JP2009264429A - Seismic isolation system and seismic isolation structure - Google Patents

Seismic isolation system and seismic isolation structure Download PDF

Info

Publication number
JP2009264429A
JP2009264429A JP2008111976A JP2008111976A JP2009264429A JP 2009264429 A JP2009264429 A JP 2009264429A JP 2008111976 A JP2008111976 A JP 2008111976A JP 2008111976 A JP2008111976 A JP 2008111976A JP 2009264429 A JP2009264429 A JP 2009264429A
Authority
JP
Japan
Prior art keywords
seismic isolation
air
moving body
isolation device
magnitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111976A
Other languages
Japanese (ja)
Other versions
JP5219603B2 (en
Inventor
Takeshi Tanaka
剛 田中
Mitsuru Miyazaki
充 宮崎
Yoshitaka Suzuki
敬崇 鈴木
Hideo Ozawa
秀夫 小澤
Koichi Tsunoda
耕一 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2008111976A priority Critical patent/JP5219603B2/en
Publication of JP2009264429A publication Critical patent/JP2009264429A/en
Application granted granted Critical
Publication of JP5219603B2 publication Critical patent/JP5219603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic isolation system having restoration characteristics, which reduces an acceleration by extending the natural period of upper structure regardless of a supported load, and exhibits excellent vibration energy absorbing capability by obtaining a suitable friction force properly. <P>SOLUTION: The seismic isolation system 1 comprises: an upper shoe 11 secured to the upper structure 3 of a building having a concave lower surface 11a opening downward; a lower shoe 12 secured to the lower structure 2 such as the foundation and having a concave upper surface 12a opening upward; and moving bodies 13, 14 arranged movably between the upper shoe 11 and the lower shoe 12. The moving bodies 13, 14 have: a convex upper surface 13a facing the concave lower surface 11a of the upper shoe 11; and a convex lower surface 14a facing the concave upper surface 12a of the lower shoe 12, wherein a plurality of air outlets 13e, 14e are provided in the convex upper surface 13a and the convex lower surface 14a. At least three seismic isolation systems 1 are arranged in a seismic isolation structure 41. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、戸建住宅等の軽量構造物用、又は機器、展示台用の免震装置、及び該免震装置を備えた免震構造物に関し、特に、建築物等の上部構造体と、基礎等の下部構造体との間に介装され、地震、交通振動等による下部構造体の振動の上部構造体への伝達を低減し、上部構造体の倒壊、又は該上部構造体上に載置される展示物等の破損等を防止する免震装置等に関する。   The present invention relates to a seismic isolation device for a lightweight structure such as a detached house or equipment, an exhibition stand, and a seismic isolation structure provided with the seismic isolation device, in particular, an upper structure such as a building, It is interposed between the lower structure such as the foundation, reduces the transmission of vibrations of the lower structure due to earthquakes, traffic vibrations, etc. to the upper structure, collapses the upper structure, or is mounted on the upper structure. The present invention relates to a seismic isolation device that prevents damage to exhibits placed.

建築物等の上部構造体と、基礎等の下部構造体との間に介装され、上部構造体の揺れを低減する免震装置として、例えば、特許文献1に記載されたものが知られている。この免震装置は、上部構造体に固定され、下方に開口する凹球面状下表面を有する上沓と、下部構造体に固定され、上方に開口する凹球面状上表面を有する下沓と、上沓と下沓との間に摺動自在に配置され、凸球面状上表面及び凸球面状下表面を有する摺動体とを備える。   As a seismic isolation device that is interposed between an upper structure such as a building and a lower structure such as a foundation and reduces the shaking of the upper structure, for example, the one described in Patent Document 1 is known. Yes. The seismic isolation device is fixed to the upper structure, and has an upper gutter having a concave spherical lower surface that opens downward, and a lower gutter that is fixed to the lower structure and has a concave spherical upper surface that opens upward, A sliding body is slidably disposed between the upper collar and the lower collar and has a convex spherical upper surface and a convex spherical lower surface.

上記特許文献1の免震装置においては、地震により下部構造体に水平振動(変位)が生じた際に、摺動体が摺動することによって、下部構造体の水平振動が上部構造体にそのまま伝達するのを阻止することができ、上部構造体の揺れを低減することが可能である。この免震装置では、免震装置が支持する荷重に拘わらず、振り子の原理から上部構造体の固有周期を長周期化することができ、併せて、上沓及び下沓と、摺動体との接触面に生じる摩擦抵抗力により、振動エネルギの減衰作用を得ることが可能である。   In the seismic isolation device of Patent Document 1 described above, when horizontal vibration (displacement) occurs in the lower structure due to the earthquake, the horizontal vibration of the lower structure is transmitted to the upper structure as it is by sliding the sliding body. Therefore, it is possible to reduce the shaking of the upper structure. In this seismic isolation device, regardless of the load supported by the seismic isolation device, the natural period of the upper structure can be lengthened from the principle of the pendulum. It is possible to obtain a damping action of vibration energy by the frictional resistance generated on the contact surface.

また、気体圧によって上部構造体を浮上させる免震装置として、特許文献2には、上部構造体の下面にスカート状のシール部材を付設し、その先端を下部構造体に設けた溝内に垂下させることによって上部構造体の下方空間を密閉し、該密閉空間内に浮上用気体を導入して上部構造体を浮上させることにより、地震の震動が上部構造体に伝達するのを阻止する免震装置が記載されている。さらに、この種の免震装置として、特許文献3には、空気供給装置が収容された収容箱の上に、展示物を載置する載置テーブルを配置するとともに、収容箱と載置テーブルとの間に、複数の空気吹出孔を正方形状に設けた空気パッドを配置し、空気吹出孔から空気を吹出させて載置テーブルを浮上させることにより、地震の発生時に載置テーブルが振動するのを防止した免震装置が記載されている。   Further, as a seismic isolation device that floats the upper structure by gas pressure, Patent Document 2 has a skirt-like seal member attached to the lower surface of the upper structure, and its tip is suspended in a groove provided in the lower structure. By sealing the lower space of the upper structure and introducing the levitation gas into the sealed space to lift the upper structure, thereby preventing the seismic motion from being transmitted to the upper structure. An apparatus is described. Further, as a seismic isolation device of this type, Patent Document 3 discloses a storage table on which an exhibit is placed on a storage box in which an air supply device is stored. In the meantime, an air pad provided with a plurality of air blowing holes in a square shape is arranged, and air is blown out from the air blowing holes to lift the mounting table, so that the mounting table vibrates when an earthquake occurs. A seismic isolation device that prevents this is described.

実用新案登録第2586794号公報Utility Model Registration No. 2586794 特開2000−145885号公報Japanese Unexamined Patent Publication No. 2000-14585 特開2001−208131号公報JP 2001-208131 A

しかし、特許文献1に記載の免震装置においては、摺動体、上部構造体及び下部構造体の材料、並びに支持する荷重によって、摺動面の摩擦係数が一意に決定されるため、免震特性の調整幅が狭いという問題があった。このため、低い摩擦力や高い摩擦力が必要な場合には、摺動面の材料を変更せざるを得ず、また、摺動面の材料の変更に際しては、摺動開始時に生じる虞のある静摩擦係数による過大な抵抗力の発生について十分配慮する必要があり、材料の選択に困難性を伴うものとなっていた。   However, in the seismic isolation device described in Patent Document 1, the friction coefficient of the sliding surface is uniquely determined by the sliding body, the material of the upper structure and the lower structure, and the load to be supported. There was a problem that the adjustment range was narrow. For this reason, when a low frictional force or a high frictional force is required, the material of the sliding surface must be changed, and the change of the sliding surface material may occur at the start of sliding. Sufficient consideration must be given to the generation of excessive resistance due to the coefficient of static friction, and it has been difficult to select materials.

