JP2005338704A - 光結合機能付配線基板及びその製造方法と光結合システム - Google Patents

光結合機能付配線基板及びその製造方法と光結合システム Download PDF

Info

Publication number
JP2005338704A
JP2005338704A JP2004160976A JP2004160976A JP2005338704A JP 2005338704 A JP2005338704 A JP 2005338704A JP 2004160976 A JP2004160976 A JP 2004160976A JP 2004160976 A JP2004160976 A JP 2004160976A JP 2005338704 A JP2005338704 A JP 2005338704A
Authority
JP
Japan
Prior art keywords
wiring board
fiber
optical coupling
optical
coupling function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004160976A
Other languages
English (en)
Inventor
Kenji Yanagisawa
賢司 柳沢
Takahiko Nakao
貴彦 中尾
Junichi Iwai
淳一 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2004160976A priority Critical patent/JP2005338704A/ja
Publication of JP2005338704A publication Critical patent/JP2005338704A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 低コストで光結合を行うことができる「光結合機能付配線基板及びその製造方法と光結合システム」を提供すること。
【解決手段】 光結合機能付配線基板10において、該配線基板10の、光学デバイス1が搭載されたときにその光出射面2又は光入射面に対向する位置に、該配線基板10を厚さ方向に貫通してGIファイバ20が挿通されている。光結合機能付配線基板10は、光学デバイス1を搭載し、かつ、光導波路を内蔵したマザーボード等のプリント基板上に実装されて、光結合システムを構成する。
【選択図】 図2

