JP2005347747A - 成長基板の除去により製造される共振キャビティiii族窒化物発光装置 - Google Patents

成長基板の除去により製造される共振キャビティiii族窒化物発光装置 Download PDF

Info

Publication number
JP2005347747A
JP2005347747A JP2005160075A JP2005160075A JP2005347747A JP 2005347747 A JP2005347747 A JP 2005347747A JP 2005160075 A JP2005160075 A JP 2005160075A JP 2005160075 A JP2005160075 A JP 2005160075A JP 2005347747 A JP2005347747 A JP 2005347747A
Authority
JP
Japan
Prior art keywords
layer
type region
mirror
cavity
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005160075A
Other languages
English (en)
Other versions
JP5007027B2 (ja
Inventor
John E Epler
イー エプラー ジョン
Michael R Krames
アール クレイムズ マイケル
Jonathan J Wierer Jr
ジェイ ウィーラー ジュニア ジョナサン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumileds LLC
Original Assignee
Lumileds LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumileds LLC filed Critical Lumileds LLC
Publication of JP2005347747A publication Critical patent/JP2005347747A/ja
Application granted granted Critical
Publication of JP5007027B2 publication Critical patent/JP5007027B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • H01L33/465Reflective coating, e.g. dielectric Bragg reflector with a resonant cavity structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 成長基板を除去することにより製造された共振キャビティIII族窒化物発光装置を提供すること。
【解決手段】 半導体発光装置は、n型領域と、p型領域と、該n型領域およびp型領域の間に配置された発光領域とを含んでいる。n型領域、p型領域および発光領域は、頂面および底面を有するキャビティを形成する。該キャビティの頂面および底面は、粗い表面を有してよい。例えば、該表面は複数の谷によって分離された複数のピークを有している。幾つかの実施形態においは、当該装置にエッチング停止層を組込み、次いで該エッチング停止層上で停止するプロセスによって、当該装置の層を薄膜化することにより、前記キャビティの厚さは一定に維持される。
【選択図】 図18

