JPH0842569A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPH0842569A
JPH0842569A JP17889994A JP17889994A JPH0842569A JP H0842569 A JPH0842569 A JP H0842569A JP 17889994 A JP17889994 A JP 17889994A JP 17889994 A JP17889994 A JP 17889994A JP H0842569 A JPH0842569 A JP H0842569A
Authority
JP
Japan
Prior art keywords
bearing
magnetic
shaft member
magnet
bearing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17889994A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Kawasaki
勝義 川崎
Atsushi Takahashi
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP17889994A priority Critical patent/JPH0842569A/en
Publication of JPH0842569A publication Critical patent/JPH0842569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a non-contact type bearing device which is constituted to facilitate the processing a assembly works and reduce the cost without lowering the movement precision. CONSTITUTION:A bearing member 2 is positioned facing the outer surface of a shaft member 1 with a bearing gap therebetween. One magnet 11 arranged on the outer surface of the shaft member 1 is positioned opposite to the other magnet 12 arranged at a bearing member 2 to form a repulsion type magnetic bearing. Meanwhile, compressed gas is injected in the bearing gap through a feed hole 2 formed in the bearing member 2 to form a static pressure gas bearing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静圧気体軸受に磁気
反発型の磁気軸受を組み込んだハイブリッド型の軸受装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid type bearing device in which a magnetic repulsion type magnetic bearing is incorporated in a static pressure gas bearing.

【0002】[0002]

【従来の技術】従来の静圧気体軸受としては、例えば図
6ないし図8に示すようなものが知られている。このも
のは、固定体である軸部材1の外面に、可動体である軸
受部材2が軸受すきまSを介して対向している。その軸
受部材2の内部には給気孔3が設けてあり、その給気孔
3は軸受部材2の内面の上下左右の各面に取り付けられ
ている絞り部材(図示のものでは多孔質材)4に連通し
ている。多孔質材4は絞りとして機能するもので、給気
孔3から多孔質材4を介して軸受すき間Sに圧縮気体を
噴出させて流体膜を形成することにより、軸受部材2が
非接触で軸部材1に支持されるものである。
2. Description of the Related Art As conventional static pressure gas bearings, those shown in FIGS. 6 to 8 are known. In this structure, a bearing member 2 which is a movable body is opposed to an outer surface of a shaft member 1 which is a fixed body through a bearing clearance S. An air supply hole 3 is provided inside the bearing member 2, and the air supply hole 3 is formed in a throttle member (a porous material in the illustrated example) 4 attached to each of the upper, lower, left and right surfaces of the inner surface of the bearing member 2. It is in communication. The porous material 4 functions as a throttle, and the compressed gas is ejected from the air supply hole 3 through the porous material 4 into the bearing gap S to form a fluid film, so that the bearing member 2 does not contact the shaft member 2. It is supported by 1.

【0003】上記従来例では、軸受部材2に圧縮気体供
給口5が設けられ、これに圧縮気体配管を接続して、給
気孔3への圧縮気体の供給を行う。
In the above conventional example, the compressed gas supply port 5 is provided in the bearing member 2, and the compressed gas pipe is connected to the compressed gas supply port 5 to supply the compressed gas to the air supply hole 3.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の静圧気体軸受装置では、軸部材1と軸受部材2との
間の極く僅かの軸受すきまSに形成される流体膜のみで
軸受部材2を軸部材1に対して非接触に浮上支持するた
めには、軸受装置の構成部品の加工にあたってそれぞれ
に高い加工精度が要求される。また、各構成部品の組立
てに際しても、高い組立て技術が必要とされている。そ
のため、軸受部品が非常に高価になってしまい、また組
立て作業に多くの時間がかかり、製造が容易ではないと
いう問題点がある。
However, in the above-mentioned conventional hydrostatic gas bearing device, the bearing member 2 is formed only by the fluid film formed in the very small bearing clearance S between the shaft member 1 and the bearing member 2. In order to levitate and support the shaft member 1 in a non-contact manner with respect to the shaft member 1, high processing accuracy is required for processing each component of the bearing device. In addition, when assembling each component, high assembly technology is required. Therefore, there is a problem that the bearing component becomes very expensive, the assembly work takes a lot of time, and the manufacturing is not easy.

