JP2005340305A - 複合体及び複合体の製造方法並びに積層部品の製造方法 - Google Patents

複合体及び複合体の製造方法並びに積層部品の製造方法 Download PDF

Info

Publication number
JP2005340305A
JP2005340305A JP2004153919A JP2004153919A JP2005340305A JP 2005340305 A JP2005340305 A JP 2005340305A JP 2004153919 A JP2004153919 A JP 2004153919A JP 2004153919 A JP2004153919 A JP 2004153919A JP 2005340305 A JP2005340305 A JP 2005340305A
Authority
JP
Japan
Prior art keywords
composite
support plate
conductor
layer
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004153919A
Other languages
English (en)
Inventor
Koji Yamamoto
浩司 山本
Norimitsu Fukamizu
則光 深水
Tetsuya Kimura
哲也 木村
Tsutae Iryo
伝 井料
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004153919A priority Critical patent/JP2005340305A/ja
Publication of JP2005340305A publication Critical patent/JP2005340305A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】薄層グリーンシートの積層体における積層不良(デラミネーション)を抑制し、配線基板の信頼性を向上させることが可能な複合体と積層部品の製造方法を提供する。
【解決手段】水銀灯を光源として、100mJの条件で露光したときの全光線透過率が12%以上の支持板1上に、少なくとも無機粉末と感光性樹脂とを含有する感光性セラミック層3と、導体5とからなる複合層7を形成してなることを特徴とする。
【選択図】図1

