JP2005331048A - Vibration-proof x-y table - Google Patents

Vibration-proof x-y table Download PDF

Info

Publication number
JP2005331048A
JP2005331048A JP2004150639A JP2004150639A JP2005331048A JP 2005331048 A JP2005331048 A JP 2005331048A JP 2004150639 A JP2004150639 A JP 2004150639A JP 2004150639 A JP2004150639 A JP 2004150639A JP 2005331048 A JP2005331048 A JP 2005331048A
Authority
JP
Japan
Prior art keywords
guide
shaft
outer peripheral
peripheral surface
horizontal table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150639A
Other languages
Japanese (ja)
Inventor
Shuichi Iwanaga
秀一 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMV Corp
Original Assignee
IMV Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMV Corp filed Critical IMV Corp
Priority to JP2004150639A priority Critical patent/JP2005331048A/en
Publication of JP2005331048A publication Critical patent/JP2005331048A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Vibration Prevention Devices (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration-proof X-Y table which can almost perfectly eliminate the sliding friction by mechanically separating the horizontal table from a driving system so as not to transmit a harmful vibration to the horizontal table without using any of steel balls and a lubricating oil, and can freely move the horizontal table in two mutually orthogonal directions in the vibration isolating state. <P>SOLUTION: The X-Y table comprises rods 21, 22 which have cylindrical outside surfaces 21a, 22a having a circular arc shape at least at a part of their cross sections, and have air jetting ports 21b, 22b provided on the cylindrical outside surfaces so as to jet compressed air from the cylindrical outside surfaces, and guides 31, 32 having circular arc grooves 31a, 32a formed so as to have the same radius of curvature as those of the cylindrical outside surfaces of the rods. The rods can float from the guides by forming the pressurized air film between the cylindrical outside surfaces and the circular arc grooves. As a result, the horizontal table 3 can move in the two mutually orthogonal directions in the vibration isolating state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、防振X−Yテーブルに係り、特に軸の円筒外周面からガイドの円弧溝に対して圧縮空気を噴出させることで軸に取り付けられた水平テーブルをガイドから浮上させ、ガイド側と水平テーブル側とを有害な振動を伝えないように機械的に分離でき、しかも鋼球(ボール)や潤滑油を全く用いないで滑り摩擦をほとんど皆無にし得て、水平テーブルを互いに直交する二方向に自由にしかも免振状態で移動させることができる防振X−Yテーブルに関する。   The present invention relates to an anti-vibration XY table, and in particular, a horizontal table attached to a shaft is levitated from the guide by ejecting compressed air from the cylindrical outer peripheral surface of the shaft to the arc groove of the guide, It can be mechanically separated from the horizontal table so as not to transmit harmful vibrations, and it can eliminate sliding friction without using steel balls or lubricants at all. The present invention relates to an anti-vibration XY table that can be moved freely and in a vibration-isolating state.

X−Yテーブルは、従来からIC製造等の各種の製造装置、測定装置等に用いられており、テーブルを例えばボールガイド等のリニアガイドにより互いに直交する二方向に夫々独立して移動可能に支持すると共に、各々の移動方向と平行にボールねじを取り付けておき、該ボールねじをサーボモータやステッピングモータ等で駆動して、テーブルを駆動するようにしたものが一般的である。   XY tables are conventionally used in various manufacturing equipment such as IC manufacturing, measuring equipment, etc., and the table is supported by linear guides such as ball guides so that they can move independently in two directions orthogonal to each other. In general, a ball screw is attached in parallel to each moving direction, and the ball screw is driven by a servo motor, a stepping motor or the like to drive the table.

このため従来のX−Yテーブルでは、テーブルの移動時にリニアガイドとテーブル間に生じる摩擦振動(転動体使用の場合は、該転動体の通過に伴う振動)や、ボールねじ駆動用のモータから発生する振動がテーブルに伝わっているのが現状であり(例えば2乃至5Hz程度の振動)、このままではミクロンオーダの位置決め精度やミリセコンドオーダのタクトタイムが要求されている今日のIC技術に対応できない。   For this reason, in the conventional XY table, friction vibration generated between the linear guide and the table when the table is moved (vibration caused when the rolling element is used) or generated from the motor for driving the ball screw. At present, the vibrations transmitted to the table are transmitted to the table (for example, vibrations of about 2 to 5 Hz), and as it is, it cannot cope with today's IC technology that requires micron-order positioning accuracy and millisecond order tact time.

このためX−Yテーブルにおいては、いかにしてテーブルへの振動の伝達を防ぐかが重要である。防振手段として従来最も多く採用されているのは、防振ゴムマット及び制振合金マットであるが、防振ゴムマットは駆動系等から発生する振動周波数帯域をすべてカバーすることができず、該帯域による防振ゴムマットの選定にノウハウが必要とされるという問題があり、また制振合金マットは近年脚光を浴びているものの、テーブルと台座間が機械的に接合されているため、駆動系等から発生するすべての振動を軽減させることは基本的に不可能であるという問題があった。   For this reason, in an XY table, it is important how to prevent transmission of vibration to the table. Conventionally, vibration-proof rubber mats and vibration-damping alloy mats have been most frequently used as vibration-proof means, but vibration-proof rubber mats cannot cover all vibration frequency bands generated from a drive system, etc. There is a problem that know-how is required for the selection of anti-vibration rubber mats, and although the vibration-damping alloy mat has been in the spotlight in recent years, the table and the pedestal are mechanically joined, so from the drive system etc. There is a problem that it is basically impossible to reduce all vibrations that occur.

一方特許文献1に開示されているように、空気式の防振装置は数多く考案されているが、円筒外周面を有する軸と該円筒外周面と同一曲率半径の円弧溝とを組み合わせた軸受を使用したものについては、全く開示されていない。   On the other hand, as disclosed in Patent Document 1, many pneumatic vibration isolators have been devised, but a bearing that combines a shaft having a cylindrical outer peripheral surface and an arc groove having the same radius of curvature as the cylindrical outer peripheral surface is provided. What was used is not disclosed at all.

また上下方向の振動を空気式防振装置で軽減させるものや、横揺れ等を空気式制振装置で制御するものも考案されているが、テーブルを機械的に分離し、かつ互いに直交する二方向(例えばX方向及びY方向)に自由に移動させることができるものは存在していなかった。   Some devices have been devised to reduce vertical vibrations with pneumatic anti-vibration devices, and those that control lateral vibrations with pneumatic anti-vibration devices. There is no one that can be moved freely in the direction (for example, the X direction and the Y direction).

特開2002−31190号公報JP 2002-31190 A

本発明は、上記した従来技術の欠点を除くためになされたものであって、その目的とするところは、断面形状の少なくとも一部が円弧形状となる円筒外周面を有する軸の該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設け、円筒外周面と同一の曲率半径に形成された円弧溝との間に空気圧層を形成することで該円弧溝から軸が浮上可能に構成することによって、該軸と円弧溝とを機械的に分離して、有害な振動を伝えずこれを完全に遮断し得るようにすることである。   The present invention has been made to eliminate the above-described drawbacks of the prior art, and an object of the present invention is to provide a cylindrical outer peripheral surface of a shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape. Provided with an air outlet for allowing compressed air to be ejected from the outer peripheral surface of the cylinder, and by forming a pneumatic layer between the outer peripheral surface of the cylinder and the circular arc groove formed at the same radius of curvature, the shaft extends from the arc groove. By being configured to be able to float, the shaft and the arc groove are mechanically separated so that harmful vibrations are not transmitted and can be completely blocked.

また他の目的は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と、該軸の円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとを備え、円筒外周面と円弧溝との間に空気圧層を形成することで軸がガイドから浮上し軸方向に移動可能に構成することによって、軸とガイドとを機械的に分離し、有害な振動が伝わらないようにすると共に、滑り摩擦をほとんど皆無にすることである。   Another object is to provide a shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape has an arc shape, and an air outlet that allows the compressed air to be ejected from the cylindrical outer peripheral surface. And a guide having an arc groove formed at the same radius of curvature as the cylindrical outer peripheral surface of the shaft, and by forming a pneumatic layer between the cylindrical outer peripheral surface and the arc groove, the shaft floats from the guide in the axial direction. By being configured to be movable, the shaft and the guide are mechanically separated so that no harmful vibrations are transmitted and almost no sliding friction is caused.

更に他の目的は、上記構成による軸受と、軸の上側に取り付けられた水平テーブルとを備え、水平に設置されたガイドに対して該水平テーブルを軸の軸方向に浮上した状態で移動可能に構成することによって、ガイド側の有害な振動が水平テーブルに伝わらないようにして、該水平テーブルの位置決め精度を飛躍的に高めることである。   Still another object is to provide a bearing having the above-described configuration and a horizontal table mounted on the upper side of the shaft so that the horizontal table can be moved in a state where it floats in the axial direction of the shaft with respect to a horizontally installed guide. By configuring, it is to prevent the harmful vibration on the guide side from being transmitted to the horizontal table, and to greatly improve the positioning accuracy of the horizontal table.

