JP2005353667A - 電子線装置および電子ビームの入射角度較正方法 - Google Patents

電子線装置および電子ビームの入射角度較正方法 Download PDF

Info

Publication number
JP2005353667A
JP2005353667A JP2004169978A JP2004169978A JP2005353667A JP 2005353667 A JP2005353667 A JP 2005353667A JP 2004169978 A JP2004169978 A JP 2004169978A JP 2004169978 A JP2004169978 A JP 2004169978A JP 2005353667 A JP2005353667 A JP 2005353667A
Authority
JP
Japan
Prior art keywords
electron beam
incident angle
electron
deflection
deflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004169978A
Other languages
English (en)
Inventor
Tsutomu Shishido
努 宍戸
Haruo Kasahara
春生 笠原
Yukisato Kawamura
幸里 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIPURU KK
Tokyo Seimitsu Co Ltd
Reaple Inc
Original Assignee
RIIPURU KK
Tokyo Seimitsu Co Ltd
Reaple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIPURU KK, Tokyo Seimitsu Co Ltd, Reaple Inc filed Critical RIIPURU KK
Priority to JP2004169978A priority Critical patent/JP2005353667A/ja
Publication of JP2005353667A publication Critical patent/JP2005353667A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

【課題】 電子線源から生じる電子ビームを偏向して、所定の入射角度の電子ビームで被照射体を走査する電子線装置において、偏向位置に依存する被照射体への入射角度を良好に補正する。
【解決手段】 電子ビーム15の照射位置偏向用の第1偏向器21、22により各偏向位置に電子ビーム15をそれぞれ偏向して、そのときの入射角度をそれぞれ検出して記憶部93に記憶しておき、電子ビームで被照射体を走査する際に、偏向位置に応じて記憶される入射角度に基づき、入射角度偏向用の第2偏向器51、52の偏向量の補正を行う。
【選択図】 図5