Description

本発明は、移動体通信機等に使用されるセラミック積層部品、積層基板などに適した複合体及び複合体の製造方法並びに積層部品の製造方法に関するものである。
近年、電子機器は小型軽量化、携帯化が進んでおり、それに用いられる回路ブロックも、小型化、複合モジュール化が押し進められており、セラミック多層回路基板などの積層部品の高密度化と小型化が進められている。
そして、従来のセラミック多層基板は、通常、グリーンシート法と呼ばれる製造方法により製造されている。このグリーンシート法は、絶縁層となる無機粉末を含有するスラリーを用いてドクターブレード法などによって無機粉末とバインダーなどからなるグリーンシートを作製し、次に、このグリーンシートにビアホール導体となる位置にNCパンチや金型などで貫通穴を形成し、導体ペーストを用いて、内部や表面の導体のパターンを印刷するとともに、前記貫通穴に導体ペーストを充填してビアホール導体を形成した後、同様にして作製した複数のグリーンシートを積層し、この積層体を一括同時焼成する製造方法である。(特許文献1参照)。
このグリーンシート法においては、高精度化、さらには高密度化への要求を満足させるため、絶縁層である導体間のグリーンシートの層厚みの薄層化が求められ、導体については微細配線化、更に低損失、低抵抗値を実現するため導体の厚みを厚くすることが求められている。
しかしながら、グリーンシートの層厚みの薄層化と導体の厚膜化という、2つの要求を同時に満たそうとすると、導体が形成されている部分と形成されていない部分とで、導体の厚み分の段差が必然的に発生してしまう。この段差によって、積層不良(デラミネーション)が発生するといった問題があり、グリーンシートの層厚みの薄層化と、導体の厚みの厚膜化を同時に満たすには、限界があった。
また、従来のグリーンシート法などの製造方法においては、ビア導体などの垂直導体を形成するためには、グリーンシートに対してパンチングなどによって貫通穴を形成する穴あけ工程が不可欠であり、導体を形成する印刷工程に対して付加的な工程となっていた。この穴あけ工程において、グリーンシートが薄層(50μm以下)の場合、グリーンシートの強度が小さくなるため、グリーンシートの伸び、変形、破れ等の問題があった。
このような問題を解決するため、無機粉末と感光性樹脂とを含有してなる感光性グリーンシートを作製し、このグリーンシートを露光、現像することでグリーンシートに貫通孔を形成する方法が提案されている(特許文献2参照)。この方法によれば、貫通孔形成の際に、物理的な力がグリーンシートにかかることがないため、グリーンシートの伸び、変形、破れ等の問題は、解決することができる。
特開平11−066951号公報 特開平10−330168号公報
しかしながら、特許文献2に記載の方法では、グリーンシートの層厚みの薄層化と導体の厚膜化という、2つの要求を同時に満たすことはできない。また、特許文献2に記載の方法は、支持板上に感光性グリーンシートを形成し、ガラス製マスクを用いてグリーンシート表面から露光、硬化させ、現像によりビアホールを形成して、その後もう一度所定のスクリーンマスクを用いて導体ペーストを充填し、さらに他のスクリーンマスクを用いて導体パターンを印刷する方法であるため、スクリーンマスクを大量に必要とすることによる高コストの問題や、所定のスクリーンと開口とを精度よく位置合わせする必要があること、および開口への導体ペーストの充填にあたり、ビアなどの小さな径や、線幅の小さいパターン形成用の貫通穴へのペーストの充填が不十分となりやすく、貫通穴内でペーストが充填されない巣が形成されやすいなどの問題があった。また、支持板の光学特性には一切触れておらず、例えば支持板に金属板、セラミック焼成板などを用いた場合には、支持板の裏面側から露光して感光性グリーンシートを硬化させることはできない。
本発明は、支持板裏面側から硬化させた感光性グリーンシートを用いることにより、導体形成工程を簡略化した上で、グリーンシートを薄層とした場合でも、グリーンシートの伸び、変形、破れ等が起こらず、グリーンシートの層厚みの薄層化と、導体の厚膜化とを満足することができる複合体及び複合体の製造方法並びに積層部品の製造方法を提供することを目的とする。
本発明の複合体は、水銀灯を光源として、100mJの条件で露光したときの全光線透過率が12%以上の支持板上に、少なくとも無機粉末と感光性樹脂とを含有する感光性セラミック層と、導体とからなる複合層を形成してなることを特徴とする。
また、本発明の複合体は、前記支持板のh線波長領域における光線透過率が、10%以上であることが望ましい。
また、本発明の複合体は、前記支持板のi線波長領域における光線透過率が、5%以上であることが望ましい。
また、本発明の複合体は、前記感光性セラミック層および導体の厚みが50μm以下であることが望ましい。
また、本発明の複合体の製造方法は、(a)水銀灯を光源として、100mJの条件で露光したときの全光線透過率が12%以上の支持板の主面に、導体を形成する工程と、
(b)前記支持板の導体を形成した側に、少なくとも感光性樹脂、光重合開始剤、および無機粉末を含有する感光性スラリーを、前記導体の厚み以上の厚みに塗布して感光性セラミック層を形成する工程と、
(c)前記支持板の導体を形成した側と反対側より、光を照射して、前記導体形成以外の領域の感光性セラミック層を硬化させる工程と、
(d)現像液を付与して、前記感光性セラミック層の前記導体表面を含む非硬化部を溶化、除去することによって、感光性セラミック層と導体からなる複合層を作製する工程と、
を具備することを特徴とする複合体の製造方法。
また、本発明の複合体の製造方法は、前記支持板のh線波長領域における光線透過率が、10%以上であることが望ましい。
また、本発明の複合体の製造方法は、前記支持板のi線波長領域における光線透過率が、5%以上であることが望ましい。
本発明の積層部品の製造方法は、(A1)以上説明した複合体の製造方法により製造した複合体を積層し、任意の積層体を形成する工程と、
(A2)前記積層体を焼成する工程と、
を具備することを特徴とする。
本発明の積層部品の製造方法は、(B1)以上説明した複合体の製造方法により製造した複合体から、支持板を除去する工程と、
(B2)前記複合体から支持板を除去して得られる複数の複合層を積層して積層体を形成する工程と、
(B3)前記積層体を焼成する工程と、
を具備することを特徴とする。
本発明の積層部品の製造方法は、(C1)以上説明した複合体の製造方法により、第一の支持板上に第一の複合層を作製する工程と、
(C2)以上説明した(a)〜(d)工程を経て、第二の支持板上に第二の複合層を作製する工程と、
(C3)前記第一の複合層の表面に、前記第二の複合層を積層する工程と、
(C4)前記第二の複合層から前記第二の支持板を剥離する工程と、
(C5)必要に応じ、上記(C2)〜(C4)工程を繰り返すことによって複合層による任意の層数の積層体を形成する工程と、
(C6)前記積層体を焼成する工程と、
を具備することを特徴とする。