また他の目的は、上記構成において、水平テーブル及びガイドの相対する位置に軸の軸方向に水平テーブルを駆動するように取り付けられたリニアモータを備え、水平に設置されたガイドに対して該水平テーブルを軸の軸方向に浮上した状態でリニアモータにより駆動可能に構成することによって、駆動系と水平テーブルとを機械的に分離した状態で、該水平テーブルを所定の方向に自在にしかも免振状態で移動させ、正確に位置決めできるようにすることである。   Another object is to provide a linear motor mounted to drive the horizontal table in the axial direction of the shaft at a position where the horizontal table and the guide are opposed to each other, and the horizontal table with respect to the horizontally installed guide. By configuring the table so that it can be driven by a linear motor while floating in the axial direction of the shaft, the drive system and the horizontal table can be mechanically separated from each other so that the horizontal table can be freely moved in a predetermined direction. It is to move in a state so that it can be positioned accurately.

更に他の目的は、上記構成において、水平テーブル及びガイドの相対する位置に、互いに反発するように磁石を夫々取り付けることによって、水平テーブルの浮上を磁石の反発力により補助し、例えば軸から圧縮空気が噴出していないときや、水平テーブルに比較的重い物を取り付けているときでも、水平テーブルが浮上した状態を維持できるようにすることである。   Still another object of the present invention is to support the floating of the horizontal table by the repulsive force of the magnet by, for example, reversing the horizontal table and the guide at opposite positions of the horizontal table and the guide. It is to be able to maintain the state where the horizontal table is levitated even when no water is ejected or when a relatively heavy object is attached to the horizontal table.

また他の目的は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第1軸と該第1軸の円筒外周面と同一の曲率半径に形成された円弧溝を有する第1ガイドとからなる第1空気軸受と、該第1空気軸受の第1軸の上側に取り付けられ所定の曲率半径に形成された円弧溝を有する第2ガイドと断面形状の少なくとも一部が該第2ガイドの円弧溝と同一曲率半径の円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第2軸とからなり第1空気軸受と直交する方向に移動可能に構成された第2空気軸受と、第2軸の上側に取り付けられた水平テーブルとを備え、該水平テーブルを浮上した状態で互いに直交する二方向に移動可能に構成することによって、第1軸受により第1ガイドと第2ガイドとの間の振動の伝達を遮断し、また第2軸受により第2ガイドと水平テーブルとの間の振動の伝達を遮断するようにして、土台となる第1ガイドからの有害な振動が水平テーブルに伝わらないX−Yテーブルを提供することである。   Another object is to provide a first shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows compressed air to be ejected from the outer peripheral surface of the cylinder. A first air bearing comprising a first guide having a circular groove formed in the same radius of curvature as the cylindrical outer peripheral surface of the first shaft, and a first air bearing attached to an upper side of the first shaft of the first air bearing and having a predetermined A second guide having an arc groove formed with a radius of curvature and a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape has an arc shape with the same radius of curvature as the arc groove of the second guide has the cylindrical outer surface. A second air bearing configured to move in a direction orthogonal to the first air bearing, the second air bearing including a second shaft provided with an air jet port capable of ejecting compressed air from the outer peripheral surface; and on the upper side of the second shaft With a mounted horizontal table, and levitating the horizontal table By being configured to be movable in two directions perpendicular to each other in a state where the first guide and the second guide are moved, the transmission of vibration between the first guide and the second guide is cut off by the first bearing, and the second guide and the horizontal table are cut by the second bearing. The XY table is provided such that harmful vibrations from the first guide as a base are not transmitted to the horizontal table by interrupting the transmission of vibration between the horizontal guide and the horizontal table.

更に他の目的は、上記構成において、第2ガイド及び第1ガイドの相対する位置に第1軸の軸方向に第2ガイドを駆動するように取り付けられた第1リニアモータと、水平テーブル及び第2ガイドの相対する位置に第2軸の軸方向に水平テーブルを駆動するように取り付けられた第2リニアモータとを備え、第1リニアモータ及び第2リニアモータにより水平テーブルを浮上した状態で互いに直交する二方向に夫々独立して駆動可能に構成することによって、可動部及び駆動部における振動の発生を抑制した防振X−Yテーブルを提供することであり、またこれによって今日のIC技術において要求されるミクロンオーダの位置決め精度及びミリセコンドオーダのタクトタイムを実現させることである。   Still another object of the present invention is to provide a first linear motor, a horizontal table, and a second table mounted to drive the second guide in the axial direction of the first shaft at the opposing positions of the second guide and the first guide. And a second linear motor mounted so as to drive the horizontal table in the axial direction of the second shaft at opposite positions of the two guides, and in a state where the horizontal table is levitated by the first linear motor and the second linear motor. The present invention is to provide an anti-vibration XY table that suppresses the occurrence of vibrations in the movable part and the drive part by being configured to be independently drivable in two orthogonal directions. To achieve the required micron-order positioning accuracy and millisecond order tact time.

また他の目的は、高精度の真円度、曲率半径及び表面粗さに加工された基準軸を型に設置し、該型に可塑性樹脂を流し込んで硬化させ、基準軸の真円度、曲率半径及び表面粗さがそのまま転写された円弧溝をガイド上に形成することによって、加工が困難とされていた高精度な円弧溝を極めて容易かつ安価に形成できるようにすることであり、またこれによって該精密ガイドを使用した空気軸受を種々の装置、例えば防振X−Yテーブルに導入し易くすることである。   Another object is to set a reference axis processed to high precision roundness, radius of curvature and surface roughness in a mold, and then inject the plastic resin into the mold to cure it. By forming an arc groove on which the radius and surface roughness are transferred as they are on the guide, it is possible to form a highly accurate arc groove, which has been difficult to process, easily and inexpensively. Therefore, it is easy to introduce an air bearing using the precision guide into various devices, for example, an anti-vibration XY table.

要するに本発明軸(請求項1)は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設け、前記円筒外周面と同一の曲率半径に形成された円弧溝との間に空気圧層を形成することで該円弧溝から浮上可能に構成したことを特徴とするものである。   In short, the shaft of the present invention (Claim 1) has a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet is provided on the outer peripheral surface of the cylinder so that compressed air can be ejected from the outer peripheral surface of the cylinder. A pneumatic layer is formed between the cylindrical outer peripheral surface and the circular arc groove formed at the same curvature radius so as to be able to float from the circular arc groove.

また本発明空気軸受(請求項2)は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と、該軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとを備え、前記円筒外周面と前記円弧溝との間に空気圧層を形成することで前記軸が前記ガイドから浮上し軸方向に移動可能に構成したことを特徴とするものである。   The air bearing of the present invention (Claim 2) has a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows compressed air to be ejected from the cylindrical outer peripheral surface to the cylindrical outer peripheral surface. And a guide having an arc groove formed in the same radius of curvature as the cylindrical outer peripheral surface of the shaft, and forming a pneumatic layer between the cylindrical outer peripheral surface and the arc groove The shaft floats from the guide and is configured to be movable in the axial direction.

また本発明防振水平テーブル(請求項3)は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と該軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとからなる空気軸受と、前記軸の上側に取り付けられた水平テーブルとを備え、水平に設置された前記ガイドに対して該水平テーブルを前記軸の軸方向に浮上した状態で移動可能に構成したことを特徴とするものである。   Further, the vibration isolating horizontal table of the present invention (Claim 3) has a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air jet that allows compressed air to be ejected from the cylindrical outer peripheral surface to the cylindrical outer peripheral surface. An air bearing comprising a shaft provided with an outlet and a guide having an arc groove formed in the same radius of curvature as the cylindrical outer peripheral surface of the shaft, and a horizontal table attached to the upper side of the shaft, The horizontal table is configured to be movable in a state of floating in the axial direction of the shaft with respect to the guide installed on the shaft.

また本発明防振水平テーブル(請求項4)は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と該軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとからなる空気軸受と、前記軸の上側に取り付けられた水平テーブルと、該水平テーブル及び前記ガイドの相対する位置に前記軸の軸方向に前記水平テーブルを駆動するように取り付けられたリニアモータとを備え、水平に設置された前記ガイドに対して該水平テーブルを前記軸の軸方向に浮上した状態で前記リニアモータにより駆動可能に構成したことを特徴とするものである。   Further, the vibration isolating horizontal table of the present invention (Claim 4) has a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air jet capable of ejecting compressed air from the cylindrical outer peripheral surface to the cylindrical outer peripheral surface. An air bearing comprising a shaft provided with an outlet and a guide having an arc groove formed in the same radius of curvature as the cylindrical outer peripheral surface of the shaft; a horizontal table mounted on the upper side of the shaft; and the horizontal table And a linear motor mounted so as to drive the horizontal table in the axial direction of the shaft at a position opposite to the guide, and the horizontal table is disposed in the axial direction of the shaft with respect to the guide installed horizontally. It is configured to be able to be driven by the linear motor in a state where it floats on the surface.