Description

本発明は、電子線源から生じる電子ビームを偏向して、所定の入射角度の電子ビームで被照射体を走査する電子線装置と、その電子ビームの入射角度較正方法に関する。特に本発明は、半導体集積回路などの製造工程で使用され、電子線源により発生させた電子ビームを偏向し、露光パターンに対応するマスクパターンを有するマスク上で走査させて露光パターンを露光する電子線露光装置に好適に利用可能である。
近年、半導体集積回路の高集積化のニーズに伴い、回路パターンの一層の微細化が要望されている。現在、微細化の限界を規定しているのは主として露光装置であり、電子ビーム直接描画装置やX線露光装置などの新しい方式の露光装置が開発されている。
最近では新しい方式の露光装置として、量産レベルで超微細加工用に使用可能な電子線近接露光装置が開示されている(例えば特許文献1、およびこれに対応する日本国特許出願の特許文献2)。
図1は、特許文献1に開示された電子線近接露光装置の基本構成を示す図である。この図を参照して、電子線近接露光装置について説明する。図示するように、電子光学鏡筒(カラム)10内には、電子ビーム15を発生する電子線源14と整形アパチャ18と電子ビーム15を平行ビームにする照射レンズ16とを有する電子銃12、対となる主偏向器21、22と、対となる副偏向器51、52とを含み、電子ビームを光軸に平行に走査する走査手段24、露光するパターンに対応する開口を有するマスク30、および静電チャック44とXYステージ46とから構成される。試料(半導体ウエハ)40は、表面にレジスト層42が形成され、静電チャック44上に保持されている。
マスク30は、厚い外縁部34の中央部に、開口が形成された薄膜部32を有しており、試料40は表面がマスク30に近接するように配置される。この状態で、マスクに垂直に電子ビーム15を照射すると、マスクの開口を通過した電子ビーム15が試料40の表面のレジスト層42に照射される。
図2は、電子ビームの走査方法の説明図である。走査手段24の主偏向器21、22が、電子ビーム15を偏向することができる領域(偏向領域35)は、主偏向器の構成により予め規定されている。またこの偏向領域内の所望の偏向位置(偏向指令位置)へと偏向させる偏向量である各主偏向指令量は、各偏向位置に対応してそれぞれ予め定められている。
そして、主偏向器21、22は主偏向指令量を受信して、受信した主偏向指令量に応じた電場及び/又は磁場を発生させて電子ビーム15を偏向することが可能である。電子ビーム15は、主偏向器21、22が発生させた電場及び/又は磁場により、主偏向指令量に対応して定められた偏向位置へと偏向される。
これにより主偏向器21、22は、図2に示すように、電子ビーム15がマスク30の薄膜部32上の全面を走査するように、電子ビームを偏向制御する。
このとき主偏向器21、22は、電子ビーム15をマスク30の薄膜部32上のいずれに偏向制御しても、電子ビーム15がほぼ垂直にマスク30に入射するように調整されている。これによりマスク30のマスクパターンが試料40上のレジスト層42に等倍転写される。
XYステージ46は、静電チャック44に吸着された試料40を水平の直交2軸方向に移動させるもので、マスクパターンの等倍転写が終了するたびに試料40を所定量移動させ、これにより1枚の試料40に複数のマスクパターンを転写できるようにしている。
走査手段24中の副偏向器51、52は、マスク歪みを補正するように電子ビーム15のマスクパターンへの入射角度を制御(傾き制御)する。いま図3に示すように電子ビーム15の露光用マスク30への入射角度をα、露光用マスク30とウエハ40とのギャップをGとすると、入射角度αによるマスクパターンの転写位置のずれ量δは、
δ=G・tanα
で表される。図3上ではマスクパターンが正規の位置からずれ量δだけずれた位置に転写される。したがって、露光用のマスク30に、例えば図4(A)に示されるようなマスク歪みがある場合には、電子ビーム走査位置におけるマスク歪みに応じて、電子ビームの傾き制御を行うことにより、図4(B)に示されるようにマスク歪みのない状態でのマスクパターンを転写することが可能となる。
米国特許第5,831,272号明細書(全体) 日本特許第2951947号公報(全体)
上述の通り、主偏向器21、22は、電子ビーム15をその偏向領域内のいずれに偏向制御しても、電子ビーム15がほぼ垂直にマスク30に入射するように調整される。
しかし、実際の電子ビーム近接露光装置では、主偏向器21、22をカラム10に取り付ける際の機械的な取り付け誤差や各偏向器を構成する電極の特性差等の影響により、主偏向器21、22が発生させる電場及び/又は磁場には歪み(偏向歪み)が生じており、電子ビーム15の軌道に僅かな傾きを与えていた。さらにこの偏向歪みの歪み量は主偏向器21、22による偏向位置に依存し、偏向歪みにより生じる電子ビーム15の傾き量は偏向位置によって異なっていた。