本発明の複合体およびその製造方法によれば、支持板の全光線透過率を12%以上とすることが重要である。支持板の全光線透過率を12%以上とすることで、支持板上に形成された感光性セラミック層を硬化させるに際し、全光線透過率が12%以下の支持板に比べて光線照射時間を大幅に短縮することができる。光線照射時間が長すぎると、感光性セラミック層の硬化膜厚が安定せず、膜厚ばらつきを生じる。光線照射時間を短縮することで、このばらつきを格段に抑制することができる。また、支持板の全光線透過率を12%以上とすることにより、支持板側からの複合層の導体の確認が容易となり、パターン認識カメラ等を用いて位置あわせ積層を行う際、支持板側からパターン認識を行ったとしても容易に精度よく積層することができる。
また、本発明の複合体およびその製造方法によれば、支持板のh線波長領域における光線透過率を10%以上とすることが重要である。支持板のh線波長領域における光線透過率(以下、h線透過率と略称する。)を10%以上とすることで、支持板上に形成された感光性セラミック層を硬化させるに際し、全光線透過率が10%以下の支持板に比べて光線照射時間を大幅に短縮することができる。光線照射時間が長すぎると、感光性セラミック層の硬化膜厚が安定せず、膜厚ばらつきを生じる。光線照射時間を短縮することで、このばらつきを格段に抑制することができる。
また、本発明の複合体およびその製造方法によれば、i線を照射するに際して、支持板のi線波長領域における光線透過率(以下、i線透過率と略称する)を5%以上とすることが重要である。i線透過率を5%以上とすることで支持板上に形成された感光性セラミック層を硬化させるに際し、全光線透過率が5%以下の支持板に比べて光線照射時間を大幅に短縮することができる。光線照射時間が長すぎると、感光性セラミック層の硬化膜厚が安定せず、膜厚ばらつきを生じる。光線照射時間を短縮することで、このばらつきを格段に抑制することができる。
また、感光性セラミック層および導体からなる複合層の厚みを50μm以下とすることで、特に、小型の積層部品を容易に作製することができる。
以上説明した特徴を有する支持板上に形成された感光性セラミック層の一部を貫通して、感光性セラミック層と略同一厚みの導体を形成した複合層では、厚い導体と薄い感光性セラミック層とが精度よく形成されており、本発明の積層部品を作製するのに、好適に用いることができる。
さらに、本発明の複合体の製造方法によれば、上記した複合層を容易に精度よく作製することができる。
また、本発明の製造方法により製造した複合体において、支持板がセラミックグリーンシートである場合には、あらかじめセラミックグリーンシートにビア導体を形成しておき、その表面に複合層を形成し、支持板を取り外さない状態で積層、焼成することができる。このようにすることで、目的の積層部品中に、ビア導体層等の配線パターンが不要な単純パターン層が存在する場合、全ての層を感光性セラミック層を用いて薄層化するよりも層総数を削減することができ、より安価に基板を作製することが可能となる。
また、本発明の製造方法により製造した複合体において、支持板がPETフィルム等の有機樹脂フィルムである場合には、積層・焼成に際し、複合体から複合層のみを取り外すことによって複合層単体を得ることができる。同様の方法によりこの複合層を複数枚用意し、複数の複合層を位置あわせしながら重ね合わせ一括積層し、その後焼成を行うことによって積層部品を得ることができる。
また、積層体の形成に際し、2枚の複合体を用意して、互いに複合層が向かい合うようにして圧着し、一方の支持板を剥離する。この操作を必要回繰り返すことにより積層体を得ることもできる。
これらの製造方法により積層して・焼成して得られる積層部品は、厚い配線層と薄いセラミック層とを備え、しかも、両者の厚みが略同一であるため、平坦な積層部品となる。また、精密な配線層が形成された小型の積層部品となる。
さらに、本発明の積層部品の製造方法によれば、導体の形成はすべて平面へ導体として形成されることから、従来のビアへのペーストの充填不良などの発生等を防止することができる。また、ビア加工が不要であるため、ビア埋め込みの際の位置合わせが不要となり大幅な工程短縮となる。しかも、複合層の形成にあたり、本発明によれば、印刷された導体自体をマスクとして用い、感光性セラミック層の全面塗布と、キャリアフィルムの裏面からの全面露光によって形成することができるために、安価に且つ容易に感光性セラミック層と導体からなる複合層を作製することができる。しかも、このような複合層の形成は、その層数に合わせて、各支持板上で並列して形成することができることから、必要な層数の複合体を作製した後に、それらを一括して積層後、焼成することによって、大幅に工程を簡略化することができ、自動化も容易となる。
このように、本発明の複合体、並びに積層部品の製造方法によれば、光に対する硬化性が安定した複合層が得られ、且つ積層時に導体の厚み分の段差が発生することがなく、また、導体と感光性セラミック層の界面の段差も小さく、デラミネーションの発生や、無理な加圧による変形などの問題も無く、容易に導体間の感光性セラミック層厚みの薄層化と、導体の厚みの厚膜化を両立することができる。
本発明の複合体は、図1(a)に示すように、支持板1上に、感光性セラミック層3の一部に感光性セラミック層3と略同一厚みを有する導体5を設けてなる複合層7が形成されたものである。また、このような複合体9から支持板1を取り外すことによって複合層7単体を得、それを複数枚積層した積層体を焼成することで、図2(a)に示すような積層部品30を作製することができる。
このような積層部品30において、導体5を焼成して得られた配線層5aは、感光性セラミック層3を焼成して得られたセラミック層3aを平面方向に伸びることによって平面回路を形成している。また、部分的に配線層5aを厚み方向に積み上げることによりビア導体5bが形成されている。
本発明の構成要素である支持板1に関しては、感光性セラミック層3を光線を照射して硬化させる際、照射源と感光性セラミック層3の間には支持板1が存在しているため、その支持板1の光線透過性は感光性セラミック層3の加工性に影響を与える要素として特に重要なものである。この光線の透過率は、選択する光線の波長と、光線を照射される対象物の特性によって決定されるものである。
本発明者らは、複合体9に光線を照射するに際して、支持板1の全光線透過率を12%以上とすることが重要であることを見出した。支持板1の全光線透過率を12%以上とすることで、支持板1上に形成された感光性セラミック層3を硬化させるに際し、光線照射時間を大幅に短縮することができ、照射時間が長すぎる時に起こる硬化膜厚ばらつきを格段に抑制することができる。また、支持板1の全光線透過率を12%以上とすることにより、支持板1側からの複合層7の導体5の確認が容易となり、パターン認識カメラ等を用いて位置あわせ積層を行う際、支持板1側からパターン認識を行ったとしても容易に精度よく積層することができる。全光線透過率は、特に、30%以上、さらに50%以上とすることで、感光性セラミック層3内の感光性樹脂の硬化を確実に行うことができ、硬化膜厚精度が向上し、パターン認識カメラを用いての積層の際の積層精度を向上させることができる。
また、複合体9にh線を照射するに際して、支持板1のh線波長領域における光線透過率を10%以上とすることが重要である。支持板1のh線波長領域における光線透過率(以下、h線透過率と略称する。)を、10%以上とすることで、支持板1上に形成された感光性セラミック層3を硬化させるに際し、光線照射時間を大幅に短縮することができ、照射時間が長すぎる時に起こる硬化膜厚ばらつきを格段に抑制することができる。全光線透過率は、特に、30%以上、さらに50%以上とすることで、感光性セラミック層3内の感光性樹脂の硬化を確実に行うことができ、硬化膜厚精度が向上する。
