JP2009144429A - Sliding bearing for structure - Google Patents

Sliding bearing for structure Download PDF

Info

Publication number
JP2009144429A
JP2009144429A JP2007323335A JP2007323335A JP2009144429A JP 2009144429 A JP2009144429 A JP 2009144429A JP 2007323335 A JP2007323335 A JP 2007323335A JP 2007323335 A JP2007323335 A JP 2007323335A JP 2009144429 A JP2009144429 A JP 2009144429A
Authority
JP
Japan
Prior art keywords
sliding
displacement
bridge girder
side sliding
pier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007323335A
Other languages
Japanese (ja)
Other versions
JP5561661B2 (en
Inventor
Nobuhiko Taniguchi
信彦 谷口
Yukiro Adachi
幸郎 足立
Sachihisa Kato
祥久 加藤
Yasuyuki Iwasato
泰幸 岩里
Hiroe Uno
裕惠 宇野
Yasuyuki Ishii
康之 石井
Sadayoshi Miyazaki
宮崎  貞義
Hideaki Yokogawa
英彰 横川
Yukihiro Hosono
幸弘 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Hanshin Expressway Co Ltd
Original Assignee
Oiles Industry Co Ltd
Hanshin Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd, Hanshin Expressway Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2007323335A priority Critical patent/JP5561661B2/en
Publication of JP2009144429A publication Critical patent/JP2009144429A/en
Application granted granted Critical
Publication of JP5561661B2 publication Critical patent/JP5561661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding bearing for a structure, effectively utilizing large vibration energy based on a strong earthquake, thereby preventing an upper structure from slipping off from a lower structure, having no risk of a collapse and achieving reduction in manufacturing cost and fully occupying space. <P>SOLUTION: This sliding bering 1 for a bridge is interposed between a bridge pier 2 and a bridge girder 3 to support the bridge girder 3 to the bridge pier 2 to freely move in the bridge axial direction H in the horizontal direction. The sliding bearing 1 includes: a sliding plate 8 fixed at its top face to the lower surface 6 of the bridge girder 3 through a fitting plate 7 fixed to the lower surface 6 of the bridge girder 3 and having an upper sliding surface 5 on the lower surface; a sliding plate 10, which comes into contact with the upper sliding surface 5 to freely slide in the H direction and has a lower sliding surface 9 bearing the vertical load of the bridge girder 3 through the upper sliding surface 5, the sliding plate 8 and the fitting plate 7 on the upper surface; and a restoring force generating means 11, which generates restoring force to the relative displacement in the H direction more than fixed of the bridge girder 3 to the bridge pier 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、基礎、橋脚等の下部構造物と建物、橋桁等の上部構造物との間に介在されて下部構造物に対して上部構造物を水平方向に移動自在に支持する構造物用の滑り支承に関する。   The present invention is for a structure which is interposed between a lower structure such as a foundation and a bridge pier and an upper structure such as a building and a bridge girder and supports the upper structure so as to be movable in a horizontal direction with respect to the lower structure. Regarding sliding bearings.

特開平10−73145号公報JP-A-10-73145 特開平11−81237号公報JP-A-11-81237

滑り支承は、地震等による地盤の振動を建物、橋桁等の上部構造物に伝達しないで地震等による上部構造物の倒壊を防止するようになっている。また、橋梁に用いられる滑り支承は、上記に加えて、温度変化による橋桁の伸縮を滑りにより吸収するようになっている。   The sliding bearing prevents the collapse of the upper structure due to an earthquake or the like without transmitting the vibration of the ground due to the earthquake or the like to the upper structure such as a building or a bridge girder. In addition to the above, the sliding bearing used for the bridge absorbs the expansion and contraction of the bridge girder due to the temperature change by the sliding.

ところで、大きな地震等により下部構造物に対して上部構造物が大きく変位すると、単に平坦な面同士の滑りを用いた滑り支承では、下部構造物から上部構造物が脱落してしまう虞がある上に、仮に、斯かる脱落を防止するために脱落防止機構を設けても、大きな地震等に基づく大きな振動エネルギが脱落防止機構に直接加わることとなり、脱落防止機構が損壊する虞もある。そして、大きな振動エネルギに対する脱落防止機構は、その製造に費用も嵩む上に大きなスペースを必要とし必ずしも満足できるものではない。   By the way, if the upper structure is largely displaced with respect to the lower structure due to a large earthquake or the like, the sliding structure using simply sliding between flat surfaces may cause the upper structure to fall from the lower structure. Even if a drop-off prevention mechanism is provided to prevent such drop-off, large vibration energy based on a large earthquake or the like is directly applied to the drop-off prevention mechanism, and the drop-off prevention mechanism may be damaged. Further, the drop-off prevention mechanism for large vibration energy is not always satisfactory because it is expensive to manufacture and requires a large space.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、大きな地震等に基づく大きな運動エネルギである振動エネルギを位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、而して、下部構造物から上部構造物の脱落を防止でき、しかも、損壊の虞のない上に、製造費の低減及び占有空間の低減を図り得る構造物用の滑り支承を提供することにある。   The present invention has been made in view of the above points, and its object is to effectively absorb large vibration energy by converting vibration energy, which is large kinetic energy based on a large earthquake, etc., into potential energy. Thus, it is possible to provide a sliding bearing for a structure that can prevent the upper structure from falling off from the lower structure and that can be prevented from being damaged and that can reduce the manufacturing cost and the occupied space. There is.