Description

本発明は、光インタコネクションの技術に係り、特に、発光又は受光の機能を有する光学デバイスと実装用基板との間で光信号伝達による接続(光結合)を行う機能を備えた配線基板及びその製造方法と光結合システムに関する。
かかる配線基板は、光学デバイスの他にも半導体チップや電子部品等の各種デバイスを搭載するパッケージとしての役割を果たすという意味で、以下の記述では、便宜上「パッケージ」とも呼ぶことにする。
LSIデバイスの高速化及び高集積化に伴い、今後も通信系の各種装置やコンピュータ等のスループットは増大の一途をたどると予測されるが、この場合に、いかにして信号配線(インタコネクション)を行うかがシステム性能向上のボトルネックになる。特にコンピュータの場合、内蔵されている各デバイス(CPU、チップセット、メモリ等)の処理速度が飛躍的に向上してきており、信号伝送媒体として一般に用いられているメタル配線による電気信号伝送ではその限界に達しようとしている。これに対処するための信号接続技術の1つとして「光インタコネクション」があり、これは、従来の電気配線を、光通信技術を応用した高速かつ高密度な光信号伝達による配線に置き換えたものである。
コンピュータ内部の各デバイス間を従来の電気配線から光配線に置き換える場合、その形態として、プリント基板等の実装用基板の内部に光導波路を形成し、各デバイスの内部に発光素子(又は受光素子)を実装し、各デバイスとプリント基板を光結合することが考えられる。かかる形態では、発光素子(例えば、チップの主面と平行な方向ではなく、主面と垂直な方向に光を出射するタイプのレーザ素子:VCSEL)からの出射光は、ある広がり角度をもって拡散している。
しかし、光信号伝送では、伝達損失を少なくするため、発光素子から放射された光を集光し、又は平行光(円形の平行ビーム)に変換して、プリント基板内の光導波路の開口部に光結合させる必要がある。このため、発光素子から出射された光を、何らかの手段を用いて集光させ、又は平行光に変換して、光導波路に入光させる必要がある。また、プリント基板内の光導波路から出射される光についても同様にある一定の広がり角度をもって拡散されるため、何らかの手段を用いて集光させ、又は平行光に変換して、受光素子に入光させる必要がある。
従来は、レーザ素子(発光素子)やプリント基板内の光導波路から出射される光を集光させ、又は平行光に変換する手段として、例えば、マイクロレンズなど、ガラス板等にアレイ状に複数の微小レンズ部が実装されてなるレンズアレイが用いられていた。
上記の従来技術に関連する技術としては、例えば、特許文献1に記載されるように、回路基板上に電子回路素子と、該電子回路素子にワイヤを介して接続された光素子とが搭載された半導体装置において、該光素子上に光導波体(光ファイバ)を接続するためのガイド穴を設けるようにしたものがある。
特開2003−131081号公報
上述したように従来の光インタコネクションに係る技術では、発光素子やプリント基板内の光導波路から出射される光を集光させ、又は平行光にするための手段としてレンズアレイが用いられていたが、このレンズアレイは、パッケージを構成する各部品の中でも特に高価なものであり、量産に向いていないといった課題があった。
本発明は、かかる従来技術における課題に鑑み創作されたもので、低コストで光結合を行うことができる光結合機能付配線基板及びその製造方法と光結合システムを提供することを目的とする。
上述した従来技術の課題を解決するため、本発明では、発光素子やプリント基板内の光導波路から出射される光を集光させ、又は平行光に変換するためのレンズ手段として、パッケージ(配線基板)の内部にグレーデッド・インデックス(GI:Graded Index)構造のファイバ(以下、便宜上、「GIファイバ」という。)を実装するようにしている。
