比例ゲイン、積分器、微分器等によるPID(Proportional Integral Derivative)制御演算で構成される。ゲイン部550からの信号はアクチュエータ560に入力され、アクチュエータ560は入力された信号に応じた物理的な力等を発生し、機構部570に作用して機構部570の制御量を変化させる。機構部570の制御量はセンサ580により目標値にフィードバックされるため、このような制御装置は、フィードバック制御装置、または閉ループ制御装置と呼ばれる。
アクチュエータ560は流体の圧力または流量を制御する制御弁であり、機構部570は伸縮可能な流体封入手段により光軸方向に駆動可能な光学素子駆動機構部である。目標値は、露光結像特性を補正するための光軸方向に対する位置または変位であり、機構部570からの出力は位置または変位に関する制御量である。
アクチュエータ560および機構部570のゲインを推定し補正するために、偏差信号を検出して演算する演算部510が設けられる。一般的には、目標値をステップ的に変化させたときの偏差信号を検出する。
演算部510における演算方法は数種類考えられる。例えば、閉ループ制御におけるループゲインが大きいときは、偏差信号は偏差=ゼロを越えてオーバーシュートして振動減衰波形となり、ループゲインが小さいときは、オーバーシュートは発生しないが偏差信号=ゼロとなるまでに長い時間を要する波形となるため、偏差信号のオーバーシュートを検出してループゲインを推定することが可能となる。演算部510にて偏差信号のオーバーシュート量を検出し、このオーバーシュート量と、予め計算または実測されたループゲインとオーバーシュート量との関係を表す基準値530の値とを比較部520にて比較し、比較された結果に基づいて制御部540により、所定のループゲインとなるようにゲイン部550のゲイン値を操作してアクチュエータ560および機構部570のゲインを補正する。
演算部510における他の演算方法は、偏差信号の絶対値の積算値、または、偏差信号の自乗の積算値を計算し、予め計算または実測されたループゲインとの関係を表す基準値530の値とを比較部520にて比較し、比較された結果に基づいて制御部540により、所定のループゲインとなるようにゲイン部550のゲイン値を操作してアクチュエータ560および機構部570のゲインを補正する。
偏差信号の自乗の積算値とループゲインとの関係を示すデータの一例を図15に示す。横軸はループゲインを表し、縦軸は偏差信号の自乗の積算値で、縦軸補助線は0から8等分して引かれている。図はループゲインを1〜4まで変えたときの特性で、一般的には偏差信号の自乗の積算値が最小となるループゲインにおいて閉ループ制御装置のステップ応答が最適になると考えられ、この例においては、ループゲインを2.2〜2.3となるようゲインを補正する。
特開平9−106944号公報
しかしながら偏差信号のオーバーシュートを検出してループゲインを推定する方法では、オーバーシュート量が微小であるときはセンサ580のノイズ等により精度よく検出することは困難であり、結果として、駆動手段のゲインを正確に補正することができず、高速で、高精度にて、かつ安定に投影レンズを駆動することができない問題があった。
また、偏差信号の自乗の積算値を検出してループゲインを推定する方法では、図15からも分かるように、ループゲインが1〜3.5の範囲で変化しても偏差信号の自乗の積算値の変化量は30%程度と非常に小さいため、駆動手段のゲインを正確に補正することができず、高速で、高精度にて、かつ安定に投影レンズを駆動することができない問題があった。
偏差信号の絶対値の積算値を検出してループゲインを推定する方法においても同様にループゲインに対する変化量が非常に小さいため、駆動手段のゲインを正確に補正することができず、高速で、高精度にて、かつ安定に投影レンズを駆動することができない問題があった。
これらの点に鑑み、本発明は、流体の圧力または流量を制御する制御弁のゲインと、前記制御弁からの流体圧力により伸縮する流体封入手段のゲインとを補正して、高速で、高精度にて、かつ安定に動作する閉ループ制御装置、光学素子駆動装置及び露光装置を提供することを目的とする。
上記課題を解決するために、本発明に係る閉ループ制御装置は、流体の圧力または流量のどちらかを制御する制御弁と、該制御弁からの流体圧力により伸縮する流体封入手段と、制御対象からの制御量を検出する制御量検出手段と、制御量の目標値と前記制御量検出手段からの信号との差を入力信号とする第1の補償手段と、該第1の補償手段の出力信号と前記制御量検出手段からの信号との差を入力信号とする第2の補償手段と、前記第2の補償手段への入力信号を検出する偏差信号検出手段とを有し、前記第1の補償手段により主制御ループを構成し、前記第2の補償手段により副制御ループを構成し、前記制御量の目標値が変化した際に前記偏差信号検出手段により前記副制御ループのゲインに相関した信号を検出することを特徴とする。
本発明は、前記副制御ループのゲインの増減に伴う前記偏差信号検出手段からの信号を予め実測または計算のどちらかにより保有する基準値記憶手段と、前記偏差信号検出手段からの信号と前記基準値記憶手段の基準値より前記副制御ループのゲイン補正量を算出するゲイン補正演算手段とを有し、該ゲイン補正演算手段からの信号により前記副制御ループのゲインを調整するよう構成されてもよい。
前記第1の補償手段は積分補償により構成され、前記第2の補償手段は比例ゲイン補償により構成されてもよい。