また本発明防振水平テーブル(請求項5)は、請求項3又は請求項4のいずれかに記載の防振水平テーブルにおいて、前記水平テーブル及び前記ガイドの相対する位置に、互いに反発するように磁石を夫々取り付けたことを特徴とするものである。   The vibration-proof horizontal table of the present invention (Claim 5) is the vibration-proof horizontal table according to claim 3 or 4, wherein the horizontal table and the guide are opposed to each other at opposite positions. A magnet is attached to each of them.

また本発明防振X−Yテーブル(請求項6)は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第1軸と該第1軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有する第1ガイドとからなる第1空気軸受と、該第1空気軸受の前記第1軸の上側に取り付けられ所定の曲率半径に形成された円弧溝を有する第2ガイドと断面形状の少なくとも一部が該第2ガイドの前記円弧溝と同一曲率半径の円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第2軸とからなり前記第1空気軸受と直交する方向に移動可能に構成された第2空気軸受と、前記第2軸の上側に取り付けられた水平テーブルとを備え、該水平テーブルを浮上した状態で互いに直交する二方向に移動可能に構成したことを特徴とするものである。   The vibration-proof XY table of the present invention (Claim 6) has a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and allows compressed air to be ejected from the outer peripheral surface of the cylinder to the cylindrical outer peripheral surface. A first air bearing comprising a first shaft provided with an air outlet and a first guide having an arc groove formed in the same radius of curvature as the cylindrical outer peripheral surface of the first shaft; and the first air bearing A second guide having an arc groove attached to the upper side of the first shaft and having a predetermined radius of curvature and at least a part of the cross-sectional shape of the second guide have an arc shape having the same radius of curvature as the arc groove of the second guide. It has a cylindrical outer peripheral surface, and comprises a second shaft provided with an air outlet that allows the compressed air to be ejected from the cylindrical outer peripheral surface, and is configured to be movable in a direction perpendicular to the first air bearing. Second air bearing and an upper side of the second shaft And a horizontal table and is characterized by being configured to be movable in two directions perpendicular to each other while floating the horizontal table.

また本発明防振X−Yテーブル(請求項7)は、断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第1軸と該第1軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有する第1ガイドとからなる第1空気軸受と、該第1空気軸受の前記第1軸の上側に取り付けられ所定の曲率半径に形成された円弧溝を有する第2ガイドと断面形状の少なくとも一部が該第2ガイドの前記円弧溝と同一曲率半径の円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第2軸とからなり前記第1空気軸受と直交する方向に移動可能に構成された第2空気軸受と、前記第2軸の上側に取り付けられた水平テーブルと、前記第2ガイド及び前記第1ガイドの相対する位置に前記第1軸の軸方向に前記第2ガイドを駆動するように取り付けられた第1リニアモータと、前記水平テーブル及び前記第2ガイドの相対する位置に前記第2軸の軸方向に前記水平テーブルを駆動するように取り付けられた第2リニアモータとを備え、前記第1リニアモータ及び前記第2リニアモータにより前記水平テーブルを浮上した状態で互いに直交する二方向に夫々独立して駆動可能に構成したことを特徴とするものである。   The vibration-proof XY table of the present invention (Claim 7) has a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and allows compressed air to be ejected from the cylindrical outer peripheral surface to the cylindrical outer peripheral surface. A first air bearing comprising a first shaft provided with an air outlet and a first guide having an arc groove formed in the same radius of curvature as the cylindrical outer peripheral surface of the first shaft; and the first air bearing A second guide having an arc groove attached to the upper side of the first shaft and having a predetermined radius of curvature and at least a part of the cross-sectional shape of the second guide have an arc shape having the same radius of curvature as the arc groove of the second guide. It has a cylindrical outer peripheral surface, and comprises a second shaft provided with an air outlet that allows the compressed air to be ejected from the cylindrical outer peripheral surface, and is configured to be movable in a direction perpendicular to the first air bearing. Second air bearing and an upper side of the second shaft A horizontal table, a first linear motor mounted to drive the second guide in the axial direction of the first shaft at a position opposite to the second guide and the first guide, the horizontal table, A second linear motor mounted to drive the horizontal table in the axial direction of the second shaft at a position opposite to the second guide, and the horizontal by the first linear motor and the second linear motor. The table is characterized in that it can be driven independently in two directions orthogonal to each other in the state of floating the table.

また本発明防振X−Yテーブル(請求項8)は、請求項6又は請求項7のいずれかに記載の防振X−Yテーブルにおいて、前記水平テーブル及び前記第2ガイドの相対する位置、及び前記第2ガイド及び前記第1ガイドの相対する位置に、互いに反発するように磁石を夫々取り付けたことを特徴とするものである。   Further, the present invention anti-vibration XY table (invention 8) is the anti-vibration XY table according to claim 6 or 7, wherein the horizontal table and the second guide are opposed to each other, In addition, magnets are attached to the opposing positions of the second guide and the first guide so as to repel each other.

また本発明精密ガイドの製造方法(請求項9)は、高精度の真円度、曲率半径及び表面粗さに加工された基準軸を型に設置し、該型に可塑性樹脂を流し込んで硬化させ、前記基準軸の前記真円度、曲率半径及び表面粗さがそのまま転写された円弧溝をガイド上に形成することを特徴とするものである。   The precision guide manufacturing method according to the present invention (Claim 9) is a method in which a reference axis machined to high precision roundness, curvature radius and surface roughness is set in a mold, and a plastic resin is poured into the mold and cured. An arc groove in which the roundness, the radius of curvature and the surface roughness of the reference axis are directly transferred is formed on the guide.

本発明は、上記のように断面形状の少なくとも一部が円弧形状となる円筒外周面を有する軸の該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設け、円筒外周面と同一の曲率半径に形成された円弧溝との間に空気圧層を形成することで該円弧溝から軸が浮上可能に構成したので、該軸と円弧溝とを機械的に分離でき、有害な振動を伝えずこれを完全に遮断し得る効果がある。   As described above, the present invention is provided with an air outlet that allows compressed air to be ejected from an outer peripheral surface of the cylinder on the outer peripheral surface of the shaft having a cylindrical outer peripheral surface in which at least part of the cross-sectional shape is an arc shape. Since the shaft can float from the arc groove by forming a pneumatic layer between the outer circumferential surface and the arc groove formed with the same radius of curvature, the shaft and the arc groove can be mechanically separated, There is an effect that can be completely shut off without transmitting harmful vibrations.

また断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と、該軸の円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとを備え、円筒外周面と円弧溝との間に空気圧層を形成することで軸がガイドから浮上し軸方向に移動可能に構成したので、軸とガイドとを機械的に分離でき、有害な振動が伝わらず、また滑り摩擦をほとんど皆無にし得る効果が得られる。   A shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet for allowing compressed air to be ejected from the outer peripheral surface of the cylinder; and a cylindrical outer periphery of the shaft And a guide having an arc groove formed with the same radius of curvature as the surface, and a pneumatic layer is formed between the outer circumferential surface of the cylinder and the arc groove so that the shaft can float from the guide and move in the axial direction. Therefore, the shaft and the guide can be mechanically separated, no harmful vibration is transmitted, and the effect of eliminating almost no sliding friction is obtained.

更に上記構成による軸受と、軸の上側に取り付けられた水平テーブルとを備え、水平に設置されたガイドに対して該水平テーブルを軸の軸方向に浮上した状態で移動可能に構成したので、ガイド側の有害な振動が水平テーブルに伝わらず、該水平テーブルの位置決め精度を飛躍的に高めることができるという効果がある。   Furthermore, the bearing having the above configuration and a horizontal table mounted on the upper side of the shaft are provided, and the horizontal table is configured to be movable in a state where it floats in the axial direction of the shaft with respect to the horizontally installed guide. The harmful vibration on the side is not transmitted to the horizontal table, and the positioning accuracy of the horizontal table can be greatly improved.

また上記構成において、水平テーブル及びガイドの相対する位置に軸の軸方向に水平テーブルを駆動するように取り付けられたリニアモータを備え、水平に設置されたガイドに対して該水平テーブルを軸の軸方向に浮上した状態でリニアモータにより駆動可能に構成したので、駆動系と水平テーブルとを機械的に分離した状態で、該水平テーブルを所定の方向に自在にしかも免振状態で移動させ、正確に位置決めできるという効果が得られる。   Further, in the above configuration, a linear motor mounted to drive the horizontal table in the axial direction of the shaft is provided at a position opposite to the horizontal table and the guide, and the horizontal table is attached to the shaft of the shaft with respect to the horizontally installed guide. Since it is configured to be able to be driven by a linear motor while floating in the direction, the horizontal table can be moved freely in a predetermined direction and in a vibration-isolating state with the drive system and the horizontal table separated mechanically. The effect that it can position to is acquired.

