JP2005337124A - バルブ型水車発電設備 - Google Patents

バルブ型水車発電設備 Download PDF

Info

Publication number
JP2005337124A
JP2005337124A JP2004157717A JP2004157717A JP2005337124A JP 2005337124 A JP2005337124 A JP 2005337124A JP 2004157717 A JP2004157717 A JP 2004157717A JP 2004157717 A JP2004157717 A JP 2004157717A JP 2005337124 A JP2005337124 A JP 2005337124A
Authority
JP
Japan
Prior art keywords
valve
flow
water turbine
power generation
guide vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004157717A
Other languages
English (en)
Inventor
Hideyuki Kawajiri
尻 秀 之 川
Norio Otake
竹 典 男 大
Shintaro Mikata
伸太郎 三ヶ田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004157717A priority Critical patent/JP2005337124A/ja
Publication of JP2005337124A publication Critical patent/JP2005337124A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

【課題】 ガイドベーン負圧面での流れの剥離を抑制し、水車効率の向上を図ったバルブ型水車発電設備を提供すること。
【解決手段】 内部に発電機5を内蔵したバルブ2を立方向の流水路1内に配設するとともに、上記発電機5の主軸6の先端部にランナ7を取り付け、上記発電機の主軸6及びランナ7を上記流水路1と同心状に配設したバルブ型水車発電設備に関するものであり、要求負荷に応じてランナ7に流入する水量を調整するガイドベーン8の上流側における上記バルブ2の外壁面に、ガイドベーン8に流入する流れを整流する整流羽根15を設けた
【選択図】 図1