前記制御量の目標値の変化はステップ波形であってもよい。
前記偏差信号検出手段は、前記制御量の目標値が変化する前の偏差信号を保持し、目標値が変化した際の偏差信号から差し引くオフセット除去手段を備えるよう構成されてもよい。
前記偏差信号検出手段は、偏差信号のピーク値を検出するよう構成されてもよい。前記偏差信号検出手段は、偏差信号を自乗して積算するよう構成されてもよい。前記偏差信号検出手段は、偏差信号の絶対値を積算するよう構成されてもよい。前記流体封入手段は光学素子を支持し前記制御弁からの流体圧力により前記光学素子を光軸方向に駆動するよう構成されてもよい。
前記制御量検出手段は、前記光学素子の位置または変位を検出する位置センサまたは変位センサであってもよい。
前記光学素子は投影レンズであってもよい。
前記制御弁は空気の圧力または流量のどちらかを制御する制御弁であってもよい。
また、本発明は、上記いずれかの閉ループ制御装置を備える光学素子駆動装置や、該光学素子駆動装置を備える露光装置にも適用される。
また、上記課題を解決するために、本発明に係る閉ループ制御装置は、流体の圧力または流量のどちらかを制御する制御弁と、該制御弁からの流体圧力により伸縮する流体封入手段と、制御対象からの制御量を検出する制御量検出手段と、制御量の目標値と前記制御量検出手段からの信号との差を入力信号とする補償手段とを有する制御ループ装置において、前記補償手段は積分補償手段と比例ゲイン補償手段により構成され、前記積分補償手段からの出力信号を検出する信号検出手段を有し、前記制御量の目標値が変化した際に前記信号検出手段により制御ループのゲインに相関した信号を検出することを特徴とする。
本発明は、前記制御ループのゲインの増減に伴う前記信号検出手段からの信号を予め実測または計算のどちらかにより保有する基準値記憶手段と、前記信号検出手段からの信号と前記基準値記憶手段の基準値より前記制御ループのゲイン補正量を算出するゲイン補正演算手段とを有し、該ゲイン補正演算手段からの信号により前記制御ループのゲインを変更するよう構成されてもよい。
前記制御量の目標値の変化はステップ波形であってもよい。
前記信号検出手段は、前記制御量の目標値が変化する前の信号を保持し、目標値が変化した際の信号から差し引くオフセット除去手段を備えるよう構成されてもよい。前記信号検出手段は、検出信号のピーク値を検出するよう構成されてもよい。前記信号検出手段は、検出信号を自乗して積算するよう構成されてもよい。前記信号検出手段は、検出信号の絶対値を積算するよう構成されてもよい。前記流体封入手段は光学素子を支持し前記制御弁からの流体圧力により前記光学素子を光軸方向に駆動するよう構成されてもよい。
前記制御量検出手段は、前記光学素子の位置または変位を検出する位置センサまたは変位センサであってもよい。
前記光学素子は投影レンズであってもよい。
前記制御弁は空気の圧力または流量のどちらかを制御する制御弁であってもよい。
また、本発明は、上記いずれかの閉ループ制御装置を備える光学素子駆動装置や、該光学素子駆動装置を備える露光装置にも適用される。
本発明によれば、流体の圧力または流量を制御する制御弁のゲインと、前記制御弁からの流体圧力により伸縮する流体封入手段のゲインとを補正して、高速で、高精度にて、かつ安定に動作する閉ループ制御装置を構成することが可能となり、露光装置の閉ループ制御により構成される投影レンズ駆動装置において、位置または変位の閉ループ制御手段におけるゲインを正確に検出して補正することにより、高速で、高精度にて、かつ安定に光軸方向に駆動する投影レンズ駆動装置を構成することが可能となり、ひいてはショット毎に投影レンズを駆動して露光結像特性を補正することができる露光装置を構成することが可能となる。
さらに、本発明によれば、露光結像特性を補正するために位置または変位の目標値を更新設定して投影レンズを駆動する度に制御ループゲインを正確に検出して補正することが可能であるため、温度や経年変化等による投影レンズ駆動装置のゲイン変化を補正することができ、常にゲインを安定化させることが可能となり、温度や経年変化等によらず、高速で、高精度であり、かつ安定に動作する投影レンズ駆動装置を構成することが可能となる。
以下に本発明の各実施形態について、光学手段または光学素子が投影レンズである場合を例として、詳細に説明する。
(第一の実施形態)
図1は本発明の第一の実施形態に係る閉ループ制御装置を備える投影レンズ駆動装置を示す構成ブロック図である。
ショット毎に投影レンズを駆動して露光結像特性を補正する場合、投影レンズ駆動装置100には、予め測定または計算された「露光時間−レンズ露光倍率曲線」に基づいて、特定レンズを光軸方向に駆動するための目標値が設定される。目標値の大きさは、その時々により異なるが、数μm前後のステップ値で、投影レンズ駆動装置100は、ショット間に目標値に追従し、露光動作時には投影レンズの位置が十分に安定していなければならない。投影レンズ駆動装置100のステップ応答時間は、約0.1sec前後であり、位置安定性は数十nmでなければならない。
本発明の第一の実施形態による閉ループ制御装置を備える投影レンズ駆動装置は、第一の補償手段による主制御ループと第二の補償手段による副制御ループにより構成される。