下部構造物に対して上部構造物を水平方向に移動自在に支持するべく、下部構造物と上部構造物との間に介在される本発明による構造物用の滑り支承は、上部構造物側に配される上部側滑り面と、この上部側滑り面に水平方向に滑り移動自在に接触すると共に上部側滑り面を介して上部構造物の荷重を受けるように下部構造物側に配される下部側滑り面と、下部構造物に対する上部構造物の一定以上の水平方向の相対的変位に対する復元力を発生する復元力発生手段とを具備しており、復元力発生手段は、下部構造物及び上部構造物のうちの一方に固定されると共に下部側滑り面に対して交差方向に伸びる変位面とこの変位面に対面した対抗面とを有しており、下部構造物に対する上部構造物の一定以上の水平方向の相対的変位において変位面への対抗面の接触に基いて上部構造物を上部構造物から鉛直方向に移動させるようになっている。   The sliding bearing for the structure according to the present invention interposed between the lower structure and the upper structure to support the upper structure movably in the horizontal direction with respect to the lower structure is provided on the upper structure side. An upper side sliding surface arranged and a lower part arranged on the lower structure side so as to be in sliding contact with the upper side sliding surface in a horizontal direction and to receive the load of the upper structure through the upper side sliding surface A side sliding surface and restoring force generating means for generating restoring force with respect to a relative displacement in a horizontal direction of the upper structure with respect to the lower structure. The restoring force generating means includes the lower structure and the upper part. It has a displacement surface that is fixed to one of the structures and extends in a direction intersecting the lower sliding surface, and a facing surface that faces the displacement surface, and is above a certain level of the upper structure relative to the lower structure. Displacement in the horizontal relative displacement of Based on the opposing surface contacts to and is adapted to move the upper structure from the superstructure in the vertical direction.

本発明によれば、下部側滑り面に対して交差方向に伸びる変位面とこの変位面に対面した対抗面とを有している復元力発生手段が下部構造物に対する上部構造物の一定以上の水平方向の相対的変位において変位面への対抗面の接触に基いて上部構造物を下部構造物から鉛直方向に移動させるようになっているために、大きな地震等に基づく大きな運動エネルギである振動エネルギを上部構造物の下部構造物からの鉛直方向の移動をもって位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、斯かる大きな振動エネルギに基づく上部構造物と下部構造物との間の相対的な水平方向の大変位を防止でき、而して、下部構造物から上部構造物の脱落を防止でき、しかも、大きな地震等に基づく大きな振動エネルギを効果的に利用できて、損壊の虞をなくし得る上に、製造費の低減及び占有空間の低減を図り得る上に、変位面への対抗面の接触において摩擦力による減衰効果も期待できる。   According to the present invention, the restoring force generating means having the displacement surface extending in the crossing direction with respect to the lower side sliding surface and the opposing surface facing the displacement surface is more than a certain level of the upper structure relative to the lower structure. Since the upper structure is moved vertically from the lower structure based on the contact of the opposing surface with the displacement surface in the relative displacement in the horizontal direction, vibration that is large kinetic energy due to large earthquakes, etc. Energy can be converted into potential energy with vertical movement of the upper structure from the lower structure to effectively absorb large vibration energy, and between the upper structure and the lower structure based on such large vibration energy. It can prevent relative large horizontal displacement, and can prevent the fall of the upper structure from the lower structure, and can effectively use the large vibration energy based on a big earthquake etc. On that may eliminate the risk of damage, in order to obtain achieving reduction of reduction and space occupied by the manufacturing cost, the damping effect can be expected due to frictional force at the contact of the opposing surfaces of the displacement surfaces.

本発明の好ましい例では、上部側滑り面及び下部側滑り面の夫々は水平方向に伸びた平坦面を有しており、変位面及び対抗面の夫々は、上部側滑り面及び下部側滑り面に対して傾斜した平坦面を有している。   In a preferred example of the present invention, each of the upper side sliding surface and the lower side sliding surface has a flat surface extending in the horizontal direction, and each of the displacement surface and the opposing surface is the upper side sliding surface and the lower side sliding surface. It has a flat surface inclined with respect to.

他の好ましい例では、上部側滑り面及び下部側滑り面の夫々は水平方向に伸びた平坦面を有しており、変位面及び対抗面の夫々は湾曲面を有しており、この場合、変位面は湾曲凹面を有しており、対抗面は湾曲凸面を有していても、これに代えて、変位面は湾曲凸面を有しており、対抗面は湾曲凹面を有していてもよい。   In another preferred example, each of the upper side sliding surface and the lower side sliding surface has a flat surface extending in the horizontal direction, and each of the displacement surface and the opposing surface has a curved surface, The displacement surface has a curved concave surface, and the opposing surface may have a curved convex surface. Alternatively, the displacement surface may have a curved convex surface, and the opposing surface may have a curved concave surface. Good.