また、複合体9にi線を照射するに際して、支持板1のi線波長領域における光線透過率(以下、i線透過率と略称する)を5%以上とすることが重要である。支持板1のi線透過率を5%以上とすることで、支持板1上に形成された感光性セラミック層3を硬化させるに際し、光線照射時間を大幅に短縮することができ、照射時間が長すぎる時に起こる硬化膜厚ばらつきを格段に抑制することができる。全光線透過率は、特に、15%以上、さらに30%以上とすることで、感光性セラミック層3内の感光性樹脂の硬化を確実に行うことができ、硬化膜厚精度が向上する。
以下に全光線、h線透過率並びにi線透過率を制御する方法について、詳細に説明する。
支持板1の全光線、h線透過率並びにi線透過率は、支持板1を構成する材料の吸光特性によって変化する。また、支持板1が複数の材料からなる場合、それぞれの含有割合、形状等によっても変化するものである。従って、これらの特性や含有割合、形状等を種々変化させることで本発明の複合体9を作製することができる。
本発明の支持板1を構成する要素としては、無機材料、有機材料、あるいはそれらの混合物を用いることができる。光線を透過しやすいガラス板、PETフィルムなどが好適に用いられるが、厚みが増すとともに透過率が減少するため、これらの厚みはガラス板の場合で2mm以下、PETフィルムの場合で50μm以下、特に20μm以下とすることが望ましい。また、PETフィルムの厚みを20μm以下とした場合、導体5、感光性セラミック層3の形成、さらにはその後の積層に際し取り扱いが困難となるため、ステンレス等変形しにくい材料からなる枠に固定して取り扱うことが望ましい。また、本発明の範囲さえ満たしていれば、ガラス台板や、PETフィルム等の樹脂フィルムに比べて透過率の低いセラミックグリーンシート等の無機材料と有機材料の混合物を支持板1aとして用いることも可能である。この場合、支持板1aの透過率はセラミックグリーンシートの厚み、セラミックグリーンシートを構成する要素である無機粉末の粒径、含有量によって変化するため、セラミックグリーンシートの厚みは50μm以下、特に30μm以下とし、無機粉末の粒径は0.5〜10μm、特に1μm〜5μm、また、セラミックグリーンシートにおける無機粉末の体積占有率を50〜70%、特に50〜60%とすることが望ましい。
また、本発明の複合体9の構成要素である感光性セラミック層3は、感光性樹脂を含有することから、光線を照射し、硬化させることによって自在に加工することができる。そして、その特性を利用して、例えば、配線基板や積層コンデンサなどの電気部品の製造に好適に用いることができる。
また、このような感光性セラミック層3の厚みを50μm以下、特に、40μm以下、さらに、30μm以下とすることで、感光性セラミック層3と導体5とからなる複合層7や複合体9を用いて作製する積層部品30などを格段に小型化することができる。
以下に、本発明の複合体9、積層部品30の製造方法について説明する。
本発明によれば、まず、少なくともセラミック材料を含有する感光性セラミック層3の一部に、少なくとも金属粉末と有機バインダーとを含有する導体5が感光性セラミック層3を貫通して形成されてなる複合層7を所定の光線透過率を持つ支持板1上に作製する。
この複合層7を作製するにあたり、まず、感光性セラミック層3を形成するために、少なくともした感光性樹脂およびセラミック材料を含有する感光性スラリーを調製する。スラリー調製にあたっては、望ましくは、無機粉末と、感光性樹脂と、光重合開始剤と、有機バインダーと、可塑剤と、有機溶剤とを混合し、ボールミルで混練して調製する。
また、本発明の複合体9の構成要素である導体5となる導体ペーストは、平均粒径が1〜5μm程度の前記導体材料の粉末に、必要に応じてセラミック材料を添加した無機成分に対して、エチルセルロース、アクリル樹脂などの有機バインダーを加え、さらにジブチルフタレート、αテルピネオール、ブチルカルビトール、2・2・4−トリメチル−3・3−ペンタジオールモノイソブチレートなどの適当な溶剤を混合し、3本ローラ又はボールミル等により均質に混練して調製される。
なお、導体5を、例えば、金属箔などによって形成してもよいことは言うまでもない。
次に、感光性スラリーおよび導体ペーストを用いて以下の工程によって、複合層7を形成する。
まず、図3(a)に示すように、例えば、樹脂フィルム1などの支持板1上に導体ペーストをスクリーン印刷法等により印刷し、導体5を形成する。次に、図3(b)に示すように、感光性スラリーを、例えばドクターブレード法にて導体5の厚み以上の厚みに塗布して全面に感光性セラミック層3を形成する。
そして、図3(c)に示すように、支持板1の裏面より例えば超高圧水銀灯を光源として用いて露光を行う。この露光によって、導体5形成以外の領域の感光性セラミック層3を硬化させる。この露光工程においては、感光性セラミック層3は、導体5形成以外の領域の感光性セラミック層3では照射された光の量により裏面から一定の厚みまで光重合反応がおこり不溶化部を形成するが、導体5は紫外線が通過しないために、導体5上に形成されている感光性セラミック層3は、感光性樹脂の光重合反応がおこらない溶化部となる。このときの露光量は、実質的に不溶化部の厚みが、導体5の厚みと同じになるように露光量が調整されることが望ましい。具体的な露光量としては、超高圧水銀灯(照度30mW/cm)を光源として30mJ〜150mJとすることが望ましい。
その後、感光性セラミック層3全体を現像処理する。現像処理は、感光性セラミック層3の溶化部を現像液で除去するもので、具体的には、例えば、トリエタノールアミン水溶液、炭酸ナトリウム、水酸化ナトリウムなどを現像液として用いてスプレー現像、洗浄、乾燥を行う。この処理により、図3(d)に示すように、支持板1上には、導体5と感光性セラミック層3とが実質的に同一厚みで一体化した複合層7が形成される。
そして、支持板1から複合層7を剥離することによって、複合層7単体を得ることができる。
このようにして作製された複合層7は、従来のグリーンシートの表面に形成された導体に比べ、数倍も厚い導体5を形成することが可能となり、また、従来のグリーンシートと比較すると、薄い感光性セラミック層3と厚い導体5との組み合わせを実現することができる。
より具体的には、感光性セラミック層3および導体5の厚みは、いずれも10〜50μm、特に15〜40μm、さらには15〜30μmの薄層によって形成されており、感光性セラミック層3および導体5の厚み差が導体5の厚みの20%以下、特に10%以下、さらには、5%以下であることが、または厚み差が5μm以下、さらには3μm以下であることによって、導体5自体の厚みによる感光性セラミック層3との段差が実質的に抑制される。
次に、この複合層7を用いて積層部品を製造する方法について以下に説明する。まず、図3(a)〜(d)に従い、支持板1上に、感光性セラミック層3と所定のパターンの導体5が形成された複数の複合層7を作製し、支持板1を取り外して複数の複合層7を作製する。