主制御ループは、流体の圧力または流量を制御する制御弁部20と、光学素子の一つである投影レンズを支持して光軸方向に伸縮可能な流体封入手段により構成される機構部30と、制御量検出手段として投影レンズの位置または基準点からの変位を検出する位置センサまたは変位センサ40と、制御量の目標値とセンサ40からの信号の差を算出するための加減算器50と、加減算器50からの信号により主制御ループの制御信号を生成する制御部10とを備えることにより構成される。センサ40からの信号は、必要に応じて増幅部90により増幅してもよい。また、制御部10は、積分器により構成されてもよい。
副制御ループは、制御部10からの出力信号とセンサ40からの信号の差を算出するための加減算器60と、加減算器60からの信号により副制御ループの制御信号を生成する制御部80とを備えることにより構成され、制御部80の出力信号は、制御弁部20に入力される。センサ40からの信号は、必要に応じて増幅部92により増幅してもよい。また、制御部80は、比例ゲインを有する増幅器により構成されてもよい。
制御弁部20は、図13に示すような3方向ポートを有する制御弁24により構成されてもよい。制御弁24は、電気的な入力信号により弁の開閉状態が変わり、空気の圧力または流量を変化させる。機構部30は、制御弁24からの空気の流量が積分されて圧力が生じた結果、光学手段または光学素子である投影レンズを光軸方向に駆動する。光軸方向への駆動量は、投影レンズの位置または基準点からの変位を検出する位置センサまたは変位センサ40により検出される。先の従来の技術で述べたように、流体の圧力または流量を制御する制御弁は、その入出力特性において大きな非線型性を示し、個々の制御弁において入出力ゲイン、即ち、制御弁部20の制御弁24への入力電気信号に対する機構部30の出力圧力特性が異なり、個々の制御弁の入出力ゲインのばらつきは、数十%から数百%ある。また、光学素子の一つである投影レンズを支持して光軸方向に伸縮可能な流体封入手段においても、機械的な加工精度や部品特性のばらつき等により、個々の入出力ゲインは数十%前後ばらつき、これら制御弁24および機構部30により構成される投影レンズ駆動手段のゲインは数倍前後ばらつくため、非常に不安定な投影レンズ駆動装置となってしまう。
図5に図1の投影レンズ駆動装置100における目標位置ステップ入力に対する出力応答特性を示す。制御弁24および機構部30のゲインを標準ゲイン=2に対し、ゲイン=1とゲイン=4とした場合の応答特性で、ゲインが高いと振動的となり、ゲインが低いとオーバーシュートをし、標準ゲインの場合は振動やオーバーシュートがなく目標値に速やかに収束することが分かる。先に述べたように、露光結像特性を補正するためには、投影レンズ駆動装置100の応答特性は、数μm前後の目標値ステップに対し0.1sec前後の収束時間で数十nm以下の安定性が要求され、目標値ステップ量に対し、少なくとも1%前後の制御精度が必要とされる。振動的な応答やオーバーシュートを伴った収束の悪い応答は許容されるものではなく、ループゲインをより正確に合わせ、所望の応答特性とする必要がある。
同様に、図6に目標位置ステップ入力に対する主制御ループの偏差信号応答特性を示す。これは、加減算器50の出力信号、即ち制御部10への入力信号で、ゲインが高いと振動的となり、ゲインが低いとオーバーシュートをし、標準ゲインの場合は振動やオーバーシュートがなく速やかに偏差がゼロに収束することが分かる。
同様に、図7に目標位置ステップ入力に対する副制御ループの偏差信号応答特性を示す。これは、加減算器60の出力信号、即ち、制御部80への入力信号で、ゲインが高いと振動的となり、ゲインが低いと非常に大きなピーク値を示し、かつ収束するまで大きな偏差信号となり、標準ゲインの場合は振動がなく、ピーク値もゲインが高いときと低いときの中間の値となり、速やかに収束することが分かる。
ここで、図6の主制御ループ偏差信号応答特性と図7の副制御ループ偏差信号応答特性とを比べると、図6の主制御ループ偏差信号応答特性では、ゲインに対するオーバーシュート量や偏差信号応答特性の差異が僅かであるのに対し、図7の副制御ループ偏差信号応答では、ゲインに対するピーク値および収束するまでの偏差信号波形が大きく異なることが分かる。即ち、積分器等による主制御ループと比例ゲイン等による副制御ループにより構成される投影レンズ駆動装置100において、副制御ループの偏差信号を検出することにより、制御弁24および機構部30により構成される投影レンズ駆動手段のゲインを高精度に推定することが可能となる。
図1に戻り説明を続ける。ループゲイン調整機構200は、副制御ループ偏差信号、即ち、制御部80への入力信号を検出する手段として演算部220、オフセット検出部210、正規化部230、演算部240、基準値250、比較部260、制御部270により構成される。
目標値生成部110は、露光結像特性を補正するため新たな目標値を生成する。目標値はショット間にステップ的に更新されてもよい。オフセット検出部210は、目標値が更新される直前の副制御ループ偏差信号の値を保有する。必要に応じて平均化処理を行ってもよい。演算部220は目標値が更新された後の副制御ループ偏差信号を検出し、更にオフセット検出部210からの目標値が更新される直前の値を減算する。これにより副制御ループにおける定常追従偏差が差し引かれる。これらの演算の切り替えは、切り替えスイッチ212、222により実施されてもよいし、ソフトウエア的に演算が行われる場合は処理ルーチンが変更されるようプログラムを構成してもよい。