Description

本発明は、III族窒化物半導体発光装置に関する。
発光ダイオード(LED)を含む半導体発光装置は、現在入手可能な最も効率的な光源の一つである。可視スペクトルの全体に亘って動作できる高輝度発光装置の製造において、現在興味をもたれている材料系には、III−V族半導体、特に、III族窒化物(III−窒化物)材料とも称されるガリウム、アルミニウム、インジウムおよび窒素の二元合金、三元合金および四元合金が含まれる。典型的には、III族窒化物発光装置は、有機金属化学成長(MOCVD)、分子ビームエピタキシー(MBE)、または他のエピタキシャル技術によって、サファイア、炭化ケイ素、III族窒化物または他の適切な基板上に、異なる組成およびドーパント濃度の半導体層スタックをエピタキシャル成長させることによって製造される。サファイアは、その広範な工業的な利用可能性および使用が比較的容易であることのために、成長基板としてしばしば使用される。成長基板上に成長されたスタックは、典型的には、基板を覆って形成された例えばSiをドープされた1以上のn型層、該n型層を覆って形成された発光層または活性領域、および該活性層を覆って形成された、例えばMgをドープされた1以上のp型層を含んでいる。
サファイアは導電性ではないので、p側およびn側の活性領域に対するコンタクトは、当該装置の頂部側に形成しなければならず、活性領域およびp型領域の一部をエッチング除去して、埋め込まれたn型領域の一部を露出させることが必要とされる。従って、この装置は、nコンタクトおよびpコンタクトを分離する狭い絶縁ブロック層を備えた平坦でない表面を有しており、パッケージが困難な形状をしている。また、活性領域の多くの面積がnコンタクトおよび絶縁領域のために失われ、フィルファクタ(fill factor)が低下する。
米国特許6,280,523号には、成長基板を除去することによって形成されたIII族窒化物装置が記載されている。エピタキシャルスタックは、GaP、GaAs、InPまたはSiのホスト基板にウェハ結合される。次いで、成長基板はレーザ溶融、または犠牲層の選択エッチングにより除去される。成長基板を除去することは、共振キャビティ装置を形成するために、活性領域を、二つの誘電性の分布されたブラッグ反射体(dielectric distributed Bragg reflector)の間に配置することを可能にする。共振キャビティを使用することにより、放出された光の方向制御を増大させ、当該装置から抽出される光量を増大させ、また、当該装置に対して直角に放出される光の分光学的純度を増大させることができる。
米国特許6,280,523号
当該技術において、改善されたIII窒化物共振キャビティ構造が必要とされている。
本発明の実施形態によれば、半導体発光装置は、n型領域と、p型領域と、該nおよびp型領域の間に配置された発光領域とを含んでいる。このn型領域、p型領域および発光領域は、頂面および底面を有するキャビティを形成する。該キャビティの頂面および底面は、両者とも粗い表面を有していてよい。例えば、該表面は、複数の谷で分離された複数のピークを有していてよい。幾つかの実施形態では、エッチング停止層を当該装置に組み込み、次いで、前記エッチング停止層で終了するプロセスにより該装置の前記層を薄くすることによって、当該キャビティの厚さは一定に維持される。
本発明の実施形態に従えば、改善されたIII族窒化物共振キャビティ装置が提供される。成長の際にエッチング停止層を組込むことにより、一定のキャビティ厚さが形成される。本発明の幾つかの実施形態においては、光抽出を増大させるために、当該装置にトレンチが形成される。幾つかの実施形態においては、グリッドが設けられる。
図1および図2は、本発明の実施形態に従う共振キャビティ型のIII族窒化物装置を示す断面図および平面図である。活性領域112が、n型領域108とp型領域116の間にサンドイッチされている。図1および図2の実施形態は、n型DBR11に覆われていないn型領域108の一部に形成されたnコンタクトを示しており、ここを通して、光が装置から抽出される。反射性のpコンタクト12が、p型領域116上に形成されている。pコンタクト12は、直接に、または任意の結合層を介して、エピタキシャル層20をホスト基板16に結合する。ホスト基板16は半導体であってよく、ホスト基板の表面にはオーミックコンタクト18を必要とする。本発明の幾つかの実施形態において、図1および図2に示した装置は大接合装置であり、これは当該装置が少なくとも200×200μm2の面積を有し且つ少なくとも100A/cm2の電流密度で動作することを意味する。
N-コンタクト10は、図2に示すように抽出表面を取囲んでもよく、または別の構成を有していてもよい。コンタクトのパターンは、pコンタクト12およびnコンタクト10上の如何なる点の間の最大距離も、特定の装置の最大電流広がり距離特性より小さくなるように選択されてよい。最大電流広がり距離は、例えば、約20μm〜約250μmで変動してよい。導電性が増大すれば、この広がり距離は増大する。エピタキシャルスタックの厚さが減少すれば、この広がり距離は減少する。幾つかの実施形態では、DBR11および反射性pコンタクト12で形成されるキャビティの中に電流を強制するために、nコンタクト10の下のエリアにおいてp型領域116からの電流はブロックされる。この電流のブロックは、nコンタクト10の下に位置するp型領域116のエリアに、例えば10keVのエネルギーおよび2×1014cm2のドーズ量でH+をインプラントし、高抵抗領域を形成することによって達成してよい。或いは、ブロックすべきエリアを、Tiのような非オーミック金属、またはシリコンの酸化物もしくは窒化物のような絶縁体で覆ってもよい。
反射性pコンタクトと活性領域との間の距離は、当該装置からの抽出を最大にするように選択されてよい。一般に、キャビティ内の電界強度は定在波を形成する。活性領域の中心は、電界強度の最大値付近に位置している。反射性pコンタクトと活性領域との間の最適分離の計算は、「改善された光抽出のためのフリップチップ発光ダイオードにおける量子壁の選択的配置」と題する米国出願第10/158,360号に更に詳細に記載されており、これを本明細書の一部として援用する。
共振キャビティは、DBR11と、該DBRからp型領域の反対側にある反射層(典型的にはpコンタクト12)によって形成されるが、この反射層は、任意の結合層14またはホスト基板16であってもよい。共振キャビティは、優れた光制御を提供する。「光抽出に対する平面微小キャビティ効果の衝撃…第I部:基本概念および分析的傾向」、H Benisty, H. DeNeve,and C. Weisbuch, IEEE Journal Of Quantum Electronics, Vol. 34, No.9, September 1998, pp.1612-1631に記載されているように、共振キャビティは潜在的に高い内部効率、高い抽出効率、並びに放出された光の方向、即ち、放射パターンおよびスペクトルに対する大きな制御を提供する。当該装置構造の主な変数は、頂部鏡および低部鏡の反射率、並びに該構造の厚さである。一般に、キャビティが薄いほど導波モードの数は少ない。これらモードの光は結晶中でトラップされ、熱として失われる。この再結合プロセスを遮断すれば、結晶の逃散コーン内で発生する使用可能な光を発生させるために、更に多くの電子/正孔対が利用可能になる。従って、ウェハは、良好な装置収率および充分な電流広がりと両立させて、可能な限り薄く、1μm未満に加工される。多くの実施形態において、共振キャビティを形成するエピタキシャル層20の厚さは、約1μm未満、多くの場合は0.5〜約0.7μmである。
スペクトル幅が約140meVの典型的な装置について、発生した光の抽出効率は、キャビティの厚さを微細に調節することによって増大させることができる。結晶の内部において、発生した光の角度は、波長およびキャビティ厚さの鋭敏な関数である。放射パターンは、キャビティ厚さを注意深く選択することによって、結晶の逃散コーン、即ち、垂線から25°未満に適合させることができる。従って、上記で述べた1μm未満の厚さ以内の要件は、当該装置を横切る光学厚さが、抽出効率または表面輝度を最適化するための望ましい共振に対応するとの追加の要件である。典型的に言えば、共振は、15nm、例えば570+/−15nmまたは674+/−15nmの厚さ以内に制御することを必要とする。
望ましいキャビティ厚さを達成するために、エピタキシャル層は一般に、成長させた後に望ましいキャビティ厚さまで薄膜化される。エピタキシャル層は、従来のエッチングプロセスまたは化学機械的研磨によって薄膜化すればよい。図17は、当該装置の一部を示しており、ここではキャビティが化学機械的研磨によって薄膜化される。このような従来の薄膜化プロセスは、二つの問題を生じる。第一に、従来のプロセスでは、効率的な共振キャビティを作製するために必要な15nmの精度で、薄膜化プロセスの停止点を制御するのが困難である可能性がある。
