JP2005353277A - 光記録媒体及び光記録媒体製造用原盤 - Google Patents

光記録媒体及び光記録媒体製造用原盤 Download PDF

Info

Publication number
JP2005353277A
JP2005353277A JP2005256794A JP2005256794A JP2005353277A JP 2005353277 A JP2005353277 A JP 2005353277A JP 2005256794 A JP2005256794 A JP 2005256794A JP 2005256794 A JP2005256794 A JP 2005256794A JP 2005353277 A JP2005353277 A JP 2005353277A
Authority
JP
Japan
Prior art keywords
groove
recording medium
light
optical
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005256794A
Other languages
English (en)
Inventor
Fuji Tanaka
富士 田中
Masato Hattori
真人 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005256794A priority Critical patent/JP2005353277A/ja
Publication of JP2005353277A publication Critical patent/JP2005353277A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 浅い溝のグルーブと深い溝のグルーブを備えた光記録媒体にあって、適切にそれらグルーブの深さを設定する。
【解決手段】 第1の記録トラックTrackA及び第2の記録トラックTrackBと、これら第1の記録トラックTrackA及び第2の記録トラックTrackBに沿って深さd1で螺旋状に形成される第1のグルーブ6と、第1の記録トラックTrackA及び第2の記録トラックTrackBに沿って第1のグルーブ6と2重螺旋を描くように形成される深さd2(d1<d2)の第2のグルーブ7とを備え、第1の光の検出出力と第2の光の検出出力との和信号のAC成分をDC成分に比して0.15より小さくする条件を満たして、第1のグルーブの深さd1に対して第2のグルーブの深さd2を設定する。
【選択図】 図1