【0005】そこで、この発明は、上記従来技術の問題
点に着目してなされたもので、静圧気体軸受に、磁石の
磁気反発力を利用して非接触に支持する磁気軸受の機能
を付加することにより、気体軸受の部品精度が多少落ち
て安定した軸受すきまが維持しにくいときは磁気軸受の
磁気反発力で補佐して常に適正な軸受すきまを維持でき
る軸受装置を提供することを目的としている。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and adds the function of a magnetic bearing for supporting in a non-contact manner by utilizing the magnetic repulsive force of a magnet to a static pressure gas bearing. The purpose of this is to provide a bearing device that can always maintain an appropriate bearing clearance by assisting with the magnetic repulsion force of the magnetic bearing when the precision of the gas bearing part deteriorates somewhat and it is difficult to maintain a stable bearing clearance. There is.

【0006】[0006]

【課題を解決するための手段】この発明は、軸部材の外
面に軸受部材が軸受すきまを介して対向し、軸部材の外
面に設けた一方の磁石が軸受部材に設けた他方の磁石と
対向して反発型の磁気軸受を構成すると共に、前記軸受
部材に設けた給気孔から軸受すきまに圧縮気体を噴出し
て静圧気体軸受を構成することを特徴とする。
According to the present invention, a bearing member faces the outer surface of a shaft member through a bearing clearance, and one magnet provided on the outer surface of the shaft member faces the other magnet provided on the bearing member. And a repulsive magnetic bearing, and a static pressure gas bearing is formed by ejecting compressed gas from the air supply hole provided in the bearing member into the bearing clearance.

【0007】[0007]

【作用】この発明の軸受装置にあっては、軸部材と軸受
部材との間の軸受すきまに絞りを介して圧縮気体を噴出
して形成される流体膜が不均一,不安定になって、軸受
部材が軸部材に対し傾き、一部が接触しそうになると、
磁気軸受の作用により磁気反発力が増大して軸受すきま
を押し拡げる。この磁気反発力は、対向させた磁石のギ
ャップ(軸受すきま)の二乗に反比例して増大し、軸受
すきまを適正な大きさに維持するように作用する。
In the bearing device of the present invention, the fluid film formed by ejecting the compressed gas through the throttle into the bearing clearance between the shaft member and the bearing member becomes nonuniform and unstable, When the bearing member tilts with respect to the shaft member and some of them are about to come into contact,
The action of the magnetic bearing increases the magnetic repulsion force and expands the bearing clearance. This magnetic repulsive force increases in inverse proportion to the square of the gap (bearing clearance) between the opposed magnets, and acts to maintain the bearing clearance at an appropriate size.

【0008】[0008]

【実施例】以下、この発明の実施例を図面を参照して説
明する。図1ないし図5はこの発明の一実施例で、多孔
質形の静圧直動気体軸受に磁気軸受を組み込んだもので
ある。なお、従来と同一または相当部分には同一の符号
を付してある。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show an embodiment of the present invention in which a magnetic bearing is incorporated in a porous static pressure direct acting gas bearing. The same or corresponding parts as in the conventional case are designated by the same reference numerals.