伝搬する放射モードが一つしかない「シングルモード・ファイバ」に対し、複数の放射モード(異なる反射角をもった各々の光)が伝搬する「マルチモード・ファイバ」では、伝搬するモード間の時間差による信号歪が発生し易くなるが、ファイバの屈折率分布を制御することにより、モード間の時間差を小さく抑えることができる。具体的には、図1に示すように、コアの中心部から半径方向に向かって屈折率が低くなるように分布をもたせている。伝搬する各モードのうち、低次のモードは、比較的高い屈折率の部分(コアの中心部近傍)を通るため伝搬距離は短くなるが、屈折率が高いために光の伝搬速度は相対的に遅くなる。一方、高次のモードは、比較的低い屈折率の部分(コアの周辺部近傍)を通るため伝搬距離は長くなるが、屈折率が低いために光の伝搬速度は相対的に速くなる。このようにコアの屈折率に変化をもたせ、モード間の伝搬時間差を低減するように設計された光ファイバがGIファイバである。このGIファイバでは、コア内部に入射した光は正弦波曲線を描きながら進行する(図1参照)。このため、ファイバ長で、平行光や収束光として光が出射する。従って、GIファイバの比屈折率差を制御することで、各基板厚に対応するファイバ長が得られる。一般的なパッケージの基板厚であれば、製造可能なGIファイバのコア屈折率、比屈折率差の範囲内で対応が可能である。
このGIファイバは、シングルモード・ファイバと比べて比較的損失が高いため、光通信のような長距離の伝送には適さないが、光インタコネクション(例えば、コンピュータ内部の各デバイス間の光結合)のような短距離の伝送では十分に帯域も広く、また接続も容易であるという特長を有している。本発明は、このGIファイバの特長を有効に活かしたものである。
本発明の一形態によれば、発光又は受光の機能を有する光学デバイスを搭載するための配線基板において、該配線基板の、前記光学デバイスが搭載されたときにその光出射面又は光入射面に対向する位置に、該配線基板を厚さ方向に貫通してGIファイバが挿通されていることを特徴とする光結合機能付配線基板が提供される。
この形態に係る光結合機能付配線基板によれば、図1に示したようにGIファイバのコアの中心部から半径方向に向かって屈折率が低くなるように分布していることによる光の屈折を利用して、拡散光の集光及び平行光を得るようにしている。これにより、マイクロレンズ等のレンズアレイを使用した場合と同等のレンズ効果(発光/受光素子とプリント基板内の光導波路間の光結合効率)を得ることができる。しかも、このGIファイバは、既存のレンズと比べて単価が安いため、低コスト化を図ることができる。
また、本発明の他の形態によれば、上記の形態に係る光結合機能付配線基板を製造する方法が提供される。この製造方法は、配線基板の、光学デバイスが搭載されたときにその光出射面又は光入射面に対向する位置に、該配線基板を厚さ方向に貫通するスルーホールを形成する工程と、該スルーホールにGIファイバを挿通させる工程と、前記配線基板の、前記光学デバイスが搭載される側と反対側の面から突出している前記GIファイバの周囲の領域、及び前記スルーホール内に絶縁性樹脂を塗布し、該絶縁性樹脂を硬化させて該GIファイバを固定する工程と、前記配線基板の、前記絶縁性樹脂により覆われている部分の周囲の領域に、所定の厚さのセパレータを貼り付ける工程と、前記セパレータの面に達するまで前記GIファイバ及び前記絶縁性樹脂を研磨し、該セパレータを除去する工程とを含むことを特徴とする。
また、本発明の更に他の形態によれば、上記の形態に係る光結合機能付配線基板を用いて構築された光結合システムが提供される。この光結合システムは、光導波路が内蔵された実装用基板と、該実装用基板上に実装され、少なくとも2つの前記光学デバイスを搭載した光結合機能付配線基板とを具備し、該光結合機能付配線基板に搭載された各光学デバイスと前記実装用基板における前記光導波路とが、前記GIファイバを介して光結合されていることを特徴とする。
図2は本発明の一実施形態に係る光結合機能付配線基板(パッケージ)の構成を断面図の形態で模式的に示したものである。
本実施形態に係るパッケージ(光結合機能付配線基板)10は、発光又は受光の機能を有する光学デバイス1(図中破線で表示)を搭載するためのものであり、また、図1には示していないが光導波路を内蔵したマザーボード等のプリント基板(実装用基板)上に実装されて、後述するように光結合システムを構成する。本パッケージ10に搭載される光学デバイス1の形態としては、例えば、半導体レーザ素子等の発光素子とこれを駆動するIC及び電気入力端子を備えてパッケージ化したもの、あるいは、フォトダイオード等の受光素子とその光出力信号を処理するアンプ/識別回路等の機能を有するIC及び電気出力端子を備えてパッケージ化したものが用いられる。