Description

本発明は、ランドからなる記録トラックに沿ってグルーブが形成されてなる光記録媒体に関する。また、本発明は、そのような光記録媒体を製造する際に使用される光記録媒体製造用原盤に関する。
光ディスクのうち、光磁気ディスクや相変化型光ディスクのように書き込みが可能な光ディスクでは、通常、記録トラックに沿ったグルーブ(groove)がディスク基板に形成される。ここで、グルーブとは、主にトラッキングサーボを行えるようにするために、記録トラックに沿って形成される、いわゆる案内溝のことである。なお、グルーブとグルーブの間の部分は、ランド(land)と称される。
ところで、前記書き込みが可能な光ディスクでは、高密度化を達成するために、トラック密度を高めることが線密度を高めることと並んで有効である。トラック密度を高める方法としては、ランドとグルーブの双方に信号を記録する方法としてランド&グルーブ(Land&Groove)方式と、本件出願人が特開平11−296910号公報に開示しているようにランドを挟んで2重螺旋状に描くように形成する二つのグルーブを浅い(Shallow)溝、深い(Deep)溝にする方法としてシャロー&ディープ(Shallow&Deep)方式がある。
このうち前記特開平11−296910号公報に開示の、グルーブの深さを変えるShallow&Deep方式を、ランドに信号を記録する場合を例として説明する。従来の光ディスクにおいては隣接するトラックのグルーブの深さ及び幅は等しいが、この形状でトラックピッチを詰めるとトラックの空間周波数がMTF(Modulation Transfer Function)を超え、トラッキング信号が発生しない。このため、記録再生特性としてはさらに密度を高められる可能性を残しながらも、トラッキングをかけられないという理由で、トラック密度が制限されていた。前記Shallow&Deep方式では、1本おきにグルーブの深さを変える。これにより、トラックピッチの1/2の周波数成分が発生し、トラッキングエラー信号が得られる。Shallow&Deep方式では例えばトラックを二つにするというような場合でも二つのトラックの形状は鏡面対象であり、記録特性を揃えることが容易となる。前記Land&Groove方式ではランドとグルーブという異なる部分に信号を記録するために記録特性差が生じるのに対し対照的であり、Shallow&Deep方式の長所となっている。
Shallow&Deep方式ではトラッキングエラー信号がトラック二つを単位とした周期となるため、通常トラックの場合とは差信号、和信号ともに異なる。また二つのグルーブの深さによって差信号、和信号の大きさも異なる。和信号とは反射回折された第1の光の検出出力と反射回折された第2の光の検出出力の和信号のことである。差信号はプッシュプル信号とも呼ばれるものである。また、前記和信号はクロストラック信号とも呼ばれるものである。
例えば、近年の高密度記録光ディスクでは、プッシュプル信号を用いてトラッキングサーボを安定に行おうとすると、プッシュプル信号振幅比を0.15程度以上必要とする。また、クロストラック信号を用いてシークを安定に行おうとすると、クロストラック信号を0.06程度以上必要とする。ここで、プッシュプル信号振幅比は、プッシュプル信号のAC成分のミラー反射成分すなわちディスク鏡面での和信号の最大値に対する比である。また、クロストラック信号振幅もクロストラック信号のAC成分のミラー反射成分に対する比である。
ところで、近年、前記Shallow&Deep方式による光ディスクの第1のグルーブである浅い(Shallow)溝の深さを、前記特開平11−296910号公報にて開示していたときの深さよりも深くし、第2のグルーブの深さをさらに深くすると、さらに高密度記録が可能になるタイプの光ディスクが考えられるようになった。
磁壁移動検出(Domain Wall Displacement Detection:DWDD)によって記録マークが検出されるタイプの光ディスクに、前記Shallow&Deep方式を採用した場合である。DWDDは、再生時の光スポットよりも小さな記録マークを、光スポットで誘起された熱分布により、磁区拡大して読み取る技術である。磁壁移動検出は、マークのエッジをきれいに検出できるので、いわゆる「マークエッジ記録」を採用した光磁気ディスクを再生する場合に適している。
このDWDDによって記録信号を再生するタイプの光ディスクと前記Shallow&Deep方式とを組み合わせたとき、DWDDではグルーブが例えば100nm以上のようにある程度深くする必要があるといわれているので、前記第1のグループを100nm、第2のグルーブをさらに深くする必要がある。
特開平11−296910号公報
本発明は、上記実情に鑑みてなされたものであり、例えば、前記DWDDによって記録マークが検出されるタイプの光ディスクのように元々溝の深いグルーブに、前記Shallow&Deep方式を適用したときに、適切な第1グルーブ(Shallow)と第2グルーブ(Deep)の深さを設定できる光記録媒体及び光記録媒体製造用原盤の提供を目的とする。
本願発明は、光が照射されて記録及び/又は再生がなされる光記録媒体において、上記記録媒体にらせん状に形成されたランドと、前記ランドの一方の面に沿って形成される深さd1の第1のグルーブと、前記ランドの他方の面に沿って前記第1のグルーブと異なる深さd2の第2のグルーブとを備え、上記記録媒体に照射された上記光の反射光を上記ランドまたはグルーブによるトラック中心に対して対称に配置された二つの光検出器により検出し、一方の光検出出力をA、他方の光検出出力をBとしたとき、A+Bで表される和信号のAC成分をDC成分に比して0.06より小さくする条件を満たす上記d1とd2とが設定された光記録媒体を提供することを目的としている。
更に、本願発明は、光が照射されて記録及び/又は再生がなされる光記録媒体を製造する際に使用される光記録媒体製造用原盤において、上記記録媒体にらせん状に形成されたランドと、前記ランドの一方の面に沿って形成される深さd1の第1のグルーブと、前記ランドの他方の面に沿って前記第1のグルーブと異なる深さd2の第2のグルーブとを備え、上記記録媒体に照射された上記光の反射光を上記ランドまたはグルーブによるトラック中心に対して対称に配置された二つの光検出器により検出し、一方の光検出出力をA、他方の光検出出力をBとしたとき、A+Bで表される和信号のAC成分をDC成分に比して0.06より小さくする条件を満たす上記d1とd2とが設定された光記録媒体を製造するために用いられる光記録媒体製造用原盤を提供することを目的としている。
本発明の光記録媒体は、和信号のAC成分をDC成分に比して0.06より小さくする条件を満たして、第1のグルーブの深さに対して第2のグルーブの深さを設定しているので、例えば、DWDDによって記録マークが検出されるタイプの光ディスクのように元々溝の深いグルーブに、Shallow&Deep方式を適用したときに、適切な第1グルーブ(Shallow)と第2グルーブ(Deep)の深さを設定できる。
また、本発明の光記録媒体製造用原盤は、第1のグルーブから反射回折された第1の光の検出出力と第2のグルーブから反射回折された第2の光の検出出力との和信号のAC成分をDC成分に比して0.06より小さくする条件を満たして、第1のグルーブの深さに対して第2のグルーブの深さを設定しているので、例えば、DWDDによって記録マークが検出されるタイプの光ディスクのように元々溝の深いグルーブに、Shallow&Deep方式を適用したときに、適切な第1グルーブ(Shallow)と第2グルーブ(Deep)の深さを設定した光記録媒体を製造できる。
以下、本発明の実施の形態について図面を参照しながら説明する。先ず、本発明を適用した光磁気ディスクについて説明する。この光磁気ディスクは、磁気光学(MO)効果によりマークが記録されるとともに、磁壁移動検出(Domain Wall Displacement Detection:DWDD)によって記録マークが検出されるタイプの光磁気ディスクである。
また、この光磁気ディスクは、図1に示すように、第1の記録トラックTrackA及び第2の記録トラックTrackBと、これら第1の記録トラックTrackA及び第2の記録トラックTrackBに沿って深さd1で螺旋状に形成される第1のグルーブ6と、第1の記録トラックTrackA及び第2の記録トラックTrackBに沿って第1のグルーブ6と2重螺旋を描くように形成される深さd2(d1<d2)の第2のグルーブ7とを備える。そして、第1のグルーブ6から反射回折された第1の光の検出出力と第2のグルーブ7から反射回折された第2の光の検出出力との和信号のAC成分をDC成分に比して0.15以下とする条件を満たして、第1のグルーブの深さd1に対して第2のグルーブの深さd2を設定してなる。