【0009】まず、構成を説明すると、角柱状の固定体
である軸部材1の上下左右の平面状の外面即ち側面が一
方の軸受面1aになっている。その軸部材1には隣合う
側面の間の個所即ち軸方向の四隅(稜部)に切り欠かれ
た円弧状凹部10が軸方向に設けられている。その円弧
状凹部10には弓形磁石(セグメント形磁石ともいう)
11が軸部材1の全長にわたり固着して取り付けられて
いる。各セグメント形磁石11は、その弓形の端面がそ
れぞれN極とS極になるように着磁されている。
First, the structure will be described. One of the bearing surfaces 1a is a flat outer surface, that is, a side surface of the shaft member 1 which is a prismatic fixed body in the vertical and horizontal directions. The shaft member 1 is provided with arcuate recesses 10 axially cut out at positions between adjacent side surfaces, that is, at four corners (ridges) in the axial direction. An arc magnet (also called a segment magnet) is provided in the arc-shaped recess 10.
11 is fixedly attached over the entire length of the shaft member 1. Each segment-shaped magnet 11 is magnetized so that its arcuate end surface has an N pole and an S pole, respectively.

【0010】一方、軸部材1に軸受すきまSを介して軸
方向移動可能に嵌合された四角い枠形の軸受部材2の内
面には、図3に示すように軸部材1のセグメント形磁石
11の磁極に対向する細長い棒状の磁石12が四隅部に
一対ずつそれぞれ配設されている。こうして、一個のセ
グメント形磁石11と二個の対向磁石12との組合わせ
で、一対の磁気軸受を形成している。各対向磁石12の
磁極はセグメント形磁石11の磁極と反発し合う極性と
され、軸受部材2と軸部材1との間にエアギャップGを
形成する。
On the other hand, on the inner surface of the square frame-shaped bearing member 2 fitted in the shaft member 1 via the bearing clearance S so as to be movable in the axial direction, as shown in FIG. The pair of elongated bar-shaped magnets 12 facing the magnetic poles are arranged at the four corners. In this way, a pair of magnetic bearings is formed by the combination of one segment magnet 11 and two opposing magnets 12. The magnetic poles of the opposing magnets 12 are of a polarity that repels the magnetic poles of the segment magnets 11 and forms an air gap G between the bearing member 2 and the shaft member 1.

【0011】軸受部材2の内面の上下左右の各面には、
更に、絞り部材としての多孔質材4が埋め込んで配設さ
れ、その多孔質材4の表面は他方の軸受面2aを構成し
ている。そして、軸受部材2の外面に設けられた圧縮気
体供給口5から供給される圧縮気体が軸受部材2の内部
に設けられている給気孔3を経て各多孔質材4に供給さ
れる四面拘束形の静圧直動気体軸受が構成されている。
On each of the upper, lower, left and right sides of the inner surface of the bearing member 2,
Further, a porous material 4 as a throttle member is embedded and arranged, and the surface of the porous material 4 constitutes the other bearing surface 2a. Then, the compressed gas supplied from the compressed gas supply port 5 provided on the outer surface of the bearing member 2 is supplied to each porous material 4 through the air supply holes 3 provided inside the bearing member 2 The static pressure direct-acting gas bearing is constructed.

【0012】なお、この実施例の場合、軸部材1の軸受
面1a及び軸受部材2の軸受面2aに関する真直度,平
面度,平行度,直角度,同軸度等の機械加工精度,組立
て精度は、通常の静圧気体軸受において要求される程の
高精度でなくてもよい。次に作用を説明する。この軸受
装置の場合、流体膜を利用して軸部材1に対して軸受部
材2を浮上支持する静圧気体軸受の作用を、磁気力を利
用する磁気軸受の磁気反発力で補なっている。
In the case of this embodiment, the machining accuracy such as straightness, flatness, parallelism, squareness, coaxiality, and the like regarding the bearing surface 1a of the shaft member 1 and the bearing surface 2a of the bearing member 2 are However, the accuracy does not have to be as high as required in a normal static pressure gas bearing. Next, the operation will be described. In the case of this bearing device, the action of the static pressure gas bearing that floats and supports the bearing member 2 with respect to the shaft member 1 using the fluid film is supplemented by the magnetic repulsion force of the magnetic bearing that uses the magnetic force.