更に上記構成において、水平テーブル及びガイドの相対する位置に、互いに反発するように磁石を夫々取り付けたので、水平テーブルの浮上を磁石の反発力により補助し、例えば軸から圧縮空気が噴出していないときや、水平テーブルに比較的重い物を取り付けているときでも、水平テーブルが浮上した状態を維持できるという効果がある。   Further, in the above configuration, the magnets are attached to the positions of the horizontal table and the guide so as to repel each other, so that the horizontal table is lifted by the repulsive force of the magnet, for example, no compressed air is ejected from the shaft. Even when a relatively heavy object is attached to the horizontal table, the horizontal table can be kept floating.

また断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第1軸と該第1軸の円筒外周面と同一の曲率半径に形成された円弧溝を有する第1ガイドとからなる第1空気軸受と、該第1空気軸受の第1軸の上側に取り付けられ所定の曲率半径に形成された円弧溝を有する第2ガイドと断面形状の少なくとも一部が該第2ガイドの円弧溝と同一曲率半径の円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第2軸とからなり第1空気軸受と直交する方向に移動可能に構成された第2空気軸受と、第2軸の上側に取り付けられた水平テーブルとを備え、該水平テーブルを浮上した状態で互いに直交する二方向に移動可能に構成したので、第1軸受により第1ガイドと第2ガイドとの間の振動の伝達を遮断し、また第2軸受により第2ガイドと水平テーブルとの間の振動の伝達を遮断し得、土台となる第1ガイドからの有害な振動が水平テーブルに伝わらないX−Yテーブルを提供できるという効果が得られる。   The first shaft and the first shaft each having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows compressed air to be ejected from the outer peripheral surface of the cylinder. A first air bearing comprising a first guide having an arc groove formed with the same radius of curvature as the cylindrical outer peripheral surface of the first air bearing, and is attached to the upper side of the first shaft of the first air bearing and has a predetermined radius of curvature. The second guide having the circular arc groove and at least a part of the cross-sectional shape has a cylindrical outer peripheral surface having an arc shape with the same radius of curvature as the circular arc groove of the second guide, and compressed air from the cylindrical outer peripheral surface to the cylindrical outer peripheral surface A second air bearing configured to be movable in a direction orthogonal to the first air bearing, and a horizontal table attached to the upper side of the second shaft With the horizontal table floating. The first bearing is used to block vibration transmission between the first guide and the second guide, and the second bearing is used between the second guide and the horizontal table. It is possible to provide an XY table that can cut off the transmission of vibrations and that does not transmit harmful vibrations from the first guide as a base to the horizontal table.

更に上記構成において、第2ガイド及び第1ガイドの相対する位置に第1軸の軸方向に第2ガイドを駆動するように取り付けられた第1リニアモータと、水平テーブル及び第2ガイドの相対する位置に第2軸の軸方向に水平テーブルを駆動するように取り付けられた第2リニアモータとを備え、第1リニアモータ及び第2リニアモータにより水平テーブルを浮上した状態で互いに直交する二方向に夫々独立して駆動可能に構成したので、可動部及び駆動部における振動の発生を抑制した防振X−Yテーブルを提供できる効果があり、またこの結果今日のIC技術において要求されるミクロンオーダの位置決め精度及びミリセコンドオーダのタクトタイムを実現できるという効果が得られる。   Further, in the above configuration, the first linear motor attached to drive the second guide in the axial direction of the first shaft at a position where the second guide and the first guide face each other, and the horizontal table and the second guide face each other. And a second linear motor mounted so as to drive the horizontal table in the axial direction of the second axis at a position in two directions orthogonal to each other while the horizontal table is levitated by the first linear motor and the second linear motor Since each can be driven independently, there is an effect that it is possible to provide an anti-vibration XY table that suppresses the occurrence of vibrations in the movable part and the drive part. As a result, the micron order that is required in today's IC technology. The effect that the positioning accuracy and the tact time of the millisecond order can be realized is obtained.

また高精度の真円度、曲率半径及び表面粗さに加工された基準軸を型に設置し、該型に可塑性樹脂を流し込んで硬化させ、基準軸の真円度、曲率半径及び表面粗さがそのまま転写された円弧溝をガイド上に形成するようにしたので、加工が困難とされていた高精度な円弧溝を極めて容易かつ安価に形成できる効果があり、またこの結果該精密ガイドを使用した空気軸受を種々の装置、例えば防振X−Yテーブルに導入し易くする効果が得られる。   In addition, a reference axis processed with high accuracy roundness, curvature radius and surface roughness is installed in the mold, and a plastic resin is poured into the mold and cured, and the roundness, curvature radius and surface roughness of the reference axis are set. As a result, an arc groove on which is transferred as it is is formed on the guide, so there is an effect that it is possible to form a highly accurate arc groove which has been difficult to machine, easily and inexpensively, and as a result, the precision guide is used. The effect which makes it easy to introduce the air bearing made into various apparatuses, for example, an anti-vibration XY table, is acquired.

以下本発明を図面に示す実施例に基いて説明する。本発明に係る防振X−Yテーブル10は、図1から図5において、第1空気軸受1と、第2空気軸受2と、水平テーブル3と、第1リニアモータ11と、第2リニアモータ12とを備えている。   Hereinafter, the present invention will be described based on embodiments shown in the drawings. An anti-vibration XY table 10 according to the present invention includes a first air bearing 1, a second air bearing 2, a horizontal table 3, a first linear motor 11, and a second linear motor in FIGS. 12.

第1空気軸受1は、図1から図3、図5から図8に示すように、断面形状の少なくとも一部が円弧形状となる円筒外周面21aを有し該円筒外周面21aに該円筒外周面21aから圧縮空気を噴出可能とするエア噴出口21bを設けてなる第1軸21と、該第1軸21の円筒外周面21aと同一の曲率半径に形成された円弧溝31aを有する第1ガイド31とからなるものである。   As shown in FIGS. 1 to 3 and FIGS. 5 to 8, the first air bearing 1 has a cylindrical outer peripheral surface 21 a in which at least a part of the cross-sectional shape is an arc shape, and the cylindrical outer peripheral surface 21 a has the cylindrical outer peripheral surface. A first shaft 21 provided with an air ejection port 21b that allows compressed air to be ejected from the surface 21a, and a first arc groove 31a formed with the same radius of curvature as the cylindrical outer peripheral surface 21a of the first shaft 21. A guide 31 is included.

第1軸21の円筒外周面21aには、例えば第1軸21の全長よりも短い3本の溝21cが形成され、該溝21c内に夫々エア噴出口21bが形成されている。各エア噴出口21bは第1軸21の端面から内部に向けて形成された穴21dに連通しており、穴21dの入口には、例えばホース(図示せず)を接続するための継手13が取り付けられている。なお、エア噴出口21bの数、位置、溝21cの形状等は、図示のものに限られず、空気軸受として機能するものであれば、どのような構成であってもよい。   For example, three grooves 21c shorter than the entire length of the first shaft 21 are formed on the cylindrical outer peripheral surface 21a of the first shaft 21, and air jets 21b are formed in the grooves 21c, respectively. Each air outlet 21b communicates with a hole 21d formed from the end face of the first shaft 21 toward the inside, and a joint 13 for connecting a hose (not shown), for example, is connected to the inlet of the hole 21d. It is attached. The number and positions of the air jets 21b, the shape of the grooves 21c, and the like are not limited to those shown in the drawings, and may be any configuration as long as they function as an air bearing.

中央の溝21cを真下にした場合に上側となる部分の一部には、平面部21e,21fが形成されており、平面部21eにねじ穴21gが形成されている。平面部21e,21fは、連結部材23,24を取り付ける際の座となる部分である。   Flat portions 21e and 21f are formed in a part of the upper portion when the central groove 21c is directly below, and a screw hole 21g is formed in the flat portion 21e. The plane portions 21e and 21f are portions that serve as seats when the connecting members 23 and 24 are attached.

円筒外周面21aの表面粗さ(算術平均粗さ)は、少なくとも1μmであり、好ましくは0.1μmである。面肌が高精度に仕上げられているほど、少ないエア圧で使用できるからである。   The surface roughness (arithmetic mean roughness) of the cylindrical outer peripheral surface 21a is at least 1 μm, preferably 0.1 μm. This is because the higher the surface finish, the lower the air pressure.

第1ガイド31は、図12から図14に示すように、高精度の真円度、曲率半径及び表面粗さに加工された基準軸14を型15に設置し、該型に可塑性樹脂16を、矢印F方向に流し込んで硬化させることにより製造され、円弧溝31aは基準軸14の真円度、曲率半径及び表面粗さがそのまま転写されて形成される。   As shown in FIGS. 12 to 14, the first guide 31 is provided with a reference shaft 14 processed to have a high precision roundness, a radius of curvature, and a surface roughness in a mold 15, and the plastic resin 16 is placed in the mold 15. The arc groove 31a is formed by transferring the circularity, the radius of curvature and the surface roughness of the reference shaft 14 as they are.