そして、図4(a)に示すように、これらの複数の複合層7を位置あわせしながら、重ね合わせ一括して圧着することによって積層体11を形成することができる。なお、圧着時には、複合層7中に含まれる有機バインダーならびに感光性樹脂のガラス転移点以上の温度をかけながら圧着することが望ましい。
なお、一括して積層する場合、すべて支持板1を剥がして積層してもよいが、圧着時の最下面と最上面の取り扱いを考慮すれば、図4(a)に示すように、最下面と最上面のみは、支持板1から剥がすことなく、積層、圧着した後に、支持板1を剥がすことによって、積層体11を形成することもできる。
また、積層部品30を製造する他の方法としては、図5(a)に示すように、図3(a)〜(d)に従って形成された支持板1が付着したままの他の複合層7を作製する。そして、図5(b)、図5(c)に示すように、支持板1の表面に形成された複合層7の表面に、支持板1の表面に形成された複合層7を反転させて積層圧着し、複合層7側の支持板1を剥離する。次に、図5(d)に示すように、この複合層7の表面に、同様にして支持板1の表面に形成された複合層7を反転させて積層圧着し、複合層7側のキャリアフィルム1を剥離する。この工程を繰り返した後、最下層の複合層7からキャリアフィルムを剥離することによって、図5(e)に示すように所望の層数の複合層7からなる積層体11を形成することができる。
そして、この積層体11を、所定の温度で焼成することによって、導体5によって3次元的な回路が形成された積層部品30を形成することができる。なお、焼成にあたっては、脱バインダー工程で、積層体11に含まれている有機バインダー、感光性樹脂を消失させ、焼成工程にて窒素などの不活性雰囲気中又は大気中で、用いた無機粉末および導体が十分に焼結する温度で焼成して、相対密度95%以上に緻密化することが望ましい。
また、図1(b)に示すように、支持体1はセラミックグリーンシート1aであってもよく、ビア導体5bを形成したセラミックグリーンシート1aであってもよい。この場合、セラミック粉末と所定の有機バインダを含有するスラリーを調整し、これを用いてドクターブレード法などのシート形成法によって所定の光線透過率を示すセラミックグリーンシート1aを作製し、ドリル、パンチ、レーザーなどを用いてビアホールを形成した後、該ビアホール内に金属粉末および有機バインダを含む導体ペーストをスクリーン印刷などによって充填することによってビア導体5を形成する。樹脂フィルム1に換え、このようなセラミックグリーンシート1aを支持体1として用いることで、図3(a)〜(d)を用いて説明した複合体9の製造方法により、図1(b)に示すような複合体9を作製することができる。
そして、図6(a)、(b)に示すように、このようにして作製した複合体9を位置あわせしながら、重ね合わせ一括して圧着することによって、積層体11を形成することができる。
このように、支持板1としてセラミックグリーンシート1aを用いた場合には、積層および焼成に際して支持板1aを複合層7から取り外す必要はなく、そのまま積層、焼成して図2(b)に示すような積層部品30を得ることができる。このようにすることで、積層部品30であるセラミック基板30の一部に、平面方向に伸びた配線がなく、ビア導体層5bなどの単純パターン層のみが形成された形態の層が存在する場合、支持板1としてセラミックグリーンシート1aを用い、あらかじめドリル、パンチ、レーザーなどを用いたビアホール形成、さらにスクリーン印刷による導体埋め込みなどの公知の方法でビア導体5bを形成しておくことにより、全ての層を感光性セラミック層3を用いて薄層化するよりも総層数を削減することができ、より安価に複合体9を作製することが可能となる。
このような積層部品30に、必要に応じて、表面処理として、さらに、積層部品30の表面に厚膜抵抗膜や厚膜保護膜の印刷・焼きつけ、メッキ処理、さらにICチップを含む電気部品6の接合を行うことによってセラミック回路基板を作製することができる。
また、表面の導体5は、焼成された積層体11の表面に、印刷・乾燥し、所定雰囲気で焼きつけを行っても良い。
さらに、積層部品30であるセラミック多層回路基板の表面に形成される導体5、端子電極の表面には、半田との濡れ性を改善するために、ニッケル、金などのメッキ層が1〜3μmの厚みで形成される。
そして、このような積層部品30ではセラミック層3aと、配線層5aとが、略同一厚みとなり形成されることで、凹凸が格段に少ない積層部品30となる。また、このような積層部品30では従来よりも、格段に厚く配線層5aを形成することができることから配線層5aの電気的抵抗を格段に小さくすることができる。また、セラミック層3aの厚みも薄くなっているため、積層部品30も小型化することができる。そして、このような積層部品30は例えば、表面に半導体素子や積層コンデンサなどの電気部品6を搭載する配線基板として好適に用いられる。
なお、感光性セラミック層3の構成要素としては、結晶質の無機粉末や非晶質の無機粉末を用いることができ、例えば、本発明の複合体9を用いて、配線基板30を作製する場合には、(1)Al、AlN、Si、SiCを主成分とする焼成温度が1100℃以上のセラミック材料、(2)少なくともSiOおよびBaO、CaO、SrO、MgOなどのアルカリ土類金属酸化物を含有する金属酸化物による混合物からなる1100℃以下、特に1050℃以下で焼成されるセラミック材料、(3)ガラス粉末、あるいはガラス粉末とセラミックフィラー粉末との混合物からなる1100℃以下、特に1050℃以下で焼成される低温焼結性のセラミック材料の群から選ばれる少なくとも1種が選択される。
用いられる(2)の混合物や、(3)のガラス組成物としては、SiO−BaO−Al系、SiO−B系、SiO−B−Al系、SiO−アルカリ金属酸化物系、さらにはこれらの系にアルカリ金属酸化物、ZnO、PbO、Pb、ZrO、TiO等を配合した組成物が挙げられる。(3)におけるセラミックフィラーとしては、Al、SiO、フォルステライト、コージェライト、ムライト、AlN、Si、SiC、MgTiO、CaTiOの群から選ばれる少なくとも1種が挙げられ、ガラスに対して20〜80質量%の割合で混合されることが望ましい。上記のセラミック材料について原料の平均粒径が焼結性に影響を与えるため、平均粒径0.5〜8μm、更には1〜5μmの範囲とするのが望ましい。
また、感光性樹脂としては、感光性樹脂や光重合開始剤などが挙げられる。感光性樹脂としては、低温で短時間の焼成工程に対応するために、熱分解性に優れたものであることが望ましい。また、感光性樹脂は、スラリー材の塗布・乾燥後の露光によって光重合される必要があり、遊離ラジカルの形成、連鎖生長付加重合が可能で、2級もしくは3級炭素を有したモノマーが好ましく、例えば少なくとも1つの重合可能なエチレン系基を有するブチルアクリレート等のアルキルアクリレートおよびそれらに対応するアルキルメタクリレート等が挙げられる。また、テトラエチレングリコールジアクリレート等のポリエチレングリコールジアクリレートおよびそれらに対応するメタクリレートも有効である。光重合開始剤としては、ベンゾフェノン類,アシロインエステル類化合物などが挙げられる。
また、有機バインダーも、感光性樹脂と同様に熱分解性が良好であることが望まれ、同時にスラリーの粘性を決めるものであるため、固形分との濡れ性も考慮することが必要である。本発明によれば、アクリル酸もしくはメタクリル酸系重合体のようなカルボキシル基、アルコール性水酸基を備えたエチレン性不飽和化合物が好ましい。