電子ビーム15が傾きを有することにより、マスク30を通過した電子ビーム15の実際の試料40上の照射位置と主偏向器に指令された偏向指令位置とがずれることとなる。このために主偏向器21、22の偏向領域の拡大や縮小、主偏向器21、22により走査される電子ビーム15の試料40上の照射位置変動に伴う照射ムラ、レジスト層42に転写されたパターンの位置ズレやマスク30と試料40との間のアライメント精度の低下等の問題が生じていた。
上記問題点を鑑みて、本発明は電子線源から生じる電子ビームを偏向して、電子ビームで被照射体を走査する電子線装置において、偏向位置に依存する被照射体への入射角度を良好に補正することを目的とする。
前記目的を達成するために、本発明は、電子ビームの照射位置を変える第1偏向器により各位置に電子ビームをそれぞれ偏向して、そのときの入射角度をそれぞれ検出し、偏向位置に応じて、入射角度を変える第2偏向器により検出した入射角度分の補正を行う。
すなわち、本発明の第1形態に係る電子線装置は、電子ビームを生じる電子線源と、電子線源の光軸に垂直な所定の照射面への電子ビームの照射位置を変えるための第1偏向器と、電子ビームの前記照射面への入射角度を変えるための第2偏向器とを備え、さらに電子ビームの前記照射面への入射角度を検出する入射角度検出部と、前記照射面の各位置に偏向された電子ビームの前記照射面への各入射角度を、入射角度検出部によってそれぞれ検出した検出値をそれぞれ記憶する記憶部と、第1偏向器による電子ビームの偏向位置に応じて、第2偏向器へ入力する偏向指令量に、偏向位置について記憶された入射角度分の補正を行う偏向指令量補正部と、を備えて構成される。
また、本発明の第2実施形態に係る電子ビームの入射角度較正方法は、電子ビームを生じる電子線源と、電子線源の光軸に垂直な所定の照射面への電子ビームの照射位置を変えるための第1偏向器と、電子ビームの前記照射面への入射角度を変えるための第2偏向器と、を備える電子線装置において、前記照射面への該電子ビームの入射角度を較正するために前記照射面の各位置に電子ビームをそれぞれ偏向し、偏向された電子ビームの前記照射面への各入射角度をそれぞれ検出し、検出された各入射角度をそれぞれ記憶し、第1偏向器による電子ビームの偏向位置に応じて、第2偏向器へ入力する偏向指令量に、この偏向位置について記憶された入射角度分の補正を行う。
本発明により、被照射体に照射される電子ビームの入射角度のズレを良好に補正することが可能となる。
特に本発明に係る電子線装置及び入射角度較正方法を、上述の電子線露光装置に使用する場合、マスクを通過した電子ビームの実際の試料上の照射位置と指令された偏向指令位置とがずれを解消することが可能となる。上記主偏向器の偏向領域の拡大や縮小、電子ビーム15の試料40上の照射位置変動に伴う照射ムラ、転写パターンの位置ズレやマスクと試料間のアライメント精度の低下を解消することが可能となる。
以下、図面を参照して本発明の実施形態を説明する。図5は、本発明の第1実施例に係る電子線入射角度分布測定装置を備える電子線近接露光装置の基本構成図である。電子線近接露光装置1の基本構成は、図1に示した構成及び上記の文献1に開示された構成に類似した構成を有している。よって、図1と同一の機能部分には同一の参照番号を付して表し、詳しい説明は省略する。
以下の説明では、電子線装置として電子線露光装置、特に近接露光方式の電子線近接露光装置を例示するが、本発明の電子線装置は、電子線近接露光装置だけでなく、露光パターンに応じたマスクパターンを有するマスクや試料に所定の入射角度で電子ビームを照射して、試料に露光パターンを露光する電子線露光装置であれば、投影方式の電子ビーム露光装置などの他の方式の電子線露光装置にも利用可能である。
さらに、電子線露光装置だけでなく、電子線源により電子ビームを発生させ、この電子ビームを偏向手段により所定の入射角度で試料上で走査する電子線装置であれば、走査型電子顕微鏡、透過形電子顕微鏡や、電子線検査装置などの電子線装置にも利用可能である。
図5に示すように、電子ビーム近接露光装置1は、カラム10及びチャンバ8を備えている。カラム10内には、電子ビーム15を発生する電子線源14と整形アパチャ18と電子ビーム15を平行ビームにする照射レンズ16とを有する電子銃12、対となる主偏向器21、22と、対となる副偏向器51、52とを含み、電子ビーム15を電子線源14の光軸19に平行に走査するように前記電子ビーム15を偏向する走査手段24、露光するパターンに対応する開口を有するマスク30、静電チャック44とXYステージ46とから構成される。試料(半導体ウエハ)40は、表面にレジスト層42が形成され、静電チャック44上に保持されている。
なお、主偏向器21、22は、電子線源14の光軸19に垂直な所定の照射面であるマスク平面への電子ビーム15の照射位置を変えるための本発明に係る第1偏向器をなし、副偏向器51、52は、電子ビーム15の照射面への入射角度を変えるための本発明に係る第2偏向器をなす。