第二に、エピタキシャル層が成長される成長基板の間、およびエピタキシャル層自身の間での格子の不一致のために、平坦なIII族窒化物層を成長させるのが困難である。結晶欠陥の存在は、一般に、図17の活性領域112によって示されるように、不均一な表面を備えたIII族窒化物層を生じる。III族窒化物層の表面は、谷で分離されたピークを含む断面を有し得る。「ピーク」は、個々の結晶面間のステップ7で形成された「谷」により分離された、傾斜した結晶面5である。結晶面5は、例えば1〜150ミクロンの長さ、多くは約100ミクロンの長さである。ステップ7は、例えば約λ/4の高さを有してよく、ここでのλは、活性領域112により放出される光の結晶中での波長である。例えば、ステップ7は、約15nm〜約100nmの高さを有してよい。領域108、112、116は、これら領域内での歪みが、活性領域112とp型領域116の間の界面、および活性領域112とn型領域108の間の界面に示されるように、それぞれが同じピーク/谷の表面を有するように充分に薄い。上記で述べた従来の薄膜化プロセスは、典型的には、n型領域108とミラー11の界面に示したような平坦な表面を生じる。従って、従来のプロセスで共振キャビティを形成すると、一つの不均一な表面(成長から生じるp型領域116およびpコンタクト12の間の界面)と、一つの平坦な表面(エッチングまたは化学機械的研磨から生じるn型領域108とミラー11の間の界面)とを備えたキャビティを生じる。この共振キャビティの両側表面における相違は、矢印3および4に示されるように、キャビティ厚さの変動をもたらす。その結果、キャビティの一部だけしか適切に調節されない。このような変動は、当該装置の効率を低下させる可能性がある。
本発明の実施形態に従えば、成長の際にエピタキシャル層の中にエッチング停止層を組込むことによって、共振キャビティの厚さは一定に維持される。エッチング停止層を、共振キャビティを形成する層に対して共形(conformal)にするために、エッチング停止層は、該キャビティを形成するエピタキシャル層の直前、またはその1ミクロン以内で成長される。エッチング停止層を覆って成長されるエピタキシャル層は薄いので、それらはエッチング停止層の表面を維持して、一定の共振キャビティ厚さを生じる。当該装置は、エッチング停止層の上で終止するプロセスによって薄膜化され、頂部キャビティ表面は低部キャビティ表面と同一なので、一定の厚さをもったキャビティを生じる。図18は、キャビティ層の前に成長されたエッチング停止層で停止するプロセスによって、キャビティが薄膜化された装置の一部を示している。図18に示すように、キャビティの両表面、n型領域108とミラー11の間の界面、およびp型領域116とpコンタクト12の間の界面は同じ表面形状を有しており、一定の厚さのキャビティをもたらす。幾つかの実施形態では、キャビティの如何なる点においても、キャビティの厚さはキャビティの平均厚さからλ/8未満、または該キャビティの平均厚さから5%未満で変動する。
一定のキャビティ厚さをもった装置は、図3に示した方法によって製造すればよい。工程31においては、エピタキシャル層20が従来の成長基板上に成長される。次いで、工程33において、該エピタキシャル層がホスト基板に結合され、工程35において、該成長基板を除去できるようになっている。該エピタキシャル層は工程37において薄膜化され、次いで工程39において、エピタキシャル層の露出表面に、コンタクトおよび任意のミラーが形成される。
図4は、図3の工程31をより詳細に示している。サファイア、SiC、またはGaNのような基板40の上に、図1の装置のエピタキシャル層20が成長される。例えばバッファ層または核形成層を含んでよい任意の調製層41を、基板40上に最初に成長させて適切な成長基板を提供してもよい。次いで、一以上のエッチング停止層42を成長させてよい。次いで、エッチング停止層42を覆って、エピタキシャル層20が望ましいキャビティ厚さにまで成長される。エピタキシャル層20は、n型領域108、活性領域112およびp型領域116を含んでいる。通常はn型領域が最初に成長され、続いて、活性領域およびp型領域が成長される。反射性のpコンタクト12が、p型領域116の表面上に形成される。pコンタクト12は単一層であってもよく、または接着層、オーミックコンタクト層、反射層、およびガード金属層のような複数の層を含んでいてもよい。反射層は、通常は銀またはアルミニウムである。ガード金属は、例えば、ニッケル、チタンまたはタングステンを含んでよい。このガード金属は、反射金属層(特に、銀の反射層の場合)がマイグレートするのを防止するように、またエピタキシャル構造をホスト基板に結合するために使用する結合層14Aのための接着層を与えるように選択されてよい。
図5は、エピタキシャル層をホスト基板に取り付ける図3の工程33を、更に詳細に示している。結合層14Aおよび14B(典型的には金属)は、エピタキシャル構造とホスト基板との間を熱圧縮結合させるための順応材料として働く。適切な結合層金属の例には、金および銀が含まれる。銀が使用されるならば、pコンタクト12におけるガード金属は省略してよい。或いは、14Aおよび14Bは、高温で結合するときに共晶温度に合致して、結合する間に14Aおよび14Bが溶融するような金属の混合物であることができる。ホスト基板16は、成長基板が除去された後のエピタキシャル層に対する機械的支持を提供し、またpコンタクト12への電気的接点を提供する。ホスト基板16は、導電性であるように(即ち、約0.1Ωcm未満)、熱伝導性であるように、エピタキシャル層に一致した熱膨張係数を有するように、および強いウェハ結合を形成するのに充分に平坦である(即ち、約100nm未満のRMS粗さをもつ)ように選択される。適切な材料には、例えば薄いCu箔、Mo、Cu/Mo、およびCu/Wのような金属;例えばPd、Ge、Ti、Au、Ni、Agを含む金属コンタクト(図6の層46および18)を備えた半導体、例えばオーミックコンタクトを備えたSiおよびオーミックコンタクトを備えたGaAs;およびAlSiCまたはコバルトダイアモンドのような金属/セラミック複合体が含まれる。下記の表Iは、幾つかの適切なホスト基板の特性、並びに比較のためにGaNおよびAl23の特性を列記している。
Figure 2005347747
ホスト基板構造49およびエピタキシャル構造48は、高温および高圧で一緒に加圧されて、結合層14Aおよび14Bの間に耐久性の金属結合を形成する。幾つかの実施形態において、結合は、エピタキシャル構造を備えたウェハを個々の装置にダイシングする前に、ウェハスケールで行われる。結合のための温度および圧力の範囲は、得られる結合の強度によってその下限が制限され、ホスト基板構造とエピタキシャル構造の安定性およびCTEの不一致によってその上限が制限される。例えば、高温および/または高圧は、構造48におけるエピタキシャル層の分解、pコンタクト12の剥離、拡散障壁(例えばpコンタクト12における)の破損、エピタキシャル層中の成分材料の脱ガス化、およびウェハの反りを生じる可能性がある。適切な温度範囲は、例えば、約200℃〜約500℃である。適切な圧力範囲は、例えば、約100psi〜約300psiである。
図6は、図3における工程35の、サファイア成長基板を除去する方法を示している。サファイア基板40とIII族窒化物層45の間の界面部分は、サファイア基板を通して、高フルーエンスの紫外線レーザ70に露出されるが、該紫外線レーザはステップおよび反復パターンでパルス化され、または連続的な運動と同期して点火されたものである。レーザの光子エネルギーは、サファイア(幾つかの実施形態ではGaN)に隣接したIII族窒化物層のバンドギャップよりも大きく、従って、パルスエネルギーは、サファイアに隣接したエピタキシャル材料の最初の100nm以内で効果的に熱エネルギーに変換される。充分に高いフルーエンス(即ち、約1.5J/cm2より大)で、またGaNのバンドギャップより大きく且つサファイアの吸収エッジより小さい光子エネルギー(即ち、約3.44〜約6eV)において、前記最初の100nm以内の温度は、ナノ秒のスケールで1000℃よりも高い温度にまで上昇し、これはGaNをガリウムおよび窒素ガスに解離させて、エピタキシャル層45を基板40から放出させるために充分に高い。この得られた構造は、ホスト基板構造49に結合されたエピタキシャル層45を含んでいる。
レーザパルスに露出させると、露出された領域から外側へと移動する大きな温度勾配および機械的衝撃波を生じて、エピタキシャル材料内に、該エピタキシャル材料のクラックおよびウェハ結合14の損傷をもたらす熱的および機械的歪みをもたらし、これは基板除去プロセスの収率を制限する。この熱的および機械的歪みによって生じる損傷は、エピタキシャル構造を、サファイア基板まで、またはエピタキシャル構造の適切な深さまで下方にパターンニングして、ウェハ上の個々の装置の間にトレンチを形成することによって減少させることができる。このトレンチは、ウェハがホスト基板構造に結合される前に、従来のマスキングおよびドライエッチング技術によって形成される。次いで、レーザ露出領域がウェハ上のトレンチのパターンに一致される。このトレンチは、露出されている半導体領域へのレーザパルスの衝撃を隔離し、歪みを緩和するための好ましい経路を提供する。
上記で述べたレーザリフトオフの代替法として、サファイア基板または適切な基板を光電気化学エッチングによって除去してもよい。光電気化学エッチングによる基板の除去は、図16に示されている。成長基板40上でエピタキシャル層20を成長させた後に、当該技術において既知のレーザスクライビングまたは他の適切な技術によって、装置のエピタキシャル層および基板40の一部(例えば、エピタキシャル層に近接した基板40の30μ)にトレンチ6を形成すればよい。次いで、このエピタキシャル層は、pコンタクト12および結合層14Aおよび14Bを介して、ホスト基板構造49に結合される。次いで、トレンチ6を周囲雰囲気に露出させるために、成長基板40は、研磨等の従来の手段によって薄膜化されてよい。この構造物を、トレンチ6の中に流入する光電気化学エッチングに適した溶液中に浸漬させ、該構造物を、基板40を通して、犠牲層41のバンドギャップよりも大きいエネルギーをもった光8に露出させる。この光への露出によって、犠牲層41の中に電子/正孔対が発生し、これが犠牲層41の結合を破壊し、基板40をアンダーカットしてエピタキシャル構造から放出する。該エピタキシャル構造は、光電気化学エッチングを停止させるエッチング停止層42を含んでよい。光電気化学エッチングおよび適切なエッチング停止層42の詳細については、図7を参照して以下で説明する。