有機溶剤としては、エチルカルビトールアセテート、ブチルセルソルブ、3メトキシブチルアセテート、トルエン、IPAの群から選ばれる少なくとも1種が挙げられる。
また、本発明において、各成分の含有量は、無機粉末100質量部あたり、感光性樹脂及び光重合開始剤を5〜20質量部、有機バインダーを10〜30質量部、可塑剤を1〜5質量部、有機溶剤を50〜100質量部の割合が適当である。
そして、本発明の感光性セラミック層3は、例えば、以上説明した割合で無機粉末に、感光性樹脂と、光重合開始剤と、有機バインダーと、可塑剤とを、有機溶剤に混合し、ボールミルで混練して調製したスラリーを従来周知のドクターブレード法などによってシート化することで作製することができる。
先ず、支持板として、厚みの異なるPET(ポリエチレンテレフタレート)からなる支持板と、セラミック原料粉末100質量部と、有機バインダー20質量部と、可塑剤3質量部からなり、厚みの異なるように成形したセラミックグリーンシートに金型で直径が100μmの貫通孔を形成し、その穴に導体ペーストを充填したシートからなる支持板を用意した。
なお、このセラミックグリーンシートは、セラミック原料粉末としてSiO−45質量%、B−12質量%、Al−25質量%、MgO−8質量%、CaO−4質量%、ZnO−6質量%の組成のガラス粉末−75質量%と、Al粉末−25質量%の混合粉末を用いて形成した。また、ビア導体としては、Ag粉末100質量部に対してバリウムホウ珪酸ガラス粉末5質量部と、エチルセルロース5質量部、さらに有機溶剤として2・2・4−トリメチル3・3−ペンタジオールモノイソブチレート10質量部を加え3本ロールミルで混合したものを使用した。
このようにして準備した2種類の支持板の光線透過率を以下のように測定した。全光線、h線およびi線の受光器を取り付けた紫外線照度計(ウシオ電機株式会社製UIT−101)を用い、支持板がある場合と無い場合の照度を測定し、その値から支持板に対する光線(全光線、h線、i線)透過率を計算した。なお、測定に際して、光源と支持板の距離を360cmとし、支持板と受光器の距離を0.01cmとした。その結果を表1に示す。
次に、支持板を導体形成前にステンレス製の金枠に固定した。
次に、これらの支持板上に、導体ペーストをスクリーン印刷法等により印刷し、最小配線幅100μm、25μmの厚みの複数本の導体を形成した。尚、導体ペーストは、AgCu、Ag−Pd粉末100質量部に対してバリウムホウ珪酸ガラス粉末5質量部と、エチルセルロース5質量部、さらに有機溶剤として2・2・4−トリメチル3・3−ペンタジオールモノイソブチレート10質量部を加え3本ロールミルで混合したものを使用した。
次に、上記支持体の上に、感光性スラリーをドクターブレード法により、感光性スラリーが乾燥する前の段階では導体5よりも厚くなるように塗布乾燥し、導体の存在しない場所での乾燥後の厚みが27μmとなるように感光性セラミックグリーンシートを形成した。
感光性スラリーは、セラミック原料粉末100質量部と、感光性樹脂(ポリオキシエチル化トリメチロールプロパントリアクリレート)(8質量部)および有機バインダー(アルキルメタクリレート)を25質量部と、可塑剤を3質量部、有機溶剤(エチルカルビトールアセテート)70質量部に混合し、ボールミルで混練して作製したものを用いた。
なお、セラミック原料粉末は、SiO−45質量%、B−12質量%、AlO3−25質量%、MgO−8質量%、CaO−4質量%、ZnO−6質量%の組成のガラス粉末−75質量%と、Al粉末−25質量%の混合粉末を用いた。
次に、支持板の裏面側より感光性セラミック層の裏面に、超高圧水銀灯(照度30mW/cm)を光源として100mJで全面露光した。その後、希釈濃度2.5%のトリエタノールアミン水溶液を現像液として用いて30秒間スプレー現像を行った。この後、現像後の純水洗浄の後、70℃で乾燥を行った。
こうして、出来上がった複合体は、導体上の溶化部と、感光性セラミック層の厚みが導体の厚みと同等になるように現像処理で除去され、導体が露出して、その結果、表1に示す厚みの導体と、表1に示す厚みの感光性セラミック層とが一体化した複合層並びに複合体を作製することができた。
同様の工程で、それぞれの支持板上に内部導体用、表面導体用およびビア導体用の導体を具備したそれぞれ14層の複合体を作製した。
上記のようにして作製した複合体より、支持板がPETフィルムの場合にはそれぞれ支持板を剥離し、支持板がセラミックグリーンシートの場合には支持板を剥離しない状態で、順番に位置合わせを行いながら、積層を行った。この後、プレス機を用いて、プレス圧40MPa、温度60℃にて2分間プレスを行い、積層体を圧着した。
その後、導体がAg、Ag−Pdの場合、大気中で300℃で2時間で脱バインダー処理した後、900℃大気中で1時間焼成を行い、積層部品であるセラミック多層回路基板を作製した。導体がCuの場合、N雰囲気中700℃1時間で脱バインダー処理した後、N中900℃1時間で焼成を行い、セラミック多層回路基板を作製した。なお、この評価基板には、導通試験用の回路を形成した。
(複合層外観評価、厚みバラツキ精度評価)
作製した複合体については、評価数50枚で、感光性セラミック層の外観(破れ、ボイド等)を顕微鏡(×20)による検査し、また、各シートの感光性セラミック層の部分をそれぞれ5点、非接触のレーザ厚み測定器を用いて測定し、支持板分の厚みを差引くことで厚みバラツキの評価を行った。
(導通評価)
評価基板については導通を確認した。評価数を50個とし、歩留まりを算出した。
(断面SEM)
作製した評価基板については、セラミック層厚み、配線層厚みの関係により発生するデラミネーションの有無について、走査型電子顕微鏡(SEM)を用い断面の観察を行った。
なお、h線並びにi線が記載がされていない試料については、それぞれ、h線並びにi線を透過させないフィルタを用いて試験を行った。
Figure 2005340305
本発明の範囲外である試料No.1、9、17は、導体と感光性セラミック層からなる複合層の厚み方向に十分に硬化できず、外観不良が発生した。そして、積層時には明らかに凹凸が発生し、導通評価とデラミネーションについては実施しなかった。
一方、本発明の試料No.2〜6、No.10〜14、No.18〜22では、比較例に比べ、導体と感光性セラミック層からなる複合層の外観不良、厚みばらつき、導通不良が格段に改善されている。また、デラミネーションについては全く確認されなかった。また、導体材料として、Cu、Ag−Pdを用いた試料No.7、8、15、16、23、24でも、デラミネーションがなく、導通に優れたものとなった。
本発明の複合層並びに複合体を説明する概略断面図である 本発明の積層部品を説明する概略断面図である。 本発明の複合層並びに複合体の作製方法を説明するための工程図である。 本発明の積層部品を作製する方法を説明するための工程図である。 本発明の積層部品を作製する方法を説明するための工程図である。 本発明の積層部品を作製する方法を説明するための工程図である。
符号の説明
1・・・支持板、樹脂フィルム
1a・・・セラミックグリーンシート
3・・・光硬化性セラミック層
5・・・導体
7・・・複合層
9・・・複合体
11・・・積層体
30・・・積層部品