そして静電チャック44に吸着された試料40の表面に近接するように(マスク30と試料40とのギャップが、例えば、50μmとなるように)配置される。
電子線近接露光装置1は、電子線近接露光装置1の全体的な動作を司るコンピュータなどの制御装置である計算機91を備える。
電子線近接露光装置1は、計算機91が実行するプログラムや各種データを記憶するための記憶部93を備える。記憶部93は計算機91のバス92に接続され、これにより計算機91や、バス92を供用する他の構成要素と相互にデータのやりとりが可能である。
主偏向器21及び22は、計算機91のデータバス92に接続される主偏向器制御部23を介して計算機91により制御される。計算機91は、主偏向器21及び22の偏向領域内の電子ビーム偏向位置データ(主偏向指令量)を主偏向器制御部23に入力し、主偏向器制御部23は、入力された主偏向指令量に対応する強度の制御信号を主偏向器21及び22に出力する。
副偏向器51及び52もまた、計算機91のデータバス92に接続される副偏向器制御部53を介して計算機91により制御される。計算機91は、電子ビーム15のマスク面上入射角度データ(副偏向指令量)を副偏向器制御部53に入力し、副偏向器制御部53は、入力された副偏向指令量に対応する強度の制御信号を副偏向器51及び52に出力する。
電子線近接露光装置1は、計算機91の位置信号を受信してXYステージ46の位置決め制御を行うステージ制御部47と、XYステージ46上に設けられて電子ビーム15のマスク30面上の入射角度を測定するための電子ビーム検出器60とを備える。XYステージ46を駆動することにより電子ビーム検出器60を主偏向器21、22の所定の偏向領域内の各位置において電子ビーム15の入射角度を測定することが可能である。電子ビーム検出器60の構造については後に説明する。
また、電子線近接露光装置1は、電子ビーム検出器60の出力信号をディジタル信号に変換するための信号処理回路61を備える。信号処理回路61は、電子ビーム検出器60の出力信号をディジタル信号に変換した後、計算機91のデータバス92に供給する。計算機91は、電子ビーム検出器60の検出信号を取得して、この信号に基づき電子ビーム15の入射角度を求める。したがって、電子ビーム検出器60、信号処理回路61及び計算機91は、本発明に係る電子ビーム15の照射面への入射角度を検出する入射角度検出部をなす。
計算機91は、副偏向器51及び52への副偏向指令量がゼロの状態で、または所定の入射角度に対応した副偏向指令量が入力された状態で、主偏向器の偏向領域の各位置において電子ビーム15の各入射角度を求めて、記憶部93に記憶する。
さらに電子線近接露光装置1は、上記のように記憶部93に記憶された各入射角度に基づき、各偏向位置に偏向された電子ビーム15の副偏向指令量を補正する副偏向指令量補正部94を備える。副偏向指令量補正部94は、電子ビーム15の現在の偏向位置に対応して記憶された入射角度情報を記憶部93から読み出して、副偏向器制御部53が副偏向器51、52へ入力する偏向指令量を、この入射角度分だけ補正する。
図6に本発明に係る電子ビーム入射角度較正方法の全体フローチャートを示す。
本発明に係る電子ビーム入射角度較正方法の概要は、まず電子線装置の使用前に、主偏向器21及び22により偏向領域の各位置に偏向された電子ビーム15のマスク30面への各入射角度をそれぞれ検出、記憶しておき(ステップS101〜S105)、電子線装置の使用時に、偏向領域の各位置に応じて記憶された入射角度に基づき、該位置へ偏向された電子ビーム15の入射角度を較正する(ステップS106)ものである。
まずステップS101において、計算機91は、電子ビーム15を偏向領域内の所定の検出開始位置へ偏向する主偏向指令量を、主偏向器制御部23を介して主偏向器21、22に入力し、電子ビーム15を検出開始位置へ偏向する。
ステップS102において、計算機91は、ステージ制御部47を介してXYステージ46を駆動し電子ビーム検出器60を電子ビーム15の偏向位置へ移動させ、電子ビーム検出器60の検出信号に基づいて、電子ビーム15の入射角度を検出する。
ステップS103において、ステップS102で検出した電子ビーム入射角度を、偏向位置毎に記憶部93に記憶する。これらステップS102及びS103を、偏向領域内の各位置に電子ビーム15を偏向して繰り返し実行する(S104及びS105)。
そしてステップS106において、電子線装置を使用するときには、電子ビーム15の偏向位置に応じて、記憶部93に記憶された入射角度を読み出し、電子ビーム15の傾き制御のために副偏向器51、52へ本来入力するべき偏向指令量を、読み出した入射角度分の偏向指令量で補正する。
以下、入射角度検出に使用される電子ビーム検出器の複数の構成例と各構成例おける入射角度検出方法(ステップS102)を説明する。