従って基準軸14の表面粗さ(算術平均粗さ)を1μmに仕上げておけば、円弧溝31aの表面粗さも1μmとすることができ、また基準軸14の表面粗さを0.1μmに仕上げておけば、円弧溝31aの表面粗さも0.1μmとすることができる。   Therefore, if the surface roughness (arithmetic average roughness) of the reference shaft 14 is finished to 1 μm, the surface roughness of the arc groove 31a can be made 1 μm, and the surface roughness of the reference shaft 14 is finished to 0.1 μm. In this case, the surface roughness of the arc groove 31a can also be set to 0.1 μm.

円弧溝31aの断面形状は、例えば半円である。これは第1軸21の移動方向と直角方向に力が作用したときにも、第1軸21の浮上状態を維持できるようにするためであり、また第1軸21の取付け及び取外しを容易にするためである。   The cross-sectional shape of the arc groove 31a is, for example, a semicircle. This is so that the floating state of the first shaft 21 can be maintained even when a force acts in a direction perpendicular to the moving direction of the first shaft 21, and the first shaft 21 can be easily attached and detached. It is to do.

第1ガイド31には、図3に示すように、例えば2本の円弧溝31aが形成され、例えば該円弧溝31aの間に、該円弧溝31aと平行に第1リニアモータ11の永久磁石25が埋め込まれている。   As shown in FIG. 3, for example, two arc grooves 31 a are formed in the first guide 31. For example, the permanent magnet 25 of the first linear motor 11 is disposed between the arc grooves 31 a in parallel with the arc groove 31 a. Is embedded.

1本の円弧溝31aにつき、例えば2本の第1軸21が組み合わされ、計4組の第1空気軸受1で、例えばX軸方向に水平テーブル3を動かすことができるようになっている。各第1軸21は、例えば連結部材23,24により連結され、ねじ18により第2空気軸受2の第2ガイド32の下面に固定されている。   For example, two first shafts 21 are combined per arc groove 31a, and the horizontal table 3 can be moved, for example, in the X-axis direction by a total of four first air bearings 1. The first shafts 21 are connected by, for example, connecting members 23 and 24, and are fixed to the lower surface of the second guide 32 of the second air bearing 2 by screws 18.

第2軸受2は、第1空気軸受1の第1軸21の上側に取り付けられ所定の曲率半径に形成された円弧溝32aを有する第2ガイド32と断面形状の少なくとも一部が該第2ガイド32の円弧溝32aと同一曲率半径の円弧形状となる円筒外周面22aを有し該円筒外周面22aに該円筒外周面22aから圧縮空気を噴出可能とするエア噴出口22bを設けてなる第2軸22とからなり第1空気軸受1と直交する方向に移動可能に構成されている。   The second bearing 2 includes a second guide 32 having an arc groove 32a attached to the upper side of the first shaft 21 of the first air bearing 1 and having a predetermined radius of curvature, and at least a part of the cross-sectional shape of the second bearing 2 being the second guide. A second outer circumferential surface 22a having a cylindrical outer peripheral surface 22a having an arc shape with the same radius of curvature as the circular arc groove 32a of 32 is provided on the outer peripheral surface 22a. The shaft 22 is configured to be movable in a direction orthogonal to the first air bearing 1.

第2軸22の円筒外周面22aには、例えば第2軸22の全長よりも短い3本の溝(図示せず)が形成され、該溝内に夫々エア噴出口が形成されている。   On the cylindrical outer peripheral surface 22a of the second shaft 22, for example, three grooves (not shown) shorter than the entire length of the second shaft 22 are formed, and air jets are respectively formed in the grooves.

中央の溝を真下にした場合に上側となる部分の一部には、平面部22e,22fが形成されており、平面部22eにねじ穴22gが形成されている。平面部22e,22fは、連結部材26,28を取り付ける際の座となる部分である。   Flat portions 22e and 22f are formed in a part of the upper portion when the central groove is directly below, and a screw hole 22g is formed in the flat portion 22e. The flat portions 22e and 22f are portions that serve as seats when the connecting members 26 and 28 are attached.

第2軸22の他の構成は、第1軸21と同様であるので、説明を省略する。   Since the other structure of the 2nd axis | shaft 22 is the same as that of the 1st axis | shaft 21, description is abbreviate | omitted.

第2ガイド32の製造方法は、第1ガイド31と同様であるので、基準軸(図示せず)の表面粗さ(算術平均粗さ)を1μmに仕上げておけば、円弧溝32aの表面粗さも1μmとすることができ、また基準軸の表面粗さを0.1μmに仕上げておけば、円弧溝32aの表面粗さも0.1μmとすることができる。   Since the manufacturing method of the second guide 32 is the same as that of the first guide 31, if the surface roughness (arithmetic average roughness) of the reference axis (not shown) is finished to 1 μm, the surface roughness of the arc groove 32a is increased. Further, if the surface roughness of the reference axis is finished to 0.1 μm, the surface roughness of the arc groove 32a can also be made 0.1 μm.

第2ガイド32には、図3に示すように、例えば2本の円弧溝32aと、4箇所の穴32bが形成され、例えば該円弧溝32aの間に、該円弧溝32aと平行に第2リニアモータ12の永久磁石29が埋め込まれている。穴32bは、ねじ18を通すためのものである。   As shown in FIG. 3, for example, two arc grooves 32a and four holes 32b are formed in the second guide 32. For example, a second arc parallel to the arc groove 32a is provided between the arc grooves 32a. The permanent magnet 29 of the linear motor 12 is embedded. The hole 32b is for allowing the screw 18 to pass therethrough.

1本の円弧溝32aにつき、例えば2本の第2軸22が組み合わされ、計4組の第2空気軸受2で、例えばY軸方向に水平テーブル3を動かすことができるようになっている。各第2軸22は、例えば連結部材26,28により連結され、ねじ18により水平テーブル3の下面に固定されている。   For example, two second shafts 22 are combined per arc groove 32a, and the horizontal table 3 can be moved, for example, in the Y-axis direction by a total of four sets of second air bearings 2. The second shafts 22 are connected by, for example, connecting members 26 and 28, and are fixed to the lower surface of the horizontal table 3 by screws 18.

水平テーブル3は、第2軸22の上側に、例えばねじ19により取り付けられるものであって、図示しない工作物等を取り付ける土台となるものであり、第1空気軸受1及び第2空気軸受2により支持され、第1リニアモータ11及び第2リニアモータ12により駆動されて互いに直交する二方向(例えばX軸方向及びY軸方向)に夫々移動可能に構成されている。水平テーブル3には、ねじ19を通すための穴3aが、例えば4箇所形成されている。   The horizontal table 3 is attached to the upper side of the second shaft 22 with, for example, a screw 19 and serves as a base on which a workpiece or the like (not shown) is attached. The horizontal table 3 is supported by the first air bearing 1 and the second air bearing 2. It is supported and driven by the first linear motor 11 and the second linear motor 12 so as to be movable in two directions orthogonal to each other (for example, the X-axis direction and the Y-axis direction). The horizontal table 3 is formed with, for example, four holes 3a through which the screws 19 are passed.

第1リニアモータ11は、図1、図3及び図5に示すように、第2ガイド32及び第1ガイド31の相対する位置に第1軸21の軸方向に第2ガイド32を駆動するように取り付けられたものであって、第1ガイド31の埋め込まれた永久磁石25と、連結部材23に取り付けられたコイル30と、図示しない制御部とから構成されている。なお、コイル30の取付け位置は、連結部材23に限られず、リニアモータとして作動すればよいので、例えば第2ガイド32に取り付けてもよい。   As shown in FIGS. 1, 3, and 5, the first linear motor 11 drives the second guide 32 in the axial direction of the first shaft 21 at a position opposite to the second guide 32 and the first guide 31. The permanent magnet 25 in which the first guide 31 is embedded, the coil 30 attached to the connecting member 23, and a control unit (not shown). The attachment position of the coil 30 is not limited to the connecting member 23, and may be attached to the second guide 32, for example, as long as it operates as a linear motor.

第2リニアモータ12は、水平テーブル3及び第2ガイド32の相対する位置に第2軸22の軸方向に水平テーブル3を駆動するように取り付けられたものであって、第2ガイド32の埋め込まれた永久磁石29と、連結部材26に取り付けられたコイル33と、図示しない制御部とから構成されている。なお、コイル33の取付け位置は、連結部材26に限られず、リニアモータとして作動すればよいので、例えば水平テーブル3に取り付けてもよい。   The second linear motor 12 is attached to the position where the horizontal table 3 and the second guide 32 face each other so as to drive the horizontal table 3 in the axial direction of the second shaft 22, and the second guide 32 is embedded in the second linear motor 12. The permanent magnet 29 is composed of a coil 33 attached to the connecting member 26 and a control unit (not shown). The attachment position of the coil 33 is not limited to the connecting member 26, and may be attached to the horizontal table 3, for example, as long as it operates as a linear motor.