演算部220からの信号は、目標値生成部110で生成されたステップ量に依存した大きさとなるため、正規化部230により、正規化することが望ましい。正規化部230は、例えば、基準ステップ値=Prefとすると、新たに生成されたステップ値=Poutにおける副制御ループ偏差信号=Verrに対し、(Pref/Pout)*Verrの演算を行うよう構成されてもよい。これにより、正規化部230からの信号は、目標値のステップ量に依存せず、ループゲインの大きさのみに依存した信号となる。
演算部240は、ループゲインを推定するため正規化部230からの信号に対し演算を行う。
演算部240の一例を図2に示す。242で表されたブロックは、正規化部230からの信号に対し、自乗してその積算演算を行う。この自乗積算演算は、目標値がステップ的に更新された後に演算が開始され、所定時間演算した後、演算を停止してその演算結果を保持するよう構成されてもよい。これらの演算の切り替えは、切り替えスイッチ241、243、論理反転器244により実施されてもよいし、ソフトウエア的に演算が行われる場合は処理ルーチンが変更されるようプログラムを構成してもよい。また、上記所定時間の設定は、副制御ループ偏差信号の応答が収束する前後の値に設定することが好ましい。
図8に、図2の演算部240からの出力信号の例を示す。これは、ループゲインを1〜4としたときの演算部240の出力信号の大きさを表しており、ループゲインが4倍変化した場合、出力信号は約12倍変化し、演算部240からの出力信号により極めて感度よくループゲインの大きさを推定することが可能であることが分かる。
また、図1の演算部240は、正規化部230からの信号に対し、絶対値をとって所定時間積算するよう構成されてもよい。所定時間の設定は、副制御ループ偏差信号の応答が収束する前後の値に設定することが好ましい。この場合においても、感度よくループゲインの大きさを推定することが可能である。
また、演算部240は、図3に示すようにピーク値を検出するよう構成されてもよい。この場合、図7の副制御ループ偏差信号特性からも分かるように、ループゲインの大きさによりピーク値が変化するため、感度よくループゲインの大きさを推定することが可能である。
基準値250は、ループゲインが規定値となったときの演算部240からの出力信号を予め実測または計算のどちらかにより求めておき保有するよう構成されてもよい。
比較部260は、基準値250の値と演算部240の値を比較演算する。具体的には、基準値250より演算部240からの信号を減算するよう構成されてもよい。
制御部270は、比較部260からの信号に基づきループゲインの大きさを推定しループゲイン補正量を算出する。具体的には、積分演算をして比較部260からの信号がゼロ、即ち、演算部240からの出力信号と基準値250の値が等しくなるよう信号を生成して投影レンズ駆動装置100の制御部80におけるゲインを調整するよう構成されてもよい。また、図8に示したような実測または計算により求められた演算部240からの出力信号特性を保有し、実際に検出された演算部240からの信号とのずれ量よりループゲインの大きさを推定し、ループゲインが規定の値となるようループゲイン補正量を算出して投影レンズ駆動装置100の制御部80におけるゲインを調整するよう構成されてもよい。
いずれの場合においても、ループゲインを正確に調整することができ、露光結像特性を補正するための目標値ステップに対し、振動やオーバーシュートがなく目標値に速やかに収束させることが可能となる。
したがって、本実施形態によれば、流体の圧力または流量を制御する制御弁のゲインと、前記制御弁からの流体圧力により伸縮する流体封入手段のゲインとを補正して、高速で、高精度にて、かつ安定に動作する閉ループ制御装置を構成することが可能となり、露光装置の閉ループ制御により構成される投影レンズ駆動装置において、位置または変位の閉ループ制御手段におけるゲインを正確に検出して補正することにより、高速で、高精度にて、かつ安定に光軸方向に駆動する投影レンズ駆動装置を構成することが可能となり、ひいてはショット毎に投影レンズを駆動して露光結像特性を補正することができる露光装置を構成することが可能となる。
さらに、本発明によれば、露光結像特性を補正するために位置または変位の目標値を更新設定して投影レンズを駆動する度に制御ループゲインを正確に検出して補正することが可能であるため、温度や経年変化等による投影レンズ駆動装置のゲイン変化を補正することができ、常にゲインを安定化させることが可能となり、温度や経年変化等によらず、高速で、高精度であり、かつ安定に動作する投影レンズ駆動装置を構成することが可能となる。
(第二の実施形態)
次に、本発明による第二の実施形態について説明する。
図4は本発明の第二の実施形態に係る投影レンズ駆動装置を示す構成ブロック図である。図1の第一の実施形態と同じ動作をするブロックには同一の番号を付してあり、詳細な説明は省略する。
制御部12は積分器により構成され、ゲイン部14は比例ゲインにより構成され、制御部12とゲイン部14の出力は、加算器60aにて加算される。必要に応じて制御部12とゲイン部14に並列に、図示していないが微分器を構成してもよく、これらは一般的に、比例ゲイン、積分器、微分器等によるPID(Proportional Integral Derivative)制御演算と呼ばれている。
このPI制御、または、PID制御により制御演算がなされる投影レンズ駆動装置100aの場合、ループゲイン調整機構200は、制御部12、即ち、積分器の出力信号を検出し、演算部220、オフセット検出部210、正規化部230、演算部240、基準値250、比較部260、制御部270によりループゲインの大きさを推定し、ループゲインが規定の値となるようループゲイン補正量を算出して投影レンズ駆動装置100aの比例ゲインで構成されるゲイン部80aのゲインを調整するよう構成されてもよい。