図7(A)〜(C)は、入射角度検出に使用される電子ビーム検出器の第1構成例の基本構成図である。ここに、図7(A)は電子ビーム検出器60の斜視図であり、図7(B)は電子ビーム検出器60の上面図であり、図7(C)は電子ビーム検出器60の側断面図である。
図示するように電子ビーム検出器60はXYステージ46上に載置され、筐体71と、非常に小さい径(直径約20μm)の電子通過口72を有するアパチャ板73を上面に備える。アパチャ板73の下には、さらに電子通過口72と同じ径の電子通過口74を有するアパチャ板75が設けられている。
アパチャ板73及び75は、所定の間隔を隔てて電子線源14の光軸19方向に重ねられて配置され、電子通過口72及び74は、光軸19方向に、すなわちマスク30面に垂直に配置される。
これらアパチャ板73及び75の下方には、電子通過口72及び74を通過した電子を検出して、その電子量を電気信号に変換して出力するファラデーカップのような電子検出器76を設ける。
電子通過口72及び74を通過する電子量が最も多くなるのは電子ビームが電子通過口72及び74に垂直に入射する場合であり、電子ビームの入射角度が傾くほど、電子ビーム検出器60の出力信号は弱くなる。
図8は、図7(A)〜(C)に示す電子ビーム検出器60を使用した場合の、図6のステップS102に対応する入射角度検出ルーチンのフローチャートである。
ステップS111において、計算機91は、ステージ制御部47を介してXYステージ46を駆動し電子ビーム検出器60を電子ビーム15の偏向位置へ移動させる。
そしてステップS112において、計算機91は、副偏向指令量を所定の角度幅で変動させながら、副偏向器制御部53を介して副偏向器51及び52に入力する。これにより電子ビーム15は電子ビーム検出器60の電子通過口72を、入射角度を変えながら走査する。計算機91は、入射角度の変化に伴い変動する電子検出器76の検出信号を読み取る。
そしてステップS113において、計算機91は、電子検出器76の検出信号が最大となるときの副偏向指令量を取得する。この副偏向指令量は、主偏向器21、22により当該偏向位置に偏向された電子ビーム15を、電子線源14の光軸19に平行にするために副偏向器51及び52に入力する必要のある副偏向指令量である。すなわち主偏向器21、22により当該偏向位置に偏向された電子ビーム15に副偏向を行わなかった場合のマスク30への入射角度を示す。計算機91は、この副偏向指令量を当該偏向位置に偏向された電子ビーム15の入射角度を示す入射角度情報として記憶部93に記憶する。
そして、図6のステップS106において、副偏向器へ本来入力するべき副偏向指令量に、記憶した副偏向指令量を加える補正を行う。これにより各偏向位置における電子ビーム15の、主偏向器21、22の偏向歪みによって生じる傾き成分を除去することができる。
図7(A)〜(C)に示す電子ビーム検出器60に代えて、電子ビーム15が電子ビーム検出器60の電子通過口72及び74に垂直に入射する場合に極小値を出力するように電子ビーム検出器60を構成してもよい。図9(A)はそのような電子ビーム検出器60の上面図であり、図9(B)は電子ビーム検出器60の側断面図である。
電子ビーム検出器60はXYステージ46上に載置され、筐体71と、電子遮蔽部分77を有するアパチャ板73を上面に備える。図示するとおり、電子遮蔽部分77は、アパチャ板73周辺部に支持される梁によって開口部72中に支持される。アパチャ板73の下には、さらに電子遮蔽部分78を有するアパチャ板75を備える。図示するとおり、電子遮蔽部分78は、アパチャ板75周辺部に支持される梁によって開口部74中に支持される。
アパチャ板73及び75は、所定の間隔を隔てて電子ビーム15の光軸方向に重ねられて配置され、遮蔽部分77及び78は、マスク30面に垂直に配置される。
これらアパチャ板73及び75の下方には、電子通過口72及び74を通過した電子を検出して、その電子量を電気信号に変換して出力するファラデーカップのような電子検出器76を設ける。
遮蔽部分77及び78により遮蔽される電子の電子量が最も少なくなるのは電子ビームが遮蔽部分77及び78に垂直に入射する場合であり、このとき電子検出器76の出力信号は極小値となる。
そして、図9に示す電子ビーム検出器60を使用し、図8に示すフローチャートのステップS113において、計算機91は検出器60の検出値が、最小となる偏向指令量を取得することとしてもよい。
図10(A)〜(B)は、入射角度検出に使用される電子ビーム検出器の第2構成例の基本構成図である。入射角度検出器60は、図10(B)に示すような所定形状の電子通過口81x及び81yを有するアパチャ板82と、電子通過口81を通過した電子ビーム15を受けて、その照射箇所が発光することにより電子ビーム15の強度分布に対応する発光像Aを作る蛍光面83と、蛍光面83に生じる発光像Aを撮像するCCDセンサやCMOSセンサ等の撮像素子84と、蛍光面83に生じる発光像Aを撮像素子84上の投影像Bとして結像する光学系(集束レンズ)85を備える。そしてアパチャ板82と蛍光面83とは所定の間隔Dを隔てて配置される。