第1のグルーブ6は、±10nmの振幅にて一定の周期で蛇行するように形成されたウォブリンググルーブである。以降第1のグルーブ6をウォブリンググルーブ6とも呼ぶ。また、第2のグルーブ7は、ストレートグルーブである。すなわち、この光磁気ディスクは、一方のグルーブ(すなわちウォブリンググルーブ6)を蛇行させることにより、グルーブにアドレス情報を付加している。以降第2のグルーブ7はストレートグルーブとも呼ぶ。
第1の記録トラックTrackAは、ウォブリンググルーブ6とストレートグルーブ7の間の部分のランドであって、ディスク内周側がストレートグルーブ7となっており、情報信号が記録される場所である。第2の記録トラックTrackBは、ウォブリンググルーブ6とストレートグルーブ7の間の部分のランドであって、ディスク内周側がウォブリンググルーブ6となっており、情報信号が記録される場所である。
ここでは、2重螺旋状に形成されてなる二つのグルーブがウォブリンググルーブ6とストレートグルーブ7からなる例を挙げる。しかし本発明に係る光記録媒体において、これら二つのグルーブは、両方ともストレートグルーブであっても良い。また両方ともウォブルグルーブであってもよい。なお、グルーブをウォブリングさせた場合には、グルーブ自体にアドレス情報を付加することができるという利点がある。しかも、本例のように、一方のグルーブをウォブリンググルーブとし、他方のグルーブをストレートグルーブとした場合には、両方のグルーブをウォブリンググルーブとした場合に比べて、狭トラック化をはかり易いので、さらなる高密度化を実現できる。
そして、この光磁気ディスク1において、トラックピッチTPitchは0.5μmとされている。ここで、トラックピッチTPitchは、ウォブリンググルーブ6とストレートグルーブ7の中心位置の間隔に相当する。すなわち、この光磁気ディスクにおいて、ウォブリンググルーブ6とストレートグルーブ7の中心位置の間隔は、0.50μmとされている。また、隣接するストレートグルーブ7の中心位置の間隔のことをトラックピリオドTPeriodと称する。
図2に示すように、この光磁気ディスクは、ポリメチルメタクリレート(PMMA)やポリカーボネート(PC)等からなるディスク基板2と、MOにより信号が記録されるとともにDWDDにより信号が再生される信号層3と、信号層3を保護する保護層4とから形成されている。さらに信号層3は、光ピックアップの再生時の光スポットよりも小さなマークが記録される記録層と、光ピックアップの再生時の光スポットで誘起された熱分布により前記小さなマークを磁区拡大して読み取る拡大層とを、それらの間にスイッチング層を挟んで積層して構成されている。
そして、本発明を適用してなる光磁気ディスクでは、ウォブリンググルーブ6とストレートグルーブ7とが、それらの深さd1と、d2とが異なるように形成されている。以下、それらの深さd1、d2の設定について詳細に説明する。
先ず、図3にはShallow&Deep方式を適用していない、これまでの光ディスクの差信号と、和信号の波形を、光ピックアップにより形成されたメインスポットのランドLとグルーブG上の位置に対応するように示す。図3の(a)はランドLすなわちトラックTからのグルーブGの深さを示す。図3の(b)は差信号の波形を、図3の(c)は和信号の波形を示す。横軸はディスク上の半径方向への距離を示し、縦軸は(a)にあっては深さ、(b)及び(c)にあってはレベルを示す。
ここで、差信号とは、図4に示すように、ウォブリンググルーブ6から反射回折された第1の光の検出出力Aとストレートグルーブ7から反射回折された第2の光の検出出力Bとの差信号A−B、つまりプッシュプル信号のことである。また、和信号とは前記第1の光の検出出力Aと前記第2の光の検出出力Bの和信号A+B、つまりクロストラック信号のことである。
図3において、メインスポットがトラックTすなわちランドLの中心Cにあるとき、図3の(c)に示す和信号は最大となる。トラック反射率が最大となるからである。また、メインスポットがトラック中心Cからデトラックするにつれ和信号は低下する。トラック中心Cでは、和信号は+ピーク値、つまり和信号の曲線の微分値が0であることからも分かるように、デトラックしたときの和信号の変動は比較的小さい。
次に、図5には、Shallow&Deep方式を適用した光ディスクの差信号と、和信号の波形を、光ピックアップにより形成されたメインスポットのランドLとグルーブG上の位置に対応するように示す。図5の(a)はランドL(トラックT)からのグルーブGの深さを示す。図5の(b)は差信号の波形を、図5の(c)は和信号の波形を示す。横軸はディスク上の半径方向への距離を示し、縦軸は(a)にあっては深さ、(b)及び(c)にあってはレベルを示す。
メインスポットがトラックT1、T2の中心Cにあるとき、図5の(c)に示す和信号はDC成分値と等しく、メインスポットがトラックT1又はT2の中心Cから左右にデトラックするとAC成分の影響により、トラック反射率が激しく上下し、和信号も激しく上下する。つまり、トラックT1又はT2の中心Cで和信号曲線(図5の(c))の微分値は最大であり、一番変動が大きい位置であるためである。この変動を抑えるには、和信号のAC成分の振幅を小さくすることが有効である。
トラック反射率は、記録の再生信号に影響する。光磁気ディスクにおいて再生信号の大きさはトラック反射率とカー回転角に比例するので、トラック反射率の変動は再生信号の変動となる。
したがって、トラック反射率に対する和信号のAC成分を小さくすることが、Shallow&Deep方式を適用した光ディスクでは利点となる。例えば、DWDDによって記録マークが検出されるタイプの光ディスクのように元々溝の深いグルーブにShallow&Deep方式を適用した、上記実施の形態には特に有効である。
なお、相変化ディスク等の反射率の変化を記録信号とする光ディスクに前記Shallow&Deep方式を適用したときにも、トラック反射率の変動はそのまま再生信号の変動となるので有効である。
ところで、従来の光ディスクにおいては、和信号のAC成分がある程度の値以上あることは、シークを安定に行うために必要であった。しかし、前記Shallow&Deep方式を適用した光ディスクでは、和信号のAC成分は必須でなく、たとえそれが0であってもシークを行える。
このため、和信号のAC成分のpeak to peak値は、理想的には0が良いが、実用上はトラック上のDC成分に対して0.15以下であればよい。すなわち、和信号のAC成分をDC成分に比して0.15以下とする条件を満たせばよい。
これに対して、メインスポットがトラックT1、T2の中心Cにあるとき、図5の(b)に示す差信号は最大又は最小となる。メインスポットがトラック中心Cからデトラックするにつれ差信号は低下、又は増加する。しかし、トラック中心Cで、差信号は+ピーク値、又は−ピーク値であり、差信号の曲線の微分値が0であることからも分かるように、デトラックしたときの差信号の変動は比較的小さい。
よって、差信号のAC成分はある程度大きい方がよい。近年の高密度記録光ディスクと同様に、プッシュプル信号を用いてトラッキングサーボを安定に行うために、差信号のAC成分をDC成分に比して0.15以上とする条件を満たすようにすればよい。
次に、DWDDにより記録信号が再生される光磁気ディスクに、Shallow&Deep方式を適用した場合の、前記第1のグルーブの深さd1と、第2のグルーブの深さd2の設定具体例について説明する。
光ピックアップから照射されるレーザ光が赤色レーザであるとき、現行技術、すなわち、前記Shallow&Deep方式を適用せずに、DWDD動作を安定に行わせるためには、グルーブを100nm以上にする必要がある。そこで、前記Shallow&Deep方式を適用すると、浅い(Shallow)溝が100nmとなる。これに対して深い(Deep)溝をどの位に設定すべきかが問題となる。
図6には、第1グルーブの浅い(Shallow)溝を100nmとしたときに、第2グルーブの深い(Deep)溝を変化させた場合の、和信号のAC成分のDC成分に対するレベル比と、差信号のAC成分のDC成分に対するレベル比を示す。照射したレーザ光の波長λは660nm、光学系の開口数NAは0.52である。
差信号のAC成分のDC成分に対するレベル比を0.15以上、和信号のAC成分のDC成分に対するレベル比を0.15という条件で選択すると、第2グルーブの溝の深さd2は、153〜200nmという範囲で選択できることになるが、上述したように和信号のAC成分のDC成分に対するレベル比は理想的には0がよいので、d2を170nm前後にするのが望ましい。もちろん、d2を200nmとすることも上記条件を満たしているので可能ではあるが、200nmという深さのグルーブは非常に深いものであり、ディスクの成型を難しくする。