サファイア以外の成長基板は通常の化学エッチャントで除去してよく、従って、上記で述べたレーザ露出基板除去法を必要としないかもしれない。図15は、化学エッチングにより除去し得る基板40の例を示している。図15の基板40は、Siベース40A上に成長または処理されたSiC層40Cを含んでいる。ベース40AとSiC層40Cとの間には、任意のSiOx層41Bを配置してもよい。Siベース層40Aおよび酸化物層40Bは、慣用のシリコン処理技術によって容易に除去できる。SiC層40Cは、既知のエッチング技術または研磨技術によって全体的に除去するために充分に薄く、例えば0.5μmの厚さであってよい。次いで、エピタキシャル層45の露出表面上に、pコンタクト12を形成すればよい。或いは、SiC層40Cにエッチングされたホールの中に、pコンタクト12を形成してもよい。
成長基板が除去された後、例えば図7に示す光電気化学エッチング(PEC)によって、残りのエピタキシャル層がエッチング停止層42まで薄膜化される。ホスト基板およびエピタキシャル層(構造53)は、塩基性溶液50の中に浸漬される。適切な塩基性溶液の一例は0.2MのKOHであるが、エッチングすべき材料および望ましい表面テクスチャに応じて、他の多くの適切な塩基性または酸性の溶液を使用してもよい。構造53のエピタキシャル表面(一般にはn型GaN層)は、該表面層のバンドギャップよりも大きいエネルギーの光に露出される。図7に示した例においては、波長が約365nmで強度が約10〜約100mW/cm2の紫外光が用いられる。光への露出によって、表面半導体層の中には電子/正孔対が発生する。正孔は、n型半導体中の電界の影響下で、エピタキシャル層の表面へと移動する。次いで、下記の式に従って、正孔は表面のGaNおよび塩基性溶液50と反応し、GaN結合を破壊する:
2GaN+6OH-+6e+=2Ga(OH)3+N2
エッチングプロセスを促進および制御するために、電極51および52の間に外部電位を印加してもよい。
エッチング停止層は、エッチングすべき層よりも大きいバンドギャップのために選択された組成を有するのがよい。例えば、エッチングされる層がGaNで、エチング停止層はAlGaN層であってよい。構造53を露出するために使用される光源は、エッチングすべき層のバンドギャップよりも大きいが、エッチング停止層のバンドギャップよりも小さいエネルギーを有するように選択される。従って、光への露出は、エッチング停止層の中では電子/正孔対を発生させず、エッチング停止層に到達したら効果的にエッチングを停止させる。幾つかの実施形態においては、エッチング停止層としてInGaNを使用してよい。InGaNが分解するときに形成される酸化インジウムは、エッチング溶液中では不溶性であり、エッチングされる層の表面をコートしてエッチングを停止させる。薄膜化した後に、例えばAlGaNエッチング停止層の場合には、異なるエネルギーの光を用いて光電気化学エッチングを継続することにより、またはInGaNエッチング停止層の場合には、該溶液を撹拌して、エッチングされる層の表面をコーティングする酸化インジウムを乱すことにより、エッチング停止層を除去してもよい。
基板が光電気化学エッチングにより除去され、次いで光電気化学エッチングにより薄膜化される実施形態において、当該装置は複数のエッチング停止層を含んでよく、成長基板に近い第一のエッチング停止層は、成長基板を除去する際のエッチングを制御し、活性領域に近接した第二のエッチング停止層は、薄膜化する際のエッチングを制御する。幾つかの実施形態においては、成長基板が光電気化学エッチングによって除去され、次いで、n型領域108の一部が、反応性イオンエッチングのような従来のエッチングによって除去される。共振キャビティは、第二の光電気化学エッチングにおいて、n型領域108を更に薄くすることにより形成される。
図1に示した実施形態は均一な厚さのn型領域を示しているが、幾つかの実施形態においては、薄膜化する際に、n型領域108の上に三次元構造が形成されてよい。例えば、キャビティの厚さを最小化すると共に、充分な電流広がり、最適な接触抵抗および機械的強度を得るために、n型領域108を、コンタクト10の下の部分がミラー11の下の部分よりも厚くなるようにパターン化して、コンタクト10下に十分なn型材料を与えるようにしてよい。このような構造はまた、エッチングプロセスを中断している間に試験を行って、出力光の反射率および放射測定に基づいて、最適なエッチング深さをチェックすることを可能にする。
エピタキシャル層を薄膜化した後、エピタキシャル層20の露出表面上には、コンタクト10およびミラー11が堆積される。もし、ミラー11が導電性でない(例えば誘電体DBR)ならば、ミラー11下のコンタクト10から電流を広がらせるために、例えば、導電性の酸化インジウム錫または高ドーズ量でドープされたIII族窒化物材料の最適な電流広がり層70を、ミラー11とn型領域108の間に含めてもよい。該電流広がり層は、ミラー11の部分を電流広がり層まで下方に除去してチャンネルを形成し、該チャンネルの中にコンタクト10を伸ばすことにより、または該チャンネルの中に、コンタクト10との電気的接触を形成する追加の導電性材料を堆積させることによって、コンタクトされる。
図8は、本発明の実施形態による、トレンチを含んだ共振キャビティ装置の一部を示す断面図である。n型領域108とDBR11の界面において導波路を遮断するために、エッチングビア72が、DBR11を通してn型領域108の中にエッチングされる。こうして、エッチングビア72は、当該装置におけるモード数を制限することにより、当該装置からの抽出を向上させる。エッチングビア72は、典型的にはn型領域108に閉じ込められ、一般に活性領域112の中にまでは広がらない。エッチングビア72は、約0.1μm〜約2.5μmの深さを有し、約1μm〜約10μmだけ離間されていてよい。二つの隣接するトレンチ間の通常の距離は約3μmである。トレンチ72は、エッチングされる層における電流広がりを促進するために、破線のパターンを形成してよい。図9、図10および図11は、トレンチ72のパターンの例を示している。トレンチ72は、ミラー11を堆積した後に、従来のエッチング工程によって形成されてよい。
本発明の幾つかの実施形態において、n型領域108の表面上のDBR11は、図1に示した単一のDBR11の代りに、金属コンタクトによって分離された複数の領域に分割される。図12および図13は、このような装置の一部を示す平面図および断面図である。DBR11の核領域は、例えば、差し渡し約50μm〜約150μmである。DBR領域11の間のエリアは、nコンタクト10で満たされている。幾つかの実施形態においては、任意の電流広がり層70が、n型領域18とDBR領域11およびnコンタクト領域11との間に配置される。光放出をDBR領域11の下にあるエリアに閉じ込めるために、nコンタクト10下のエピタキシャル層20の領域における電流注入は、上記のように水素のインプラントによってブロックされてよい。
図12および図13に図示した装置において、pコンタクト12は、図13に示したような単一の連続的な反射性シートであってもよく、またはDBR領域11の反対側の、高反射率の領域を有していてもよい。図14は、pコンタクト12の切欠き平面図である。ミラー領域80は、図12に示したDBR領域11に整列している。ミラー領域80は、高反射率のために最適化され、また良好な付着のために最適化されてよいコンタクト領域82によって分離されている。ミラー領域80は、例えば銀であってよく、またコンタクト領域82は、例えばニッケルであってよい。
本発明を詳細に説明したが、本開示が与えられれば、ここに記載された発明概念の精神を逸脱することなく、本発明に変更を加え得ることを当業者は理解するであろう。従って、本発明の範囲は、図示および説明された特定の実施形態に限定されるものではない。
本発明の実施形態に従う発光装置の断面図および平面図である。 本発明の実施形態に従う発光装置の断面図および平面図である。 図1および図2の装置を製造する方法を示している。 ホスト基板に結合する前の、エピタキシャル構造を示している。 エピタキシャル構造をホスト基板に結合する方法を示している。 III族窒化物エピタキシャル構造からサファイア基板を除去する方法を示している。 成長基板を除去した後にエピタキシャル層を薄くするための、光電気化学エッチングを示している。 当該装置のn型領域に形成されたトレンチを含む、本発明の一実施形態を示している。 図8のエッチバイアスの構成例を示している。 図8のエッチバイアスの構成例を示している。 図8のエッチバイアスの構成例を示している。 本発明の別の実施形態の平面図である。 図12の装置の断面図である。 pコンタクトの切欠き平面図である。 化学エッチングにより除去してもよい基板を示している。 光電気化学エッチングによる基板除去を示している。 化学機械研磨によって形成された共振キャビティ装置の一部を示している。 光電気化学エッチングにより形成された共振キャビティ装置の一部を示している。
符号の説明
6…溝
8…光
10…N-コンタクト
11…DBR
12…pコンタクト
14,14A,14B…結合層
16…ホスト基板
18…オーミックコンタクト
20…エピタキシャル層20
40…基板
41…犠牲層
42…エッチング停止層
45…III族窒化物層
48…エピタキシャル構造
49…ホスト基板構造、
51,52…電極
72…エッチングビア
108…n型領域
112…活性領域
116…p型領域