なお、図10及び図11に示すように、水平テーブル3及び第2ガイド32の相対する位置に、互いに反発するように磁石34を夫々取り付けるようにしてもよい。水平テーブル3を常時磁気浮上させておくことができるからである。第2ガイド32と第1ガイド31との間に、同様に磁石(図示せず)を取り付けてもよい。   As shown in FIGS. 10 and 11, magnets 34 may be attached to the opposing positions of the horizontal table 3 and the second guide 32 so as to repel each other. This is because the horizontal table 3 can be always magnetically levitated. Similarly, a magnet (not shown) may be attached between the second guide 32 and the first guide 31.

図示の例では、水平テーブル3に第2軸22を直接ねじ19により固定しているが、上述のように連結部材を介してもよい。   In the illustrated example, the second shaft 22 is directly fixed to the horizontal table 3 with the screw 19, but it may be connected via a connecting member as described above.

そして本発明方法(請求項9)は、高精度の真円度、曲率半径及び表面粗さに加工された基準軸14を型15に設置し、該型15に可塑性樹脂16を流し込んで硬化させ、基準軸14の真円度、曲率半径及び表面粗さがそのまま転写された円弧溝31a,32aをガイド(第1ガイド31及び第2ガイド32)上に形成する方法である。   In the method of the present invention (Claim 9), the reference shaft 14 processed to have high precision roundness, curvature radius and surface roughness is placed in the mold 15 and the plastic resin 16 is poured into the mold 15 and cured. In this method, arc grooves 31a and 32a, in which the roundness, curvature radius, and surface roughness of the reference shaft 14 are transferred as they are, are formed on the guides (first guide 31 and second guide 32).

本発明は、上記のように構成されており、以下その作用について説明する。図1、図2及び図9において、第1空気軸受1における継手13から第1軸21に圧縮空気を供給すると、該圧縮空気は第1軸21内を通って円筒外周面21aのエア噴出口21bから矢印A方向に噴出し、第1ガイド31の円弧溝31aとの間にわずかな厚さ(例えば5μm)の空気圧層4を形成する。   The present invention is configured as described above, and the operation thereof will be described below. In FIG. 1, FIG. 2 and FIG. 9, when compressed air is supplied from the joint 13 in the first air bearing 1 to the first shaft 21, the compressed air passes through the first shaft 21 and is an air outlet on the cylindrical outer peripheral surface 21a. A pneumatic layer 4 having a slight thickness (for example, 5 μm) is formed between the first guide 31 and the arc groove 31a.

空気圧層4の厚さ、即ち浮上高さは、圧縮空気の圧力を調節することで変化させることができる。圧縮空気は少しずつ漏れて行くが、その消費量は例えば30分に一度コンプレッサ(図示せず)が作動する程度である。   The thickness of the pneumatic layer 4, that is, the flying height can be changed by adjusting the pressure of the compressed air. The compressed air leaks little by little, but its consumption is such that the compressor (not shown) operates once every 30 minutes, for example.

空気圧層4が形成されることによって、第1軸21は反作用により円弧溝31aから浮上し、非接触状態となる。ここで第1リニアモータ11の作動を制御することにより、第2ガイド32をX軸方向、即ち矢印B又は矢印C方向に自在に移動させ、ミクロンオーダで位置決めすることができる。このとき第2ガイド32に伴って水平テーブル3も移動する。   By forming the pneumatic layer 4, the first shaft 21 floats from the circular arc groove 31 a due to the reaction and enters a non-contact state. Here, by controlling the operation of the first linear motor 11, the second guide 32 can be freely moved in the X-axis direction, that is, the direction of the arrow B or the arrow C, and can be positioned on the micron order. At this time, the horizontal table 3 also moves with the second guide 32.

第2空気軸受2についても、第1空気軸受1と同様に、圧縮空気を供給することにより、第2軸22が第2ガイド32の円弧溝32aからわずかに浮上するので、第2リニアモータ12の作動を制御することにより、水平テーブル3をY軸方向、即ち矢印D又は矢印E方向に自在に移動させ、ミクロンオーダで位置決めすることができる。   Similarly to the first air bearing 1, the second air bearing 2 also slightly floats from the arc groove 32 a of the second guide 32 by supplying compressed air, so that the second linear motor 12. By controlling this operation, the horizontal table 3 can be freely moved in the Y-axis direction, that is, the direction of the arrow D or the arrow E, and positioned in the micron order.

図10及び図11において、磁石34を使用した場合には、圧縮空気が供給されていないときでも水平テーブル3が第2ガイド32から浮上しており、圧縮空気のみにより浮上させる場合と比較して負荷容量が大きい。   10 and 11, when the magnet 34 is used, the horizontal table 3 is lifted from the second guide 32 even when compressed air is not supplied, compared to a case where the horizontal table 3 is lifted only by compressed air. The load capacity is large.

このように、防振X−Yテーブル10においては、水平テーブル3が浮上することで空気圧層4を介して機械的に分離されており、また第1リニアモータ11及び第2リニアモータ12が非接触状態で作動するので、駆動系からの有害な振動が生じず、外部からの振動が第1ガイド31に伝わったとしても、第1空気軸受1及び第2空気軸受2において遮断され、水平テーブル3には伝わらない。このため水平テーブル3の位置決め精度がミクロンオーダと非常に高く、またタクト時間もミリセコンドオーダと非常に短くすることができる。   Thus, in the vibration-proof XY table 10, the horizontal table 3 is lifted and mechanically separated through the pneumatic layer 4, and the first linear motor 11 and the second linear motor 12 are not. Since it operates in a contact state, no harmful vibrations from the drive system occur, and even if external vibrations are transmitted to the first guide 31, they are cut off at the first air bearing 1 and the second air bearing 2, and the horizontal table 3 is not transmitted. For this reason, the positioning accuracy of the horizontal table 3 is very high on the order of microns, and the tact time can be very short on the order of milliseconds.

またX−Yテーブルとしてだけでなく、一方向にのみ移動する各種の可動部防振装置としても使用することが可能である。   Moreover, it can be used not only as an XY table but also as various movable part vibration isolators that move only in one direction.

防振X−Yテーブルの斜視図である。It is a perspective view of an anti-vibration XY table. 防振X−Yテーブルの部分縦断面正面図である。It is a partial longitudinal cross-section front view of an anti-vibration XY table. 防振X−Yテーブルの分解斜視図である。It is a disassembled perspective view of an anti-vibration XY table. 水平テーブル、連結部材及び第2軸の分解斜視図である。It is a disassembled perspective view of a horizontal table, a connection member, and a 2nd axis | shaft. 第2ガイド、連結部材及び第1軸の分解斜視図である。It is a disassembled perspective view of a 2nd guide, a connection member, and a 1st axis | shaft. 第1軸の底面図である。It is a bottom view of the 1st axis. 第1軸の半径方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the radial direction of the 1st axis | shaft. 第1軸の軸方向から見た縦断面図である。It is the longitudinal cross-sectional view seen from the axial direction of the 1st axis | shaft. 第1軸のエア噴出口から圧縮空気が噴出して円弧溝から第1軸が浮上している状態を誇張して示す拡大縦断面図である。FIG. 6 is an enlarged longitudinal sectional view exaggeratingly showing a state in which compressed air is ejected from an air outlet of the first axis and the first axis is floating from an arc groove. 磁石により水平テーブルを浮上させるようにした防振X−Yテーブルの部分破断斜視図である。It is a partial fracture perspective view of a vibration proof XY table which made a horizontal table levitate with a magnet. 磁石により水平テーブルを浮上させるようにした防振X−Yテーブルにおいて、軸のエア噴出口から圧縮空気が噴出して円弧溝から軸が浮上している状態を誇張して示す部分縦断面図である。In the vibration-proof XY table which floated the horizontal table with the magnet, it is the fragmentary longitudinal cross-sectional view which exaggeratedly shows the state where the compressed air blows out from the air outlet of the shaft and the shaft floats from the arc groove is there. 基準軸を型に設置し、該型に可塑性樹脂を流し込んでいる状態を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the state which has installed the reference | standard axis | shaft in the type | mold and poured the plastic resin into this type | mold. 可塑性樹脂の流込みが完了した状態を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the state which the pouring of the plastic resin was completed. 可塑性樹脂の硬化後、型及び基準軸を取り外し、円弧溝が形成されたガイドが得られた状態を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the state where the mold | type and the reference axis were removed and the guide in which the circular arc groove was formed was obtained after hardening of a plastic resin.