Description

本発明は、発電機を内蔵したバルブを流水路内に配設するとともに、上記発電機の主軸の先端部にランナを取り付け、上記発電機の主軸及びランナを上記流水路と同心状に配設したバルブ型水車発電設備に関する。
図13は、比較的低落差に適用される立軸のバルブ型水力発電設備の断面図であり、図中符号1は基礎構造物により形成された立方向の流水路であり、その流水路1内にはたまご型をしたバルブ2が配設されており、そのバルブ2内に発電機固定子3、回転子4を主要構成部材とした発電機5が内蔵されている。回転子4には主軸6が結合されており、その主軸6の先端部にはランナ7が取り付けられている。ランナ7の上流には流量を調節する複数枚のガイドベーン8が周方向に配列されており、流水路1の外側にあるガイドベーン操作機構9によって連動して開度が調節されるようにしてある。上記ランナ7には複数枚のランナベーン7aが設けられており、そのランナベーン7aは上記主軸6の内部を貫通して発電機の回転子4の上部まで延びているランナベーン操作杆10を介してランナベーン駆動装置11により開閉操作されるようにしてある。さらに、その上流にはバルブ2を支えるためのステー12と呼ばれる支持部材がバルブ2本体から流水路外壁に向かって放射状に設置されている。さらに発電機内部を点検するための点検口13がバルブ2の上部と下部にそれぞれ設置されており、これもバルブを支える重要な構造物のひとつとなっている。
水車運転中の水の流れ方向を図中矢印にて示すが、ダムの底部付近に配置された流水路構造物内部に導かれた水は中央部のバルブ2を取り囲むように下方に向かって流れガイドベーン8によって整流されランナ7へと導かれる。ランナ7は複数のランナベーン7aとランナベーン7aを保持するランナボス7bによって構成されており、要求負荷に対応するためにガイドベーン8の開度と連動したランナベーン7aの取付角度を設定し、負荷変動に対しても高効率な水車運転が可能なようにしてある。ランナ7内で仕事をした水はその下流に位置する吸出し管14へと流出し、図示しない下池へと導かれる。
特開平9−280154号公報
しかしながら、例えば、適用落差範囲が広く最も一般的に利用されているフランシス水車では、ケーシングからステーベーン、ガイドベーンへと徐々に流れを転向させて、要求される出力に応じた角運動量を持った流れがランナへと流入するのに対し、バルブ水車の場合、水車の回転軸と平行で周方向の速度成分をほとんど持たない流れが、ランナに適正な角運動量を持って流入するようにガイドベーンによって急激に転向される。そのためガイドベーン負圧面で流れの剥離が起こりやすく、剥離によって生じた渦により水力損失が増大し、水車効率低下の要因となっている。
本発明は、ガイドベーン負圧面での流れの剥離を抑制し、水車効率の向上を図ったバルブ型水車発電設備を提供することを目的とする。
請求項1に係る発明は、発電機を内蔵したバルブを流水路内に配設するとともに、上記発電機の主軸の先端部にランナを取り付け、上記発電機の主軸及びランナ軸を上記流水路と同心状に配設したバルブ型水車発電設備において、要求負荷に応じてランナに流入する水量を調整するガイドベーンの上流側における上記バルブの外壁面に、ガイドベーンに流入する流れを整流する整流羽根を設けたことを特徴とする。
バルブ型水車においては、上池から流入する流れはガイドベーンに流入する直前までは無旋回に近い流れであり、この流れをガイドベーンによって転向させることにより要求された出力に応じた流量調整を行っているが、流れを急激に転向させるためにガイドベーン負圧面で剥離が生じやすい。そこで、ガイドベーンの上流に整流羽根を設けることにより、ガイドベーンに流入する前の流れに或る程度の回転方向成分の速度が与えられ、整流羽根とガイドベーンとで段階的に流れが転向され、ガイドベーン負圧面での流れの剥離が抑制される。
請求項2に係る発明は、請求項1に係る発明において、上記整流羽根は、その下流側に位置して流量を調整するガイドベーンと同数枚配置されていることを特徴とする。
このように、ガイドベーンの上流に設置する整流羽根をガイドベーンと同数設置することにより、ガイドベーン枚数よりも整流羽根の枚数が少ない場合に比べて整流効果を高めることができ、乱れの少ない流れをガイドベーンに流入させることができる。また整流羽根とガイドベーンの相対位置を適正化することで、周りに比べて速度が小さい整流羽根後流の影響により、ガイドベーンの摩擦損失を低減できる。
請求項3に係る発明は、請求項1に係る発明において、上記整流羽根の上流側部は流水路の軸線に対して平行方向に延び、下流側部は下流に向かって傾斜するように配置されていることを特徴とする。
しかして、この発明においてはステーからの流れと整流羽根の入口とのマッチングが取れるため、整流羽根入口での衝突損失を最小限に抑えることができる。またガイドベーンへ向かう傾斜は要求される水車性能に応じて適正な角度とすることにより、ガイドベーンの入口衝突損失を低減できる。
請求項4に係る発明は、請求項1に係る発明において、バルブ外壁に設置する上記整流羽根の流路幅方向高さをH、バルブ外壁とバルブ外壁と相対する流水路壁面間の流路幅をH、その比をH/Hするとき、