本実施形態に係るパッケージ(光結合機能付配線基板)10において、11は本パッケージのベース基板としての絶縁性基材(例えば、ビルドアップ多層配線板において用いられているような、ガラス布にエポキシ樹脂、BT樹脂、ポリイミド樹脂、PPE樹脂等を含浸させてなる樹脂基板)、12は樹脂基板11の所要の位置に厚さ方向に貫通して形成されたスルーホールに充填された導体(例えば、銅(Cu))、13a,13bは樹脂基板11の両面にそれぞれスルーホール内の導体12に電気的に接続されるようにして所要の形状にパターン形成された配線層(例えば、Cuめっき層)を示す。各配線層13a,13bは所要の形状にパターン形成されるが、その際、それぞれ所定の箇所にパッドを含むように形成されている。すなわち、光学デバイス1が搭載される側の配線層13aは、搭載する光学デバイス1の電極3の位置に対応する箇所にパッドが画定されるようにパターン形成され、これと反対側の配線層13bは、プリント基板に実装する際に用いられる外部接続端子の接合位置に対応する箇所にパッドが画定されるようにパターン形成されている。なお、図示の例では絶縁性基材(樹脂基板)11の両面に1層ずつ配線層13a,13bが形成された2層配線構造を示しているが、必要に応じて、ビルドアップ法等により更なる多層配線化を行ってもよいことはもちろんである。
また、20は本発明を特徴付ける光導波路としてのGIファイバを示し、本パッケージ10(樹脂基板11)において、図示のように光学デバイス1が搭載されたときにその光出射面2(又は光入射面)に対向する位置に、パッケージ10を厚さ方向に貫通して挿通されている。21はGIファイバ20を本パッケージ10(樹脂基板11)に固定するために形成された樹脂層を示す。また、14a,14bは各配線層13a,13bの各々のパッドとGIファイバ20の両端面とがそれぞれ露出するように配線層13a,13b、樹脂基板11及び樹脂層21を覆って形成された保護膜としてのソルダレジスト層、15a,15bは各ソルダレジスト層14a,14bから露出している配線層13a,13bの各パッドにそれぞれ被着されたニッケル(Ni)/金(Au)のめっき層を示す。
次に、本実施形態に係るパッケージ(光結合機能付配線基板)10を製造する方法について、その製造工程の一例を示す図3及び図4を参照しながら説明する。
先ず最初の工程では(図3(a)参照)、予めビルドアップ法等の周知の方法により作製されたパッケージ(厚さが220μm程度で、樹脂基板11の両面に所要の配線パターン13a,13bが形成された配線基板10a)を用意し、この配線基板10aの特定の位置(すなわち、該基板を構成する樹脂基板11の、光学デバイス1を搭載したときにその光出射面2又は光入射面に対向する位置)に、図示のように配線基板10aを厚さ方向に貫通するスルーホールTHを形成する。スルーホールTHの穴明け加工は、例えば、UV−YAGレーザ、CO2 レーザ等により行う。このスルーホールTHは、後述するようにGIファイバを挿通させるための穴(孔)であり、その穴径は130μm〜135μm程度(GIファイバのクラッド径が125μmの場合)に選定されている。
次の工程では(図3(b)参照)、先ず、配線基板10aの厚み(220μm程度)よりも十分に長いGIファイバ20(例えば、コア径が50μm、クラッド径が125μmで、ポリアミド樹脂により被覆された構造を有するGIファイバ)を所要本数(図示の例では4本)用意し、次に、各GIファイバ20の一方の端面を、例えば研磨シートを用いて研磨し、この片面研磨済みのGIファイバ20を配線基板10aのスルーホールTH内に挿通させる。このとき、フリップチップ実装されるべき光学デバイス1の実装高さに合わせて、GIファイバ20が配線基板10aの表面から突出する高さ(つまり、研磨済み端面PSの位置)を調整する。例えば、GIファイバ20の研磨済み端面PSを配線パターン13aの面と同じ高さになるようにしてもよい。
なお、図3(b)には明確に示していないが、GIファイバ20の端面を研磨するにあたり、好適には当該端面を斜めに(例えば、8°前後の角度をもたせて)研磨するのが望ましい。このようにファイバ端面を斜めにカットすることで、当該端面での光反射による信号減衰量を抑えることができ、より効率的な光結合に寄与する。
次の工程では(図3(c)参照)、配線基板10aのスルーホールTH内に挿通されたGIファイバ20を、絶縁性樹脂により固定する(樹脂層21)。樹脂層21の材料としては、熱硬化型の樹脂を用いてもよいが、その硬化反応には高い温度と時間が必要になるため、好適には紫外線(UV)硬化型の樹脂を使用するのが望ましい。使用するUV硬化樹脂は、変性アクリレート(エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂等)をベース樹脂とし、光重合に必要な反応性アクリルモノマーと光重合開始剤及び添加剤から構成されており、その主反応はラジカル重合である。かかるUV硬化樹脂を使用することにより、常温で処理することができ、また、熱硬化に比べて短時間で硬化するため、作業時間を短縮できるというメリットがある。