一方、特許文献2及び3に記載の免震装置においては、地震の振動を遮断する点で大きな効果を期待できるものの、効果的に空気圧を使用するには、精密なシール技術が要求され、上部構造体が浮上する際は摩擦がゼロになるため、下部構造体との施工精度をよほど厳密に行わなければ、上部構造体の浮上時の位置が安定せず、また、地震の揺れが収まった後の上部構造体を原点復帰させるための装置も必要であり、設備的に大掛かりとなってコストが増大するという問題があった。さらに、特許文献2及び3に記載の免震装置では、空気供給装置に故障が生じたり、停電等で停止すると、免震機構そのものが全く作動しなくなるという欠点もある。   On the other hand, in the seismic isolation devices described in Patent Documents 2 and 3, a great effect can be expected in terms of blocking the vibration of the earthquake, but in order to use air pressure effectively, precise sealing technology is required, Since the friction is zero when the structure rises, the position of the upper structure will not be stable and the shaking of the earthquake will be settled unless the construction accuracy with the lower structure is very strict. A device for returning the origin of the subsequent upper structure is also necessary, which causes a problem that the cost is increased due to a large facility. Furthermore, the seismic isolation devices described in Patent Documents 2 and 3 also have a drawback that the seismic isolation mechanism itself does not operate at all when a failure occurs in the air supply device or when it is stopped due to a power failure or the like.

そこで、本発明は、上記諸点に鑑みてなされたものであり、支持する荷重に拘わらず、上部構造体の固有周期を長期化して加速度を低減することができ、適宜好適な摩擦力を得ることで振動エネルギ吸収能力に優れ、復元特性も併せ持つ免震装置等を提供することを目的とする。   Therefore, the present invention has been made in view of the above points, and regardless of the load to be supported, the natural period of the upper structure can be prolonged to reduce the acceleration, and a suitable frictional force can be obtained as appropriate. The purpose of the present invention is to provide a seismic isolation device that has excellent vibration energy absorption capability and also has restoration characteristics.

上記目的を達成するため、本発明は、免震装置であって、上部構造体に固定され、下方に開口する凹球面状下表面を有する上沓と、下部構造体に固定され、上方に開口する凹球面状上表面を有する下沓と、前記上沓と前記下沓との間に移動自在に配置される移動体とを備え、該移動体は、前記上沓の凹球面状下表面に対向する凸球面状上表面を有するとともに、前記下沓の凹球面状上表面に対向する凸球面状下表面を有し、該凸球面状上表面又は/及び凸球面状下表面に空気吹出溝を備えることを特徴とする。   In order to achieve the above object, the present invention provides a seismic isolation device, which is fixed to an upper structure and has an upper gutter having a concave spherical lower surface that opens downward, and is fixed to the lower structure and opens upward. And a movable body disposed movably between the upper collar and the lower collar, and the movable body is disposed on the concave spherical lower surface of the upper collar. The convex spherical upper surface is opposed to the concave spherical upper surface of the lower shell, and the air blowing groove is formed on the convex spherical upper surface and / or the convex spherical lower surface. It is characterized by providing.

そして、本発明によれば、地震時等に下部構造体が水平振動(変位)すると、移動体が、上沓の凹球面状下表面と下沓の凹球面状上表面との間で荷重を支持しながら、上沓の凹球面状下表面及び下沓の凹球面状上表面に沿って移動するため、下部構造体の水平振動が上部構造体にそのまま伝達されるのを阻止できるとともに、免震装置が支持する荷重に拘わらず、振り子の原理から上部構造体の固有周期を長周期化することができ、上部構造体への加速度を低減することが可能になる。   According to the present invention, when the lower structure horizontally oscillates (displaces) during an earthquake or the like, the moving body applies a load between the concave spherical lower surface of the upper collar and the concave spherical upper surface of the lower collar. While supporting, it moves along the concave spherical lower surface of the upper collar and the concave spherical upper surface of the lower collar, so that the horizontal vibration of the lower structure can be prevented from being transmitted to the upper structure as it is, and the Regardless of the load supported by the seismic device, the natural period of the upper structure can be lengthened from the principle of the pendulum, and the acceleration to the upper structure can be reduced.

また、本発明によれば、空気吹出溝から空気を吹出させることにより、移動体の表面に空気層を形成し、又は空気圧によって免震装置が支持する上部構造体の荷重を低減するため、摩擦力が生じない状態又は摩擦力が小さい状態で移動体を移動させることができる。その一方で、空気吹出溝からの空気の吹出を停止して、移動体を上沓の凹球面状下表面及び下沓の凹球面状上表面に接触させることにより、移動体、上沓及び下沓の材料と支持する荷重で決定される摩擦力で移動体を摺動させることができる。従って、移動体等の材料を変更せずとも、摩擦力を変更することができ、適宜好適な摩擦力を得て、優れた振動エネルギ吸収能力を確保することが可能となる。   In addition, according to the present invention, air is blown out from the air blowing groove to form an air layer on the surface of the moving body, or to reduce the load on the upper structure supported by the seismic isolation device by air pressure. The moving body can be moved in a state where no force is generated or in a state where the frictional force is small. On the other hand, by stopping the air blowing from the air blowing groove and bringing the moving body into contact with the concave spherical lower surface of the upper collar and the concave spherical upper surface of the lower collar, The moving body can be slid by the frictional force determined by the load material and the load to be supported. Therefore, the frictional force can be changed without changing the material such as the moving body, and a suitable frictional force can be obtained as appropriate to ensure excellent vibration energy absorption capability.

さらに、本発明によれば、地震等が沈静化した後、外力を受けて移動した移動体は、上沓の凹球面状下表面及び下沓の凹球面状上表面の傾斜に沿って、逆方向に向けて緩やかに移動し、最終的には中央に戻ってくるため、別途原点復帰装置を設けずとも、移動体を原点復帰させることができ、復元特性を確保することも可能になる。   Furthermore, according to the present invention, after an earthquake or the like has subsided, the moving body that has been moved by receiving an external force is reversed along the inclination of the concave spherical lower surface of the upper collar and the concave spherical upper surface of the lower collar. Since it moves gently in the direction and finally returns to the center, it is possible to return the moving body to the home position without providing a separate home position return device, and to ensure restoration characteristics.

また、本発明は、免震装置であって、下部構造体に固定され、上方に開口する凹球面状上表面を有する下沓と、上部構造体に固定され、前記下沓の上に配置される移動体とを備え、該移動体は、前記下沓の凹球面状上表面に対向する凸球面状下表面を有するとともに、該凸球面状下表面に空気吹出溝を備えることを特徴とする。本発明によれば、より簡単な構成で、前記発明と略々同様に、支持する荷重に拘わらず、上部構造体の固有周期を長期化して加速度を低減することができ、適宜好適な摩擦力を得ることで振動エネルギ吸収能力に優れ、復元特性も併せ持つことが可能となる。   The present invention is also a seismic isolation device, which is fixed to the lower structure and has a concave spherical upper surface that opens upward, and is fixed to the upper structure and disposed on the lower structure. The movable body has a convex spherical lower surface facing the concave spherical upper surface of the lower collar, and an air blowing groove on the convex spherical lower surface. . According to the present invention, it is possible to reduce the acceleration by prolonging the natural period of the upper structure regardless of the load to be supported with a simpler configuration, and in a similar manner to the above-described invention. By obtaining the above, it is possible to have excellent vibration energy absorption capability and also have a restoring characteristic.

さらに、本発明は、免震装置であって、上部構造体に固定され、下方に開口する凹球面状下表面を有する上沓と、下部構造体に固定され、前記上沓の下に配置される移動体とを備え、該移動体は、前記上沓の凹球面状下表面に対向する凸球面状上表面を有するとともに、該凸球面状上表面に空気吹出溝を備えることを特徴とする。本発明によれば、より簡単な構成で、前記発明と略々同様に、支持する荷重に拘わらず、上部構造体の固有周期を長期化して加速度を低減することができ、適宜好適な摩擦力を得ることで振動エネルギ吸収能力に優れ、復元特性も併せ持つことが可能となる。   Further, the present invention is a seismic isolation device, which is fixed to the upper structure and has an upper lower surface having a concave spherical lower surface that opens downward, and is fixed to the lower structure and is disposed under the upper surface. The movable body has a convex spherical upper surface facing the concave spherical lower surface of the upper collar, and an air blowing groove on the convex spherical upper surface. . According to the present invention, it is possible to reduce the acceleration by prolonging the natural period of the upper structure regardless of the load to be supported with a simpler configuration, and in a similar manner to the above-described invention. By obtaining the above, it is possible to have excellent vibration energy absorption capability and also have a restoring characteristic.