0.1≦ H/H≦ 0.3
としたことを特徴とする。
整流羽根の高さが小さくても、流水路の内径側であるバルブ外壁側で発生するガイドベーン負圧面での剥離を効果的に抑制することができるので、この発明においては請求項1に係る発明における効果に加え、整流羽根の高さを必要最小限に抑えて、整流羽根で発生する摩擦損失の上昇を低減することができる。
請求項5に係る発明は、請求項1に係る発明において、上記整流羽根の周方向最大厚みをT(mm)、当該整流羽根の枚数をZ、バルブ外壁における当該整流羽根入口端の半径位置をR(mm)としたとき、
0.04 ≦ ZT/2πR ≦ 0.10
としたことを特徴とする。
しかして、整流羽根に必要な整流効果を得るためにある程度の厚さを持たすことによって請求項1の効果を得るとともに、整流羽根での摩擦損失が比較的小さい範囲で、整流羽根の厚さを選定することができる。
請求項6に係る発明は、請求項1に係る発明において、上記整流羽根の流水方向長さをL、当該整流羽根の下流に位置するガイドベーンのバルブ外壁面における流水方向長さをLb、その比をL/Lbとするとき、
0.8≦ L/Lb ≦ 1.2
としたことを特徴とする。
しかして、この発明は、請求項1に係る発明の効果に加え、整流羽根において、ガイドベーンと同様の理由により発生し得る負圧面での剥離による渦損失と、羽根が延びてポートが狭くなることにより増加する摩擦損失の和を最小減にする範囲で、整流羽根の長さを選定することが可能となる。
請求項7に係る発明は、発電機を内蔵したバルブを立方向の流水路内に配設するとともに、上記発電機の主軸の先端部にランナを取り付け、上記発電機の主軸及びランナを上記流水路と同心状に配設したバルブ型水車発電設備において、水車全体を支持するステーの下流形状を水車軸線に対して非対称形状としたことを特徴とする。
すなわち、上述のようにステーの下流形状を鉛直軸に対して非対称形状とすることによりステーの出口を回転方向に傾斜させることで、ガイドベーンに流入する前の流れを或る程度転向させ、急激な流れの転向により発生するガイドベーン負圧面での流れの剥離を抑制することができる。
請求項8に係る発明は、請求項7に係る発明において、上記ステーの傾斜角は下流側に位置するガイドベーンの中間開度と等しくしたことを特徴とする。
しかして、ガイドベーン中間開度での入口角度とステー出口の傾斜角度を合わせることにより、広い運転範囲で請求項7に係る発明の効果を得ることができる。
請求項9に係る発明は、請求項7に係る発明において、上記ステーの断面形状を非対称形状とする範囲を、ステーのバルブ外壁側からの流路幅方向高さをHs、バルブ外径と相対する外径流路で構成される流路幅をH、その比をHs/Hとするとき、
0.1≦ Hs/H≦ 0.3
としたことを特徴とする。
すなわち、この発明は、請求項7に係る発明の効果に加え、ステーの内径側のみを非対称とするだけでも、流路の内径側であるバルブ外壁付近で発生するガイドベーン負圧面での剥離を効果的に抑制することができ、またステーを非対称にすることによるステーの水力損失の増加を最小限に抑えることが可能となる。
本発明は、上記構成により、バルブ型水車発電設備において、ガイドベーン負圧面での流れの剥離を抑制し、水車効率の向上を図ることができる。
以下、添付図面を参照として本発明の実施の形態について説明する。
図1は立軸バルブ水車の垂直断面図であり、図2は内径側のバルブ壁面近傍における流路に沿った図1におけるV−V線に沿う仮想断面における展開図である。図1に示すように、要求負荷に応じて水車に流入する水量を調整するガイドベーン8の上流の前記発電機5を収納するバルブ2の外壁面には、ガイドベーン8に流入する流れを整流する整流羽根15が設けられている。
しかして、鉛直上方から流入してきた水は、発電機を内蔵するバルブ2の周りの環状流水路を通って支持部材であるステー12の間を通り、要求された出力に応じて流量を調整するガイドベーン8により転向され、ランナ7に回転力として作用し、ランナ7と主軸によりカップリングされてバルブ2に内蔵されている発電機により電気を発生する。
ところで、立軸バルブ型水車においては、上池から流入する流れはガイドベーン8に流入する直前までは回転方向の速度成分を持たない無旋回に近い流れであり、この流れをガイドベーン8によって転向させて、要求された出力に応じた流量調整を行っているが、上記ガイドベーン8においては、流れが急激に転向されるために、図3(a)に示すように、ガイドベーン負圧面で剥離16が生じやすい。そこで、図3(b)に示すように、ガイドベーン8の上流に整流羽根15を設けることで、その整流効果と、ガイドベーン8に流入する前に流れに或る程度の回転方向速度成分が与えられ、整流羽根15とガイドベーン8とで段階的に流れが転向されることにより、ガイドベーン負圧面での流れの剥離が抑制される。