具体的には、配線基板10aの裏面(光学デバイス1が搭載される側と反対側の面)の各GIファイバ20の周囲の領域に、UV硬化樹脂をディスペンサで塗布し、基板面に対して各GIファイバ20を垂直に保持した状態で紫外線(UV)を照射し、樹脂を硬化させて各GIファイバ20を固定する。各GIファイバ20を基板面に対して垂直に保持する方法としては、例えば、各GIファイバ20の配設ピッチに合わせてそれぞれ平行なV字状のガイド溝が形成された1対の金型(図示せず)を用意し、配線基板10aの裏面から突出している各GIファイバ20を、その1対の金型間の対応するガイド溝に沿って挟み込むようにする。
次の工程では(図3(d)参照)、配線基板10aの裏面において樹脂層21により覆われている部分の周囲の領域に、所定の厚さtのセパレータSPを貼り付ける。このセパレータSPには、例えば、市販の工業用の両面テープの一方の面に硬いフィルム材を貼り付けて所定の厚さに調整したものが用いられる。
このセパレータSPは、後述する研磨処理の際にその研磨ストッパとして機能し、それによってGIファイバ20を規定の長さ(すなわち、GIファイバ20に入射された光を平行光に変換するレンズ効果を発揮する長さ)に調整する。このため、セパレータSPの厚さtは所定の厚さ、例えば、t=237μm〜243μm程度に選定されている。
次の工程では(図4(a)参照)、配線基板10aの裏面に対し、光学部品用の研磨シート(図示せず)を用いて、セパレータSPの面に達するまでGIファイバ20の端面及び樹脂層21を研磨する。これによって、GIファイバ20の長さが規定の長さ、すなわち、所要のレンズ効果を発揮する長さに調整される。
次の工程では(図4(b)参照)、セパレータSP(図4(a)参照)を剥離して除去する。
最後の工程では(図4(c)参照)、各配線層13a,13bの各々のパッドとGIファイバ20の両端面とがそれぞれ露出するように配線層13a,13b、樹脂基板11及び樹脂層21を覆ってソルダレジスト層(保護膜)14a,14bを形成する。例えば、配線基板10aの両面にエポキシ系、アクリル系等の感光性樹脂からなるソルダレジストを塗布し、それぞれ所要のパッドの形状に従うように露光及び現像(ソルダレジストのパターニング)を行い、当該パッドの領域に対応する部分のソルダレジスト層を開口する。これによって、各配線層13a,13bの各々のパッドのみが露出し、他の部分の配線層13a,13bがソルダレジスト層14a,14bによって覆われたことになる。
さらに、各ソルダレジスト層14a,14bから露出している各々のパッド(Cu)上に、それぞれNi/Auめっきを施し、Ni/Auめっき層15a,15bを形成する。これは、後の段階ではんだ接合を行ったときに当該パッドとの接着性を向上させるためである。以上の工程により、本実施形態のパッケージ10が作製されたことになる。
以上説明したように、本実施形態に係るパッケージ(光結合機能付配線基板)10及びその製造方法によれば、従来の技術で用いられていたような高価なマイクロレンズ等のレンズアレイを用いなくても、パッケージ(光結合機能付配線基板)10に対し、基板垂直方向に同等のレンズ効果(拡散光の集光及び平行光を得る効果)のあるGIファイバ20を挿通させることで、パッケージ10上にフリップチップ実装した光学デバイス1の光出射面2(又は光入射面)と、本パッケージ10が実装されるプリント基板等に内蔵された光導波路とを、GIファイバ20を介して相互に光結合することができる。
また、パッケージ10内の光導波路として用いるGIファイバ20は、既存のレンズと比べて単価が安いため、低コスト化を図ることができる。因みに、月に100,000個のパッケージを製造するものとしてそのコストを概算すると、従来のレンズアレイを実装する場合には、10000円(部品代)+340円(加工費)=10340円のコストを必要とするのに対し、本実施形態のGIファイバ20を埋め込む場合には、300円(部品代)+1200円(加工費)=1500円のコストで済み、製造コストの大幅な削減が可能となる。