Claims (36)

  1. III族窒化物発光装置であって:
    n型領域と;
    p型領域と;
    前記n型領域およびp型領域の間に配置された発光領域と
    を具備してなり、
    前記n型領域、p型領域および発光領域がキャビティを形成し、該キャビティは頂面および底面を有し、該頂面および該底面の各々が、複数の谷によって分離された複数のピークを含んでなる装置。
  2. 請求項1に記載の装置であって、谷の底とピークの頂部との間の距離が15 nm〜100 nmである装置。
  3. 請求項1に記載の装置であって、最も近隣にある二つの谷の間の距離が100ミクロン未満である装置。
  4. 請求項1に記載の装置であって、前記キャビティの如何なる点においても、該キャビティの厚さはλ/8未満で変化し、ここでのλは、前記キャビティ内において、前記発光領域によって放出される光の波長である装置。
  5. 請求項1に記載の装置であって:更に、
    前記n型領域に近接して配置された第一のミラーと;
    前記p型領域に近接して配置された第二のミラーと;
    を具備してなる装置。
  6. 請求項5に記載の装置であって、前記第一のミラーは、誘電性の分布されたブラッグ反射体を含んでなる装置。
  7. 請求項5に記載の装置であって、前記第二のミラーは反射性金属層を含んでなる装置。
  8. 請求項7に記載の装置であって、前記ミラーは銀を含んでなる装置。
  9. 請求項5に記載の装置であって、前記第二のミラーは、誘電性の分布されたブラッグ反射体を含んでなる装置。
  10. 請求項5に記載の装置であって、前記第一のミラーは複数の領域に分割され、これら領域は第一のコンタクトによって相互に分離される装置。
  11. 請求項10に記載の装置であって、
    前記第二のミラーは複数の領域に分割され、これら領域は第二のコンタクトによって相互に分離され、
    また前記複数の第一のミラー領域が、前記複数の第二のミラー領域と整列される装置。
  12. 請求項11に記載の装置であって、前記第一のコンタクトと前記第二のコンタクトの間におけるn型領域の一部に、水素がインプラントされる装置。
  13. 請求項10に記載の装置であって、前記複数の領域の各領域が、約50ミクロン〜約150ミクロンの長さを有する装置。
  14. 請求項10に記載の装置であって、前記領域を分離する第一のコンタクトの幅が、約1ミクロン〜約10ミクロンである装置。
  15. 請求項5に記載の装置であって、前記第一のミラーの少なくとも一部が、前記第二のミラーの少なくとも一部の上に重なっている装置。
  16. 請求項5に記載の装置であって、更に、前記n型領域と前記第一のミラーとの間に配置された導電性材料の層を具備する装置。
  17. 請求項16に記載の装置であって、前記導電性材料が酸化インジウム錫を含んでなる装置。
  18. 請求項1に記載の装置であって、前記頂面と前記底面との間の材料の厚さが3ミクロン未満である装置。
  19. 請求項1に記載の装置であって、前記頂面と前記底面との間の材料の厚さが1ミクロン未満である装置。
  20. 請求項1に記載の装置であって、前記頂面と前記底面との間の材料の厚さが0.5ミクロン未満である装置。
  21. 請求項1に記載の装置であって、更に、前記n型領域に形成された複数のエッチングビアを具備する装置。
  22. 請求項21に記載の装置であって、前記エッチングビアが、約0.1ミクロン〜約2ミクロンだけ離間されている装置。
  23. 請求項21に記載の装置であって、前記エッチングビアが、それぞれ約0.1ミクロン〜約2.5ミクロンの深さを有する装置。
  24. 請求項1に記載の装置であって、前記頂面および前記底面が共振キャビティを形成し、該キャビティ内の電界強度が定在波を形成する装置。
  25. 請求項24に記載の装置であって、前記発光領域の少なくとも一部が、前記電界強度の最大値近傍に位置する装置。
  26. 半導体発光装置を形成する方法であって:該方法は、
    成長基板上に、下記を含んでなるエピタキシャル構造を成長させることと;
    ・エッチング停止層;および
    ・発光層を含むIII族窒化物エピタキシャル層のスタック;
    (該スタックは前記エッチング停止層を覆って成長される)
    ホスト基板を前記構造に結合させることと;
    前記成長基板を除去することと;
    前記エッチング停止層上で終了するプロセスによって、前記構造を薄膜化することと;
    を含んでなる方法。
  27. 請求項26に記載の方法であって、前記薄膜化することは光電気化学エッチングにより薄膜化することを含み、前記エッチング停止層はAlGaNを含んでなる方法。
  28. 請求項26に記載の方法であって、前記薄膜化することは光電気化学エッチングにより薄膜化することを含み、前記エッチング停止層はInGaNを含んでなる方法。
  29. 請求項26に記載の方法であって、前記薄膜化した後の前記構造の厚さは、1ミクロン未満である方法。
  30. 請求項26に記載の方法であって、前記薄膜化した後に、何れの点における構造の厚さも平均厚さから5%未満で変動する方法。
  31. 請求項26に記載の方法であって、前記成長基板を除去することは、前記成長基板とエッチング停止層との間に配置された犠牲層をエッチング除去することを含んでなる方法。
  32. 請求項31に記載の方法であって、前記エッチングは、光電気化学エッチングによるエッチングを含んでなる方法。
  33. 請求項26に記載の方法であって、
    前記成長基板はSiCの層およびSiの層を含んでなり;
    前記スタックは前記SiC上に成長され;
    前記成長基板を除去することは、前記Siをエッチング除去することを含んでなる方法。
  34. 請求項33に記載の方法であって、前記成長基板は、更に、前記SiCの層と前記Siの層の間に配置されたシリコン酸化物の層を含んでなる方法。
  35. 請求項34に記載の方法であって、前記成長基板を除去することは、前記Siの層および前記シリコン酸化物の層をエッチング除去することを含んでなる方法。
  36. 請求項26に記載の方法であって、更に、薄膜化した後に前記エッチング停止層を除去することを含んでなる方法。
JP2005160075A 2004-06-03 2005-05-31 成長基板の除去により製造される共振キャビティiii族窒化物発光装置 Active JP5007027B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/861745 2004-06-03
US10/861,745 US6956246B1 (en) 2004-06-03 2004-06-03 Resonant cavity III-nitride light emitting devices fabricated by growth substrate removal