その結果、図3(b)に示すように、図3(a)に示すような剥離を伴わないガイドベーン翼面に沿った流れを実現することが可能となり、剥離による渦損失を低減でき、水力効率を向上させることができる。また、ランナ7に流入する流れの乱れが低減されることにもなるので、ランナ7での水力効率の向上及び低振動化も実現可能となる。
実施例2は、実施例1においてガイドベーン8の上流に設置された整流羽根15をガイドベーン8と同数設置したものである。しかして、この場合にはガイドベーン枚数よりも整流羽根15の枚数が少ない場合に比べて整流効果を高めることができ、乱れの少ない流れをガイドベーン8に流入させることができるため、ガイドベーン負圧面での剥離を抑制することが可能となる。また静止翼列が何段かに分かれて存在する場合、その相対位置を適正化することで水力損失を低減できるが、本実施例では、1対1で対応する整流羽根15とガイドベーン8の周方向の相対位置を適正化することで、整流羽根15の後流(翼後端より発生する速度の遅い乱れた流れ)の影響により、各ガイドベーンにおける摩擦損失を低減することができ、水力効率を向上させることができる。
図4は実施例3を示す図であり、図2と同様、V−V線に沿う仮想断面における展開図である。本実施例では、ガイドベーン8の上流に設置する整流羽根15の入口上流側は流水路の軸線に対して平行方向に延び、下流側はガイドベーン8へとスムーズに流れが流入するように傾斜されている。立軸バルブ水車のステー12は強度部材としての役割が大きく一般的に対称な断面形状をしており、ステー12を通った流れは、旋回成分を持たない鉛直方向に平行な流れとなる。
本実施例によれば、ステー12からの流れと整流羽根15の入口とのマッチングが取れるため、整流羽根15の入口での衝突損失を最小限に抑えることができ、またガイドベーン8へ向かう傾斜は要求される水車性能に応じて適正な角度とされることにより、ガイドベーン8の入口衝突損失を低減できるため、広い運転範囲で、実施例1と同様の効果を得ることができる。
図5(a)、(b)は水車の子午断面におけるステー12からガイドベーン8までの流路を拡大したものであり、図5(a)は整流羽根15がない場合、図5(b)は整流羽根15を設けた場合である。また、ガイドベーン8の負圧面に油膜法により流れの可視化試験を行った結果の流跡線17も同時に示す。図6は、当該整流羽根の内径側からの流路幅方向高さHを変化させたときのガイドベーン8と整流羽根15で発生する水力損失ΔHの関係を表したものである。すなわち、整流羽根15の内径側からの流路幅方向高さをH、バルブ外壁とバルブ外壁と相対する外側流路で構成される流路幅をHとするとき、上記水力損失ΔHは上記H/Hが 0から0.1の範囲で急激に減少し、さらに0.3以上になると次第に増加する。
しかして、本実施例においては、前記整流羽根15の内径側からの流路幅方向高さをH、バルブ外壁とバルブ外壁と相対する外側流路で構成される流路幅をHとするとき、その比H/Hが 0.1≦ H/H≦ 0.3 となるよう構成されている。
前述のようにガイドベーン8の上流に整流羽根15を設けることによって、ガイドベーン負圧面での剥離を抑制することが可能となるが、内径側ほど流れ方向に対する流れの増速率が高いため転向角がつきにくく、図5(a)に示すように内径側の領域で剥離20が起こりやすい。
また、整流羽根15の高さが小さいときは剥離を十分抑制できないためあまり損失を低減することができず、高くするに従って整流羽根で発生する摩擦損失が増加するため剥離抑制による損失低減効果が相殺される(図6)。
しかし、本実施例によれば、図5(b)のように実施例1と同様に剥離が抑制されることに加え、整流羽根15の高さを必要最小限に抑えることができるので、整流羽根15で発生する摩擦損失の上昇を低減することができ、水力効率を向上させることが可能となる。
図7(a)、(b)は、図2と同様のV−V線に沿う仮想断面における展開図であり、図7(c)は当該整流羽根付近の子午断面図である。また、図8は、バルブ外壁における整流羽根15入口端の半径をR(mm)、整流羽根15の厚みをT(mm)、整流羽根15の枚数をZとしたときの、半径Rでの円周の長さと全補助羽根の厚みの和との比 ZT/2πRと、水力損失ΔHとの関係を示す図である。
整流羽根15は流れを整流すると共に、流れを転向させてガイドベーン8に導く役割を果たす。そのため図8の鎖線で示すように、整流羽根15が薄くてZT/2πRが0.04以下であると、十分な整流効果を持たないため、うまく翼面に沿った流れを作り出すことができず、整流羽根での転向角がつかないため、ガイドベーン負圧面での剥離を満足に抑制できない。また逆に整流羽根が厚すぎ、ZT/2πRが0.1以上になるとると、図7(b)の破線で示すように整流羽根15間のポート縮小に伴って流速が増加するため、図8の破線で示すように摩擦損失が増大してしまい、剥離抑制による水力効率向上効果を相殺してしまう。
ところが、本実施例においては、整流羽根の周方向最大厚みをT(mm)、当該整流羽根の枚数をZ、バルブ外壁における当該整流羽根入口端の半径位置をR(mm)としたとき、0.04 ≦ ZT/2πR ≦ 0.10 となるようにしてある。