また、他の好ましい例では、上部側滑り面及び下部側滑り面の夫々は水平方向に伸びた平坦面を有しており、変位面は湾曲面及び平坦面のうちの一方を有しており、変位面は湾曲面及び平坦面のうちの他方を有している。   In another preferable example, each of the upper side sliding surface and the lower side sliding surface has a flat surface extending in the horizontal direction, and the displacement surface has one of a curved surface and a flat surface. The displacement surface has the other of a curved surface and a flat surface.

変位面は、上部側滑り面及び下部側滑り面のうちの一方と連続して伸びており、対抗面は、上部側滑り面及び下部側滑り面のうちの他方と連続して伸びていても、これに代えて、変位面及び対抗面は、上部側滑り面及び下部側滑り面に対して別個独立に設けられていても、更には、変位面及び対抗面のうちの一方は、上部側滑り面及び下部側滑り面のうちの一方と連続して伸びており、変位面及び対抗面のうちの他方は、上部側滑り面及び下部側滑り面のうちの他方に対して別個独立に設けられていてもよい。   The displacement surface extends continuously with one of the upper side sliding surface and the lower side sliding surface, and the opposing surface may extend continuously with the other of the upper side sliding surface and the lower side sliding surface. Alternatively, the displacement surface and the opposing surface may be provided separately from the upper side sliding surface and the lower side sliding surface, and one of the displacement surface and the opposing surface may be the upper side. It extends continuously with one of the sliding surface and the lower sliding surface, and the other of the displacement surface and the opposing surface is provided independently of the other of the upper sliding surface and the lower sliding surface. It may be done.

本発明では、復元力発生手段は、変位面及び対抗面に加えて、下部側滑り面に対する上部側滑り面の一定以上の水平方向の相対的変位を禁止する禁止機構を有していてもよい。   In the present invention, the restoring force generating means may include a prohibiting mechanism that prohibits a relative horizontal displacement of the upper side sliding surface with respect to the lower side sliding surface beyond a certain level in addition to the displacement surface and the opposing surface. .

以上において、傾斜した平坦面、湾曲凸面及び湾曲凹面の傾斜角、形状及び曲率等を適宜設定することにより、運動エネルギから位置エネルギへの変換特性及び/又は下部構造物の塑性化を任意に制御することができる。   In the above, by appropriately setting the inclination angle, shape, curvature, etc. of the inclined flat surface, the curved convex surface and the curved concave surface, the conversion characteristics from kinetic energy to potential energy and / or plasticization of the substructure can be arbitrarily controlled. can do.

本発明では、上部側滑り面及び下部側滑り面からなる上部構造物の荷重を受ける機構と、復元力発生手段とを一体的に設けても、これに代えて、荷重を受ける機構と復元力発生手段とを別体に設けてもよく、別体に設ける場合には、耐震設計の自由度が高くなり、好ましい場合がある。   In the present invention, even if the mechanism for receiving the load of the upper structure composed of the upper side sliding surface and the lower side sliding surface and the restoring force generating means are integrally provided, the mechanism for receiving the load and the restoring force are replaced by this. The generating means may be provided separately, and when provided separately, the degree of freedom in seismic design is increased, which may be preferable.

本発明によれば、大きな地震等に基づく大きな運動エネルギである振動エネルギを位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、而して、下部構造物から上部構造物の脱落を防止でき、しかも、損壊の虞のない上に、製造費の低減及び占有空間の低減を図り得る構造物用の滑り支承を提供することができる。   According to the present invention, vibration energy, which is large kinetic energy based on a large earthquake or the like, can be converted into potential energy to effectively absorb large vibration energy, thus preventing the upper structure from falling off from the lower structure. In addition, it is possible to provide a sliding bearing for a structure that can reduce the manufacturing cost and the occupied space without causing the possibility of damage.

次に、本発明の実施の形態の例を、図に示す例に基づいて更に詳細に説明する。尚、本発明は、これら例に何等限定されないのである。   Next, an example of an embodiment of the present invention will be described in more detail based on an example shown in the figure. The present invention is not limited to these examples.

図1において、本例の構造物用としての橋梁用の滑り支承1は、下部構造物としての橋脚2に対して上部構造物としての橋桁3を水平方向において橋軸方向H(以下、H方向という)に移動自在に支持するべく、橋脚2と橋桁3との間に介在される。   In FIG. 1, a sliding support 1 for a bridge as a structure of this example includes a bridge girder 3 as an upper structure in a horizontal direction with respect to a bridge pier 2 as a lower structure in a bridge axis direction H (hereinafter, H direction). It is interposed between the bridge pier 2 and the bridge girder 3 so as to be movably supported.

滑り支承1は、ボルト等を介して橋桁3の下面6に固着されている取付板7を介して上面で橋桁3の下面6に固着されていると共に上部側滑り面5を下面に有している滑り板8と、上部側滑り面5にH方向に滑り移動自在に接触すると共に上部側滑り面5、滑り板8及び取付板7を介して橋桁3の鉛直方向V(以下、V方向という)の荷重を受ける下部側滑り面9を上面に有した滑り板10と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段11とを具備している。   The sliding support 1 has an upper surface fixed to the lower surface 6 of the bridge girder 3 via a mounting plate 7 fixed to the lower surface 6 of the bridge girder 3 via bolts and the like, and has an upper side sliding surface 5 on the lower surface. The sliding plate 8 and the upper sliding surface 5 are slidably contacted in the H direction, and the vertical direction V (hereinafter referred to as V direction) of the bridge girder 3 through the upper sliding surface 5, the sliding plate 8 and the mounting plate 7. ) And a restoring force generating means 11 for generating a restoring force with respect to the relative displacement in the H direction of the bridge girder 3 with respect to the bridge pier 2 over a certain level. ing.