図11は、図10(A)〜(B)に示す電子ビーム検出器60を使用した場合の、図6のステップS102に対応する入射角度検出ルーチンのフローチャートである。
入射角度検出に先だって、予めマスク30に垂直に入射する電子ビーム15が蛍光面83上に生じる発光像Aの位置を基準位置として測定し、記憶部93に記憶しておく。
ここで、発光像Aの位置の測定は、例えば次のようにして行うこととしてよい。
図10(C)に、x位置測定用通過孔81x及びy位置測定用通過孔81xを通過した電子ビームによりそれぞれ生じる発光像A部分の像Ax及び像Ayを示す。そして像Ax及び像Ayの発光強度のそれぞれのx方向プロファイル及びy方向プロファイルを図10(C)のように求める。そして、そのうち最も発光強度の大きいそれぞれx位置及びy位置を、x位置、y位置とする基準位置P0として測定する。
ステップS121において、計算機91は、ステージ制御部47を介してXYステージ46を駆動し電子ビーム検出器60を電子ビーム15の偏向位置へ移動させる。
ステップS122において、撮像素子84は蛍光面83上に生じた発光像A’を撮像する。撮像画像の様子を図10(D)に示す。撮像素子84の画像信号は、信号処理回路61によってディジタル信号に変換され、データバス92に供給される。
ステップS123において、入射角度測定部91は、画像信号の発光像A’の位置の記憶された基準位置P0からの変位量を求める(この例ではx方向の変位量はdxであり、y方向の変位量はdyである)。
そして、X方向の入射角度=Tan−1(dx/D)、Y方向の入射角度=Tan−1(dy/D)により、入射角度を決定する。
そして、図6のステップS106において、副偏向器へ本来入力するべき副偏向指令量に記憶した入射角度に対応する副偏向指令量を減ずる補正を行う。これにより電子ビーム15の入射角度から、主偏向器21、22の偏向歪みによって生じる傾き成分を除去することができる。
図7(A)〜(C)に示す電子ビーム検出器60の場合、検出可能な電子ビーム15の入射角度状態は、電子ビーム15が電子通過口72及び74を通過する方向に入射する入射角度状態だけである。
このため、副偏向指令量を変えて電子ビーム15を電子通過口72と74とを通過させ(図7の例では電子線源14の光軸方向19とし)、このときの副偏向指令量を基準として電子ビーム15の入射角度の較正を行った。
したがって、検出できる入射角度は各偏向位置毎に1つだけであり、例えば図7の例では、副偏向器51、52を用いた上述の電子ビームの傾き制御を行わない場合の入射角度のみを検出した。
図10(A)及び(B)に示す電子ビーム検出器60の場合、さまざまな入射角度の電子ビーム15を検出することが可能である。したがって、副偏向器51、52によって電子ビーム15を各入射角度に傾き制御を行った状態で、実際の各入射角度を検出することが可能となる。
したがって、図11のステップS122及びS123において、副偏向器51、52に入力する副偏向指令量を変えながら、各副偏向指令量における蛍光面83上の各発光像A’をそれぞれ撮像して、各副偏向指令量における実際の各入射角度を取得して記憶部93に記憶することとしてもよい。
そして、図6のステップS106において、主偏向器21、22による現在の偏向位置と、その偏向位置における傾き制御量(副偏向指令量)に応じて、記憶した入射角度を読み出し、副偏向器へ本来入力するべき副偏向指令量から読み出した入射角度に対応する副偏向指令量を減ずる補正を行うこととしてもよい。
本発明は、電子ビームを偏向手段により所定の入射角度で試料上で走査する電子線装置であれば、電子線露光装置、電子顕微鏡、電子線検査装置など種々の電子線装置に利用することが可能である。
電子線近接露光装置の基本構成図である。 電子ビームの走査方法の説明図である。 副偏向器による電子ビームの傾き補正の説明図である。 マスク歪み補正の説明図である。 本発明の実施例に係る電子線装置の基本構成図である。 本発明の実施例に係る電子ビームの入射角度較正方法の全体フローチャートである。 図(A)は電子ビーム検出器の斜視図であり、図(B)はその上面図であり、図(C)はその側断面図である。 図6のフローチャートの入射角度検出ルーチンを示すフローチャート(その1)である。 図(A)は図7の電子ビーム検出器の代替実施例を示す上面図であり、図(B)はその側断面図である。 図(A)は撮像素子を使用する電子ビーム検出器の斜視図であり、図(B)はその上部に設けられるアパチャ板82の上面図であり、図(C)は蛍光面に生じる発光像を示す図であり、図(D)は発光像A及びA’の位置の対比を説明する図である。 図6のフローチャートの入射角度検出ルーチンを示すフローチャート(その2)である。
符号の説明
1…電子ビーム近接露光装置
14…電子線源
15…電子ビーム
21、22…主偏向器
30…マスク
40…試料
51、52…副偏向器
60…電子ビーム検出器