演算部240は、第一の実施形態における例と同様で、図2に示す正規化部230からの信号に対し、目標値がステップ的に更新された後より、所定時間の間、自乗積算するよう構成されてもよいし、正規化部230からの信号に対し、絶対値をとって所定時間積算するよう構成されてもよい。所定時間の設定は、制御ループ偏差信号の応答が収束する前後の値に設定することが好ましい。
図9に、図4に示す第二の実施形態にて演算部240を所定時間の間、自乗積算するよう構成した場合の演算部240からの出力信号の例を示す。これは、ループゲインを1〜4としたときの演算部240の出力信号の大きさを表しており、ループゲインが4倍変化した場合、出力信号は約8倍変化し、演算部240からの出力信号により極めて感度よくループゲインの大きさを推定することが可能であることが分かる。また、演算部240を所定時間の間、絶対値の積算をするよう構成した場合においても、感度よくループゲインの大きさを推定することが可能である。
また、演算部240は、図3に示すようにピーク値を検出するよう構成されてもよく、この場合においてもループゲインの大きさによりピーク値が変化するため、感度よくループゲインの大きさを推定することが可能である。
いずれの場合においても、図4における制御部12、即ち、積分器の出力信号を検出して演算することによりループゲインを正確に調整することができ、露光結像特性を補正するための目標値ステップに対し、振動やオーバーシュートがなく目標値に速やかに収束させることが可能となる。
したがって、本実施形態によれば、流体の圧力または流量を制御する制御弁のゲインと、前記制御弁からの流体圧力により伸縮する流体封入手段のゲインとを補正して、高速で、高精度にて、かつ安定に動作する閉ループ制御装置を構成することが可能となり、露光装置の閉ループ制御により構成される投影レンズ駆動装置において、位置または変位の閉ループ制御手段におけるゲインを正確に検出して補正することにより、高速で、高精度にて、かつ安定に光軸方向に駆動する投影レンズ駆動装置を構成することが可能となり、ひいてはショット毎に投影レンズを駆動して露光結像特性を補正することができる露光装置を構成することが可能となる。
さらに、本発明によれば、露光結像特性を補正するために位置または変位の目標値を更新設定して投影レンズを駆動する度に制御ループゲインを正確に検出して補正することが可能であるため、温度や経年変化等による投影レンズ駆動装置のゲイン変化を補正することができ、常にゲインを安定化させることが可能となり、温度や経年変化等によらず、高速で、高精度であり、かつ安定に動作する投影レンズ駆動装置を構成することが可能となる。
尚、これまで説明した本発明の第一の実施形態及び第二の実施形態における制御部10,80、270、12、加減算器50,60、60a、増幅部90,92、オフセット検出部210、演算部220、240、正規化部230、基準値250、比較部260、およびゲイン部14、80aは、アナログ回路により実施されてもよいし、CPU(Central Processor Unit)やDSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuits)やFPGA(Field Programmable Gate Array)等のディジタル回路およびソフトウエア-により実施されてもよい。
(第三の実施形態)
図10は本発明の実施形態に係る露光装置を示す概略立面図である。同図において、31は感光剤が塗布された半導体ウエハであり、精密な位置決め性能を有するウエハステージ32上に支持されている。露光装置の基準に対するウエハステージ32の位置は、レーザ干渉計43によって計測されている。33は、原版となるパターンが描かれているレチクルである。投影光学系34は光学素子駆動機構47を有しており、レチクル33上のパターンをウエハ31上に結像させる。35は、レチクル33を照明するための照明光学系である。36は、前工程で作成されたウエハ31とレチクル33との位置ずれを検出するアライメント光学系である。このアライメント光学系36とウエハステージ32とによって、レチクル33上のパターンとウエハ31上のパターンとを重ね合わせた上で露光が行われる。37は、露光装置の動作を管理する管理装置である。
ウエハステージ32の駆動制御と、アライメント光学系36とレーザ干渉計43が検出した計測値とを用いて、ウエハ31上のパターンの寸法を計測することができる。管理装置37は、この計測値に基づいて、好ましい光学特性が得られる光学素子の位置を設定する。一方、投影光学系34の光学特性の一つである投影倍率の変動要因として、気圧センサ38などによって得られる気圧の情報や、好適な露光倍率の値から、管理装置37は光学素子の一つである投影倍率調整用のレンズの適した位置を決定し、その位置の目標値を光学素子駆動機構47の閉ループ制御装置41に与える。ここでの閉ループ制御装置41は、図1に示した閉ループ制御装置において投影レンズ駆動装置100中の機構部30及びセンサ40以外のすべての要素を含むものである。
図10において、39は投影光学系34を支持する鏡筒定盤、42は鏡筒定盤39に支持された照明光学系35やアライメント光学系36を支持する上定盤、44はウエハステージ32を支持するステージベース45を支持するための下定盤である。鏡筒定盤39及び下定盤44は、ダンパ46により床から除振されている。