よって、DWDDにより記録信号が再生される光磁気ディスクに、Shallow&Deep方式を適用した場合の、第1のグルーブの深さd1と、第2のグルーブの深さd2は、d1=100nm、d2=170nm前後に設定できる。
以上より、図1に示した光磁気ディスクでは、ウォブリンググルーブ6の深さd1を100nmとし、ストレートグルーブ7の深さを例えば172nmとすることにより、トラッキングサーボに必要な信号を充分なレベルで得ることができる。
以上のような光磁気ディスクを製造する際には、この光磁気ディスクの原盤となる光記録媒体製造用原盤の作製にレーザカッティング装置が使用される。以下、光記録媒体製造用原盤の作製に使用されるレーザカッティング装置の一例について、図7を参照して詳細に説明する。
図7に示したレーザカッティング装置10は、ガラス基板11の上に塗布されたフォトレジスト12を露光して潜像を形成するためのものである。このレーザカッティング装置10でフォトレジスト12に潜像を形成する際、フォトレジスト12が塗布されたガラス基板11は、移動光学テーブル上に設けられた回転駆動装置に取り付けられる。そして、フォトレジスト12を露光する際、ガラス基板11は、フォトレジスト12の全面にわたって所望のパターンでの露光がなされるように、図中矢印A1に示すように回転駆動装置によって回転駆動されるとともに、移動光学テーブルによって平行移動される。
このレーザカッティング装置10は、2つの露光ビームによってフォトレジスト12を露光することが可能となっており、ウォブリンググルーブ6に対応した潜像と、ストレートグルーブ7に対応した潜像とを、それぞれの露光ビームにより形成する。すなわち、このレーザカッティング装置10では、第1の露光ビームによってウォブリンググルーブ6に対応した潜像を形成し、第2の露光ビームによってストレートグルーブ7に対応した潜像を形成する。
このレーザカッティング装置10は、レーザ光を出射する光源13と、光源13から出射されたレーザ光の光強度を調整するための電気光学変調器(EOM:Electro Optical Modulator)14と、電気光学変調器14から出射されたレーザ光の光軸上に配された検光子15と、検光子15を透過してきたレーザ光を反射光と透過光とに分割する第1のビームスプリッタ17と、第1のビームスプリッタ17を透過してきたレーザ光を反射光と透過光とに分割する第2のビームスプリッタ18と、第2のビームスプリッタ18を透過してきたレーザ光を検出するフォトディテクタ(PD:Photo Detector)19と、電気光学変調器14に対して信号電界を印加して当該電気光学変調器14から出射されるレーザ光強度を調整するオートパワーコントローラ(APC:Auto Power Controller)20とを備えている。
上記レーザカッティング装置10において、光源13から出射されたレーザ光は、先ず、オートパワーコントローラ20から印加される信号電界によって駆動される電気光学変調器14によって所定の光強度とされた上で検光子15に入射する。ここで、検光子15はS偏光だけを透過する検光子であり、この検光子15を透過してきたレーザ光はS偏光となる。
なお、光源13には、任意のものが使用可能であるが、比較的に短波長のレーザ光を出射するものが好ましい。具体的には、例えば、波長λが351nmのレーザ光を出射するKrレーザや、波長λが442nmのレーザ光を出射するHe−Cdレーザなどが、光源13として好適である。
そして、検光子15を透過してきたS偏光のレーザ光は、先ず、第1のビームスプリッタ17によって反射光と透過光とに分けられ、更に、第1のビームスプリッタ17を透過したレーザ光は、第2のビームスプリッタ18によって反射光と透過光とに分けられる。なお、このレーザカッティング装置10では、第1のビームスプリッタ17によって反射されたレーザ光が第1の露光ビームとなり、第2のビームスプリッタ18によって反射されたレーザ光が第2の露光ビームとなる。
第2のビームスプリッタ18を透過したレーザ光は、フォトディテクタ19によって、その光強度が検出され、当該光強度に応じた信号がフォトディテクタ19からオートパワーコントローラ20に送られる。そして、フォトディテクタ19から送られてきた信号に応じて、オートパワーコントローラ20は、フォトディテクタ19によって検出される光強度が所定のレベルにて一定となるように、電気光学変調器14に対して印加する信号電界を調整する。これにより、電気光学変調器14から出射するレーザ光の光強度が一定となるように、自動光量制御(APC:Auto Power Control)が施され、ノイズの少ない安定したレーザ光が得られる。
また、上記レーザカッティング装置10は、第1のビームスプリッタ17によって反射されたレーザ光を光強度変調するための第1の変調光学系22と、第2のビームスプリッタ18によって反射されたレーザ光を光強度変調するための第2の変調光学系23と、第1及び第2の変調光学系22,23によって光強度変調が施された各レーザ光を再合成してフォトレジスト12上に集光するための光学系24とを備えている。
そして、第1のビームスプリッタ17によって反射されてなる第1の露光ビームは、第1の変調光学系22に導かれ、第1の変調光学系22によって光強度変調が施される。同様に、第2のビームスプリッタ18によって反射されてなる第2の露光ビームは、第2の変調光学系23に導かれ、第2の変調光学系23によって光強度変調が施される。
すなわち、第1の変調光学系22に入射した第1の露光ビームは、集光レンズ29によって集光された上で音響光学変調器30に入射し、この音響光学変調器30によって、所望する露光パターンに対応するように光強度変調される。ここで、音響光学変調器(AOM)30に使用される音響光学素子としては、例えば、酸化テルル(TeO2)からなる音響光学素子が好適である。そして、音響光学変調器30によって光強度変調された第1の露光ビームは、コリメータレンズ31によって平行光とされた上で、第1の変調光学系22から出射される。
ここで、音響光学変調器30には、当該音響光学変調器30を駆動するための駆動用ドライバ32が取り付けられている。そして、フォトレジストの露光時には、所望する露光パターンに応じた信号S1が駆動用ドライバ32に入力され、当該信号S1に応じて駆動用ドライバ32によって音響光学変調器30が駆動され、第2の露光ビームに対して光強度変調が施される。
具体的には、例えば、一定の深さのウォブリンググルーブ6に対応したグルーブパターンの潜像をフォトレジスト12に形成するような場合には、一定レベルのDC信号が駆動用ドライバ32に入力され、当該DC信号に応じて駆動用ドライバ32によって音響光学変調器30が駆動される。これにより、所望するグルーブパターンに対応するように、第1の露光ビームに対して光強度変調が施される。
また、第2の変調光学系23に入射した第2の露光ビームは、集光レンズ33によって集光された上で音響光学変調器34に入射し、この音響光学変調器34によって、所望する露光パターンに対応するように光強度変調される。ここで、音響光学変調器34に使用される音響光学素子としては、例えば、酸化テルル(TeO2)からなる音響光学素子が好適である。そして、音響光学変調器34によって光強度変調された第2の露光ビームは、コリメータレンズ35によって平行光とされるとともに、λ/2波長板36を透過することにより偏光方向が90°回転させられた上で、第2の変調光学系23から出射される。
ここで、音響光学変調器34には、当該音響光学変調器34を駆動するための駆動用ドライバ37が取り付けられている。そして、フォトレジスト12の露光時には、所望する露光パターンに応じた信号S2が駆動用ドライバ37に入力され、当該信号S2に応じて駆動用ドライバ37によって音響光学変調器34が駆動され、第2の露光ビームに対して光強度変調が施される。
具体的には、例えば、一定の深さのストレートグルーブ7に対応したグルーブパターンの潜像をフォトレジスト12に形成するような場合には、一定レベルのDC信号が駆動用ドライバ37に入力され、当該DC信号に応じて駆動用ドライバ37によって音響光学変調器34が駆動される。これにより、所望するグルーブパターンに対応するように、第2の露光ビームに対して光強度変調が施される。
以上のようにして、第1の露光ビームは第1の変調光学系22によって光強度変調が施され、第2の露光ビームは第2の変調光学系23によって光強度変調が施される。このとき、第1の変調光学系22から出射された第1の露光ビームはS偏光のままであるが、第2の変調光学系23から出射された第2の露光ビームは、λ/2波長板36を透過することにより偏光方向が90°回転させられているので、P偏光となっている。