したがって、本実施例においては、実施例1と同様の効果が得られると共に、整流羽根15で発生する摩擦損失を最小限に抑えることができるため、さらに水力効率を向上させることができる。
図9(a)は、図2(b)と同様の断面の展開図であり、図9(b)はバルブ壁面に置けるガイドベーン8の翼弦長Loと整流羽根15の翼弦長Lとの比L/Loと、水力損失ΔHとの関係を示す図である。この図9(b)に示すように、ガイドベーン8の翼弦長L0と整流羽根15の翼弦長Lとの比L/Loが0.8以下である、すなわち整流羽根15が短すぎるとガイドベーンの場合と同様の理由により整流羽根の負圧面で剥離が発生してしまう。また長くしすぎ、比L/Loが1.2以上であると、翼長が長くなることにより摩擦損失が増大することに加えて、整流羽根間で形成されるポート径が減少するために流れが必要以上に増速されて急激に摩擦損失が増大する。
そこで、本実施例においては、上記整流羽根の流水方向長さをL、当該整流羽根の下流に位置するガイドベーンのバルブ外壁面における流水方向長さをLb、その比をL/Lbとするとき、 0.8≦ L/Lb ≦ 1.2 となるようにしてある。
したがって、図9(b)に示すように、水力損失ΔHが小さくなり、実施例1における効果に加え、整流羽根における剥離を抑制し、また摩擦損失の増加を最小限に留めることができる範囲で整流羽根の長さを決定できるため、水力効率を向上させることが可能となる。
図10は、実施例7を示す図であり、一点鎖線で示す左右対称な従来のステー12に対し、実線で示すようにステー12の先端部がランナ7の回転方向に傾斜されている。しかして、本実施例によれば、従来であれば、図11(a)に示すようにステー12を通った流れが鉛直方向に平行な向きでガイドベーン8に流入していたためにガイドベーン負圧面で剥離が生じていたことに対して、図11(b)に示すように予めステー12で流れを転向させておくことにより、実施例1と同様にこの剥離を抑制することができ、水力損失の低減が可能となる。すなわち、ステー12を傾かせることによりステー12に近い部分の流れだけでなく、ステー12の下流側全体の流れが傾くことになるため、ガイドベーン負圧面での剥離を抑制することができる。さらに、実施例1のように整流羽根15を追加しない分、簡素な構造とすることができる。ステーを非対称とすることによりステーで発生する水力損失は若干増加するが、ガイドベーン流路部に比べて流速が遅いためその絶対値は小さく、ステーでの損失増加分を補って余りある効果を得ることができるため、水力効率を向上させることが可能となる。
またステー出口端の傾斜角度をガイドベーンの中間開度におけるガイドベーン入口角度とすることにより、幅広い運転範囲でその効果を得ることができる。
図12(a)は本発明実施後の水車垂直断面を表し、ガイドベーン負圧面には流跡線17を示す。図12(b)は当該ステー12の非対称とする部分の高さHsを変化させたときのステー12及びガイドベーン8の流路部における水力損失ΔHを示している。この図12(b)に示すように、ステー断面形状を非対称とする当該整流羽根の内径側からの流路幅方向高さをHs、バルブ外壁とバルブ外壁と相対する外側流路で構成される流路幅をH0とするとき、その比がHs/H0は0.1以下において急激に低下し、0.3以上になると次第に増加する。
しかして、本実施例においては、ステー断面形状を非対称とする当該整流羽根の内径側からの流路幅方向高さをHs、バルブ外壁とバルブ外壁と相対する外側流路で構成される流路幅をH0とするとき、その比Hs/H0が 0.1≦Hs/H0≦0.3 となるように構成されている。
しかして、本実施例によれば、ガイドベーン負圧面で剥離が起こりやすいバルブ壁面近くの流れをステー12で転向させてガイドベーンに流入させることにより、実施例7における効果に加えて、ステーの変更を最小限にすることができるため、ガイドベーン負圧面での剥離を効果的に抑制することができ、水力効率を向上させることが可能となる。またステーで流れを転向させることによるステーでの水力損失の増加を最小限にすることができるため、さらに水力効率を向上させることが可能となる。
なお、上記実施例においては立軸のバルブ型水車発電装置について説明したが、横軸型のものに適用できることは勿論である。
本発明の実施例1の概略構成を示す図。 内径側のバルブ壁面近傍における流路に沿った図1におけるV−V線に沿う仮想断面における展開図。 (a)、(b)は実施例1による効果説明図。 本発明の実施例2を示す図。 (a)、(b)は、本発明の実施例3の説明図。 H/H0とΔHとの関係を示す図。 (a)、(b)、(c)は、実施例5の説明図。 ZT/2πRとΔHとの関係を示す図。 (a)は実施例6を示す図、(b)はL/L0とΔHとの関係を示す図。 本発明の実施例7を示す図。 (a)、(b)は図10の作動説明図。 (a)、(b)は、実施例8の説明図。 従来の立軸バルブ型水車の縦断面図。
符号の説明
1 流水路
2 バルブ
3 発電機固定子
4 発電機回転子
5 発電機
7 ランナ
7a :ランナベーン
8 ガイドベーン
12 ステー
14 点検口
15 整流羽根
16 剥離
17 流跡線