Claims (6)

  1. 電子ビームを生じる電子線源と、該電子線源の光軸に垂直な所定の照射面への該電子ビームの照射位置を変えるための第1偏向器と、該電子ビームの該照射面への入射角度を変えるための第2偏向器と、を備える電子線装置であって、
    前記電子ビームの前記照射面への入射角度を検出する入射角度検出部と、
    前記照射面の各位置に偏向された前記電子ビームの該照射面への前記各入射角度を、前記入射角度検出部によってそれぞれ検出した検出値をそれぞれ記憶する記憶部と、
    前記第1偏向器による前記電子ビームの偏向位置に応じて、前記第2偏向器へ入力する偏向指令量に、該偏向位置について記憶された前記入射角度分の補正を行う偏向指令量補正部と、を備えることを特徴とする電子線装置。
  2. 前記入射角度検出部は、電子通過口を有する複数のアパチャ板と、これらアパチャ板の各電子通過口を通過する電子量を電気信号に変換する電子検出器と、を備え、
    前記複数のアパチャ板は、所定の間隔で前記電子線源の光軸方向に重ねられて、それぞれの電子通過口が前記第1偏向器による前記電子ビームの偏向位置上に位置するように配置され、
    前記入射角度検出部は、前記第2偏向器への前記偏向指令量を変化させながら前記電子ビームを偏向して、前記電子検出器の検出値が最大となる該偏向指令量を取得し、前記第1偏向器により前記偏向位置に偏向された前記電子ビームの前記照射面への入射角度を示す情報とすることを特徴とする請求項1に記載の電子線装置。
  3. 前記入射角度検出部は、電子通過口を有するアパチャ板と、該アパチャ板と前記電子線源の光軸方向に所定距離を有して設けられ、該電子通過口を通過して照射する前記電子ビームにより発光する蛍光面と、該蛍光面を撮像する撮像手段とを備え、
    前記電子通過口を通過した前記電子ビームにより前記蛍光面上に生ずる像の変位量と、前記所定間隔に基づき、該電子ビームの前記照射面への入射角度を検出することを特徴とする請求項1に記載の電子線装置。
  4. 電子ビームを生じる電子線源と、該電子線源の光軸に垂直な所定の照射面への該電子ビームの照射位置を変えるための第1偏向器と、該電子ビームの該照射面への入射角度を変えるための第2偏向器と、を備える電子線装置における、該照射面への該電子ビームの入射角度較正方法であって、
    前記照射面の各位置に前記電子ビームをそれぞれ偏向する電子ビーム偏向ステップと、
    前記偏向された前記電子ビームの前記照射面への各入射角度をそれぞれ検出する入射角度検出ステップと、
    検出された前記各入射角度をそれぞれ記憶する入射角度記憶ステップと、
    前記第1偏向器による前記電子ビームの偏向位置に応じて、前記第2偏向器へ入力する偏向指令量に、該偏向位置について記憶された前記入射角度分の補正を行う偏向指令量補正ステップと、を有することを特徴とする電子ビームの入射角度較正方法。
  5. 前記入射角度検出ステップは、
    電子通過口を有する複数のアパチャ板を、所定の間隔で前記電子線源の光軸方向に重ね、かつそれぞれの電子通過口が前記第1偏向器による前記電子ビームの偏向位置上に位置するように配置し、
    前記第2偏向器への前記偏向指令量を変化させながら前記電子ビームを偏向して前記電子通過口を通過する電子量を検出し、
    検出された前記電子量が最大となる前記偏向指令量を取得し、前記第1偏向器により前記偏向位置に偏向された前記電子ビームの前記照射面への入射角度を示す情報とすることを特徴とする請求項4に記載の電子ビームの入射角度較正方法。
  6. 前記入射角度検出ステップは、
    電子通過口を有するアパチャ板と、該アパチャ板と前記電子線源の光軸方向に所定間隔を有して設けられ、該電子通過口を通過して照射する前記電子ビームにより発光する蛍光面とを、該電子通過口が前記第1偏向器による該電子ビームの偏向位置上に位置するように配置し、
    前記電子通過口を通過した前記電子ビームにより前記蛍光面上に生ずる像の変位量と、前記所定間隔に基づき、該電子ビームの前記照射面への入射角度を検出することを特徴とする請求項4に記載の電子ビームの入射角度較正方法。
JP2004169978A 2004-06-08 2004-06-08 電子線装置および電子ビームの入射角度較正方法 Pending JP2005353667A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004169978A JP2005353667A (ja) 2004-06-08 2004-06-08 電子線装置および電子ビームの入射角度較正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004169978A JP2005353667A (ja) 2004-06-08 2004-06-08 電子線装置および電子ビームの入射角度較正方法