そして、第1の変調光学系22から出射された第1の露光ビームは、ミラー41によって反射され、移動光学テーブル上に水平且つ平行に導かれ、偏向光学系46に入射する。そして、第1の露光ビームは、偏向光学系46によって光学偏向が施された上で、ミラー44によって反射されて進行方向が90°曲げられた上で偏光ビームスプリッタ45に入射する。一方、第2の変調光学系32から出射された第2の露光ビームは、ミラー42によって反射され、移動光学テーブル上に水平且つ平行に導かれ、そのまま偏光ビームスプリッタ45に入射する。
ここで、偏向光学系46は、ウォブリンググルーブのウォブリングに対応するように、第1の露光ビームに対して光学偏向を施すためのものである。すなわち、第1の変調光学系22から出射され偏向光学系46に入射した第1の露光ビームは、ウェッジプリズム47を介して音響光学偏向器(AOD:Acousto Optical Deflector)48に入射し、この音響光学偏向器48によって、所望する露光パターンに対応するように光学偏向が施される。ここで、音響光学偏向器48に使用される音響光学素子としては、例えば、酸化テルル(TeO2)からなる音響光学素子が好適である。そして、音響光学偏向器48によって光学偏向が施された第1の露光ビームは、ウエッジプリズム49を介して偏向光学系46から出射される。
ここで、音響光学偏向器48には、当該音響光学偏向器48を駆動するための駆動用ドライバ50が取り付けられており、当該駆動用ドライバ50には、電圧制御発振器(VCO:Voltage Controlled Oscillator)51からの高周波信号が、アドレス情報を含む制御信号S3によりFM変調され供給される。そして、フォトレジスト12の露光時には、所望する露光パターンに応じた信号が、電圧制御発振器51から駆動用ドライバ50に入力され、当該信号に応じて駆動用ドライバ50によって音響光学偏向器48が駆動され、これにより、第1の露光ビームに対して光学偏向が施される。
具体的には、例えば、周波数84.672kHzにてグルーブをウォブリングさせることにより、グルーブにアドレス情報を付加するような場合には、例えば中心周波数が224MHzの高周波信号を周波数84.672kHzの制御信号にてFM変調した信号を、電圧制御発振器51から駆動用ドライバ50に供給する。そして、この信号に応じて、駆動用ドライバ50によって音響光学偏向器48を駆動し、当該音響光学偏向器48の音響光学素子のブラッグ角を変化させ、これにより、周波数84.672kHzのウォブリングに対応するように、第1の露光ビームに対して光学偏向を施す。
そして、このような偏向光学系46によって、ウォブリンググルーブ6のウォブリングに対応するように光学偏向が施された第1の露光ビームは、上述したように、ミラー44によって反射されて進行方向が90°曲げられた上で偏光ビームスプリッタ45に入射する。
ここで、偏光ビームスプリッタ45は、S偏光を反射し、P偏光を透過するようになされている。そして、第1の変調光学系22から出射され偏向光学系46によって光学偏向が施された第1の露光ビームは、S偏光であり、また、第2の変調光学系23から出射された第2の露光ビームは、P偏光である。したがって、第1の露光ビームは当該偏光ビームスプリッタ45によって反射され、第2の露光ビームは当該偏光ビームスプリッタ45を透過する。これにより、第1の変調光学系22から出射され偏向光学系46によって光学偏向が施された第1の露光ビームと、第2の変調光学系23から出射された第2の露光ビームとは、進行方向が同一方向となるように再合成される。
そして、進行方向が同一方向となるように再合成されて偏光ビームスプリッタ45から出射した第1及び第2の露光ビームは、拡大レンズ52によって所定のビーム径とされた上でミラー53によって反射されて対物レンズ54へと導かれ、当該対物レンズ54によってフォトレジスト12上に集光される。これにより、フォトレジスト12が露光され、フォトレジスト12に潜像が形成されることとなる。このとき、フォトレジスト12が塗布されているガラス基板11は、上述したように、フォトレジスト12の全面にわたって所望のパターンでの露光がなされるように、図中矢印A1に示すように回転駆動装置によって回転駆動されるとともに、移動光学テーブルによって平行移動される。この結果、第1及び第2の露光ビームの照射軌跡に応じた潜像が、フォトレジスト12の全面にわたって形成されることとなる。
なお、露光ビームをフォトレジスト12の上に集光するための対物レンズ54は、より微細なグルーブパターンを形成できるようにするために、開口数NAが大きい方が好ましく、具体的には、開口数NAが0.9程度の対物レンズが好適である。
また、このように第1及び第2の露光ビームをフォトレジスト12に照射する際は、必要に応じて、拡大レンズ52によって第1及び第2の露光ビームのビーム径を変化させ、対物レンズ54に対する有効開口数を調整する。これにより、フォトレジスト12の表面に集光される第1及び第2の露光ビームのスポット径を変化させることができる。
ところで、偏光ビームスプリッタ45に入射した第1の露光ビームは、当該偏光ビームスプリッタ45の反射面にて、第2の露光ビームと合成される。ここで、偏光ビームスプリッタ45は、当該偏向ビームスプリッタの反射面が、当該反射面で合成されて出射される光の進行方向に対して適度な反射角をなすように配される。
具体的には、偏光ビームスプリッタ45の反射面の反射角は、第1の露光ビームに対応するスポットと、第2の露光ビームに対応するスポットとの、ガラス基板11の半径方向における間隔が、トラックピッチTPitchに対応するように設定しておく。これにより、第1の露光ビームによりウォブリンググルーブ6に対応する部分を露光し、同時に、第2の露光ビームによりストレートグルーブ7に対応する部分を露光することが可能となる。
以上のようなレーザカッティング装置10では、ウォブリンググルーブ6に対応した潜像を形成するための第1の露光ビームに対応した光学系と、ストレートグルーブ7に対応した潜像を形成するための第2の露光ビームに対応した光学系とを備えているので、このレーザカッティング装置10だけで、ウォブリンググルーブ6に対応した潜像と、ストレートグルーブ7に対応した潜像とをまとめて形成することができる。しかも、このレーザカッティング装置10では、第1の露光ビームと第2の露光ビームとを合成するための偏向ビームスプリッタ45の向きを調整することにより、第1の露光ビームの照射位置と第2の露光ビームの照射位置とを容易に調整することができる。
つぎに、図1及び図2に示した光磁気ディスク1の製造方法について、具体的な一例を挙げて詳細に説明する。
光磁気ディスク1を作製する際は、先ず、原盤工程として、ウォブリンググルーブ6及びストレートグルーブ7に対応した凹凸パターンを有する光記録媒体製造用原盤を作製する。
この原盤工程においては、先ず、表面を研磨した円盤状のガラス基板11を洗浄し乾燥させ、その後、このガラス基板11上に感光材料であるフォトレジスト12を塗布する。次に、このフォトレジスト12を上記レーザカッティング装置10によって露光し、ウォブリンググルーブ6及びストレートグルーブ7に対応した潜像をフォトレジスト12に形成する。
なお、後述する評価用光磁気ディスクを作製する際、レーザカッティング装置10の光源13には、波長λが351nmのレーザ光を出射するKrレーザを使用し、第1及び第2の露光ビームをフォトレジスト12上に集光するための対物レンズ54には、開口数NAが0.9のものを使用した。また、拡大レンズには焦点距離が70mmのレンズを使用した。
そして、フォトレジスト12をレーザカッティング装置10によって露光する際は、第1及び第2の露光ビームによってフォトレジスト12を露光することにより、ウォブリンググルーブ6及びストレートグルーブ7に対応した潜像をフォトレジスト12に形成する。
ここで、第1の露光ビームによってフォトレジスト12を露光することにより、ウォブリンググルーブ6に対応した潜像をフォトレジスト12に形成する際は、第1の露光ビームに対して、第1の変調光学系22により光強度変調を施すとともに、光学偏向系46により光学偏向を施す。
具体的には、先ず、一定レベルのDC信号を駆動用ドライバ32に入力し、当該DC信号に基づいて駆動用ドライバ32によって音響光学変調器30を駆動し、これにより、ウォブリンググルーブ6のパターンに対応するように、第1の露光ビームに対して光強度変調を施す。ここで、ウォブリンググルーブ6は一定の深さの連続した溝であるので、ウォブリンググルーブ6に対応した潜像を形成している間は、第1の露光ビームの光強度が一定となるように光強度変調を施す。