Claims (10)

  1. 水銀灯を光源として、100mJの条件で露光したときの全光線透過率が12%以上の支持板上に、少なくとも無機粉末と感光性樹脂とを含有する感光性セラミック層と、導体とからなる複合層を形成してなることを特徴とする複合体。
  2. 前記支持板のh線波長領域における光線透過率が、10%以上であることを特徴とする請求項1記載の複合体。
  3. 前記支持板のi線波長領域における光線透過率が、5%以上であることを特徴とする請求項1又は2記載の複合体。
  4. 前記感光性セラミック層および導体の厚みが50μm以下であることを特徴とする請求項1乃至3のうちいずれかに記載の複合体。
  5. (a)水銀灯を光源として、100mJの条件で露光したときの全光線透過率が12%以上の支持板の主面に、導体を形成する工程と、
    (b)前記支持板の導体を形成した側に、少なくとも感光性樹脂、光重合開始剤、および無機粉末を含有する感光性スラリーを、前記導体の厚み以上の厚みに塗布して感光性セラミック層を形成する工程と、
    (c)前記支持板の導体を形成した側の反対側から、光を照射して、前記導体形成以外の領域の感光性セラミック層を硬化させる工程と、
    (d)現像液を付与して、前記感光性セラミック層の前記導体表面を含む非硬化部を溶化、除去することによって、感光性セラミック層と導体からなる複合層を作製する工程と、
    を具備することを特徴とする複合体の製造方法。
  6. 前記支持板のh線波長領域における光線透過率が、10%以上であることを特徴とする請求項5に記載の複合体の製造方法。
  7. 前記支持板のi線波長領域における光線透過率が、5%以上であることを特徴とする請求項5又は6に記載の複合体の製造方法。
  8. (A1)請求項5乃至7のうちいずれかに記載の複合体の製造方法により製造した複合体を積層し、任意の層数の積層体を形成する工程と、
    (A2)前記積層体を焼成する工程と、
    を具備することを特徴とする積層部品の製造方法。
  9. (B1)請求項5乃至7のうちいずれかに記載の複合体の製造方法により製造した複合体から、支持板を除去する工程と、
    (B2)前記複合体から支持板を除去して得られる複数の複合層を積層して積層体を形成する工程と、
    (B3)前記積層体を焼成する工程と、
    を具備することを特徴とする積層部品の製造方法。
  10. (C1)請求項5乃至7のうちいずれかに記載の複合体の製造方法により、第一の支持板上に第一の複合層を作製する工程と、
    (C2)(a)〜(d)工程を経て、第二の支持板上に第二の複合層を作製する工程と、
    (C3)前記第一の複合層の表面に、前記第二の複合層を積層する工程と、
    (C4)前記第二の複合層から前記第二の支持板を剥離する工程と、
    (C5)必要に応じ、上記(C2)〜(C4)工程を繰り返すことによって複合層による任意の層数の積層体を形成する工程と、
    (C6)前記積層体を焼成する工程と、
    を具備することを特徴とする積層部品の製造方法。
JP2004153919A 2004-05-24 2004-05-24 複合体及び複合体の製造方法並びに積層部品の製造方法 Pending JP2005340305A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153919A JP2005340305A (ja) 2004-05-24 2004-05-24 複合体及び複合体の製造方法並びに積層部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153919A JP2005340305A (ja) 2004-05-24 2004-05-24 複合体及び複合体の製造方法並びに積層部品の製造方法