【0013】すなわち、図外の圧縮空気供給源から軸受
部材2の圧縮気体供給口5に供給された圧縮空気が、給
気孔3を通って各多孔質材4に供給され、多孔質材4内
の微細気孔を経て適宜の圧力に絞られた後に軸受面2a
から軸受すき間Sに噴出し、流体膜を形成して軸受部材
2を非接触で浮上支持する。その状態で軸受部材2を軸
方向に動かせば、軸受部材2を軸部材1に沿って摺動抵
抗無しに極めて円滑に移動する。このとき、軸部材1と
軸受部材2との間に保たれる軸受すきまSは、通常は図
4に模式的に示すように均一な幅の枠形になる。
That is, the compressed air supplied from the compressed air supply source (not shown) to the compressed gas supply port 5 of the bearing member 2 is supplied to the respective porous materials 4 through the air supply holes 3 and inside the porous material 4. Bearing surface 2a after being squeezed to an appropriate pressure through the fine pores of
From the bearing to the bearing gap S to form a fluid film to support the bearing member 2 in a non-contact manner by floating. If the bearing member 2 is moved in the axial direction in this state, the bearing member 2 moves extremely smoothly along the shaft member 1 without any sliding resistance. At this time, the bearing clearance S maintained between the shaft member 1 and the bearing member 2 usually has a frame shape with a uniform width as schematically shown in FIG.

【0014】しかし、軸部材1,軸受部材2の軸受面1
a,2aの機械加工精度が通常の加工精度程でない場合
(あるいは加工精度は通常の高精度であっても軸受部材
2に外部からの偏荷重が作用した場合等でも)、軸受す
きまSは図5に示すように相対的に変化して不均一にな
る。すると、各磁気回路において異極間のエアギャップ
Gに大小の差が生じる。磁極間に作用する磁気(反発)
力はエアギャップGの二乗に反比例するから、例えば図
5の場合、Fa,Fg,Fe,Fcの各磁気力がFb,
Fh,Ff,Fdの各磁気力より大きくなる。それらの
磁気力の差が回復方向のモーメントとして機能して軸部
材1と軸受部材2との相対的な傾きは修正され、不均一
な軸受すきまSは図4のような均一なものに回復する。
However, the bearing surface 1 of the shaft member 1 and the bearing member 2
When the machining accuracy of a and 2a is not as high as the normal machining accuracy (or even when the machining accuracy is a normal high accuracy, or when an eccentric load from the outside acts on the bearing member 2), the bearing clearance S is As shown in FIG. 5, it changes relatively and becomes non-uniform. Then, in each magnetic circuit, a large or small difference occurs in the air gap G between the different poles. Magnetism acting between magnetic poles (repulsion)
Since the force is inversely proportional to the square of the air gap G, for example, in the case of FIG. 5, the magnetic forces Fa, Fg, Fe, Fc are Fb,
It becomes larger than each magnetic force of Fh, Ff, Fd. The difference between the magnetic forces functions as a moment in the recovery direction, the relative inclination between the shaft member 1 and the bearing member 2 is corrected, and the non-uniform bearing clearance S is recovered to a uniform one as shown in FIG. .

【0015】かくして、この実施例によれば、たとえ軸
部材1,軸受部材2間の軸受すきまSが不均一になって
も、磁気軸受の対向した各磁極間の磁気反発力がエアギ
ャップGすなわち軸受すきまSを均一化する方向に作用
するから、軸受装置の構成部品の加工精度は従来程高く
しなくても済み、その分加工費が低減できる。また、軸
受装置の組立てに当たっても、綿密な精度検査を繰り返
さなくても良く、組立て作業時間が短縮できる。その結
果、高精度の運動精度を確保しながら、しかも安価で組
立てが容易な軸受装置を提供することが可能である。磁
気軸受を組み込むことで、高剛性の静圧軸受装置が得ら
れる利点もある。
Thus, according to this embodiment, even if the bearing clearance S between the shaft member 1 and the bearing member 2 becomes non-uniform, the magnetic repulsive force between the opposing magnetic poles of the magnetic bearing causes the air gap G, that is, the magnetic gap. Since the bearing clearance S acts in a uniform direction, the machining accuracy of the components of the bearing device does not need to be as high as in the conventional case, and the machining cost can be reduced accordingly. Further, even when assembling the bearing device, it is not necessary to repeat thorough precision inspection, and the assembling work time can be shortened. As a result, it is possible to provide a bearing device that is inexpensive and easy to assemble while ensuring high precision motion accuracy. There is also an advantage that a static bearing device with high rigidity can be obtained by incorporating the magnetic bearing.