次いで、第1の変調光学系22によって光強度変調が施された第1の露光ビームに対して、偏向光学系46により光学偏向を施す。具体的には、電圧制御発振器51から高周波信号を制御信号にてFM変調して駆動用ドライバ50に供給し、この信号に基づいて駆動用ドライバ50によって音響光学偏向器48を駆動して、当該音響光学偏向器48の音響光学素子のブラッグ角を変化させ、これにより、第1の露光ビームに対して光学偏向を施す。
そして、このように光強度変調及び光学偏向を施した第1の露光ビームを、対物レンズ54によってフォトレジスト12上に集光することにより、フォトレジスト12を露光し、ウォブリンググルーブ6に対応した潜像をフォトレジスト12に形成する。
また、第1の露光ビームによりフォトレジスト12を露光するのと同時に、第2の露光ビームによってフォトレジスト12を露光することにより、ストレートグルーブ7に対応した潜像をフォトレジスト12に形成する。
第2の露光ビームによってフォトレジスト12を露光することにより、ストレートグルーブ7に対応した潜像をフォトレジスト12に形成する際は、第2の露光ビームに対して、第2の変調光学系23により光強度変調を施す。
具体的には、一定レベルのDC信号を駆動用ドライバ37に入力し、当該DC信号に基づいて駆動用ドライバ37によって音響光学変調器34を駆動し、これにより、ストレートグルーブ7のパターンに対応するように、第2の露光ビームに対して光強度変調を施す。ここで、ストレートグルーブ7は一定の深さの連続した溝であるので、ストレートグルーブ7に対応した潜像を形成している間は、第2の露光ビームの光強度が一定となるように光強度変調を施す。
そして、このように光強度変調を施した第2の露光ビームを、対物レンズ54によってフォトレジスト12上に集光することにより、フォトレジスト12を露光し、ストレートグルーブ7に対応した潜像をフォトレジスト12に形成する。
なお、このようにフォトレジスト12を露光して、ウォブリンググルーブ6及びストレートグルーブ7に対応した潜像を形成する際は、フォトレジスト12が塗布されているガラス基板11を、所定の回転速度にて回転駆動させるとともに、所定の速度にて平行移動させる。
具体的には、後述する評価用光磁気ディスクを作製する際、ガラス基板11の回転速度は、第1及び第2の露光ビームによる光スポットとフォトレジスト12との相対的な移動速度が線速1.0m/secとなるようにした。そして、当該ガラス基板11を1回転毎に1.00μm(すなわちトラックピリオドTPeriodの分)だけ、移動光学テーブルによってガラス基板11の半径方向に平行移動させた。
以上のように第1及び第2の露光ビームによってフォトレジスト12を露光することにより、ウォブリンググルーブ6に対応した潜像と、ストレートグルーブ7に対応した潜像とが、ダブルスパイラル状にフォトレジスト12に形成される。
なお、このように第1及び第2の露光ビームによってフォトレジスト12を露光する際は、駆動用ドライバ32,37に入力するDC信号のレベルを調整して、第1の露光ビームのパワーと第2の露光ビームのパワーとが異なるようにしておく。これにより、ウォブリンググルーブ6に対応した潜像の深さと、ストレートグルーブ7に対応した潜像の深さとが異なるものとなる。本実施の形態では、第1の露光ビームのパワーを制御してウォブリンググルーブの深さd1を100nmとし、第2の露光ビームのパワーを制御してストレートグルーブの深さd2を170nm前後とした。
また、上記レーザカッティング装置10では、第1の露光ビームによる光スポットと、第2の露光ビームによる光スポットとのガラス基板11の半径方向における間隔が、トラックピッチTPitchに対応するように、偏光ビームスプリッタ45の反射面の反射角を設定しておく。
このように偏光ビームスプリッタ45の反射面の反射角を設定しておくことにより、第1の露光ビームによってウォブリンググルーブ6に対応した潜像が形成されるとともに、当該ウォブリンググルーブ6に隣接したストレートグルーブ7に対応した潜像が第2の露光ビームによって形成されることとなる。このことは、換言すれば、ウォブリンググルーブ6とストレートグルーブ7との相対的な位置決めは、偏向ビームスプリッタ45の向きを調整することにより実現できるということでもある。
そして、以上のようにしてフォトレジスト12に潜像を形成した後、フォトレジスト12が塗布されている面が上面となるように、ガラス基板11を現像機のターンテーブル上に載置する。そして、当該ターンテーブルを回転させることによりガラス基板11を回転させながら、フォトレジスト12上に現像液を滴下して現像処理を施して、ガラス基板11上にウォブリンググルーブ6及びストレートグルーブ7に対応した凹凸パターンを形成する。
次に、上記凹凸パターン上に無電界メッキ法によりNi等からなる導電化膜を形成し、その後、導電化膜が形成されたガラス基板11を電鋳装置に取り付け、電気メッキ法により導電化膜上にNi等からなるメッキ層を、300±5μm程度の厚さとなるように形成する。その後、このメッキ層を剥離し、剥離したメッキをアセトン等を用いて洗浄し、凹凸パターンが転写された面に残存しているフォトレジスト12を除去する。
以上の工程により、ガラス基板11上に形成されていた凹凸パターンが転写されたメッキからなる光記録媒体製造用原盤、すなわち、ウォブリンググルーブ6及びストレートグルーブ7に対応した凹凸パターンが形成された光記録媒体製造用原盤が完成する。
なお、この光記録媒体製造用原盤は、本発明が適用されてなる光記録媒体製造用原盤である。すなわち、この光記録媒体製造用原盤は、記録トラックに沿ってウォブリンググルーブ6及びストレートグルーブ7が形成されてなる光磁気ディスク1を製造する際に使用される光記録媒体製造用原盤であって、ウォブリンググルーブ6に対応した凹凸パターンである第1のグルーブパターンと、ストレートグルーブ7に対応した凹凸パターンである第2のグルーブパターンとがダブルスパイラル状に形成されてなる。そして、第1のグルーブパターンと第2のグルーブパターンとは、それらの深さが上述したように、互いに異なるように形成されている。
次に、転写工程として、フォトポリマー法(いわゆる2P法)を用いて、上記光記録媒体製造用原盤の表面形状が転写されてなるディスク基板を作製する。
具体的には、先ず、光記録媒体製造用原盤の凹凸パターンが形成された面上にフォトポリマーを平滑に塗布してフォトポリマー層を形成し、次に、当該フォトポリマー層に泡やゴミが入らないようにしながら、フォトポリマー層上にベースプレートを密着させる。ここで、ベースプレートには、例えば、1.2mm厚のポリメチルメタクリレート(屈折率1.49)からなるベースプレートを使用する。
その後、紫外線を照射してフォトポリマーを硬化させ、その後、光記録媒体製造用原盤を剥離することにより、光記録媒体製造用原盤の表面形状が転写されてなるディスク基板2を作製する。
なお、ここでは、光記録媒体製造用原盤に形成された凹凸パターンがより正確にディスク基板2に転写されるように、2P法を用いてディスク基板2を作製する例を挙げたが、ディスク基板2を量産するような場合には、ポリメチルメタクリレートやポリカーボネート等の透明樹脂を用いて射出成形によってディスク基板2を作製するようにしても良いことは言うまでもない。
次に、成膜工程として、光記録媒体製造用原盤の表面形状が転写されてなるディスク基板2上に記録層3及び保護層4を形成する。具体的には、例えば、先ず、ディスク基板2の凹凸パターンが形成された面上に、SiN等からなる第1の誘電体膜と、TeFeCo合金等からなる垂直磁気記録膜と、SiN等からなる第2の誘電体膜とをスパッタリングによって順次成膜し、更に、第2の誘電体膜を成膜することにより、第1の誘電体膜、垂直磁気記録膜、第2の誘電体膜を形成する。その後、上記記録層3上に紫外線硬化樹脂をスピンコート法により塗布し、当該紫外線硬化樹脂に対して紫外線を照射し硬化させることにより、保護層4を形成する。以上の工程により、光磁気ディスク1が完成する。
本発明を適用した光磁気ディスクの記録領域の一部を拡大して示す図である。 前記光磁気ディスクの要部の断面図である。 Shallow&Deep方式を適用していない、これまでの光ディスクの差信号と、和信号の波形図である。 差信号と和信号を説明するための図である。 Shallow&Deep方式を適用した光ディスクの差信号と、和信号の波形図である。 第1グルーブの浅い(Shallow)溝を100nm一定にしたときに、第2グルーブの深い(Deep)溝を変化させた場合の、和信号のAC成分のDC成分に対するレベル比と、差信号のAC成分のDC成分に対するレベル比を示す図である。 本発明の光記録媒体及び光記録媒体製造用原盤を作製する際に使用されるレーザカッティング装置の一例について、その光学系の概要を示す図である。
符号の説明
1 光磁気ディスク、6 ウォブリンググルーブ、7 ストレートグルーブ