符号の説明Explanation of symbols

1 空気軸受の一例たる第1空気軸受
2 空気軸受の一例たる第2空気軸受
3 水平テーブル
4 空気圧層
10 防振X−Yテーブル
11 第1リニアモータ
12 第2リニアモータ
14 基準軸
15 型
16 可塑性樹脂
20 防振X−Yテーブル
21 軸の一例たる第1軸
21a 円筒外周面
21b エア噴出口
22 軸の一例たる第2軸
22a 円筒外周面
31 第1ガイド
31a 円弧溝
32 第2ガイド
32a 円弧溝
34 磁石
DESCRIPTION OF SYMBOLS 1 1st air bearing which is an example of an air bearing 2 2nd air bearing which is an example of an air bearing 3 Horizontal table 4 Pneumatic layer 10 Anti-vibration XY table 11 1st linear motor 12 2nd linear motor 14 Reference shaft 15 Type 16 Plasticity Resin 20 Anti-vibration X-Y table 21 First shaft 21a as an example of the shaft 21a Cylindrical outer peripheral surface 21b Air outlet 22 Second shaft as an example of the shaft 22a Cylindrical outer peripheral surface 31 First guide 31a Arc groove 32 Second guide 32a Arc groove 34 Magnet

Claims (9)

断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設け、前記円筒外周面と同一の曲率半径に形成された円弧溝との間に空気圧層を形成することで該円弧溝から浮上可能に構成したことを特徴とする軸。   At least a part of the cross-sectional shape has a circular cylindrical outer peripheral surface, and an air outlet is provided on the outer peripheral surface of the cylinder so that compressed air can be ejected from the outer peripheral surface of the cylinder. An axis characterized in that a pneumatic layer is formed between the formed arcuate groove so as to float from the arcuate groove. 断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と、該軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとを備え、前記円筒外周面と前記円弧溝との間に空気圧層を形成することで前記軸が前記ガイドから浮上し軸方向に移動可能に構成したことを特徴とする空気軸受。   A shaft having a cylindrical outer peripheral surface in which at least a part of a cross-sectional shape is an arc shape, and an air outlet that allows compressed air to be ejected from the outer peripheral surface of the cylinder; and the cylindrical outer periphery of the shaft And a guide having an arc groove formed with the same radius of curvature as the surface, and by forming a pneumatic layer between the outer peripheral surface of the cylinder and the arc groove, the shaft floats from the guide and moves in the axial direction. An air bearing characterized in that it can be configured. 断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と該軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとからなる空気軸受と、前記軸の上側に取り付けられた水平テーブルとを備え、水平に設置された前記ガイドに対して該水平テーブルを前記軸の軸方向に浮上した状態で移動可能に構成したことを特徴とする防振水平テーブル。   A shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows the compressed air to be ejected from the outer peripheral surface of the cylinder, and the cylindrical outer peripheral surface of the shaft And an air bearing comprising a guide having an arc groove formed in the same radius of curvature, and a horizontal table mounted on the upper side of the shaft, the horizontal table with respect to the guide installed horizontally An anti-vibration horizontal table configured to be movable while floating in the axial direction of the shaft. 断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる軸と該軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有するガイドとからなる空気軸受と、前記軸の上側に取り付けられた水平テーブルと、該水平テーブル及び前記ガイドの相対する位置に前記軸の軸方向に前記水平テーブルを駆動するように取り付けられたリニアモータとを備え、水平に設置された前記ガイドに対して該水平テーブルを前記軸の軸方向に浮上した状態で前記リニアモータにより駆動可能に構成したことを特徴とする防振水平テーブル。   A shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows the compressed air to be ejected from the outer peripheral surface of the cylinder, and the cylindrical outer peripheral surface of the shaft An air bearing comprising a guide having an arc groove formed with the same radius of curvature, a horizontal table mounted on the upper side of the shaft, and an axial direction of the shaft at a position opposite to the horizontal table and the guide A linear motor mounted to drive the horizontal table, and configured to be able to be driven by the linear motor in a state where the horizontal table floats in the axial direction of the shaft with respect to the horizontally installed guide. An anti-vibration horizontal table. 前記水平テーブル及び前記ガイドの相対する位置に、互いに反発するように磁石を夫々取り付けたことを特徴とする請求項3又は請求項4のいずれかに記載の防振水平テーブル。   5. The anti-vibration horizontal table according to claim 3, wherein magnets are respectively attached to the positions of the horizontal table and the guide so as to repel each other. 断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第1軸と該第1軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有する第1ガイドとからなる第1空気軸受と、該第1空気軸受の前記第1軸の上側に取り付けられ所定の曲率半径に形成された円弧溝を有する第2ガイドと断面形状の少なくとも一部が該第2ガイドの前記円弧溝と同一曲率半径の円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第2軸とからなり前記第1空気軸受と直交する方向に移動可能に構成された第2空気軸受と、前記第2軸の上側に取り付けられた水平テーブルとを備え、該水平テーブルを浮上した状態で互いに直交する二方向に移動可能に構成したことを特徴とする防振X−Yテーブル。   A first shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows compressed air to be ejected from the outer peripheral surface of the cylinder; A first air bearing comprising a first guide having a circular arc groove formed at the same radius of curvature as the cylindrical outer peripheral surface, and formed at a predetermined radius of curvature attached to the upper side of the first shaft of the first air bearing. A second guide having a circular arc groove and at least a part of a cross-sectional shape of the second guide has a cylindrical outer peripheral surface having an arc shape with the same radius of curvature as the circular arc groove of the second guide. A second air bearing configured to move in a direction perpendicular to the first air bearing, the second air bearing having a second shaft provided with an air jet port capable of ejecting compressed air; and attached to an upper side of the second shaft A horizontal table, and the horizontal table Vibration isolating X-Y table, characterized by being configured to be movable in two directions perpendicular to each other in a state where the above. 断面形状の少なくとも一部が円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第1軸と該第1軸の前記円筒外周面と同一の曲率半径に形成された円弧溝を有する第1ガイドとからなる第1空気軸受と、該第1空気軸受の前記第1軸の上側に取り付けられ所定の曲率半径に形成された円弧溝を有する第2ガイドと断面形状の少なくとも一部が該第2ガイドの前記円弧溝と同一曲率半径の円弧形状となる円筒外周面を有し該円筒外周面に該円筒外周面から圧縮空気を噴出可能とするエア噴出口を設けてなる第2軸とからなり前記第1空気軸受と直交する方向に移動可能に構成された第2空気軸受と、前記第2軸の上側に取り付けられた水平テーブルと、前記第2ガイド及び前記第1ガイドの相対する位置に前記第1軸の軸方向に前記第2ガイドを駆動するように取り付けられた第1リニアモータと、前記水平テーブル及び前記第2ガイドの相対する位置に前記第2軸の軸方向に前記水平テーブルを駆動するように取り付けられた第2リニアモータとを備え、前記第1リニアモータ及び前記第2リニアモータにより前記水平テーブルを浮上した状態で互いに直交する二方向に夫々独立して駆動可能に構成したことを特徴とする防振X−Yテーブル。   A first shaft having a cylindrical outer peripheral surface in which at least a part of the cross-sectional shape is an arc shape, and an air outlet that allows compressed air to be ejected from the outer peripheral surface of the cylinder; A first air bearing comprising a first guide having a circular arc groove formed at the same radius of curvature as the cylindrical outer peripheral surface, and formed at a predetermined radius of curvature attached to the upper side of the first shaft of the first air bearing. A second guide having a circular arc groove and at least a part of a cross-sectional shape of the second guide has a cylindrical outer peripheral surface having an arc shape with the same radius of curvature as the circular arc groove of the second guide. A second air bearing configured to move in a direction perpendicular to the first air bearing, the second air bearing having a second shaft provided with an air jet port capable of ejecting compressed air; and attached to an upper side of the second shaft Horizontal table, the second guide and the horizontal table A first linear motor mounted to drive the second guide in the axial direction of the first shaft at a position opposed to one guide; and the second shaft at a position opposed to the horizontal table and the second guide. A second linear motor mounted so as to drive the horizontal table in the axial direction of the horizontal table, and the horizontal table is floated by the first linear motor and the second linear motor, respectively, in two directions orthogonal to each other. An anti-vibration XY table characterized in that it can be driven independently. 前記水平テーブル及び前記第2ガイドの相対する位置、及び前記第2ガイド及び前記第1ガイドの相対する位置に、互いに反発するように磁石を夫々取り付けたことを特徴とする請求項6又は請求項7のいずれかに記載の防振X−Yテーブル。   The magnet according to claim 6 or claim, wherein magnets are attached to reciprocal positions of the horizontal table and the second guide, and opposite positions of the second guide and the first guide, respectively. 8. The anti-vibration XY table according to any one of 7 above. 高精度の真円度、曲率半径及び表面粗さに加工された基準軸を型に設置し、該型に可塑性樹脂を流し込んで硬化させ、前記基準軸の前記真円度、曲率半径及び表面粗さがそのまま転写された円弧溝をガイド上に形成することを特徴とする精密ガイドの製造方法。   A reference axis machined to high accuracy roundness, curvature radius and surface roughness is placed in a mold, and a plastic resin is poured into the mold and cured, and the roundness, curvature radius and surface roughness of the reference axis are set. A method of manufacturing a precision guide, characterized in that an arc groove on which the length is transferred is formed on the guide.
JP2004150639A 2004-05-20 2004-05-20 Vibration-proof x-y table Pending JP2005331048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150639A JP2005331048A (en) 2004-05-20 2004-05-20 Vibration-proof x-y table