また、本実施形態では、パッケージ10に埋め込むGIファイバ20の長さは1mm以下の超短距離伝送となるため、伝送性能としては10Gbps以上の伝送が可能である。さらに、GIファイバ20の比屈折率差を制御することで、各基板厚に対応するファイバ長が得られる。一般的なパッケージの基板厚であれば、製造可能なGIファイバのコア屈折率、比屈折率差の範囲内で対応可能である。
図5は、上述した実施形態に係るパッケージ(光結合機能付配線基板)10を用いて構築された光結合システムの構成を概略的に示したものである。
図示のように光結合システム40は、光学デバイス1を搭載したパッケージ10が、光導波路32を内蔵したマザーボード等のプリント基板(実装用基板)30上に実装されて構成されている。図示の簡単化のため特に示してはいないが、この光結合システム40には少なくとも2つのパッケージ10(一方は発光素子を含む光学デバイス1が搭載されたもので、他方は受光素子を含む光学デバイス1が搭載されたもの)が含まれている。
パッケージ10に光学デバイス1を搭載する際には、例えば、ソルダレジスト層14aの開口部から露出している配線層13aのパッド(Ni/Auめっき層15a)に、搭載する光学デバイス1のパッド上に接合されたはんだバンプ等の電極3が電気的に接続されるように当該デバイス1をフリップチップ実装し、さらに当該ソルダレジスト層14aとの間にアンダーフィル4として透明な樹脂(例えば、エポキシ樹脂)を充填し、熱硬化させて接着する。一方、パッケージ10をプリント基板30に実装する際には、同様にしてソルダレジスト層14bの開口部から露出している配線層13bのパッド(Ni/Auめっき層15b)に、外部接続端子としてのはんだボールをリフローにより接合し(はんだバンプ)、このはんだバンプ16を介してプリント基板30上の対応するパッド31に接続し、さらに当該ソルダレジスト層14bとの間に同様の透明な樹脂(アンダーフィル)を充填し、熱硬化させて接着する。
プリント基板30に内蔵された光導波路32は、コア層32aとこれを挟むようにしてその上下に形成されたクラッド層32bとから構成されており、例えば、ポリメチルメタクリレート(PMMA)、エポキシ樹脂、ポリイミド樹脂などにより形成されている。図5には詳細に示していないが、光導波路32は、例えばコア層32aを上下のクラッド層32bで挟まれた領域が線状もしくはシート状に形成されて構成されている。また、光導波路32の端部には、光導波路32内を伝搬する光(点線の矢印で図示)の進行方向に対して45°の角度でその反射面を傾斜させた反射ミラー33が形成されており、この反射ミラー33の上方部分は開口されている(開口部34)。この開口部34の位置は、パッケージ10がプリント基板30に実装されたときにGIファイバ20の端面に対向する位置に選定されている。
かかる構成により、光学デバイス1から出射された光は、図中点線で示すように、GIファイバ20を介して開口部34に入射され、反射ミラー33で反射されて光導波路32内のコア32aに入射される。同様にして、光導波路32内を伝搬してきた光は、反射ミラー33で反射されて開口部34から出射され、GIファイバ20を介して光学デバイス1に入射される。つまり、光学デバイス1の光出射面2(又は光入射面)とプリント基板30に内蔵された光導波路32とは、パッケージ10に挿通されたGIファイバ20を介して相互に光結合される。
本発明に用いるグレーデッド・インデックス(GI)ファイバの説明図である。 本発明の一実施形態に係る光結合機能付配線基板(パッケージ)の構成を模式的に示す断面図である。 図2のパッケージの製造工程(その1)を示す断面図である。 図3の製造工程に続く製造工程(その2)を示す断面図である。 図2のパッケージを用いて構築された光結合システムの構成を概略的に示す断面図である。
符号の説明
1…光学デバイス、
2…光出射面(又は光入射面)、
3…電極、
10…光結合機能付配線基板(パッケージ)、
11…樹脂基板(絶縁性基材)、
13a,13b…配線層、
14a,14b…ソルダレジスト層(保護膜)、
15a,15b…Ni/Auめっき層、
16…はんだバンプ(外部接続端子)、
20…グレーデッド・インデックス構造のファイバ(GIファイバ)、
21…(ファイバ固定用の)樹脂層(絶縁性樹脂)、
30…プリント基板(実装用基板)、
32…光導波路、
33…反射ミラー、
40…光結合システム、
TH…スルーホール、
PS…GIファイバの研磨済み端面、
SP…セパレータ。