Claims (9)

  1. 発電機を内蔵したバルブを流水路内に配設するとともに、上記発電機の主軸の先端部にランナを取り付け、上記発電機の主軸及びランナを上記流水路と同心状に配設したバルブ型水車発電設備において、要求負荷に応じてランナに流入する水量を調整するガイドベーンの上流側における上記バルブの外壁面に、ガイドベーンに流入する流れを整流する整流羽根を設けたことを特徴とする、バルブ型水車発電設備。
  2. 上記整流羽根は、その下流側に位置して流量を調整するガイドベーンと同数枚配置されていることを特徴とする、請求項1記載のバルブ型水車発電設備。
  3. 上記整流羽根の上流側部は流水路の軸線に対して平行方向に延び、下流側は下流に向かって傾斜するように形成されていることを特徴とする、請求項1記載のバルブ型水車発電設備。
  4. バルブ外壁に設置する上記整流羽根の流路幅方向高さをH、バルブ外壁とバルブ外壁と相対する流水路壁間の流路幅をH、その比をH/Hとするとき、
    0.1≦ H/H≦ 0.3
    としたことを特徴とする、請求項1記載のバルブ型水車発電設備。
  5. 上記整流羽根の周方向最大厚みをT(mm)、当該整流羽根の枚数をZ、バルブ外壁における当該整流羽根入口端の半径位置をR(mm)としたとき、
    0.04 ≦ ZT/2πR ≦ 0.10
    としたことを特徴とする、請求項1記載のバルブ型水車発電設備。
  6. 上記整流羽根の流水方向長さをL、当該整流羽根の下流に位置するガイドベーンのバルブ外壁面における流水方向長さをLb、その比をL/Lbとするとき、
    0.8≦ L/Lb ≦ 1.2
    としたことを特徴とする、請求項1記載のバルブ型水車発電設備。
  7. 発電機を内蔵したバルブを流水路内に配設するとともに、上記発電機の主軸の先端部にランナを取り付け、上記発電機の主軸及びランナを上記流水路と同心状に配設した立軸バルブ型水車発電設備において、水車全体を支持するステーの下流形状を水車軸線に対して非対称形状としたことを特徴とする、バルブ型水車発電設備。
  8. 上記ステーの傾斜角は下流側に位置するガイドベーンの中間開度と等しくしたことを特徴とする、請求項7記載のバルブ型水車発電設備。
  9. 上記ステーの断面形状を非対称形状とする範囲を、ステーのバルブ外壁側からの流路幅方向高さをHs、バルブ外径と相対する外径流路で構成される流路幅をH、その比をHs/Hとするとき、
    0.1≦ Hs/H≦ 0.3
    としたことを特徴とする、請求項7記載のバルブ型水車発電設備。
JP2004157717A 2004-05-27 2004-05-27 バルブ型水車発電設備 Withdrawn JP2005337124A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004157717A JP2005337124A (ja) 2004-05-27 2004-05-27 バルブ型水車発電設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004157717A JP2005337124A (ja) 2004-05-27 2004-05-27 バルブ型水車発電設備