前記免震装置において、前記移動体に空気を供給する空気供給手段を備え、該空気供給手段は、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさに応じて、前記移動体への空気供給を制御するように構成することができる。この構成によれば、外力の大きさなどに適した摩擦力を適宜得ることができ、優れた振動エネルギ吸収能力を確保することが可能となる。   The seismic isolation device includes air supply means for supplying air to the moving body, and the air supply means is a magnitude of an external force applied to the lower structure or a magnitude of vibration transmitted to the upper structure. Accordingly, the air supply to the moving body can be controlled. According to this configuration, a frictional force suitable for the magnitude of the external force can be obtained as appropriate, and an excellent vibration energy absorption capability can be ensured.

前記免震装置において、前記空気供給手段は、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値未満のときに、前記移動体に空気を供給し、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値以上のときに、前記移動体への空気の供給を停止するか、又は前記移動体から空気を吸引するように構成することができる。   In the seismic isolation device, the air supply means supplies air to the moving body when the magnitude of external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is less than a predetermined value. When the magnitude of external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is equal to or greater than a predetermined value, the supply of air to the moving body is stopped, Or it can comprise so that air may be attracted | sucked from the said mobile body.

上記構成によれば、比較的振動が小さく、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値未満の場合には、移動体の表面に空気層を形成し、又は空気圧によって免震装置が支持する上部構造体の荷重を低減するため、摩擦力が生じない状態又は摩擦力が小さい状態で摺動できる上に、長周期化による加速度低減によって好適な免震効果を得ることができ、その一方で、比較的振動が大きく、前記下部構造体に加えられる外力の大きさ又は上部構造体に伝達された振動の大きさが所定値以上の場合には、長周期化による加速度低減に加え、摺動体等の材料と支持する荷重で決定される摩擦力で減衰が付与されるため、振動エネルギの吸収能力を向上させることができ、大きな地震等の際の安全性を確保することが可能になる。また、移動体から空気を吸引することにより、移動体等の材料と支持する荷重で決定される摩擦力に加えて、吸着力を利用して振動エネルギを減衰させることができるため、より高い減衰能力を得ることが可能となる。このため、例えば、空気の供給、供給の停止及び空気の吸引を使い分けることにより、少なくとも3段階の免震特性を単一の免震装置で得ることが可能となる。尚、前記所定値としての外力の大きさは、適宜、加速度、速度又は変位を使用することができる。   According to the above configuration, when the vibration is relatively small and the magnitude of the external force applied to the lower structure or the magnitude of the vibration transmitted to the upper structure is less than a predetermined value, the surface of the moving body In order to reduce the load on the upper structure supported by the seismic isolation device by air pressure, it is possible to slide in a state where no friction force is generated or in a state where the friction force is small, and acceleration due to a longer period A suitable seismic isolation effect can be obtained by the reduction. On the other hand, the vibration is relatively large, and the magnitude of the external force applied to the lower structure or the magnitude of the vibration transmitted to the upper structure is a predetermined value or more. In this case, in addition to reducing the acceleration by increasing the period, damping is given by the frictional force determined by the material such as the sliding body and the load to be supported, so the ability to absorb vibration energy can be improved. Safety in case of an earthquake It is possible to secure the sex. Also, by sucking air from the moving body, the vibration energy can be attenuated by using the adsorption force in addition to the frictional force determined by the material such as the moving body and the load to be supported. It becomes possible to gain ability. For this reason, it is possible to obtain at least three stages of seismic isolation characteristics with a single seismic isolation device by properly using air supply, supply stop, and air suction, for example. In addition, as the magnitude of the external force as the predetermined value, acceleration, speed, or displacement can be used as appropriate.

前記免震装置において、前記空気供給手段は、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値未満のときに、前記移動体への空気の供給を停止するか、又は前記移動体から空気を吸引し、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値以上のときに、前記移動体に空気を供給するように構成することができる。   In the seismic isolation device, the air supply means applies the force to the moving body when the magnitude of an external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is less than a predetermined value. When supply of air is stopped or air is sucked from the moving body, and the magnitude of external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is greater than or equal to a predetermined value The mobile body can be configured to supply air.

上記構成によれば、所定値未満の比較的小さい振動領域においては、移動体等の材料と支持する荷重で決定される摩擦力又は空気の吸引による吸着力が加わった摩擦力の大きさに相当する外力が入力されるまでの間は、上部構造体を不動に確保でき、一方、振動が大きく、下部構造体に加えられる外力の大きさ又は上部構造体に伝達された振動の大きさが所定値以上の場合には、上部構造体の固有周期を長周期化させたまま抵抗力が小さい状態で変位吸収することが可能となるため、トリガー装置的な使用が可能となる。   According to the above configuration, in a relatively small vibration region less than a predetermined value, it corresponds to the magnitude of the friction force determined by the friction force determined by the material such as the moving body and the load to be supported or the suction force by air suction. Until the external force is input, the upper structure can be secured immovably, while the vibration is large and the magnitude of the external force applied to the lower structure or the magnitude of the vibration transmitted to the upper structure is predetermined. When the value is equal to or larger than the value, the displacement can be absorbed while the resistance force is small while the natural period of the upper structure is lengthened, so that it can be used as a trigger device.

前記免震装置において、前記凸球面状上表面が、前記凹球面状下表面と同一の曲率を有し、前記凸球面状下表面が、前記凹球面状上表面と同一の曲率を有するように構成することができる。この構成によれば、移動体を、上沓及び下沓と一定の距離をもって浮上させたり、面接触させることができ、より安定的に上部構造体を支持することが可能になる。   In the seismic isolation device, the convex spherical upper surface has the same curvature as the concave spherical lower surface, and the convex spherical lower surface has the same curvature as the concave spherical upper surface. Can be configured. According to this configuration, the movable body can be floated or brought into surface contact with the upper rod and the lower rod at a certain distance, and the upper structure can be supported more stably.

前記免震装置において、前記移動体の空気吹出溝を表面絞りによって形成するとともに、該空気吹出溝の底面に自成絞り形状の空気吹出孔を穿設することができ、精密加工を必要とせず、大量生産可能な免震装置を実現することができる。   In the seismic isolation device, the air blowing groove of the moving body can be formed by a surface restriction, and a self-drawing-shaped air blowing hole can be formed in the bottom surface of the air blowing groove without requiring precision machining. A seismic isolation device capable of mass production can be realized.

また、前記免震装置において、前記表面絞りによる空気吹出溝と、前記自成絞り形状の空気吹出孔との組み合わせを複数備え、各々の組み合わせを互いに独立させることができる。これによって、移動体の凸球面状上表面又は凸球面状下表面の全体にわたって均等に空気を吹き出すことができる。   Further, the seismic isolation device may include a plurality of combinations of the air blowing groove formed by the surface restriction and the air blowing hole having the self-formed restriction shape, and each combination can be made independent of each other. Thus, air can be blown out uniformly over the entire convex spherical upper surface or convex spherical lower surface of the moving body.

さらに、前記移動体の空気吹出溝を、前記移動体から空気を吸引する際の空気吸引溝として兼用することができ、これにより、免震装置の製造コストの低減に寄与することができる。尚、空気吹出溝とは別に空気吸引溝を設けることもできる。   Furthermore, the air blowing groove of the moving body can be used also as an air suction groove when sucking air from the moving body, thereby contributing to a reduction in manufacturing cost of the seismic isolation device. An air suction groove may be provided separately from the air blowing groove.