Claims (9)

  1. 発光又は受光の機能を有する光学デバイスを搭載するための配線基板において、該配線基板の、前記光学デバイスが搭載されたときにその光出射面又は光入射面に対向する位置に、該配線基板を厚さ方向に貫通してグレーデッド・インデックス構造のファイバが挿通されていることを特徴とする光結合機能付配線基板。
  2. 前記ファイバの、前記光学デバイスに対向する側の端面が、所定の角度で斜めに研磨されていることを特徴とする請求項1に記載の光結合機能付配線基板。
  3. 前記配線基板の両面が、前記ファイバの両端面と前記配線基板の両面にそれぞれ所要の形状に形成された配線層の各パッドとを露出させて、それぞれ保護膜により被覆されていることを特徴とする請求項1に記載の光結合機能付配線基板。
  4. 配線基板の、光学デバイスが搭載されたときにその光出射面又は光入射面に対向する位置に、該配線基板を厚さ方向に貫通するスルーホールを形成する工程と、
    該スルーホールにグレーデッド・インデックス構造のファイバを挿通させる工程と、
    前記配線基板の、前記光学デバイスが搭載される側と反対側の面から突出している前記ファイバの周囲の領域、及び前記スルーホール内に絶縁性樹脂を塗布し、該絶縁性樹脂を硬化させて該ファイバを固定する工程と、
    前記配線基板の、前記絶縁性樹脂により覆われている部分の周囲の領域に、所定の厚さのセパレータを貼り付ける工程と、
    前記セパレータの面に達するまで前記ファイバ及び前記絶縁性樹脂を研磨し、該セパレータを除去する工程とを含むことを特徴とする光結合機能付配線基板の製造方法。
  5. 前記セパレータを除去した後に、前記配線基板の両面に、前記ファイバの両端面と前記配線基板の両面にそれぞれ所要の形状に形成された配線層の各パッドとを露出させて、それぞれ保護膜を形成する工程を含むことを特徴とする請求項4に記載の光結合機能付配線基板の製造方法。
  6. 前記スルーホールに前記ファイバを挿通させる工程において、該ファイバの、前記光学デバイスに対向する側の端面を所定の角度で斜めに研磨した後、当該スルーホールに挿通させることを特徴とする請求項4に記載の光結合機能付配線基板の製造方法。
  7. 前記ファイバを固定する工程において、前記絶縁性樹脂として紫外線硬化型の樹脂を用いることを特徴とする請求項4に記載の光結合機能付配線基板の製造方法。
  8. 前記セパレータの所定の厚さは、前記ファイバが入射光を平行光に変換するレンズ効果を発揮する長さに選定されていることを特徴とする請求項4に記載の光結合機能付配線基板の製造方法。
  9. 光導波路が内蔵された実装用基板と、
    該実装用基板上に実装され、少なくとも2つの前記光学デバイスを搭載した請求項3に記載の光結合機能付配線基板とを具備し、
    該光結合機能付配線基板に搭載された各光学デバイスと前記実装用基板における前記光導波路とが、前記グレーデッド・インデックス構造のファイバを介して光結合されていることを特徴とする光結合システム。
JP2004160976A 2004-05-31 2004-05-31 光結合機能付配線基板及びその製造方法と光結合システム Pending JP2005338704A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004160976A JP2005338704A (ja) 2004-05-31 2004-05-31 光結合機能付配線基板及びその製造方法と光結合システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004160976A JP2005338704A (ja) 2004-05-31 2004-05-31 光結合機能付配線基板及びその製造方法と光結合システム