Claims (6)

  1. 光が照射されて記録及び/又は再生がなされる光記録媒体において、
    上記記録媒体にらせん状に形成されたランドと、
    上記ランドの一方の面に沿って形成される深さd1の第1のグルーブと、
    上記ランドの他方の面に沿って上記第1のグルーブと異なる深さd2の第2のグルーブとを備え、
    上記記録媒体に照射された上記光の反射光を上記ランドまたはグルーブによるトラック中心に対して対称に配置された二つの光検出器により検出し、一方の光検出出力をA、他方の光検出出力をBとしたとき、A+Bで表される和信号のAC成分をDC成分に比して0.06より小さくする条件を満たす上記d1とd2とが設定されたことを特徴とする光記録媒体。
  2. 上記一方の光検出出力Aと上記他方の光検出出力Bとの差信号A−BのAC成分をDC成分に比して0.15以上とする条件をさらに満たす上記d1とd2とが設定されたことを特徴とする請求項1記載の光記録媒体。
  3. 上記第1のグルーブと上記第2のグルーブのうちの少なくとも一方は、少なくとも一部が蛇行するように形成されたウォブリンググルーブであることを特徴とする請求項1記載の光記録媒体。
  4. 光が照射されて記録及び/又は再生がなされる光記録媒体を製造する際に使用される光記録媒体製造用原盤において、
    上記記録媒体にらせん状に形成されたランドと、
    上記ランドの一方の面に沿って形成される深さd1の第1のグルーブと、
    上記ランドの他方の面に沿って上記第1のグルーブと異なる深さd2の第2のグルーブとを備え、
    上記記録媒体に照射された上記光の反射光を上記ランドまたはグルーブによるトラック中心に対して対称に配置された二つの光検出器により検出し、一方の光検出出力をA、他方の光検出出力をBとしたとき、A+Bで表される和信号のAC成分をDC成分に比して0.06より小さくする条件を満たす上記d1とd2とが設定された光記録媒体を製造するために用いられることを特徴とする光記録媒体製造用原盤。
  5. 上記一方の光検出出力Aと上記他方の光検出出力Bとの差信号A−BのAC成分をDC成分に比して0.15以上とする条件をさらに満たす上記d1とd2とが設定された光記録媒体を製造するために用いられることを特徴とする請求項4記載の光記録媒体製造用原盤。
  6. 上記第1のグルーブと上記第2のグルーブのうちの少なくとも一方は、少なくとも一部が蛇行するように形成されたウォブリンググルーブである光記録媒体を製造するために用いられることを特徴とする請求項5記載の光記録媒体製造用原盤。
JP2005256794A 2001-01-29 2005-09-05 光記録媒体及び光記録媒体製造用原盤 Pending JP2005353277A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256794A JP2005353277A (ja) 2001-01-29 2005-09-05 光記録媒体及び光記録媒体製造用原盤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001020739 2001-01-29
JP2005256794A JP2005353277A (ja) 2001-01-29 2005-09-05 光記録媒体及び光記録媒体製造用原盤