前記免震装置において、前記移動体の少なくとも上下いずれか一方の表面を、ポリフェニレンスルフィド樹脂、又は、該ポリフェニレンスルフィド樹脂に、ガラス繊維、炭素繊維もしくは無機質充填剤の少なくとも1つを混入した強化合成樹脂によって形成することができる。このポリフェニレンスルフィド樹脂等は、優れた摺動特性を有するため、安定した荷重支持と摺動特性の両立を図ることが可能になる。また、例えば、空気供給装置に何らかの不具合が生じても、良好な摺動特性を確保することができるため、上部構造体に対して過大な負荷が作用するのを防止でき、フェールセーフ機能を併せ持つことが可能になる。また、移動体を銅系あるいは鉄系の金属材料で形成してもよく、また該金属材料から形成した移動体の上下表面に摺動特性のよい潤滑膜、例えば、二硫化モリブデン、DLCを施してもよい。   In the seismic isolation device, at least one of the upper and lower surfaces of the movable body is a polyphenylene sulfide resin, or a reinforced synthetic resin in which at least one of glass fiber, carbon fiber, or inorganic filler is mixed in the polyphenylene sulfide resin. Can be formed. Since this polyphenylene sulfide resin or the like has excellent sliding characteristics, it is possible to achieve both stable load support and sliding characteristics. In addition, for example, even if some trouble occurs in the air supply device, good sliding characteristics can be ensured, so that an excessive load can be prevented from acting on the upper structure, and a fail-safe function is also provided. It becomes possible. The moving body may be made of a copper-based or iron-based metal material, and a lubricating film having good sliding characteristics, such as molybdenum disulfide or DLC, is applied to the upper and lower surfaces of the moving body formed from the metal material. May be.

また、本発明は、免震構造物であって、前記免震装置を少なくとも3以上配置したことを特徴とする。本発明によれば、上部構造体の倒壊、又は該上部構造体上に載置される展示物等の破損等を好適に防止することが可能となる。   Moreover, this invention is a seismic isolation structure, Comprising: At least 3 or more of said seismic isolation apparatuses are arrange | positioned, It is characterized by the above-mentioned. ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to prevent suitably the collapse of an upper structure, or the damage of the display etc. which are mounted on this upper structure.

以上のように、本発明によれば、支持する荷重に拘わらず、上部構造体の固有周期を長期化して加速度を低減することができ、適宜好適な摩擦力を得ることで振動エネルギ吸収能力に優れ、復元特性も併せ持つ免震装置等を提供することができる。   As described above, according to the present invention, regardless of the load to be supported, the natural period of the upper structure can be extended to reduce the acceleration, and the vibration energy absorption capability can be obtained by appropriately obtaining a suitable frictional force. It is possible to provide a seismic isolation device and the like that have excellent restoration characteristics.

次に、本発明の実施の形態について図面を参照しながら詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明にかかる免震装置の第1の実施形態を示し、この免震装置1は、戸建住宅の基礎等の下部構造体2と、下部構造体2に対して水平方向Hに移動可能な戸建住宅等の上部構造体3との間に介装される。   FIG. 1 shows a first embodiment of a seismic isolation device according to the present invention. This seismic isolation device 1 has a lower structure 2 such as a foundation of a detached house and a horizontal direction H with respect to the lower structure 2. It is interposed between the upper structures 3 such as detached houses.

免震装置1は、上部構造体3に固定され、下方に開口する凹球面状下表面11aを有する上沓11と、下部構造体2に固定され、上方に開口する凹球面状上表面12aを有する下沓12と、上沓11と下沓12との間に移動自在に配置される移動体13、14とを備える。上沓11は、ボルト17、18によって上部構造体3に固定され、下沓12は、ボルト19、20によって下部構造体2に固定される。   The seismic isolation device 1 has an upper collar 11 having a concave spherical lower surface 11a that is fixed to the upper structure 3 and opens downward, and a concave spherical upper surface 12a that is fixed to the lower structure 2 and opens upward. And a movable body 13, 14 that is movably disposed between the upper collar 11 and the lower collar 12. The upper rod 11 is fixed to the upper structure 3 by bolts 17 and 18, and the lower rod 12 is fixed to the lower structure 2 by bolts 19 and 20.

移動体13は、上沓11の凹球面状下表面11aに対向してこの凹球面状下表面11aと同一の曲率を有する凸球面状上表面13aと、凸球面状上表面13aに複数の空気吹出口13eとを有する。一方、移動体14は、下沓12の凹球面状上表面12aに対向してこの凹球面状上表面12aと同一の曲率を有する凸球面状下表面14aと、凸球面状下表面14aに複数の空気吹出口14eを有する。これら移動体13、14は、ボルト21、22及びナット23、24によって接合される。   The moving body 13 has a convex spherical upper surface 13a having the same curvature as the concave spherical lower surface 11a facing the concave spherical lower surface 11a of the upper collar 11, and a plurality of air on the convex spherical upper surface 13a. And an outlet 13e. On the other hand, the movable body 14 has a convex spherical lower surface 14a having the same curvature as the concave spherical upper surface 12a and a convex spherical lower surface 14a. Air outlet 14e. These moving bodies 13 and 14 are joined by bolts 21 and 22 and nuts 23 and 24.

図1及び図2に示すように、移動体13は、全体的に厚肉の略々円盤状に形成され、接続金具26を介してフレキシブルホース25に接続される空気供給口13bと、空気供給口13bに連通する環状溝13cと、環状溝13cからの空気を空気吹出溝13eに導く空気吹出孔13dを有する。空気吹出溝13eは、いわゆる表面絞りによって、0.03mm〜0.05mm程度の深さに底浅に形成される。また、空気吹出孔13dは、いわゆる自成絞り形状として、表面に向かうにつれて小径に形成され、空気吹出溝13eの底面には、空気吹出口13fが開口する。移動体13の底面には、閉塞部材15が接合される。   As shown in FIGS. 1 and 2, the moving body 13 is formed in a generally thick disc shape as a whole, and is connected to a flexible hose 25 via a connection fitting 26. An annular groove 13c communicating with the opening 13b and an air blowing hole 13d for guiding air from the annular groove 13c to the air blowing groove 13e are provided. The air blowing groove 13e is formed shallowly at a depth of about 0.03 mm to 0.05 mm by a so-called surface restriction. Further, the air blowing hole 13d has a so-called self-contained throttle shape and is formed with a smaller diameter toward the surface, and an air blowing outlet 13f opens at the bottom surface of the air blowing groove 13e. A closing member 15 is joined to the bottom surface of the moving body 13.

上記表面絞りによる空気吹出溝13eと、自成絞り形状の空気吹出孔13dとの組み合わせは、3組備えられ、各々上面視扇形に形成される。これら3組の空気吹出構造は互いに独立しているため、移動体13の凸球面状上表面13a全体にわたって均等に空気を吹き出すことができる。   Three combinations of the air blowing groove 13e by the surface throttle and the self-blowing shaped air blowing hole 13d are provided, each having a fan shape when viewed from above. Since these three sets of air blowing structures are independent of each other, air can be blown evenly over the entire convex spherical upper surface 13a of the moving body 13.

一方、移動体14も移動体13との接合面を対称面として面対称に形成され、移動体13と同様の構成を有する。   On the other hand, the moving body 14 is also formed symmetrically with the joint surface with the moving body 13 as a symmetry plane, and has the same configuration as the moving body 13.

移動体13、14の上下表面又は全体は、ポリフェニレンスルフィド樹脂、又は、該ポリフェニレンスルフィド樹脂にガラス繊維、炭素繊維もしくは無機質充填剤の少なくとも1つを混入した強化合成樹脂によって形成される。また、移動体を銅系あるいは鉄系の金属材料で形成してもよく、また該金属材料から形成した移動体の上下表面に摺動特性のよい潤滑膜、例えば、二硫化モリブデン、DLCを施してもよい。   The upper and lower surfaces or the whole of the moving bodies 13 and 14 are formed of a polyphenylene sulfide resin or a reinforced synthetic resin obtained by mixing at least one of glass fiber, carbon fiber, or inorganic filler in the polyphenylene sulfide resin. The moving body may be made of a copper-based or iron-based metal material, and a lubricating film having good sliding characteristics, such as molybdenum disulfide or DLC, is applied to the upper and lower surfaces of the moving body formed from the metal material. May be.

図1に示すように、移動体13に空気を供給するため、エアポンプ27が設けられ、フレキシブルホース25、接続金具26を介して空気が移動体13に導入される。尚、エアポンプ27は、移動体13から接続金具26及びフレキシブルホース25を介して空気を吸引する真空ポンプとしても機能する。移動体14についても同様に、エアポンプ30、フレキシブルホース28、接続金具29によって空気が供給又は吸引される。   As shown in FIG. 1, an air pump 27 is provided to supply air to the moving body 13, and air is introduced into the moving body 13 via the flexible hose 25 and the connection fitting 26. The air pump 27 also functions as a vacuum pump that sucks air from the moving body 13 via the connection fitting 26 and the flexible hose 25. Similarly, air is supplied or sucked by the air pump 30, the flexible hose 28, and the connection fitting 29 for the moving body 14.