Publications (1)

Publication Number Publication Date
JP2005338704A true JP2005338704A (ja) 2005-12-08

Family

ID=35492332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004160976A Pending JP2005338704A (ja) 2004-05-31 2004-05-31 光結合機能付配線基板及びその製造方法と光結合システム

Country Status (1)

Country Link
JP (1) JP2005338704A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265677A (ja) * 2008-04-26 2009-11-12 Gwangju Inst Of Science & Technology 光連結構造物およびその製造方法
JP2010096941A (ja) * 2008-10-16 2010-04-30 Kyocera Corp 光伝送基板および光モジュール、ならびに光伝送基板の製造方法
JP2011118448A (ja) * 2006-11-28 2011-06-16 Sumitomo Bakelite Co Ltd 光配線部品
JP2011237531A (ja) * 2010-05-07 2011-11-24 Fujitsu Ltd 光伝送装置、及び、光伝送システム
WO2013046501A1 (ja) * 2011-09-27 2013-04-04 日本電気株式会社 光モジュール及び光伝送装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011118448A (ja) * 2006-11-28 2011-06-16 Sumitomo Bakelite Co Ltd 光配線部品
JP2009265677A (ja) * 2008-04-26 2009-11-12 Gwangju Inst Of Science & Technology 光連結構造物およびその製造方法
JP2010096941A (ja) * 2008-10-16 2010-04-30 Kyocera Corp 光伝送基板および光モジュール、ならびに光伝送基板の製造方法
JP2011237531A (ja) * 2010-05-07 2011-11-24 Fujitsu Ltd 光伝送装置、及び、光伝送システム
US8783971B2 (en) 2010-05-07 2014-07-22 Fujitsu Limited Optical transmission apparatus and optical transmission system
WO2013046501A1 (ja) * 2011-09-27 2013-04-04 日本電気株式会社 光モジュール及び光伝送装置

Similar Documents

Publication Publication Date Title
KR100720854B1 (ko) 광·전기배선기판, 실장기판 및 광전기배선기판의 제조방법
US9201203B2 (en) Photoelectric composite substrate and method of manufacturing the same
JP5989412B2 (ja) 光モジュール及び光モジュールの製造方法
JP5461897B2 (ja) 光導波路積層配線基板及びその製造方法と実装構造
JPWO2007111236A1 (ja) 光電気配線板、光通信用デバイス及び光通信用デバイスの製造方法
JPWO2016151670A1 (ja) 光伝送モジュール、内視鏡、および前記光伝送モジュールの製造方法
US9014520B2 (en) Photoelectric mixed substrate and optical module
JP2007004043A (ja) 配線基板、配線基板を用いたモジュール、およびモジュール集合体
JP2010190994A (ja) 光電気混載モジュールおよびその製造方法
US8737794B2 (en) Two-layer optical waveguide and method of manufacturing the same
JP5328095B2 (ja) 光伝送基板、光電子混載基板、光モジュールおよび光電気回路システム
JP2006259730A (ja) 光学素子を結合するための装置及び方法
JP5230324B2 (ja) 光伝送基板および光モジュール、ならびに光伝送基板の製造方法
JP5349192B2 (ja) 光配線構造およびそれを具備する光モジュール
JP2005338704A (ja) 光結合機能付配線基板及びその製造方法と光結合システム
JP2007178950A (ja) 光配線基板および光配線モジュール
JP2008158388A (ja) 光電気回路基板、光モジュールおよび光電気回路システム
JP2005195991A (ja) 光電複合装置及びこの装置に用いられる光導波路、並びに光電複合装置の実装構造
JP7321907B2 (ja) 光導波路、光導波路装置及び光導波路の製造方法
JP2012088634A (ja) 光導波路デバイス及びその製造方法
JP2008134492A (ja) 光伝送システムおよびそれを具備する光モジュール
JP5976769B2 (ja) 光導波路及び光導波路装置
JP2007187870A (ja) 光素子の基板埋め込み構造を有する光モジュール
JP2007086367A (ja) 光ピン、光ピンコネクタ及び光路変換用モジュール
JP4427646B2 (ja) 光接続手段を備えた光デバイス及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090825