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002010651A Division JP4024047B2 (ja) 2001-01-29 2002-01-18 光記録媒体及び光記録媒体製造用原盤

Publications (1)

Publication Number Publication Date
JP2005353277A true JP2005353277A (ja) 2005-12-22

Family

ID=35587587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256794A Pending JP2005353277A (ja) 2001-01-29 2005-09-05 光記録媒体及び光記録媒体製造用原盤

Country Status (1)

Country Link
JP (1) JP2005353277A (ja)

Similar Documents

Publication Publication Date Title
JP2000231745A (ja) 光記録媒体、光記録媒体製造用原盤及びその製造方法
JP3577870B2 (ja) 記録媒体原盤の製造方法及び記録媒体
US7242662B2 (en) Optical recording/reproducing medium, mother stamper for producing optical recording/reproducing medium and optical recording/reproducing device
JP4024047B2 (ja) 光記録媒体及び光記録媒体製造用原盤
KR100913509B1 (ko) 광 기록 매체, 광 기록 매체 제조용 원반, 광 기록 매체제조용 원반의 제조장치, 광 기록 매체 제조용 원반의제조 방법
JP3714331B2 (ja) 光記録媒体、光記録媒体製造用原盤、記録再生装置および記録再生方法
KR20040090393A (ko) 광학 기록 재생 매체, 광학 기록 재생 매체 제조용 원반및 광학 기록 재생 장치
KR20040098596A (ko) 광기록 매체, 광기록 매체 제조용 마스터, 기록 및 재생장치, 및 기록 및 재생 방법
JP4320916B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
US6349085B1 (en) High density recording medium with pit width to track pitch ratio in the range of 0.4 to 0.55 for push-pull tracking servo control
JPH11296910A (ja) 光記録媒体及び光記録媒体製造用原盤
JP4320915B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2005032317A (ja) 光学記録再生媒体、光学記録再生媒体製造用スタンパ及び光学記録方法
JP2000090496A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2005353277A (ja) 光記録媒体及び光記録媒体製造用原盤
JP4385552B2 (ja) 光学記録再生媒体作製用原盤の記録方法、光学記録再生媒体作製用スタンパ、光学記録再生媒体及びこれを用いた光学記録再生装置
JP2004039011A (ja) 光記録媒体、光記録媒体製造用原盤、記録再生装置および記録再生方法
JP2004055015A (ja) 光学記録方法及び光学記録再生媒体
JP2003346385A (ja) 光学記録再生媒体、光学記録再生媒体製造用原盤及び光学記録再生方法
JP2000040259A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2002352477A (ja) 光記録媒体、光記録媒体製造用原盤及び記録再生方法
JP2000276778A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2000260070A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2000339701A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2000048407A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007