【0016】なお、上記の実施例にあっては、軸受部材
が軸に沿って移動する直動形の軸受装置としたものを説
明したが、軸が移動体で軸受部材が固定体の直動軸受
や、スラスト軸受にもこの発明を適用することができ
る。また、静圧気体軸受用の絞り部材としては多孔質材
4を用いたものを示したが、これに限らず、オリフィス
絞りや自成絞り或いは表面絞り等のその他のタイプの絞
りを使用したものにも適用可能である。
In the above embodiment, the linear bearing device in which the bearing member moves along the shaft has been described. However, the shaft is a moving member and the bearing member is a fixed member. The present invention can be applied to bearings and thrust bearings. Further, although the diaphragm member for the static pressure gas bearing is shown to use the porous material 4, it is not limited to this, and a diaphragm member of other type such as an orifice diaphragm, a self-made diaphragm or a surface diaphragm is used. It is also applicable to.

【0017】[0017]

【発明の効果】以上説明したように、この発明の軸受装
置によれば、軸部材に軸受部材が軸受すきまを介して対
向し、その軸受すきまに軸受部材に設けた給気孔から圧
縮気体を噴出して流体膜を形成することにより両部材を
非接触に支持する静圧気体軸受を構成すると共に、軸部
材の外面に一方の磁石を設け、軸受部材には対向して反
発する他方の磁石を設けて磁気軸受を構成したため、軸
受すきまの流体膜が不均一になって軸受部材と軸部材と
が相対的に傾くと、磁気軸受の磁気反発力が作用してそ
の傾きを復元する。この磁気復元機能の付加により、静
圧軸受の構成部品の加工精度や組立て精度を高精度に維
持しなくても良いことになり、その結果、運動精度の高
い軸受装置が安価に提供できるという効果が得られる。
As described above, according to the bearing device of the present invention, the bearing member faces the shaft member through the bearing clearance, and the compressed gas is ejected from the air supply hole provided in the bearing member into the bearing clearance. By forming a fluid film to form a static pressure gas bearing that supports both members in a non-contact manner, one magnet is provided on the outer surface of the shaft member, and the other magnet that opposes and opposes the bearing member is provided. Since the magnetic bearing is provided, the fluid film in the bearing clearance becomes nonuniform and the bearing member and the shaft member are relatively inclined, and the magnetic repulsive force of the magnetic bearing acts to restore the inclination. With the addition of this magnetic restoration function, it is not necessary to maintain the machining accuracy and assembly accuracy of the components of the hydrostatic bearing at high accuracy, and as a result, a bearing device with high motion accuracy can be provided at low cost. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II in FIG.

【図3】図2のIII 部の拡大図である。FIG. 3 is an enlarged view of a part III in FIG.

【図4】図1に示すものの作用説明図(正常時)であ
る。
FIG. 4 is an operation explanatory view (normal state) of the one shown in FIG.

【図5】図1に示すものの作用説明図(非正常時)であ
る。
FIG. 5 is a diagram for explaining the operation of the one shown in FIG. 1 (at the time of abnormal operation).

【図6】従来の静圧軸受装置の平面図である。FIG. 6 is a plan view of a conventional hydrostatic bearing device.

【図7】図6のVII −VII 線断面図である。7 is a sectional view taken along line VII-VII of FIG.

【図8】図7のVIII部の拡大図である。8 is an enlarged view of part VIII in FIG. 7.