復元力発生手段11は、鍔部21で橋脚2の上面22にアンカーボルト・ナット23を介して固着された基台24と、基台24のV方向の上端に設けられた滑り板支持機構25と、基台24のH方向の両側面に設けられた一対の変位機構26及び27と、取付板7を介して橋桁3の下面6に固着されていると共にH方向において基台24を間にして配された一対の支持部材28及び29と、H方向に対して傾斜した支持部材28及び29の夫々の傾斜面30及び31に夫々固着された滑り板32及び33とを具備している。   The restoring force generating means 11 includes a base 24 fixed to the upper surface 22 of the pier 2 with anchor bolts and nuts 23 at the flange portion 21, and a sliding plate support mechanism 25 provided at the upper end in the V direction of the base 24. And a pair of displacement mechanisms 26 and 27 provided on both side surfaces in the H direction of the base 24 and the lower surface 6 of the bridge girder 3 via the mounting plate 7, and the base 24 in the H direction. And a pair of support members 28 and 29, and sliding plates 32 and 33 fixed to the inclined surfaces 30 and 31 of the support members 28 and 29 inclined with respect to the H direction, respectively.

基台24は、H方向に伸びた平坦な上端面35及び上端面35のH方向の両端縁からH方向に対して傾斜して下方に伸びた一対の平坦な傾斜面36及び37を有した截頭四角錐体からなる基台本体38と、基台本体38のH方向に伸びた平坦な下端面39に一体的に設けられた鍔部21とを具備している。   The base 24 has a flat upper end surface 35 extending in the H direction and a pair of flat inclined surfaces 36 and 37 extending downward from the both end edges of the upper end surface 35 in the H direction. The base main body 38 which consists of a truncated quadrangular pyramid, and the collar part 21 integrally provided in the flat lower end surface 39 extended in the H direction of the base main body 38 are comprised.

滑り板支持機構25は、基台本体38の上端面35に形成された凹所41と、凹所41に配されて基台本体38に加硫接着又は嵌合された天然ゴム又は合成ゴム等からなる衝撃吸収用の弾性板42とを具備しており、弾性板42の上面43に滑り板10の下面44が加硫接着されており、これにより、滑り板支持機構25は、弾性板42を介して滑り板10を基台本体38上で支持している。滑り板10は、その下面44で弾性板42の上面43に加硫接着される代わりに、弾性板42の上面43に配されて凹所41において基台本体38に嵌合されていてもよい。   The sliding plate support mechanism 25 includes a recess 41 formed in the upper end surface 35 of the base body 38, and natural rubber or synthetic rubber disposed in the recess 41 and vulcanized or bonded to the base body 38. And the lower surface 44 of the sliding plate 10 is vulcanized and bonded to the upper surface 43 of the elastic plate 42, so that the sliding plate support mechanism 25 is connected to the elastic plate 42. The sliding plate 10 is supported on the base main body 38 via. The sliding plate 10 may be disposed on the upper surface 43 of the elastic plate 42 and fitted to the base body 38 in the recess 41 instead of being vulcanized and bonded to the upper surface 43 of the elastic plate 42 at the lower surface 44. .

変位機構26は、基台24のH方向の一方の側面である基台本体38の傾斜面36に形成された凹所51と、凹所51に配されて基台本体38に加硫接着又は嵌合された天然ゴム又は合成ゴム等からなる衝撃吸収用の弾性板52と、下部側滑り面9に対して交差方向に伸びる変位面としての、H方向に伸びる上部側滑り面5及び下部側滑り面9に対して傾斜した平坦面からなる傾斜面53を有すると共に傾斜面53に対する裏面で弾性板52に加硫接着されている滑り板54とを具備している。滑り板54は、その裏面で弾性板52に加硫接着される代わりに、弾性板52に重ね合わされて凹所51において基台本体38に嵌合されていてもよい。   The displacement mechanism 26 includes a recess 51 formed in the inclined surface 36 of the base body 38 that is one side surface of the base 24 in the H direction, and is disposed in the recess 51 and vulcanized or bonded to the base body 38. The elastic plate 52 for shock absorption made of fitted natural rubber or synthetic rubber, and the upper side sliding surface 5 and the lower side extending in the H direction as a displacement surface extending in the crossing direction with respect to the lower side sliding surface 9 And a sliding plate 54 that has an inclined surface 53 that is a flat surface inclined with respect to the sliding surface 9 and is vulcanized and bonded to the elastic plate 52 on the back surface of the inclined surface 53. The sliding plate 54 may be overlapped with the elastic plate 52 and fitted to the base body 38 at the recess 51 instead of being vulcanized and bonded to the elastic plate 52 on the back surface.