図11は本発明に係る閉ループ制御装置を適用した光学素子駆動機構を示す図であり、(a)が断面図、(b)が平面図である。同図に示す通り、この光学素子駆動機構は、図1等に示した前述の機構部30に相当し、倍率・収差等の調整レンズ7及びこれを支持するセル8を備えた可動台1と、図10に示した投影光学系34の固定部分の一部をなす固定台2とを有する。可動台1及び固定台2は、概ね円錐筒形状である。リング状板ばね11は、Oリング12と、板ばね押え6を用いて、可動台1及び固定台2の両端面にそれぞれ封止するように固定される。
可動台1に取り付けられる調整レンズ7を支持するセル8は、リング状板ばね11から受ける反力が調整レンズ7に歪みなどの影響が伝わらないように、可動台1とは別部品にしてある。
可動台1は、円錐筒形状であって、上面の外径と下面の外径が異なっている。また、同様に、固定台2も円錐形状であって、上面の開口部の内径と下面の開口部の内径が異なっている。
本実施形態の場合、図11(a)に示すように、可動台1の外径を光軸方向の上からb1,b2とし、固定台2の内径を光軸方向の上からa1,a2とすると、可動台1の外径及び固定台2の内径は、それぞれ次式の関係となっている。
a1<a2、b1<b2 (1)
動作条件は、可動台1と固定台2との相対移動によって円環状の空間の容積が変化する場合であって、概ね、以下の式(2)のようになる。
(a2-b2)(7b2+3a2)-(a1-b1)(7b1+3a1)+10(b2-b1)(b2+b1)≠0 (2)
可動台1の動作は、上記の式(1)のように、光軸方向下側の各内外径が大きい場合は、可動部1は光軸方向の下側に変位するように構成する。逆に、a1>a2、b1>b2なる関係となっている場合は、可動部1は光軸方向の上側に変位するように構成する。
固定台2は、少なくとも1箇所の穴を有し、駆動流体の圧力変化、もしくは体積変化により、可動部1の位置を変化させることができる。これは、図12に示すように、上下二つの板ばね11の径が異なることにより、板ばね11の変形による流体封入部空間の体積変化量A1、及びA2が異なるからである。
この駆動機構の場合、アクチュエータとなる流体封入部が1箇所であるため、流体調整機器、例えば、圧力コントローラ等を1個設ければよい。
本実施形態に係る駆動機構は、流体封入手段として、継手18を通じて流体の変動により駆動する構造を有するので、2枚のリング状板ばね11、可動台1、及び固定台2により囲まれた空間に流体を封じ込めてシールする必要がある。
シールは、可動台1もしくは固定台2に板ばね押え6を止めるためのねじ等を避けた位置に設けた溝にOリング12を入れ、板ばね押え6により行なっている。板ばね押え6は、リング状板ばね11の有効長さが円周上同一になるように、あるいは同時にリング状板ばね11の全周を拘束できるように、円環形状になっている。また、板ばね押え6は、できる限り均一にリング状板ばね11を固定するために、リング状板ばね11との接触面に溝加工が施されている。
この駆動機構は、センサ40にて可動台1を介してレンズ7の位置を監視し、目標位置との偏差に相当する信号を前述の閉ループ制御装置により流体制御弁に出力する。さらに、流体制御弁で流体の流量もしくは圧力を調整することによって、可動台1の位置を制御する。
光軸方向を重力方向と平行に配置した場合は、リング状板ばね11は可動台1を含む可動質量によって変形を受け、板ばね11の中立位置(可動台1と固定台2の高さが等しく、板ばね11が変形を受けない位置)から機械的最下点(可動質量と板ばね11によるばね定数が釣り合う位置)に変形する。
図11及び図12に示すような本実施形態の場合では、機械的最下点から更に重力方向に変位することになる。この場合、偏心や角変位を伴うことなく、機構を動作させることができる。
センサ40は、可動台1と固定台2との相対変位を計測する変位センサであって、レンズ7を取り巻く円環状の電極を内蔵した円環状静電容量型センサとして固定台2の周囲に固定されている。可動台1には、センサ40の形状に対応して円環状のターゲット17が固定されている。このターゲット17は、材質が金属であり、板ばね11を可動台1に固定するための部材としての役割を兼ねている。そしてセンサ40は、電極とターゲット17との距離によって静電容量が変化するので、この変化を検出することによって、固定台2に対する可動台1の位置を計測する。このような可動台1の周囲に円環状に電極を配置することで、レンズ7の周囲に大きな突出部を設けなくとも電極の面積を大きくすることができ、可動台1の移動に伴う静電容量の変化を大きくできるので、位置の検出精度を高くすることが可能である。また、静電容量センサを用いることで、可動台1と固定台2との相対位置変位の検出範囲を大きくすることが可能である。さらに、レンズ7の周囲に電極があるので移動の際の可動台1の姿勢変化の影響が軽減され、レンズ7中心の位置を測定することができる。