【符号の説明】[Explanation of symbols]

1 軸部材 2 軸受部材 S 軸受すき間 3 給気孔 11 一方の磁石 12 他方の磁石 1 Shaft member 2 Bearing member S Bearing clearance 3 Air supply hole 11 One magnet 12 The other magnet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 軸部材の外面に軸受部材が軸受すきまを
介して対向し、軸部材の外面に設けた一方の磁石が軸受
部材に設けた他方の磁石と対向して反発型の磁気軸受を
構成すると共に、前記軸受部材に設けた給気孔から軸受
すきまに圧縮気体を噴出して静圧気体軸受を構成する軸
受装置。
1. A repulsion-type magnetic bearing, wherein a bearing member faces the outer surface of the shaft member with a bearing clearance therebetween, and one magnet provided on the outer surface of the shaft member faces the other magnet provided on the bearing member. A bearing device configured to form a static pressure gas bearing by injecting compressed gas from a supply hole provided in the bearing member into a bearing clearance.
JP17889994A 1994-07-29 1994-07-29 Bearing device Pending JPH0842569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17889994A JPH0842569A (en) 1994-07-29 1994-07-29 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17889994A JPH0842569A (en) 1994-07-29 1994-07-29 Bearing device

Publications (1)

Publication Number Publication Date
JPH0842569A true JPH0842569A (en) 1996-02-13

Family

ID=16056638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17889994A Pending JPH0842569A (en) 1994-07-29 1994-07-29 Bearing device

Country Status (1)

Country Link
JP (1) JPH0842569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331048A (en) * 2004-05-20 2005-12-02 Imv Corp Vibration-proof x-y table
CN108050158A (en) * 2017-11-23 2018-05-18 燕山大学 A kind of magnetic liquid dual suspension supports cone bearing
CN116972075A (en) * 2023-09-20 2023-10-31 无锡星微科技有限公司杭州分公司 Magnetic preloading structure and linear platform with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331048A (en) * 2004-05-20 2005-12-02 Imv Corp Vibration-proof x-y table
CN108050158A (en) * 2017-11-23 2018-05-18 燕山大学 A kind of magnetic liquid dual suspension supports cone bearing
CN108050158B (en) * 2017-11-23 2020-08-14 燕山大学 Magnetic-liquid double-suspension supporting conical bearing
CN116972075A (en) * 2023-09-20 2023-10-31 无锡星微科技有限公司杭州分公司 Magnetic preloading structure and linear platform with same
CN116972075B (en) * 2023-09-20 2023-12-19 无锡星微科技有限公司杭州分公司 Magnetic preloading structure and linear platform with same

Similar Documents

Publication Publication Date Title
JPH0656234A (en) Noncontact type mobile table
CN110281033B (en) Multi-axis rigid-flexible coupling motion platform
US6920696B2 (en) Microscopic positioning device and tool position/orientation compensating method
JP2000294613A (en) Driver and sub-driver
US20100201216A1 (en) Bearing device for non-contacting bearing of a rotor with respect to a stator
JPS61290231A (en) Static pressure guide bearing
JPH0842569A (en) Bearing device
KR101491675B1 (en) Roll device
JPH0123262B2 (en)
JPH08323567A (en) Xy table
JPH11190336A (en) Guide roller supported by static pressure bearing
JPH01188241A (en) Shift guiding device
JP2006084034A (en) Linear guide device with hydrostatic air bearing
JP3138696B2 (en) Bearing structure
JPH0647135Y2 (en) Air slide device
KR20030084210A (en) Bearingless linear motor
JPH03218249A (en) One-piece type linear motor direct movement guide apparatus
JP4215899B2 (en) Static pressure linear guide device
JP2577124Y2 (en) Slide device
JPH03293586A (en) Positioning table apparatus
JPS61239307A (en) Positioning device
KR100434975B1 (en) Positioning System of Nano-Meter Stage and Method Thereof
JPS6397911A (en) Actuator for telescope
KR19990023247A (en) Moving table
JP2008144918A (en) Squeeze air bearing, and positioning guide device using it