Publications (1)

Publication Number Publication Date
JP2005353667A true JP2005353667A (ja) 2005-12-22

Family

ID=35587904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004169978A Pending JP2005353667A (ja) 2004-06-08 2004-06-08 電子線装置および電子ビームの入射角度較正方法

Country Status (1)

Country Link
JP (1) JP2005353667A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043347A (zh) * 2010-10-19 2011-05-04 长春理工大学 激光干涉纳米光刻中光束入射姿态检测及校准的方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043347A (zh) * 2010-10-19 2011-05-04 长春理工大学 激光干涉纳米光刻中光束入射姿态检测及校准的方法和系统

Similar Documents

Publication Publication Date Title
TW202004816A (zh) 多電子束影像取得裝置以及多電子束光學系統的定位方法
JP2008521221A (ja) 粒子ビーム露光装置のためのパターンロック装置
US10727026B2 (en) Charged particle beam inspection method
JP7094782B2 (ja) 電子ビーム検査装置及び電子ビーム検査方法
JP7093242B2 (ja) 荷電粒子ビーム画像取得装置
JP2008041890A (ja) マルチ荷電粒子ビームの計測方法、露光装置、及びデバイス製造方法
JP2020174143A (ja) マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
JP2022103425A (ja) 検査方法
TWI723287B (zh) 帶電粒子束描繪裝置及帶電粒子束描繪方法
JP2006210455A (ja) 荷電粒子線露光装置及び該装置を用いたデバイス製造方法
US8878141B2 (en) Drawing apparatus, and method of manufacturing article
TW202240634A (zh) 多電子束畫像取得方法、多電子束畫像取得裝置以及多電子束檢查裝置
JP2001077004A (ja) 露光装置および電子線露光装置
JP2005353667A (ja) 電子線装置および電子ビームの入射角度較正方法
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
JP4459524B2 (ja) 荷電粒子線露光装置、デバイス製造方法
JP2021044461A (ja) アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置
JP2015095524A (ja) 描画装置、および物品の製造方法
JP3919255B2 (ja) 電子ビーム露光装置及びデバイス製造方法
JP2006013387A (ja) 荷電粒子線露光装置及び荷電粒子線露光装置の調整方法
JP2002245960A (ja) 荷電粒子ビーム装置及びそのような装置を用いたデバイス製造方法
JP3714280B2 (ja) 電子ビーム近接露光装置における電子ビームの傾き測定方法及び傾き較正方法並びに電子ビーム近接露光装置
JP2005277143A (ja) 電子線強度分布測定装置、電子線装置及び電子線強度分布測定方法
JP2024030513A (ja) ビーム検出器、マルチ荷電粒子ビーム照射装置、及びビーム検出器の調整方法
JP2007019193A (ja) 荷電粒子線装置、レンズパワー調整方法、及びデバイス製造方法