次に、上記構成を有する免震装置1の動作について、図1〜図3を参照しながら説明する。以下、移動体13の動作を中心に説明するが、移動体14についても移動体13と同様に動作する。   Next, operation | movement of the seismic isolation apparatus 1 which has the said structure is demonstrated, referring FIGS. 1-3. Hereinafter, the operation of the moving body 13 will be mainly described, but the moving body 14 operates in the same manner as the moving body 13.

図3は、免震装置1の水平抵抗力と水平変位量(上部構造体3と下部構造体2の相対変位)の関係を示す履歴曲線であって、(a)は、移動体13に空気を供給した場合、(b)は、移動体13に空気を供給せず、移動体13から空気を吸引しない場合、(c)は、移動体13から空気を吸引した場合を示す。(a)の移動体13へ空気を供給した場合には、摩擦力が生じない状態で移動体13を移動させることができるため、水平抵抗力が小さい状態で相対変位を生じ、(b)の移動体13に空気を供給せず、移動体13から空気を吸引しない場合には、移動体13と上沓11との間に空気が介在しないため、同じ相対変位を生じた際には、より大きな水平抵抗力が得られ、(c)の移動体13から空気を吸引した場合には、移動体13と上沓11との間にさらに吸着力が働くため、同じ相対変位を生じた際には、さらに大きな水平抵抗力を得ることができる。   FIG. 3 is a history curve showing the relationship between the horizontal resistance of the seismic isolation device 1 and the horizontal displacement (relative displacement between the upper structure 3 and the lower structure 2). (B) shows a case where air is not supplied to the moving body 13 and air is not sucked from the moving body 13, and (c) shows a case where air is sucked from the moving body 13. When air is supplied to the moving body 13 in (a), the moving body 13 can be moved in a state where no frictional force is generated, so that relative displacement occurs in a state where the horizontal resistance force is small. When air is not supplied to the moving body 13 and air is not sucked from the moving body 13, air does not intervene between the moving body 13 and the upper rod 11. When a large horizontal resistance force is obtained and air is sucked from the moving body 13 in (c), an additional attracting force acts between the moving body 13 and the upper rod 11, so when the same relative displacement occurs. Can obtain a greater horizontal resistance.

以下の説明では、まず、免震装置1において、下部構造体2に加えられる外力の大きさ、又は上部構造体3に伝達された振動の大きさが所定値未満のときに、エアポンプ27から移動体13に空気を供給し、下部構造体2に加えられる外力の大きさ、又は上部構造体3に伝達された振動の大きさが所定値以上のときに、エアポンプ27の運転を停止して、移動体13への空気の供給を停止する動作について説明する。この動作によって、比較的振動が小さく、加えられる外力が所定値より小さい場合には、低い水平抵抗力で免震装置1が作動し、長周期化による加速度低減によって好適な免震効果を得ることができ、一方、振動が大きく、外力が所定値より大きい場合には、長周期化による加速度低減に加え、移動体等の材料と支持する荷重で決定される摩擦力で減衰を行い、振動エネルギの吸収力を向上させ、大きな地震等の際の安全性を確保することが可能になる。   In the following description, first, in the seismic isolation device 1, when the magnitude of the external force applied to the lower structure 2 or the magnitude of vibration transmitted to the upper structure 3 is less than a predetermined value, the seismic isolation device 1 moves from the air pump 27. When air is supplied to the body 13 and the magnitude of the external force applied to the lower structure 2 or the magnitude of vibration transmitted to the upper structure 3 is greater than or equal to a predetermined value, the operation of the air pump 27 is stopped, The operation | movement which stops supply of the air to the mobile body 13 is demonstrated. By this operation, when the vibration is relatively small and the applied external force is smaller than the predetermined value, the seismic isolation device 1 operates with a low horizontal resistance force, and a suitable seismic isolation effect is obtained by reducing acceleration by increasing the period. On the other hand, if the vibration is large and the external force is greater than the predetermined value, in addition to reducing the acceleration by increasing the period, the vibration energy is attenuated by the friction force determined by the material such as the moving body and the load to be supported. As a result, it is possible to improve the absorption capacity and secure safety in the event of a large earthquake.

常時は、エアポンプ27から、フレキシブルホース25、接続金具26を介して移動体13に空気を供給する。接続金具26から移動体13に供給された空気は、空気供給口13bから環状溝13c及び空気吹出孔13dを介し、空気吹出溝13eから凹球面状下表面11aに向けて吹き出される。これにより、移動体13の凸球面状上表面13aと上沓11の凹球面状下表面11aとの間に空気層が形成されるため、図3(a)に示すように、摩擦力が生じない状態で移動体13を移動させることができ、換言すると、小さな水平抵抗力で免震装置1が作動し、長周期化による加速度低減によって好適な免震効果を得ることができる。この状態は、下部構造体2に加えられる外力の大きさが所定値未満の際には継続して維持される。   Normally, air is supplied from the air pump 27 to the moving body 13 via the flexible hose 25 and the connection fitting 26. The air supplied from the connection fitting 26 to the moving body 13 is blown out from the air supply port 13b to the concave spherical lower surface 11a through the annular groove 13c and the air blowing hole 13d. As a result, an air layer is formed between the convex spherical upper surface 13a of the movable body 13 and the concave spherical lower surface 11a of the upper collar 11, so that a frictional force is generated as shown in FIG. In other words, the mobile body 13 can be moved, in other words, the seismic isolation device 1 operates with a small horizontal resistance force, and a suitable seismic isolation effect can be obtained by reducing the acceleration by increasing the period. This state is continuously maintained when the magnitude of the external force applied to the lower structure 2 is less than a predetermined value.

一方、所定値以上の外力が加わる大きな地震等の際には、エアポンプ27の運転を停止し、移動体13への空気の供給を停止する。これにより、移動体13の凸球面状上表面13aと上沓11の凹球面状下表面11aとが直接当接し、移動体13が摺動する。これにより、図3(b)に示すように、長周期化による加速度の低減に加え、移動体13等の材料と支持する荷重で決定される摩擦力で減衰を行い、振動エネルギの吸収力を向上させ、安全性を確保することが可能になる。   On the other hand, in the event of a large earthquake or the like where an external force exceeding a predetermined value is applied, the operation of the air pump 27 is stopped and the supply of air to the moving body 13 is stopped. Thereby, the convex spherical upper surface 13a of the movable body 13 and the concave spherical lower surface 11a of the upper collar 11 are in direct contact with each other, and the movable body 13 slides. As a result, as shown in FIG. 3 (b), in addition to the reduction of acceleration due to the longer period, damping is performed by the frictional force determined by the material such as the moving body 13 and the load to be supported, and the absorption of vibration energy is increased. It is possible to improve and secure safety.

尚、上記実施の形態においては、下部構造体2に加えられる外力の大きさ、又は上部構造体3に伝達された振動の大きさが所定値以上になった場合に、エアポンプ27の運転を停止したが、この際、エアポンプ27を真空ポンプとして機能させ、移動体13から空気を吸引することもできる。その場合には、図3(c)に示すように、移動体13等の材料と支持する荷重で決定される摩擦力に加えて、吸着力を利用して振動エネルギを減衰させることができ、より高い減衰能力を得ることが可能となる。   In the above embodiment, the operation of the air pump 27 is stopped when the magnitude of the external force applied to the lower structure 2 or the magnitude of the vibration transmitted to the upper structure 3 exceeds a predetermined value. However, at this time, the air pump 27 can be made to function as a vacuum pump to suck air from the moving body 13. In that case, as shown in FIG. 3C, in addition to the frictional force determined by the material such as the moving body 13 and the load to be supported, the vibrational energy can be attenuated using the adsorption force, It becomes possible to obtain a higher damping capacity.