Publications (2)

Publication Number Publication Date
JP2005347747A true JP2005347747A (ja) 2005-12-15
JP5007027B2 JP5007027B2 (ja) 2012-08-22

Family

ID=34939988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160075A Active JP5007027B2 (ja) 2004-06-03 2005-05-31 成長基板の除去により製造される共振キャビティiii族窒化物発光装置

Country Status (4)

Country Link
US (2) US6956246B1 (ja)
EP (1) EP1603171B1 (ja)
JP (1) JP5007027B2 (ja)
TW (1) TWI392176B (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041937A (ja) * 2006-08-07 2008-02-21 Yokogawa Electric Corp 面発光レーザ
JP2009188249A (ja) * 2008-02-07 2009-08-20 Nanoteco Corp 発光ダイオードおよびその製造方法、発光ダイオードアレイ
JP2010192824A (ja) * 2009-02-20 2010-09-02 Nichia Corp 窒化物半導体素子の製造方法
JP2010232423A (ja) * 2009-03-27 2010-10-14 Fujitsu Ltd 半導体装置の製造方法
JP2011009521A (ja) * 2009-06-26 2011-01-13 Fujitsu Ltd 半導体装置及びその製造方法
JP2011510497A (ja) * 2008-01-21 2011-03-31 ポステック・アカデミー‐インダストリー・ファウンデーション 光量子リングレーザ及びその製造方法
JP2011119656A (ja) * 2009-12-07 2011-06-16 Soi Tec Silicon On Insulator Technologies InGaN層を有する半導体デバイス
JP2013128150A (ja) * 2013-03-26 2013-06-27 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる発光素子の製造方法
JP2014169498A (ja) * 2013-02-26 2014-09-18 Boeing Co 電子部品の多層積層体の部品を分離するためのシステムおよび方法