変位機構27は、変位機構26と同様に、基台24のH方向の他方の側面である基台本体38の傾斜面37に形成された凹所56と、凹所56に配されて基台本体38に加硫接着又は嵌合された天然ゴム又は合成ゴム等からなる衝撃吸収用の弾性板57と、下部側滑り面9に対して交差方向に伸びる変位面としての、H方向に伸びる上部側滑り面5及び下部側滑り面9に対して傾斜した平坦面からなる傾斜面58を有すると共に傾斜面58に対する裏面で弾性板57に加硫接着されている滑り板59とを具備している。滑り板59もまた、その裏面で弾性板57に加硫接着される代わりに、弾性板57に重ね合わされて凹所56において基台本体38に嵌合されていてもよい。   Similarly to the displacement mechanism 26, the displacement mechanism 27 includes a recess 56 formed in the inclined surface 37 of the base body 38 that is the other side surface in the H direction of the base 24, and a base that is disposed in the recess 56. An elastic plate 57 for impact absorption made of natural rubber or synthetic rubber or the like vulcanized or bonded to the main body 38, and an upper portion extending in the H direction as a displacement surface extending in a crossing direction with respect to the lower side sliding surface 9. And a sliding plate 59 which has an inclined surface 58 formed of a flat surface inclined with respect to the side sliding surface 5 and the lower side sliding surface 9 and is vulcanized and bonded to the elastic plate 57 on the back surface with respect to the inclined surface 58. . The sliding plate 59 may be overlapped with the elastic plate 57 and fitted to the base body 38 in the recess 56 instead of being vulcanized and bonded to the elastic plate 57 on the back surface.

橋桁3の下面6から滑り板54に向かって斜めに突出した支持部材28は、その一端の鍔部61で取付板7にボルト等により固着されて斯かる取付板7を介して橋桁3の下面6に固着されている。   The support member 28 that obliquely protrudes from the lower surface 6 of the bridge girder 3 toward the sliding plate 54 is fixed to the mounting plate 7 by a bolt 61 or the like at one end thereof with a bolt or the like, and the lower surface of the bridge girder 3 via the mounting plate 7. 6 is fixed.

橋桁3の下面6から滑り板59に向かって斜めに突出した支持部材29は、その一端の鍔部62で取付板7にボルト等により固着されて斯かる取付板7を介して橋桁3の下面6に固着されている。   The supporting member 29 that protrudes obliquely from the lower surface 6 of the bridge girder 3 toward the sliding plate 59 is fixed to the mounting plate 7 with a bolt 62 or the like at one end of the supporting member 29, and the lower surface of the bridge girder 3 via the mounting plate 7. 6 is fixed.

傾斜面53に隙間65をもって対面した対抗面としての傾斜した平坦面からなる滑り面66を有した滑り板32は、滑り面66に対する裏面で支持部材28の他端の鍔部67の傾斜面30にボルト等により固着されており、変位面としての傾斜面53と対抗面としての滑り面66とは、互いに同一の傾斜角(補角関係)を有している。   The sliding plate 32 having the sliding surface 66 formed of an inclined flat surface facing the inclined surface 53 with a gap 65 is the back surface of the sliding surface 66 and the inclined surface 30 of the flange 67 at the other end of the support member 28. The inclined surface 53 as the displacement surface and the sliding surface 66 as the opposing surface have the same inclination angle (complementary angle relationship).

傾斜面58に隙間68をもって対面した対抗面としての傾斜した平坦面からなる滑り面69を有した滑り板33は、滑り面69に対する裏面で支持部材29の他端の鍔部70の傾斜面31にボルト等により固着されており、変位面としての傾斜面58と対抗面としての滑り面69とは、互いに同一の傾斜角(補角関係)を有していると共に傾斜面53と滑り面66とも互いに同一の傾斜角を有している。   The sliding plate 33 having the sliding surface 69 formed of an inclined flat surface facing the inclined surface 58 with a gap 68 is an inclined surface 31 of the flange portion 70 at the other end of the support member 29 on the back surface with respect to the sliding surface 69. The inclined surface 58 as the displacement surface and the sliding surface 69 as the opposing surface have the same inclination angle (complementary angle relationship), and the inclined surface 53 and the sliding surface 66. Both have the same inclination angle.

橋桁3側に配される上部側滑り面5を有していると共にボルト等を介して取付板7に固着された滑り板8並びに橋脚2側に配される下部側滑り面9を有した滑り板10の夫々は、ポリテトラフルオロエチレン樹脂等の低摩擦特性を有する合成樹脂又は斯かる合成樹脂にガラス繊維及び有機繊維等の補強材を混入した補強材入合成樹脂からなっている。   A slide having an upper sliding surface 5 arranged on the bridge girder 3 side and a sliding plate 8 fixed to the mounting plate 7 via bolts or the like and a lower sliding surface 9 arranged on the bridge pier 2 side Each of the plates 10 is made of a synthetic resin having a low friction characteristic such as a polytetrafluoroethylene resin or a synthetic resin containing a reinforcing material in which a reinforcing material such as glass fiber and organic fiber is mixed into the synthetic resin.