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150639A JP2005331048A (en) 2004-05-20 2004-05-20 Vibration-proof x-y table

Publications (1)

Publication Number Publication Date
JP2005331048A true JP2005331048A (en) 2005-12-02

Family

ID=35485848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150639A Pending JP2005331048A (en) 2004-05-20 2004-05-20 Vibration-proof x-y table

Country Status (1)

Country Link
JP (1) JP2005331048A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038972A (en) * 2006-08-03 2008-02-21 Tohoku Univ Base isolation device
WO2009011433A1 (en) * 2007-07-19 2009-01-22 Kokusai Keisokuki Kabushiki Kaisha Vibration test apparatus
JP2009258195A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Proximity exposure device, substrate moving method for proximity exposure device, and method of manufacturing display panel
JP2009264429A (en) * 2008-04-23 2009-11-12 Oiles Ind Co Ltd Seismic isolation system and seismic isolation structure
US20110227265A1 (en) * 2007-10-23 2011-09-22 Tokyo Denki University Seismic isolation device and seismic isolation structure
CN103291799A (en) * 2013-06-27 2013-09-11 无锡市宏源弹性器材有限公司 Non-angular-displacement vibration isolation device with steel cable
CN103472681A (en) * 2012-06-08 2013-12-25 上海微电子装备有限公司 Lithography movement table reacting force neutralization apparatus and lithography applying the same
KR101516394B1 (en) * 2014-03-03 2015-05-04 (주) 에스.피.시스템스 Sliding block for distributing impact load
KR20170094122A (en) * 2014-12-15 2017-08-17 히하이스트 세이코 가부시키가이샤 Linear motion bearing composite with housing
CN111435222A (en) * 2019-01-14 2020-07-21 上海微电子装备(集团)股份有限公司 Motion table follow-up pressure compensation device, photoetching machine system and driving method thereof
CN116972075A (en) * 2023-09-20 2023-10-31 无锡星微科技有限公司杭州分公司 Magnetic preloading structure and linear platform with same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032366B1 (en) * 1969-08-29 1975-10-20
JPS57184723A (en) * 1981-05-06 1982-11-13 Nippon Seiko Kk Direct driven guiding device
JPS5972316U (en) * 1982-11-09 1984-05-16 日本電子株式会社 hydrostatic bearing
JPS59220321A (en) * 1983-05-30 1984-12-11 Nippon Seiko Kk Manufacture of dynamic pressure type slide bearing made of synthetic resin
JPH03218249A (en) * 1990-01-24 1991-09-25 Nippon Seiko Kk One-piece type linear motor direct movement guide apparatus
JPH0842569A (en) * 1994-07-29 1996-02-13 Nippon Seiko Kk Bearing device
JPH08229759A (en) * 1995-02-24 1996-09-10 Canon Inc Positioning device, and device and method of manufacturing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5032366B1 (en) * 1969-08-29 1975-10-20
JPS57184723A (en) * 1981-05-06 1982-11-13 Nippon Seiko Kk Direct driven guiding device
JPS5972316U (en) * 1982-11-09 1984-05-16 日本電子株式会社 hydrostatic bearing
JPS59220321A (en) * 1983-05-30 1984-12-11 Nippon Seiko Kk Manufacture of dynamic pressure type slide bearing made of synthetic resin
JPH03218249A (en) * 1990-01-24 1991-09-25 Nippon Seiko Kk One-piece type linear motor direct movement guide apparatus
JPH0842569A (en) * 1994-07-29 1996-02-13 Nippon Seiko Kk Bearing device
JPH08229759A (en) * 1995-02-24 1996-09-10 Canon Inc Positioning device, and device and method of manufacturing device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038972A (en) * 2006-08-03 2008-02-21 Tohoku Univ Base isolation device
WO2009011433A1 (en) * 2007-07-19 2009-01-22 Kokusai Keisokuki Kabushiki Kaisha Vibration test apparatus
JP4818436B2 (en) * 2007-07-19 2011-11-16 国際計測器株式会社 Excitation test equipment
JP2012002822A (en) * 2007-07-19 2012-01-05 Kokusai Keisokki Kk Excitation apparatus
KR101132191B1 (en) 2007-07-19 2012-04-06 고쿠사이 게이소쿠키 가부시키가이샤 Vibration test apparatus
KR101497009B1 (en) * 2007-10-23 2015-02-27 각코 호진 도쿄 덴키 다이가쿠 Seismic isolation system and seismic isolation structure
US20110227265A1 (en) * 2007-10-23 2011-09-22 Tokyo Denki University Seismic isolation device and seismic isolation structure
US8833745B2 (en) * 2007-10-23 2014-09-16 Tokyo Denki University Oiles Corporation Seismic isolation device and seismic isolation structure
JP2009258195A (en) * 2008-04-14 2009-11-05 Hitachi High-Technologies Corp Proximity exposure device, substrate moving method for proximity exposure device, and method of manufacturing display panel
JP2009264429A (en) * 2008-04-23 2009-11-12 Oiles Ind Co Ltd Seismic isolation system and seismic isolation structure
CN103472681A (en) * 2012-06-08 2013-12-25 上海微电子装备有限公司 Lithography movement table reacting force neutralization apparatus and lithography applying the same
CN103291799A (en) * 2013-06-27 2013-09-11 无锡市宏源弹性器材有限公司 Non-angular-displacement vibration isolation device with steel cable
KR101516394B1 (en) * 2014-03-03 2015-05-04 (주) 에스.피.시스템스 Sliding block for distributing impact load
KR20170094122A (en) * 2014-12-15 2017-08-17 히하이스트 세이코 가부시키가이샤 Linear motion bearing composite with housing
KR102217154B1 (en) * 2014-12-15 2021-02-17 히하이스트 세이코 가부시키가이샤 Linear motion bearing composite with housing
CN111435222A (en) * 2019-01-14 2020-07-21 上海微电子装备(集团)股份有限公司 Motion table follow-up pressure compensation device, photoetching machine system and driving method thereof
CN111435222B (en) * 2019-01-14 2021-04-02 上海微电子装备(集团)股份有限公司 Motion table follow-up pressure compensation device, photoetching machine system and driving method thereof
CN116972075A (en) * 2023-09-20 2023-10-31 无锡星微科技有限公司杭州分公司 Magnetic preloading structure and linear platform with same
CN116972075B (en) * 2023-09-20 2023-12-19 无锡星微科技有限公司杭州分公司 Magnetic preloading structure and linear platform with same

Similar Documents

Publication Publication Date Title
GB2519272B (en) Magnetically suspended vibration isolator with zero stiffness whose angle degree of freedom is decoupled with a joint ball bearing
JP2005331048A (en) Vibration-proof x-y table
WO2014094688A2 (en) Vibration isolator with zero stiffness whose angle degree of freedom is decoupled with a spherical air bearing
JPH095463A (en) Stage device
US20150219180A1 (en) Magnetically suspended and plane-drove vibration isolator
KR20220035113A (en) Iron core linear motor forcer with integral aerodynamic bearing guide
CN110238729A (en) A kind of cantilevered wheels band burnishing device and the polishing method of controllable pressure
JP5783643B2 (en) EDM machine
CN103062302B (en) Coplane air floatation orthogonal decoupling and air floatation ball bearing angle decoupling magnetic levitation vibration isolator
CN103062321B (en) Zero-rigidity vibration isolator with coplace air flotation orthogonal decoupling and sliding knuckle bearing angle decoupling
US6110010A (en) Drive and support for machine tools
JPH0123262B2 (en)
CN103047344A (en) Double-layer orthogonal air floatation decoupling and rolling knuckle bearing angular decoupling magnetic levitation vibration isolator
KR20110064091A (en) Air bearing cylinder for machine tool
JPH01188241A (en) Shift guiding device
JP4743480B2 (en) Linear moving device and machine tool
CN103062315B (en) Coplane air floatation orthogonal decoupling and flexible membrane angle decoupling eddy-current damping vibration isolator
JP5598563B1 (en) Direct drive motor
CN103047361B (en) Zero-stiffness vibration isolator with rolling oscillating bearing angle degree decoupling function and vibration isolation system
CN103047351B (en) Magnetic suspension zero-stiffness vibration isolator with coplanar air floatation orthogonal decoupling function and angular decoupling function by aid of flexible membrane
CN103047355B (en) Electromagnetic damping vibration isolator with coplanar air floatation orthogonal decoupling function and angular decoupling function by aid of flexible membrane
CN103032514B (en) Zero-stiffness vibration isolator for double-layered aerostatic orthogonal decoupling and sliding knuckle bearing angular decoupling
CN103047354A (en) Double-layer orthogonal air floatation decoupling and flexible membrane angular decoupling electromagnetic damping vibration isolator
CN103047347B (en) Double-layer orthogonal air floatation decoupling and sliding knuckle bearing angular decoupling magnetic levitation vibration isolator
CN103062290A (en) Electromagnetic damping vibration isolator with coplace air flotation orthogonal decoupling and rolling knuckle bearing angle decoupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810