本発明の第一の実施形態に係る閉ループ制御装置及び投影レンズ駆動装置の構成を示すブロック図である。 本発明の実施形態に係る偏差信号検出手段の一例を示す図である。 本発明の実施形態に係る偏差信号検出手段の一例を示す図である。 本発明の第二の実施形態に係る閉ループ制御装置及び投影レンズ駆動装置の構成を示すブロック図である。 本発明の第一の実施形態における位置のステップ応答の一例を示す図である。 本発明の第一の実施形態における主制御ループ偏差信号のステップ応答の一例を示す図である。 本発明の第一の実施形態における副制御ループ偏差信号のステップ応答の一例を示す図である。 本発明の第一の実施形態におけるゲインに対する偏差信号の自乗の積算値特性の一例を示す図である。 本発明の第二の実施形態におけるゲインに対する検出信号の自乗の積算値特性の一例を示す図である。 本発明の実施形態に係る露光装置を示す立面図である。 本発明の実施形態に係る光学素子駆動機構を示す図であって、(a)は断面図、(b)は平面図である。 本発明の実施形態に係る光学素子駆動機構の動作原理を説明するための要部断面図である。 従来の制御弁の一例を示す概略構成図である。 従来技術の一例による閉ループ制御装置の構成を示すブロック図である。 従来技術の閉ループ制御装置におけるゲインに対する偏差信号の自乗の積算値特性の一例を示す図である。
符号の説明
1 可動台
2 固定台
6 板ばね押え
7 調整レンズ(光学素子)
8 セル
10 制御部
11 リング状板ばね
12 Oリング
17 ターゲット
18 継手
19 光軸
20 制御弁部
24 制御弁
30 機構部
31 ウエハ
32 ウエハステージ
33 レチクル
34 投影光学系
35 照明光学系
36 アライメント光学系
37 露光装置の管理装置
38 気圧センサ
39 鏡筒定盤
40 センサ(制御量検出手段)
41 閉ループ制御装置
42 上定盤
43 レーザ干渉計
44 下定盤
45 ステージベース
46 ダンパ
47 光学素子駆動機構

Claims (15)

  1. 流体の圧力または流量のどちらかを制御する制御弁と、該制御弁からの流体圧力により伸縮する流体封入手段と、制御対象からの制御量を検出する制御量検出手段と、制御量の目標値と前記制御量検出手段からの信号との差を入力信号とする第1の補償手段と、該第1の補償手段の出力信号と前記制御量検出手段からの信号との差を入力信号とする第2の補償手段と、前記第2の補償手段への入力信号を検出する偏差信号検出手段とを有し、前記第1の補償手段により主制御ループを構成し、前記第2の補償手段により副制御ループを構成し、前記制御量の目標値が変化した際に前記偏差信号検出手段により前記副制御ループのゲインに相関した信号を検出することを特徴とする閉ループ制御装置。
  2. 前記副制御ループのゲインの増減に伴う前記偏差信号検出手段からの信号を予め実測または計算のどちらかにより保有する基準値記憶手段と、前記偏差信号検出手段からの信号と前記基準値記憶手段の基準値より前記副制御ループのゲイン補正量を算出するゲイン補正演算手段とを有し、該ゲイン補正演算手段からの信号により前記副制御ループのゲインを調整することを特徴とする請求項1に記載の閉ループ制御装置。
  3. 前記第1の補償手段は積分補償により構成され、前記第2の補償手段は比例ゲイン補償により構成されることを特徴とする請求項2に記載の閉ループ制御装置。
  4. 前記制御量の目標値の変化はステップ波形であることを特徴とする請求項3に記載の閉ループ制御装置。
  5. 前記偏差信号検出手段は、前記制御量の目標値が変化する前の偏差信号を保持し、目標値が変化した際の偏差信号から差し引くオフセット除去手段を備えることを特徴とする請求項1または請求項4に記載の閉ループ制御装置。
  6. 前記偏差信号検出手段は、偏差信号のピーク値を検出することを特徴とする請求項5に記載の閉ループ制御装置。
  7. 前記偏差信号検出手段は、偏差信号を自乗して積算することを特徴とする請求項5に記載の閉ループ制御装置。
  8. 前記偏差信号検出手段は、偏差信号の絶対値を積算することを特徴とする請求項5に記載の閉ループ制御装置。
  9. 前記流体封入手段は光学素子を支持し前記制御弁からの流体圧力により前記光学素子を光軸方向に駆動することを特徴とする請求項6〜8のいずれかに記載の閉ループ制御装置。
  10. 前記制御量検出手段は、前記光学素子の位置または変位のどちらかを検出する位置センサまたは変位センサのどちらかであることを特徴とする請求項9に記載の閉ループ制御装置。
  11. 前記光学素子は投影レンズであることを特徴とする請求項9または10に記載の閉ループ制御装置。
  12. 前記制御弁は空気の圧力または流量のどちらかを制御する制御弁であることを特徴とする請求項1〜11のいずれかに記載の閉ループ制御装置。
  13. 流体の圧力または流量のどちらかを制御する制御弁と、該制御弁からの流体圧力により伸縮する流体封入手段と、制御対象からの制御量を検出する制御量検出手段と、制御量の目標値と前記制御量検出手段からの信号との差を入力信号とする補償手段とを有する閉ループ制御装置において、前記補償手段は積分補償手段と比例ゲイン補償手段により構成され、前記積分補償手段からの出力信号を検出する信号検出手段を有し、前記制御量の目標値が変化した際に前記信号検出手段により制御ループのゲインに相関した信号を検出することを特徴とする閉ループ制御装置。
  14. 請求項1〜13のいずれかに記載の閉ループ制御装置を備えることを特徴とする光学素子駆動装置。
  15. 請求項14に記載の光学素子駆動装置を備えることを特徴とする露光装置。