滑り板32及び33もまた、滑り板8及び10と同様に、ポリテトラフルオロエチレン樹脂等の低摩擦特性を有する合成樹脂又は斯かる合成樹脂にガラス繊維及び有機繊維等の補強材を混入した補強材入合成樹脂からなっていてもよく、また、摩擦力による減衰効果を期待するときは、高摩擦特性を有する例えば制動用材料等からなっていてもよい。   Similarly to the sliding plates 8 and 10, the sliding plates 32 and 33 are also reinforced by mixing a synthetic resin having a low friction characteristic such as polytetrafluoroethylene resin or a reinforcing material such as glass fiber and organic fiber into the synthetic resin. It may be made of a synthetic resin containing material, and when a damping effect due to frictional force is expected, it may be made of, for example, a braking material having high friction characteristics.

以上の滑り支承1は、例えば図2に示すように小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向における一方の方向の振動又は変位を下部側滑り面9に対する上部側滑り面5のH方向の滑りにより許容し、同様にして小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向における他方の方向の振動又は変位を下部側滑り面9に対する上部側滑り面5のH方向の滑りにより許容し、而して、小さな地震等に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、小さな地震等において橋桁3にH方向の過大な荷重が生じないようにし、温度変化による橋桁3の伸縮等に基づく橋桁3のH方向の変位の橋脚2への伝達を阻止して、温度変化による橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性板42の弾性伸縮により許容する。   For example, as shown in FIG. 2, the above-mentioned sliding bearing 1 causes vibrations or displacements in one direction in the H direction of the bridge girder 3 relative to the bridge pier 2 based on expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change to the lower side sliding surface 9. The upper side sliding surface 5 is allowed to slide in the H direction, and similarly, the vibration or displacement in the other direction in the H direction of the bridge girder 3 with respect to the bridge pier 2 based on the expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change, etc. The upper side sliding surface 5 with respect to the surface 9 is allowed to slide in the H direction, and thus the transmission of the vibration in the H direction of the pier 2 due to a small earthquake or the like to the bridge girder 3 is prevented, and the bridge girder 3 in a small earthquake or the like. In the expansion and contraction of the bridge girder 3 due to the temperature change, the excessive load in the H direction is prevented from being generated, and the transmission of the displacement of the bridge girder 3 in the H direction due to the temperature change to the pier 2 is prevented. Settings to avoid an excessive load of H direction to the leg 2 and a flexural oscillation in the V direction of the bridge girder 3 permits the elastic stretch of the elastic plate 42 by the running of an automobile.

大きな地震等において例えば図3に示すように橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位が生じると、滑り支承1は、滑り面66と傾斜面53との相互接触を生じさせると共に斯かる接触後に滑り面66と傾斜面53との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させて上部側滑り面5の下部側滑り面9への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、滑り面66と傾斜面53との間の滑りを介して橋桁3を下降させ、上部側滑り面5の下部側滑り面9からのV方向の離反を解除させて上部側滑り面5の下部側滑り面9への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、滑り面69と傾斜面58との相互接触を生じさせるようにし、以下、滑り面66と傾斜面53との相互接触の場合と同様に動作し、而して、これら滑り面66及び傾斜面53の相互接触と滑り面69及び傾斜面58の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな地震等に基づく大きな運動エネルギである振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   In a large earthquake, for example, as shown in FIG. 3, when relative vibration displacement in one direction in the H direction of a certain level or more occurs in the bridge girder 3 with respect to the pier 2, the sliding bearing 1 has the sliding surface 66, the inclined surface 53, and the like. And a slip between the sliding surface 66 and the inclined surface 53 to raise the bridge girder 3 and move the bridge girder 3 in the V direction from the pier 2 to move the upper side sliding surface 5. Is released from contact with the lower sliding surface 9, and after such movement and release, the bridge girder 3 passes through the sliding between the sliding surface 66 and the inclined surface 53 with relative vibration displacement in the other direction in the H direction. Is released, the separation of the upper side sliding surface 5 from the lower side sliding surface 9 in the V direction is released, and the contact of the upper side sliding surface 5 with the lower side sliding surface 9 is recovered. For a large relative vibration displacement in the direction of, the sliding surface 69 and the inclined surface 5 Thereafter, the sliding surface 66 and the inclined surface 53 are operated in the same manner as in the case of the mutual contact between the sliding surface 66 and the inclined surface 53. In addition, the vibration energy, which is a large kinetic energy based on a large earthquake that causes the bridge girder 3 to have a relative displacement in the H direction beyond a certain level with respect to the pier 2, is converted into the positional energy of the bridge girder 3. Thus, excessive displacement of the bridge girder 3 in the H direction with respect to the pier 2 is prevented.