Publications (1)

Publication Number Publication Date
JP2005337124A true JP2005337124A (ja) 2005-12-08

Family

ID=35490968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004157717A Withdrawn JP2005337124A (ja) 2004-05-27 2004-05-27 バルブ型水車発電設備

Country Status (1)

Country Link
JP (1) JP2005337124A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401135A (zh) * 2010-09-13 2012-04-04 株式会社东芝 流体机械
CN109945102A (zh) * 2019-03-19 2019-06-28 佛山市南海顺展模具灯饰金属制品有限公司 一种圆饼刷自清洁喷泉led水底灯
CN109958929A (zh) * 2019-03-19 2019-07-02 佛山市南海顺展模具灯饰金属制品有限公司 一种自清洁喷泉led水底灯
CN113574268A (zh) * 2019-03-14 2021-10-29 泰利西斯特姆能源有限公司 用于流体动力涡轮的多级段罩部

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401135A (zh) * 2010-09-13 2012-04-04 株式会社东芝 流体机械
CN102401135B (zh) * 2010-09-13 2016-01-13 株式会社东芝 流体机械
CN113574268A (zh) * 2019-03-14 2021-10-29 泰利西斯特姆能源有限公司 用于流体动力涡轮的多级段罩部
CN109945102A (zh) * 2019-03-19 2019-06-28 佛山市南海顺展模具灯饰金属制品有限公司 一种圆饼刷自清洁喷泉led水底灯
CN109958929A (zh) * 2019-03-19 2019-07-02 佛山市南海顺展模具灯饰金属制品有限公司 一种自清洁喷泉led水底灯
CN109945102B (zh) * 2019-03-19 2021-10-26 佛山市南海顺展模具灯饰金属制品有限公司 一种圆饼刷自清洁喷泉led水底灯
CN109958929B (zh) * 2019-03-19 2021-10-26 佛山市南海顺展模具灯饰金属制品有限公司 一种自清洁喷泉led水底灯

Similar Documents

Publication Publication Date Title
CA1179238A (en) Hydropower turbine system
US6736594B2 (en) Axial-flow type hydraulic machine
JP5454963B2 (ja) ミキサおよびエジェクタを備える水力タービン
JP2003074306A (ja) 軸流タービン
JP2009085185A (ja) 軸流タービンおよび軸流タービン段落構造
JP2008180130A (ja) 軸流水車およびその運転方法
JP2005009321A (ja) フランシス形ランナ
JP3898311B2 (ja) 水車またはポンプ水車
JP4776333B2 (ja) 水力機械のガイドベーン及びそのガイドベーンを備えた水力機械
JP2005337124A (ja) バルブ型水車発電設備
US1748892A (en) Hydraulic process and apparatus
US6334757B1 (en) Water turbine
US1703081A (en) Hydraulic turbine
JP2009235951A (ja) 立軸バルブ型水車発電設備
JPH10318117A (ja) 流体機械の羽根車
JP2002235652A (ja) フランシス水車
JP4846139B2 (ja) 水力機械
CN109763928B (zh) 导流叶片以及流体机械
JP2010024941A (ja) 軸流水力機械
JP2007285284A (ja) バルブ水車
CN107762713A (zh) 一种适用于大流量的多功能减压阀
JP2003269109A (ja) 蒸気タービン
JPS6166866A (ja) 反動水車の吸出し管
WO2015075828A1 (ja) 水車
JP2007032458A (ja) フランシス型水車

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807