JP2004175325A 2004-06-14 2004-06-14 閉ループ制御装置、光学素子駆動装置及び露光装置 Withdrawn JP2005353968A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175325A JP2005353968A (ja) 2004-06-14 2004-06-14 閉ループ制御装置、光学素子駆動装置及び露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175325A JP2005353968A (ja) 2004-06-14 2004-06-14 閉ループ制御装置、光学素子駆動装置及び露光装置

Publications (1)

Publication Number Publication Date
JP2005353968A true JP2005353968A (ja) 2005-12-22

Family

ID=35588154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175325A Withdrawn JP2005353968A (ja) 2004-06-14 2004-06-14 閉ループ制御装置、光学素子駆動装置及び露光装置

Country Status (1)

Country Link
JP (1) JP2005353968A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517279A (ja) * 2007-01-22 2010-05-20 カール・ツァイス・エスエムティー・アーゲー 光学システムの結像特性を改善する方法及び光学システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517279A (ja) * 2007-01-22 2010-05-20 カール・ツァイス・エスエムティー・アーゲー 光学システムの結像特性を改善する方法及び光学システム
US8462315B2 (en) 2007-01-22 2013-06-11 Carl Zeiss Smt Gmbh Optical system and method of use
US8947633B2 (en) 2007-01-22 2015-02-03 Carl Zeiss Smt Gmbh Optical system and method of use
US9823579B2 (en) 2007-01-22 2017-11-21 Carl Zeiss Smt Gmbh Optical system and method of use

Similar Documents

Publication Publication Date Title
US9798243B2 (en) Optical device having a deformable optical element
KR100666739B1 (ko) 리소그래피 장치 및 디바이스 제조방법
JPS6232613A (ja) 投影露光装置
US6170622B1 (en) Anti-vibration apparatus and anti-vibration method thereof
US20040090606A1 (en) Exposure apparatus, exposure method, and device manufacturing method
US20080309910A1 (en) Vibration isolating apparatus, control method for vibration isolating apparatus, and exposure apparatus
US10663872B2 (en) Lithographic apparatus
JP2002313716A (ja) デュアル分離されたシステムを有するリソグラフィーツールおよびそれを構成する方法
JP4623095B2 (ja) 液浸リソグラフィレンズの流体圧力補正
JP2004281697A (ja) 露光装置及び収差補正方法
EP2098750B1 (en) Vibration suppression apparatus, exposure apparatus, and method of manufacturing device
JP2006113414A (ja) 光学素子保持装置、鏡筒、露光装置及びマイクロデバイスの製造方法
US9529282B2 (en) Position-measurement systems
JPH0578930B2 (ja)
JP3631045B2 (ja) 駆動装置、光学素子駆動装置、露光装置およびデバイス製造方法
WO2005085671A1 (ja) 防振装置、露光装置、及び防振方法
JP6566192B2 (ja) 防振装置、露光装置、及びデバイス製造方法
JP2005353968A (ja) 閉ループ制御装置、光学素子駆動装置及び露光装置
JP2006250291A (ja) 防振装置
TW201809483A (zh) 用於控制流體致動器的控制系統
JP2005322720A (ja) ステージ制御装置及び方法、露光装置及び方法、並びにデバイス製造方法
JP2010245331A (ja) 制御装置を備える光学素子駆動装置
JP2005308145A (ja) 防振装置及び露光装置
JP2000208402A (ja) 除振装置
JP2003115447A (ja) 閉ループ制御装置、光学素子駆動装置及び露光装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904