橋脚2に対して橋桁3をH方向に移動自在に支持するべく、橋脚2と橋桁3との間に介在される橋梁用の滑り支承1であって、橋桁3側に配される上部側滑り面5と、上部側滑り面5にH方向に滑り移動自在に接触すると共に上部側滑り面5を介して橋桁3の荷重を受けるように橋脚2側に配される下部側滑り面9と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段11とを具備しており、復元力発生手段11が、橋脚2に基台24を介して固定されると共に下部側滑り面9に対して交差方向に伸びる変位面としての傾斜面53及び58と、傾斜面53及び58の夫々に対面した対抗面としての滑り面66及び69とを有しており、橋脚2に対する橋桁3の一定以上のH方向の相対的変位において傾斜面53及び58への滑り面66及び69の接触に基いて橋桁3を橋脚2から鉛直方向に移動させるようになっている以上の滑り支承1によれば、大きな地震等に基づく大きな振動エネルギを橋桁3の橋脚2からのV方向の位置エネルギに変換して振動エネルギを吸収でき、斯かる大きな振動エネルギに基づく橋桁3と橋脚2との間の相対的なH方向の大変位を防止でき、而して、橋脚2から橋桁3の脱落を防止でき、しかも、大きな地震等に基づく大きな振動エネルギを効果的に利用できて、損壊の虞をなくし得る上に、製造に費用及び占有空間の低減を図り得、また、傾斜面53及び58への滑り面66及び69の接触において摩擦力による減衰効果も期待できる上に、傾斜面53及び58の傾斜角を適宜設定することにより、運動エネルギの位置エネルギへの変換特性及び橋脚2の塑性化を任意に制御できる。   In order to support the bridge girder 3 so as to be movable in the H direction with respect to the pier 2, a sliding support 1 for the bridge interposed between the pier 2 and the bridge girder 3, and an upper side slip arranged on the bridge girder 3 side A lower sliding surface 9 disposed on the pier 2 side so as to be slidably contacted in the H direction with the surface 5 and to receive the load of the bridge girder 3 via the upper sliding surface 5; And a restoring force generating means 11 for generating a restoring force with respect to a relative displacement in the H direction of the bridge girder 3 with respect to the pier 2 over a certain level. The restoring force generating means 11 is fixed to the pier 2 via the base 24. And inclined surfaces 53 and 58 as displacement surfaces extending in a direction intersecting with the lower sliding surface 9 and sliding surfaces 66 and 69 as opposing surfaces facing the inclined surfaces 53 and 58, respectively. In the relative displacement in the H direction of bridge girder 3 with respect to pier 2 According to the above sliding bearing 1 which moves the bridge girder 3 in the vertical direction from the pier 2 based on the contact of the sliding surfaces 66 and 69 with the inclined surfaces 53 and 58, the large vibration caused by a large earthquake or the like. The energy can be converted into the position energy in the V direction from the pier 2 of the bridge girder 3 to absorb the vibration energy, and the relative large displacement in the H direction between the bridge girder 3 and the pier 2 based on such large vibration energy is prevented. Thus, the bridge girder 3 can be prevented from falling off from the bridge pier 2, and a large vibration energy based on a large earthquake can be effectively used to eliminate the risk of breakage. In addition, a damping effect due to frictional force can be expected in the contact of the sliding surfaces 66 and 69 with the inclined surfaces 53 and 58, and by appropriately setting the inclination angles of the inclined surfaces 53 and 58, It can be arbitrarily controlled plastic of conversion characteristics and pier 2 to the potential energy of the dynamic energy.

以上の滑り支承1は、変位面として傾斜した傾斜面53及び58からなる平坦面を用い、対抗面としても傾斜した滑り面66及び69からなる平坦面を用いたが、図4に示すように、変位面として湾曲凸面71及び72からなる湾曲面を用い、対抗面として湾曲凹面73及び74からなる湾曲面を用いてもよい。   The above-described sliding bearing 1 uses a flat surface made of inclined surfaces 53 and 58 inclined as a displacement surface, and uses a flat surface made of inclined surfaces 66 and 69 inclined as an opposing surface, as shown in FIG. Alternatively, a curved surface composed of the curved convex surfaces 71 and 72 may be used as the displacement surface, and a curved surface composed of the curved concave surfaces 73 and 74 may be used as the opposing surface.

即ち、橋脚2に対して橋桁3をH方向に移動自在に支持するべく、橋脚2と橋桁3との間に介在される図4に示す橋梁用の滑り支承1は、ボルト等を介して橋桁3の下面6に固着されている取付板7を介して上面75で橋桁3の下面6に固着されていると共に上部側滑り面76を下面99に有している滑り部材77と、上部側滑り面76にH方向に滑り移動自在に接触すると共に上部側滑り面76、滑り部材77及び取付板7を介して橋桁3のV方向の荷重を受ける下部側滑り面78を上面に有した滑り板79と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段80とを具備している。   That is, in order to support the bridge girder 3 movably in the H direction with respect to the pier 2, the bridge support 1 for the bridge shown in FIG. 4 interposed between the pier 2 and the bridge girder 3 is connected to the bridge girder via bolts or the like. A sliding member 77 having an upper surface 75 fixed to the lower surface 6 of the bridge girder 3 and an upper side sliding surface 76 on the lower surface 99 via an attachment plate 7 fixed to the lower surface 6 of the upper surface 3; A sliding plate having a lower side sliding surface 78 on its upper surface that is slidably contacted with the surface 76 in the H direction and receives a load in the V direction of the bridge girder 3 via the upper side sliding surface 76, the sliding member 77 and the mounting plate 7. 79 and a restoring force generating means 80 for generating a restoring force for the relative displacement in the H direction of the bridge girder 3 with respect to the bridge pier 2 in a certain direction or more.