次に、免震装置1において、下部構造体2に加えられる外力の大きさ、又は上部構造体3に伝達された振動の大きさが所定値未満のときに、エアポンプ27を停止して移動体13への空気の供給を停止し、下部構造体2に加えられる外力の大きさ、又は上部構造体3に伝達された振動の大きさが所定値以上になったときに、エアポンプ27を運転して、移動体13に空気を供給する動作について説明する。この動作によって、所定値未満の比較的小さい振動領域においては、移動体13等の材料と支持する荷重で決定される摩擦力の大きさに相当する外力が入力されるまでの間は、上部構造体3を不動に確保でき、一方、振動が大きく、外力の大きさが所定値以上となった場合には、上部構造体3の固有周期を長周期化させたまま抵抗力が小さい状態で変位吸収し、トリガー装置的に機能させることができる。   Next, in the seismic isolation device 1, when the magnitude of the external force applied to the lower structure 2 or the magnitude of vibration transmitted to the upper structure 3 is less than a predetermined value, the air pump 27 is stopped to move the moving body When the supply of air to 13 is stopped and the magnitude of the external force applied to the lower structure 2 or the magnitude of vibration transmitted to the upper structure 3 exceeds a predetermined value, the air pump 27 is operated. The operation of supplying air to the moving body 13 will be described. By this operation, in a relatively small vibration region less than a predetermined value, until an external force corresponding to the magnitude of the frictional force determined by the material such as the moving body 13 and the load to be supported is input, the superstructure When the body 3 can be secured immovably, on the other hand, when the vibration is large and the magnitude of the external force exceeds a predetermined value, the body 3 is displaced with a small resistance force while keeping the natural period of the upper structure 3 longer. It can absorb and function like a trigger device.

尚、上記実施の形態においては、下部構造体2に加えられる外力の大きさ、又は上部構造体3に伝達された振動の大きさが所定値未満のときに、エアポンプ27の運転を停止したが、この際、エアポンプ27を真空ポンプとして機能させ、移動体13から空気を吸引することもできる。その場合には、移動体13等の材料と支持する荷重で決定される摩擦力に加え、吸着力を利用してより大きな力で上部構造体3を不動に確保することができる。   In the above embodiment, the operation of the air pump 27 is stopped when the magnitude of the external force applied to the lower structure 2 or the magnitude of vibration transmitted to the upper structure 3 is less than a predetermined value. At this time, the air pump 27 can also function as a vacuum pump to suck air from the moving body 13. In that case, in addition to the frictional force determined by the material such as the movable body 13 and the load to be supported, the upper structure 3 can be secured immovably with a larger force by using the adsorption force.

次に、上記免震装置1を適用した免震構造物について図4を参照しながら説明する。   Next, a seismic isolation structure to which the seismic isolation device 1 is applied will be described with reference to FIG.

この免震構造物41は、基礎42と、戸建住宅43との間に免震装置1が3以上介装され、各免震装置1は、戸建住宅43の荷重を基礎42に伝達するとともに、基礎42と戸建住宅43との間で水平方向の相対変位を許容する。そして、地震時等に基礎42が水平変位すると、免震装置1が上述のように機能するため、基礎42の水平振動が戸建住宅43にそのまま伝達されるのを阻止できるとともに、戸建住宅43の固有周期を長周期化することができ、戸建住宅43への加速度を低減することなどが可能になる。   In this seismic isolation structure 41, three or more seismic isolation devices 1 are interposed between the foundation 42 and the detached house 43, and each seismic isolation device 1 transmits the load of the detached house 43 to the foundation 42. At the same time, a horizontal relative displacement is allowed between the foundation 42 and the detached house 43. When the foundation 42 is horizontally displaced during an earthquake or the like, the seismic isolation device 1 functions as described above, so that the horizontal vibration of the foundation 42 can be prevented from being transmitted as it is to the detached house 43 and the detached house. The natural period of 43 can be lengthened, and the acceleration to the detached house 43 can be reduced.

次に、本発明にかかる免震装置の第2の実施形態について、図5を参照しながら説明する。尚、この免震装置51も、戸建住宅の基礎等の下部構造体52と、下部構造体52に対して水平方向Hに移動可能な戸建住宅等の上部構造体53との間に介装される。   Next, a second embodiment of the seismic isolation device according to the present invention will be described with reference to FIG. The seismic isolation device 51 is also interposed between a lower structure 52 such as a foundation of a detached house and an upper structure 53 such as a detached house that can move in the horizontal direction H with respect to the lower structure 52. Be dressed.

免震装置51は、上記第1の実施形態に記載の免震装置1から、上沓11、移動体13及び閉塞部材15などを除いた構成となっている。図5において、図1に示した免震装置1と同一の構成要素については同一の符号を付している。これにより、より簡単な構成を有する免震装置を実現することができ、上記第1の実施の形態と略々同様に、支持する荷重に拘わらず、上部構造体の固有周期を長期化して加速度を低減することができ、適宜好適な摩擦力を得ることで振動エネルギ吸収能力に優れ、復元特性も併せ持つことができる。   The seismic isolation device 51 has a configuration in which the upper arm 11, the moving body 13, the closing member 15, and the like are excluded from the seismic isolation device 1 described in the first embodiment. In FIG. 5, the same components as those of the seismic isolation device 1 shown in FIG. As a result, it is possible to realize a seismic isolation device having a simpler configuration, and in a similar manner to the first embodiment, the natural period of the upper structure is lengthened regardless of the load to be supported, and acceleration is achieved. By obtaining a suitable frictional force as appropriate, it is excellent in vibration energy absorption capability and can also have a restoring characteristic.

次に、本発明にかかる免震装置の第3の実施形態について、図6を参照しながら説明する。尚、この免震装置61も、戸建住宅の基礎等の下部構造体62と、下部構造体62に対して水平方向Hに移動可能な戸建住宅等の上部構造体63との間に介装される。   Next, a third embodiment of the seismic isolation device according to the present invention will be described with reference to FIG. The seismic isolation device 61 is also interposed between the lower structure 62 such as the foundation of a detached house and the upper structure 63 such as a detached house that can move in the horizontal direction H with respect to the lower structure 62. Be dressed.

免震装置61は、上記第1の実施の形態に記載の免震装置1から、下沓12、移動体14及び閉塞部材16などを除いた構成となっている。図6において、図1に示した免震装置1と同一の構成要素については同一の符号を付している。これにより、より簡単な構成を有する免震装置を実現することができ、上記第1の実施の形態と略々同様に、支持する荷重に拘わらず、上部構造体の固有周期を長期化して加速度を低減することができ、適宜好適な摩擦力を得ることで振動エネルギ吸収能力に優れ、復元特性も併せ持つことが可能となる。   The seismic isolation device 61 has a configuration in which the lower arm 12, the moving body 14, the closing member 16, and the like are excluded from the seismic isolation device 1 described in the first embodiment. In FIG. 6, the same code | symbol is attached | subjected about the component same as the seismic isolation apparatus 1 shown in FIG. As a result, it is possible to realize a seismic isolation device having a simpler configuration, and in a similar manner to the first embodiment, the natural period of the upper structure is lengthened regardless of the load to be supported, and acceleration is achieved. By obtaining a suitable frictional force as appropriate, it is possible to have excellent vibration energy absorption capability and also have a restoring characteristic.

本発明にかかる免震装置の第1の実施の形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the seismic isolation apparatus concerning this invention. 図1の免震装置の移動体を示す図であって、(a)は上面図、(b)は(a)のA−A線断面図、(c)は(b)のA部拡大図である。It is a figure which shows the moving body of the seismic isolation apparatus of FIG. 1, Comprising: (a) is a top view, (b) is the sectional view on the AA line of (a), (c) is the A section enlarged view of (b). It is. 本発明にかかる免震装置の水平抵抗力と水平変位量(上部構造体3と下部構造体2の相対変位)の関係を示す履歴曲線であって、(a)は空気供給時、(b)は空気供給及び吸引がない状態、(c)は空気吸引時を示す。It is a hysteresis curve which shows the relationship between the horizontal resistance of the seismic isolation apparatus concerning this invention, and horizontal displacement amount (relative displacement of the upper structure 3 and the lower structure 2), Comprising: (a) is at the time of air supply, (b) Indicates a state in which no air is supplied or sucked, and FIG. 本発明にかかる免震装置を用いた免震構造物を示す概略図である。It is the schematic which shows the seismic isolation structure using the seismic isolation apparatus concerning this invention. 本発明にかかる免震装置の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the seismic isolation apparatus concerning this invention. 本発明にかかる免震装置の第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the seismic isolation apparatus concerning this invention.