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267646A1 (en) * 2004-06-03 2007-11-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including a Photonic Crystal and a Luminescent Ceramic
US7361938B2 (en) 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
US7256483B2 (en) * 2004-10-28 2007-08-14 Philips Lumileds Lighting Company, Llc Package-integrated thin film LED
US7186580B2 (en) * 2005-01-11 2007-03-06 Semileds Corporation Light emitting diodes (LEDs) with improved light extraction by roughening
US20060204865A1 (en) * 2005-03-08 2006-09-14 Luminus Devices, Inc. Patterned light-emitting devices
TWI251357B (en) * 2005-06-21 2006-03-11 Epitech Technology Corp Light-emitting diode and method for manufacturing the same
US7384808B2 (en) * 2005-07-12 2008-06-10 Visual Photonics Epitaxy Co., Ltd. Fabrication method of high-brightness light emitting diode having reflective layer
US20070019699A1 (en) * 2005-07-22 2007-01-25 Robbins Virginia M Light emitting device and method of manufacture
DE102005055293A1 (de) * 2005-08-05 2007-02-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip
DE102005046942A1 (de) * 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Verfahren zur Verbindung von Schichten, entsprechendes Bauelement und organische Leuchtdiode
US8257987B2 (en) * 2006-02-02 2012-09-04 Trustees Of Boston University Planarization of GaN by photoresist technique using an inductively coupled plasma
DE102007004303A1 (de) * 2006-08-04 2008-02-07 Osram Opto Semiconductors Gmbh Dünnfilm-Halbleiterbauelement und Bauelement-Verbund
US20080132081A1 (en) * 2006-12-04 2008-06-05 Shaheen Mohamad A Thin III-V semiconductor films with high electron mobility
US8110838B2 (en) * 2006-12-08 2012-02-07 Luminus Devices, Inc. Spatial localization of light-generating portions in LEDs
DE102007004304A1 (de) * 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Dünnfilm-Leuchtdioden-Chip und Verfahren zur Herstellung eines Dünnfilm-Leuchtdioden-Chips
DE102007030129A1 (de) * 2007-06-29 2009-01-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Mehrzahl optoelektronischer Bauelemente und optoelektronisches Bauelement
US7919780B2 (en) * 2008-08-05 2011-04-05 Dicon Fiberoptics, Inc. System for high efficiency solid-state light emissions and method of manufacture
US8324083B2 (en) * 2008-09-30 2012-12-04 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor element
US8247886B1 (en) 2009-03-09 2012-08-21 Soraa, Inc. Polarization direction of optical devices using selected spatial configurations
US8299473B1 (en) 2009-04-07 2012-10-30 Soraa, Inc. Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors
US8791499B1 (en) 2009-05-27 2014-07-29 Soraa, Inc. GaN containing optical devices and method with ESD stability
US8507304B2 (en) * 2009-07-17 2013-08-13 Applied Materials, Inc. Method of forming a group III-nitride crystalline film on a patterned substrate by hydride vapor phase epitaxy (HVPE)
US8148241B2 (en) * 2009-07-31 2012-04-03 Applied Materials, Inc. Indium surfactant assisted HVPE of high quality gallium nitride and gallium nitride alloy films
US20110027973A1 (en) * 2009-07-31 2011-02-03 Applied Materials, Inc. Method of forming led structures
US9000466B1 (en) 2010-08-23 2015-04-07 Soraa, Inc. Methods and devices for light extraction from a group III-nitride volumetric LED using surface and sidewall roughening
US8207554B2 (en) 2009-09-11 2012-06-26 Soraa, Inc. System and method for LED packaging
US8933644B2 (en) 2009-09-18 2015-01-13 Soraa, Inc. LED lamps with improved quality of light
US8502465B2 (en) 2009-09-18 2013-08-06 Soraa, Inc. Power light emitting diode and method with current density operation
US9583678B2 (en) 2009-09-18 2017-02-28 Soraa, Inc. High-performance LED fabrication
US9293644B2 (en) 2009-09-18 2016-03-22 Soraa, Inc. Power light emitting diode and method with uniform current density operation
US9293667B2 (en) 2010-08-19 2016-03-22 Soraa, Inc. System and method for selected pump LEDs with multiple phosphors
US8575642B1 (en) 2009-10-30 2013-11-05 Soraa, Inc. Optical devices having reflection mode wavelength material
US10147850B1 (en) 2010-02-03 2018-12-04 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US8740413B1 (en) 2010-02-03 2014-06-03 Soraa, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
US20110186874A1 (en) * 2010-02-03 2011-08-04 Soraa, Inc. White Light Apparatus and Method
US8905588B2 (en) 2010-02-03 2014-12-09 Sorra, Inc. System and method for providing color light sources in proximity to predetermined wavelength conversion structures
CN101792106B (zh) * 2010-04-08 2011-09-07 长春理工大学 光辅助电化学腐蚀方法加工n型硅微通道阵列用腐蚀液
US9450143B2 (en) 2010-06-18 2016-09-20 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
US8293551B2 (en) 2010-06-18 2012-10-23 Soraa, Inc. Gallium and nitrogen containing triangular or diamond-shaped configuration for optical devices
JP5899225B2 (ja) 2010-10-12 2016-04-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Ledのためのpecバイアス技術
US20120119184A1 (en) * 2010-11-12 2012-05-17 Kung-Hsieh Hsu Vertical Light Emitting Diode (VLED) Die Having N-Type Confinement Structure With Etch Stop Layer And Method Of Fabrication
US8541951B1 (en) 2010-11-17 2013-09-24 Soraa, Inc. High temperature LED system using an AC power source
US8896235B1 (en) 2010-11-17 2014-11-25 Soraa, Inc. High temperature LED system using an AC power source
US8786053B2 (en) 2011-01-24 2014-07-22 Soraa, Inc. Gallium-nitride-on-handle substrate materials and devices and method of manufacture
US8686431B2 (en) 2011-08-22 2014-04-01 Soraa, Inc. Gallium and nitrogen containing trilateral configuration for optical devices
US9335262B2 (en) * 2011-08-25 2016-05-10 Palo Alto Research Center Incorporated Gap distributed Bragg reflectors
US9488324B2 (en) 2011-09-02 2016-11-08 Soraa, Inc. Accessories for LED lamp systems
US8912025B2 (en) 2011-11-23 2014-12-16 Soraa, Inc. Method for manufacture of bright GaN LEDs using a selective removal process
WO2013123241A1 (en) 2012-02-17 2013-08-22 The Regents Of The University Of California Method for the reuse of gallium nitride epitaxial substrates
EP2823515A4 (en) 2012-03-06 2015-08-19 Soraa Inc LIGHT-EMITTING DIODES WITH MATERIAL LAYERS WITH LOW BREAKING INDEX TO REDUCE LIGHT PIPE EFFECTS
US8985794B1 (en) 2012-04-17 2015-03-24 Soraa, Inc. Providing remote blue phosphors in an LED lamp
US8971368B1 (en) 2012-08-16 2015-03-03 Soraa Laser Diode, Inc. Laser devices having a gallium and nitrogen containing semipolar surface orientation
US9978904B2 (en) 2012-10-16 2018-05-22 Soraa, Inc. Indium gallium nitride light emitting devices
US8802471B1 (en) 2012-12-21 2014-08-12 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9761763B2 (en) 2012-12-21 2017-09-12 Soraa, Inc. Dense-luminescent-materials-coated violet LEDs
US8994033B2 (en) 2013-07-09 2015-03-31 Soraa, Inc. Contacts for an n-type gallium and nitrogen substrate for optical devices
US9419189B1 (en) 2013-11-04 2016-08-16 Soraa, Inc. Small LED source with high brightness and high efficiency
US20150372096A1 (en) * 2014-06-20 2015-12-24 Ishiang Shih High Electron Mobility Transistors and Integrated Circuits with Improved Feature Uniformity and Reduced defects for Microwave and Millimetre Wave Applications
US11025031B2 (en) * 2016-11-29 2021-06-01 Leonardo Electronics Us Inc. Dual junction fiber-coupled laser diode and related methods
FR3083916B1 (fr) * 2018-07-13 2020-07-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'au moins une structure semiconductrice comportant une etape de separation vis-a-vis du substrat de croissance
CN110854154B (zh) * 2019-11-18 2024-04-30 佛山市国星半导体技术有限公司 一种硅基微型led芯片及其制作方法
EP3910663A1 (en) * 2020-05-14 2021-11-17 The Boeing Company Fabricating a silicon carbide and nitride structures on a carrier substrate
US11361964B2 (en) 2020-05-14 2022-06-14 The Boeing Company Fabricating a silicon carbide and nitride structures on a carrier substrate
US11714231B2 (en) 2020-05-14 2023-08-01 The Boeing Company Silicon carbide and nitride structures on a substrate
CN116438667A (zh) * 2020-11-18 2023-07-14 苏州晶湛半导体有限公司 发光器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174562A (ja) * 1997-06-30 1999-03-16 Nichia Chem Ind Ltd 窒化物半導体素子
JP2000228562A (ja) * 1999-02-05 2000-08-15 Agilent Technol Inc AlxGayInzN構造の組立方法
JP2002185043A (ja) * 2001-10-19 2002-06-28 Sumitomo Chem Co Ltd 3−5族化合物半導体発光素子の製造方法
JP2003092426A (ja) * 2001-09-18 2003-03-28 Nichia Chem Ind Ltd 窒化物系化合物半導体発光素子およびその製造方法
JP2003273399A (ja) * 2002-02-26 2003-09-26 Osram Opto Semiconductors Gmbh 垂直の発光方向を有する放射線を発する半導体デバイス及びその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390210A (en) 1993-11-22 1995-02-14 Hewlett-Packard Company Semiconductor laser that generates second harmonic light with attached nonlinear crystal
JP3717196B2 (ja) 1994-07-19 2005-11-16 豊田合成株式会社 発光素子
WO1997013302A1 (en) * 1995-09-29 1997-04-10 British Telecommunications Public Limited Company Optically resonant structure
US5985687A (en) 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
US5838707A (en) 1996-12-27 1998-11-17 Motorola, Inc. Ultraviolet/visible light emitting vertical cavity surface emitting laser and method of fabrication
EP0905797B1 (de) 1997-09-29 2010-02-10 OSRAM Opto Semiconductors GmbH Halbleiterlichtquelle und Verfahren zu ihrer Herstellung
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
US6113685A (en) 1998-09-14 2000-09-05 Hewlett-Packard Company Method for relieving stress in GaN devices
US6320206B1 (en) 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
US6177359B1 (en) 1999-06-07 2001-01-23 Agilent Technologies, Inc. Method for detaching an epitaxial layer from one substrate and transferring it to another substrate
US6903376B2 (en) * 1999-12-22 2005-06-07 Lumileds Lighting U.S., Llc Selective placement of quantum wells in flipchip light emitting diodes for improved light extraction
TW445507B (en) * 2000-07-20 2001-07-11 United Epitaxy Co Ltd Roughened interface of light emitting device
FR2835096B1 (fr) * 2002-01-22 2005-02-18 Procede de fabrication d'un substrat auto-porte en materiau semi-conducteur monocristallin
JP2002280602A (ja) * 2001-03-21 2002-09-27 Toshiba Corp 垂直共振器型発光ダイオード及びその発光ダイオードを用いた光送信モジュール
US6576490B2 (en) * 2001-05-09 2003-06-10 National Research Council Of Canada Method for micro-fabricating a pixelless infrared imaging device
US6884740B2 (en) * 2001-09-04 2005-04-26 The Regents Of The University Of California Photoelectrochemical undercut etching of semiconductor material
US7279718B2 (en) * 2002-01-28 2007-10-09 Philips Lumileds Lighting Company, Llc LED including photonic crystal structure
US20030222263A1 (en) 2002-06-04 2003-12-04 Kopin Corporation High-efficiency light-emitting diodes
KR101030068B1 (ko) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
KR100576718B1 (ko) * 2003-12-24 2006-05-03 한국전자통신연구원 실리콘 발광 소자
US7808011B2 (en) * 2004-03-19 2010-10-05 Koninklijke Philips Electronics N.V. Semiconductor light emitting devices including in-plane light emitting layers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174562A (ja) * 1997-06-30 1999-03-16 Nichia Chem Ind Ltd 窒化物半導体素子
JP2000228562A (ja) * 1999-02-05 2000-08-15 Agilent Technol Inc AlxGayInzN構造の組立方法
JP2003092426A (ja) * 2001-09-18 2003-03-28 Nichia Chem Ind Ltd 窒化物系化合物半導体発光素子およびその製造方法
JP2002185043A (ja) * 2001-10-19 2002-06-28 Sumitomo Chem Co Ltd 3−5族化合物半導体発光素子の製造方法
JP2003273399A (ja) * 2002-02-26 2003-09-26 Osram Opto Semiconductors Gmbh 垂直の発光方向を有する放射線を発する半導体デバイス及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041937A (ja) * 2006-08-07 2008-02-21 Yokogawa Electric Corp 面発光レーザ
JP2011510497A (ja) * 2008-01-21 2011-03-31 ポステック・アカデミー‐インダストリー・ファウンデーション 光量子リングレーザ及びその製造方法
JP2009188249A (ja) * 2008-02-07 2009-08-20 Nanoteco Corp 発光ダイオードおよびその製造方法、発光ダイオードアレイ
JP2010192824A (ja) * 2009-02-20 2010-09-02 Nichia Corp 窒化物半導体素子の製造方法
JP2010232423A (ja) * 2009-03-27 2010-10-14 Fujitsu Ltd 半導体装置の製造方法
JP2011009521A (ja) * 2009-06-26 2011-01-13 Fujitsu Ltd 半導体装置及びその製造方法
JP2011119656A (ja) * 2009-12-07 2011-06-16 Soi Tec Silicon On Insulator Technologies InGaN層を有する半導体デバイス
US8343782B2 (en) 2009-12-07 2013-01-01 Soitec Semiconductor device having an InGaN layer
JP2014169498A (ja) * 2013-02-26 2014-09-18 Boeing Co 電子部品の多層積層体の部品を分離するためのシステムおよび方法
JP2013128150A (ja) * 2013-03-26 2013-06-27 Toyoda Gosei Co Ltd Iii族窒化物半導体からなる発光素子の製造方法