Publications (1)

Publication Number Publication Date
JP2005340305A true JP2005340305A (ja) 2005-12-08

Family

ID=35493556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153919A Pending JP2005340305A (ja) 2004-05-24 2004-05-24 複合体及び複合体の製造方法並びに積層部品の製造方法

Country Status (1)

Country Link
JP (1) JP2005340305A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165615A (ja) * 2005-12-14 2007-06-28 Tdk Corp セラミック多層基板及びその製造方法
CN102548254A (zh) * 2010-12-30 2012-07-04 北大方正集团有限公司 芯片载体的无核制作方法
WO2017141863A1 (ja) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165615A (ja) * 2005-12-14 2007-06-28 Tdk Corp セラミック多層基板及びその製造方法
CN102548254A (zh) * 2010-12-30 2012-07-04 北大方正集团有限公司 芯片载体的无核制作方法
WO2017141863A1 (ja) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体
JP2017147224A (ja) * 2016-02-15 2017-08-24 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体
CN108475558A (zh) * 2016-02-15 2018-08-31 迪睿合株式会社 各向异性导电膜、其制造方法和连接结构体
CN108475558B (zh) * 2016-02-15 2021-11-09 迪睿合株式会社 各向异性导电膜、其制造方法和连接结构体
JP7114857B2 (ja) 2016-02-15 2022-08-09 デクセリアルズ株式会社 異方性導電フィルム、その製造方法及び接続構造体

Similar Documents

Publication Publication Date Title
CN111954847B (zh) 感光性导电糊剂以及使用其的形成有图案的生片的制造方法
JP4044830B2 (ja) 複合シートの製造方法、並びに積層部品の製造方法
JP2001216839A (ja) 導電性ペースト及び多層基板の製法
US20040134875A1 (en) Circuit-parts sheet and method of producing a multi-layer circuit board
JP4922616B2 (ja) 配線基板とその製造方法
JP4061188B2 (ja) 複合シートの製造方法および積層体の製造方法
JP2005340305A (ja) 複合体及び複合体の製造方法並びに積層部品の製造方法
JP4360608B2 (ja) 複合シートの製造方法、並びに積層部品の製造方法
JP4493399B2 (ja) 複合シート及び積層部品の製造方法
JP2005216999A (ja) 多層配線基板、高周波モジュールおよび携帯端末機器
JP4072046B2 (ja) 複合シートの製造方法および積層部品の製造方法
JP2005217051A (ja) 複合シート及び積層部品並びにその製造方法
JP4737958B2 (ja) セラミック回路基板の製造方法
JP2004296543A (ja) 複合シートの製造方法、並びに積層部品の製造方法
JP4072045B2 (ja) 複合シートの製造方法および積層部品の製造方法
JP4550560B2 (ja) 感光性材料、感光性シート、およびそれを用いた多層回路基板の製造方法
JP2005136007A (ja) 複合シート、並びに積層部品の製造方法
JP4666950B2 (ja) 複合体及び複合体の製造方法並びに積層部品の製造方法
JP2005243786A (ja) 感光性セラミックグリーンシート、複合シート及び積層部品並びにその製造方法
JP4069744B2 (ja) 複合シートの製造方法および積層体の製造方法
JP2005159039A (ja) 回路形成用積層体および回路基板
JP2005217053A (ja) 複合シート及び複合部品、積層部品並びにその製造方法
JP2006140400A (ja) セラミック多層基板及びその製造方法
JP2005072500A (ja) 複合シート、積層体およびそれらの製造方法、ならびに積層部品
JP2005217580A (ja) 高周波モジュール