符号の説明Explanation of symbols

1 免震装置
2 下部構造体
3 上部構造体
11 上沓
11a 凹球面状下表面
12 下沓
12a 凹球面状上表面
13 移動体
13a 凸球面状上表面
13b 空気供給口
13c 環状溝
13d 空気吹出孔
13e 空気吹出溝
13f 空気吹出口
14 移動体
14a 凸球面状下表面
14b 空気供給口
14c 環状溝
14d 空気吹出孔
14e 空気吹出溝
15 閉塞部材
16 閉塞部材
17〜22 ボルト
23、24 ナット
25 フレキシブルホース
26 接続金具
27 エアポンプ
28 フレキシブルホース
29 接続金具
30 エアポンプ
41 免震構造物
42 基礎
43 戸建住宅
51 免震装置
61 免震装置
DESCRIPTION OF SYMBOLS 1 Seismic isolation device 2 Lower structure 3 Upper structure 11 Upper flange 11a Concave spherical lower surface 12 Lower flange 12a Concave spherical upper surface 13 Moving body 13a Convex spherical upper surface 13b Air supply port 13c Annular groove 13d Air outlet hole 13e Air outlet groove 13f Air outlet 14 Moving body 14a Convex spherical lower surface 14b Air supply port 14c Annular groove 14d Air outlet hole 14e Air outlet groove 15 Closing member 16 Closing members 17-22 Bolts 23, 24 Nut 25 Flexible hose 26 Connection fitting 27 Air pump 28 Flexible hose 29 Connection fitting 30 Air pump 41 Seismic isolation structure 42 Foundation 43 Detached house 51 Seismic isolation device 61 Seismic isolation device

Claims (14)

上部構造体に固定され、下方に開口する凹球面状下表面を有する上沓と、
下部構造体に固定され、上方に開口する凹球面状上表面を有する下沓と、
前記上沓と前記下沓との間に移動自在に配置される移動体とを備え、
該移動体は、前記上沓の凹球面状下表面に対向する凸球面状上表面を有するとともに、前記下沓の凹球面状上表面に対向する凸球面状下表面を有し、該凸球面状上表面又は/及び凸球面状下表面に空気吹出溝を備えることを特徴とする免震装置。
An upper collar having a concave spherical lower surface fixed to the upper structure and opening downward;
A lower rod having a concave spherical upper surface fixed to the lower structure and opening upward;
A movable body that is movably disposed between the upper collar and the lower collar,
The movable body has a convex spherical upper surface facing the concave spherical lower surface of the upper collar, and has a convex spherical lower surface facing the concave spherical upper surface of the lower collar, the convex spherical surface A seismic isolation device comprising an air blowing groove on the upper surface and / or the lower surface of the convex spherical surface.
下部構造体に固定され、上方に開口する凹球面状上表面を有する下沓と、
上部構造体に固定され、前記下沓の上に配置される移動体とを備え、
該移動体は、前記下沓の凹球面状上表面に対向する凸球面状下表面を有するとともに、該凸球面状下表面に空気吹出溝を備えることを特徴とする免震装置。
A lower rod having a concave spherical upper surface fixed to the lower structure and opening upward;
A movable body fixed to the upper structure and disposed on the lower arm,
The seismic isolation device, wherein the movable body has a convex spherical lower surface facing the concave spherical upper surface of the lower collar, and has an air blowing groove on the convex spherical lower surface.
上部構造体に固定され、下方に開口する凹球面状下表面を有する上沓と、
下部構造体に固定され、前記上沓の下に配置される移動体とを備え、
該移動体は、前記上沓の凹球面状下表面に対向する凸球面状上表面を有するとともに、該凸球面状上表面に空気吹出溝を備えることを特徴とする免震装置。
An upper collar having a concave spherical lower surface fixed to the upper structure and opening downward;
A movable body fixed to the lower structure and disposed below the upper arm,
The seismic isolation device, wherein the moving body has a convex spherical upper surface facing the concave spherical lower surface of the upper collar, and has an air blowing groove on the convex spherical upper surface.
前記移動体に空気を供給する空気供給手段を備え、
該空気供給手段は、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさに応じて、前記移動体への空気供給を制御することを特徴とする請求項1、2又は3に記載の免震装置。
Air supply means for supplying air to the mobile body;
The air supply means controls air supply to the moving body according to the magnitude of an external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure. The seismic isolation device according to claim 1, 2 or 3.
前記空気供給手段は、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値未満のときに、前記移動体に空気を供給し、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値以上のときに、前記移動体への空気の供給を停止するか、又は前記移動体から空気を吸引することを特徴とする請求項4に記載の免震装置。   The air supply means supplies air to the moving body when the magnitude of external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is less than a predetermined value, When the magnitude of the external force applied to the structure or the magnitude of vibration transmitted to the upper structure is greater than or equal to a predetermined value, the supply of air to the moving body is stopped, or the air from the moving body The seismic isolation device according to claim 4, wherein the seismic isolation device is sucked. 前記空気供給手段は、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値未満のときに、前記移動体への空気の供給を停止するか、又は前記移動体から空気を吸引し、前記下部構造体に加えられる外力の大きさ、又は前記上部構造体に伝達された振動の大きさが所定値以上のときに、前記移動体に空気を供給することを特徴とする請求項4に記載の免震装置。   The air supply means stops the supply of air to the moving body when the magnitude of external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is less than a predetermined value. Or when the magnitude of external force applied to the lower structure or the magnitude of vibration transmitted to the upper structure is greater than or equal to a predetermined value when air is sucked from the movable body. The seismic isolation device according to claim 4, wherein the seismic isolation device is supplied. 前記移動体の凸球面状上表面は、前記上沓の凹球面状下表面と同一の曲率を有し、前記移動体の凸球面状下表面は、前記下沓の凹球面状上表面と同一の曲率を有することを特徴とする請求項1乃至6のいずれかに記載の免震装置。   The convex spherical upper surface of the moving body has the same curvature as the concave spherical lower surface of the upper collar, and the convex spherical lower surface of the movable body is the same as the concave spherical upper surface of the lower collar. The seismic isolation device according to claim 1, having a curvature of 前記移動体の空気吹出溝は、表面絞りによって形成されるとともに、該空気吹出溝の底面には、自成絞り形状の空気吹出孔が穿設されることを特徴とする請求項1乃至7のいずれかに記載の免震装置。   The air blowing groove of the moving body is formed by a surface restriction, and a self-blowing shaped air blowing hole is formed in the bottom surface of the air blowing groove. The seismic isolation device according to any one of the above. 前記表面絞りによる空気吹出溝と、前記自成絞り形状の空気吹出孔との組み合わせを複数備え、各々の組み合わせは互いに独立していることを特徴とする請求項8に記載の免震装置。   The seismic isolation device according to claim 8, comprising a plurality of combinations of the air blowing grooves formed by the surface restriction and the self-drawing shaped air blowing holes, wherein each combination is independent of each other. 前記移動体の空気吹出溝は、前記移動体から空気を吸引する際の空気吸引溝として兼用されることを特徴とする請求項1乃至9のいずれかに記載の免震装置。   The seismic isolation device according to claim 1, wherein the air blowing groove of the moving body is also used as an air suction groove when sucking air from the moving body. 前記移動体の少なくとも上下いずれか一方の表面が、ポリフェニレンスルフィド樹脂、又は、該ポリフェニレンスルフィド樹脂に、ガラス繊維、炭素繊維もしくは無機質充填剤の少なくとも1つを混入した強化合成樹脂によって形成されることを特徴とする請求項1乃至10のいずれかに記載の免震装置。   At least one of the upper and lower surfaces of the moving body is formed of a polyphenylene sulfide resin or a reinforced synthetic resin in which at least one of glass fiber, carbon fiber, or inorganic filler is mixed in the polyphenylene sulfide resin. The seismic isolation device according to any one of claims 1 to 10. 前記移動体は、金属材料からなることを特徴とする請求項1乃至10のいずれかに記載の免震装置。   The seismic isolation device according to claim 1, wherein the moving body is made of a metal material. 前記移動体は、金属材料からなり、その上下いずれか一方の表面に二硫化モリブデン又はDLC(Diamond like Carbon)からなる潤滑膜を有することを特徴とする請求項1乃至10のいずれかに記載の免震装置。   The said moving body consists of metal materials, and has a lubricating film which consists of molybdenum disulfide or DLC (Diamond like Carbon) on the surface of either upper and lower sides, The Claim 1 thru | or 10 characterized by the above-mentioned. Seismic isolation device. 請求項1乃至13のいずれかに記載の免震装置を少なくとも3以上配置したことを特徴とする免震構造物。   A seismic isolation structure comprising at least three seismic isolation devices according to claim 1.
JP2008111976A 2008-04-23 2008-04-23 Seismic isolation devices and seismic isolation structures Active JP5219603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111976A JP5219603B2 (en) 2008-04-23 2008-04-23 Seismic isolation devices and seismic isolation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111976A JP5219603B2 (en) 2008-04-23 2008-04-23 Seismic isolation devices and seismic isolation structures