Also Published As

Publication number Publication date
US20060014310A1 (en) 2006-01-19
US6956246B1 (en) 2005-10-18
JP5007027B2 (ja) 2012-08-22
TWI392176B (zh) 2013-04-01
EP1603171B1 (en) 2016-09-14
EP1603171A2 (en) 2005-12-07
TW200616299A (en) 2006-05-16
EP1603171A3 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP5007027B2 (ja) 成長基板の除去により製造される共振キャビティiii族窒化物発光装置
EP1577958B1 (en) Photonic crystal light emitting device
KR101203365B1 (ko) SiC 기판상에 형성된 GaN막을 위한 리프트오프프로세스 및 그 방법을 이용하여 제조된 장치
JP5373253B2 (ja) 温度依存性を低減したAlInGaPのLED
JP5468203B2 (ja) 第3族窒化物デバイスを製造する方法およびその方法を使用して製造されたデバイス
KR100483049B1 (ko) 수직구조 질화갈륨계 발광다이오드의 제조방법
JP5074396B2 (ja) 半導体ウエハの横方向分断のための方法及びオプトエレクトロニクス構成素子
JP4592388B2 (ja) Iii−v族化合物半導体発光素子およびその製造方法
JP2013102240A (ja) 二重ヘテロ構造の発光領域を有するiii族窒化物発光デバイス
US9224921B2 (en) Method for forming a buried metal layer structure
TW200416812A (en) Methods of forming semiconductor devices including mesa structures and multiple passivation layers and related devices
JP2005079595A (ja) 共振空洞発光デバイス
KR100916366B1 (ko) 반도체 발광소자용 지지기판 및 이를 이용한 수직구조의 반도체 발광소자 제조 방법
TWI297200B (en) Carrier layer for a semiconductor layer sequence and method for producing semiconductor chips
US20110121358A1 (en) P-type layer for a iii-nitride light emitting device
JP4570683B2 (ja) 窒化物系化合物半導体発光素子の製造方法
KR100729759B1 (ko) 발광 다이오드 및 이의 제조 방법
JP2013207108A (ja) 発光ダイオード素子およびその製造方法
JP2008288538A (ja) III族窒化物発光デバイスのためのp型層
KR20090125676A (ko) 반도체 발광소자용 지지기판 및 상기 지지기판을 이용한고성능 수직구조의 반도체 발광소자
KR20090115830A (ko) 수직구조의 그룹 3족 질화물계 반도체 발광다이오드 소자및 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110826

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5007027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250