Publications (2)

Publication Number Publication Date
JP2009264429A true JP2009264429A (en) 2009-11-12
JP5219603B2 JP5219603B2 (en) 2013-06-26

Family

ID=41390535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111976A Active JP5219603B2 (en) 2008-04-23 2008-04-23 Seismic isolation devices and seismic isolation structures

Country Status (1)

Country Link
JP (1) JP5219603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011142B2 (en) * 2007-02-06 2011-09-06 Alga S.P.A. Sliding pendulum seismic isolator
WO2020094807A1 (en) * 2018-11-07 2020-05-14 Maurer Engineering Gmbh Mass damper for damping vibrations of a structure, structure with such a mass damper and method for adjusting the natural frequency of a mass damper

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031523A (en) * 1989-05-29 1991-01-08 Toshiba Corp Shock absorber and positioning device using same
JPH04125313A (en) * 1990-09-12 1992-04-24 Taisei Corp Slip bearing device
JPH0914339A (en) * 1995-04-27 1997-01-14 Kongo Kk Base isolation device
JPH09242382A (en) * 1996-03-12 1997-09-16 Kajima Corp Sliding bearing having frictional force and base isolation structure by use of the sliding bearing and laminate rubber bearing
JPH10227153A (en) * 1997-02-18 1998-08-25 Kayaba Ind Co Ltd Static pressure type building supporter
JP2000119408A (en) * 1998-10-12 2000-04-25 Oiles Ind Co Ltd Sliding structure by combining two sliding members and slip supporting device using it
JP2000255277A (en) * 1999-03-10 2000-09-19 Toyota Motor Corp Mounting device of internal combustion engine
JP2001012542A (en) * 1999-06-24 2001-01-16 Daido Metal Co Ltd Supporting device for base isolation
JP2003090013A (en) * 2001-09-18 2003-03-28 Japan Steel Works Ltd:The Structure bearing device
JP2004169784A (en) * 2002-11-19 2004-06-17 Nikon Corp Bearing unit, stage unit, and exposure system
JP2005214244A (en) * 2004-01-28 2005-08-11 Kawasaki Heavy Ind Ltd Active vibration insulator
JP2005257030A (en) * 2004-03-15 2005-09-22 Nikon Corp Fluid bearing, stage apparatus, exposure device, evaluation device, and evaluation method
JP2005331048A (en) * 2004-05-20 2005-12-02 Imv Corp Vibration-proof x-y table
JP2007016830A (en) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd Rubber bush
JP2008082382A (en) * 2006-09-26 2008-04-10 Yokohama Rubber Co Ltd:The Vibration transmission restraining device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031523A (en) * 1989-05-29 1991-01-08 Toshiba Corp Shock absorber and positioning device using same
JPH04125313A (en) * 1990-09-12 1992-04-24 Taisei Corp Slip bearing device
JPH0914339A (en) * 1995-04-27 1997-01-14 Kongo Kk Base isolation device
JPH09242382A (en) * 1996-03-12 1997-09-16 Kajima Corp Sliding bearing having frictional force and base isolation structure by use of the sliding bearing and laminate rubber bearing
JPH10227153A (en) * 1997-02-18 1998-08-25 Kayaba Ind Co Ltd Static pressure type building supporter
JP2000119408A (en) * 1998-10-12 2000-04-25 Oiles Ind Co Ltd Sliding structure by combining two sliding members and slip supporting device using it
JP2000255277A (en) * 1999-03-10 2000-09-19 Toyota Motor Corp Mounting device of internal combustion engine
JP2001012542A (en) * 1999-06-24 2001-01-16 Daido Metal Co Ltd Supporting device for base isolation
JP2003090013A (en) * 2001-09-18 2003-03-28 Japan Steel Works Ltd:The Structure bearing device
JP2004169784A (en) * 2002-11-19 2004-06-17 Nikon Corp Bearing unit, stage unit, and exposure system
JP2005214244A (en) * 2004-01-28 2005-08-11 Kawasaki Heavy Ind Ltd Active vibration insulator
JP2005257030A (en) * 2004-03-15 2005-09-22 Nikon Corp Fluid bearing, stage apparatus, exposure device, evaluation device, and evaluation method
JP2005331048A (en) * 2004-05-20 2005-12-02 Imv Corp Vibration-proof x-y table
JP2007016830A (en) * 2005-07-06 2007-01-25 Nissan Motor Co Ltd Rubber bush
JP2008082382A (en) * 2006-09-26 2008-04-10 Yokohama Rubber Co Ltd:The Vibration transmission restraining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8011142B2 (en) * 2007-02-06 2011-09-06 Alga S.P.A. Sliding pendulum seismic isolator
WO2020094807A1 (en) * 2018-11-07 2020-05-14 Maurer Engineering Gmbh Mass damper for damping vibrations of a structure, structure with such a mass damper and method for adjusting the natural frequency of a mass damper
CN113167067A (en) * 2018-11-07 2021-07-23 毛雷尔工程有限公司 Mass damper for damping structural vibrations, structure having such a mass damper and method for adjusting the natural frequency of a mass damper
AU2019374991B2 (en) * 2018-11-07 2023-05-25 Maurer Engineering Gmbh Mass damper for damping vibrations of a structure, structure with such a mass damper and method for adjusting the natural frequency of a mass damper

Also Published As

Publication number Publication date
JP5219603B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5122578B2 (en) Seismic isolation devices and seismic isolation structures
JP3216607U (en) Air floating vibration control system
US9423000B2 (en) Magnetically suspended vibration isolator with zero stiffness whose angle degree of freedom is decoupled with a joint ball bearing
JP6372033B2 (en) Anti-vibration vibration reduction device
US9429208B2 (en) Vibration isolator with zero stiffness whose angle degree of freedom is decoupled with spherical air bearing
US8429862B2 (en) Vibration damping construction system
US9429209B2 (en) Magnetically suspended and plane-drove vibration isolator
JP2010265927A (en) Sliding bearing for structure
JP2009144429A (en) Sliding bearing for structure
JP5219603B2 (en) Seismic isolation devices and seismic isolation structures
CN102343588A (en) Magnetic-disc-adsorptive wall climbing robot
JP5985927B2 (en) Sliding bearings for structures
JP2019015310A (en) Vibration damping device for structure
JP2019173940A (en) Air levitation type vibration control system
CN207921233U (en) A kind of vibration insulating system with nonlinear spring rates
CN105179478B (en) A kind of Porous gas suspension support system applied to full physical simulation
JP2009168157A (en) Spring type antivibration equipment and antivibration device
JP2010189997A (en) Base-isolated structure and building having the same
JP2013257026A (en) Vibration damping device
JP2005083789A (en) Stage device
JPS63214533A (en) Vibration isolator
JPH108765A (en) Vibration-isolation bearing device for structure
JP2006002934A (en) Base isolation device
CN214699488U (en) Pipeline fixing device for petroleum machinery
JP2011190879A (en) Damping device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250