滑り板79は、裏金85と、裏金85の一方の面86に一体的に形成されていると共にポリテトラフルオロエチレン樹脂等の低摩擦特性を有する合成樹脂又は斯かる合成樹脂にガラス繊維及び有機繊維等の補強材を混入した補強材入合成樹脂からなっている滑り層87とを具備した複層板からなっており、滑り層87の上面の露出面が下部側滑り面78になっている。   The sliding plate 79 is formed integrally with a back metal 85 and one surface 86 of the back metal 85 and has a low friction characteristic such as polytetrafluoroethylene resin, or a glass fiber and an organic fiber in such a synthetic resin. And a sliding layer 87 made of a synthetic resin containing a reinforcing material mixed with a reinforcing material such as the like. The exposed surface of the upper surface of the sliding layer 87 is a lower side sliding surface 78.

復元力発生手段80は、橋脚2の上面22にアンカーボルト・ナット23(図1参照)等を介して固着された基台90と、基台90のV方向の平坦な上端面91に設けられた滑り板支持機構92と、基台90のH方向の両側面93及び94に設けられていると共に湾曲凸面71及び72を有した一対の変位機構95及び96と、上部側滑り面76のH方向の両端縁97及び98の夫々から連続的に伸びて滑り部材77の下面99に形成された湾曲凹面73及び74とを具備している。   The restoring force generating means 80 is provided on a base 90 fixed to the upper surface 22 of the pier 2 via anchor bolts / nuts 23 (see FIG. 1) and the like, and a flat upper end surface 91 in the V direction of the base 90. The sliding plate support mechanism 92, a pair of displacement mechanisms 95 and 96 having curved convex surfaces 71 and 72 provided on both side surfaces 93 and 94 in the H direction of the base 90, and the H of the upper side sliding surface 76 Curved concave surfaces 73 and 74 are formed on the lower surface 99 of the sliding member 77 so as to extend continuously from the respective end edges 97 and 98 in the direction.

滑り板支持機構92は、基台90の上端面91に形成された凹所101と、凹所101に配された衝撃吸収用の天然ゴム又は合成ゴム等からなる弾性板102とを具備しており、滑り板79は、その裏面104で弾性板102の上面103に接触して凹所101において基台90に配されており、これにより、滑り板支持機構92は、弾性板102を介して滑り板79を基台90上で支持している。弾性板102は、滑り板79及び基台90に加硫接着されていてもよい。   The sliding plate support mechanism 92 includes a recess 101 formed in the upper end surface 91 of the base 90 and an elastic plate 102 made of shock absorbing natural rubber or synthetic rubber or the like disposed in the recess 101. The sliding plate 79 contacts the upper surface 103 of the elastic plate 102 on the back surface 104 thereof and is disposed on the base 90 in the recess 101, whereby the sliding plate support mechanism 92 is interposed via the elastic plate 102. A sliding plate 79 is supported on the base 90. The elastic plate 102 may be vulcanized and bonded to the sliding plate 79 and the base 90.

湾曲凹面73は、基台90を介して橋脚2に固定された湾曲凸面71に隙間105をもって対面しており、湾曲凹面73の曲率半径と同一の曲率半径を有した湾曲凹面74は、湾曲凸面71の曲率半径と同一の曲率半径を有していると共に基台90を介して橋脚2に固定された湾曲凸面72に隙間106をもって対面しており、湾曲凹面73及び74の夫々は、湾曲凸面71及び72の夫々の曲率半径よりも大きな曲率半径を有している。   The curved concave surface 73 faces the curved convex surface 71 fixed to the pier 2 via the base 90 with a gap 105, and the curved concave surface 74 having the same radius of curvature as the curved concave surface 73 is a curved convex surface. The curved convex surface 72 that has the same radius of curvature as 71 and faces the curved convex surface 72 fixed to the bridge pier 2 via the base 90 with a gap 106, and the curved concave surfaces 73 and 74 are curved convex surfaces. It has a radius of curvature larger than the radius of curvature of each of 71 and 72.

以上の図4に示す滑り支承1でも、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の振動を下部側滑り面78に対する上部側滑り面76のH方向の滑りにより許容して、小さな地震に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、小さな地震において橋桁3にH方向の過大な荷重が生じないようにし、温度変化による橋桁3の伸縮等に基づく橋桁3のH方向の変位の橋脚2への伝達を阻止して、橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性板102の弾性伸縮により許容する。   Also in the sliding bearing 1 shown in FIG. 4 described above, the vibration in the H direction of the bridge girder 3 with respect to the pier 2 based on the expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change is caused in the H direction of the upper sliding surface 76 with respect to the lower sliding surface 78. Allowing by slipping, preventing transmission of vibration in the H direction of the pier 2 due to a small earthquake to the bridge girder 3, so that an excessive load in the H direction is not generated on the bridge girder 3 in a small earthquake, and the bridge girder due to temperature change The transmission of the displacement in the H direction of the bridge girder 3 based on the expansion and contraction of the bridge 3 to the bridge pier 2 is prevented so that an excessive load in the H direction is not generated on the bridge pier 2 in the expansion and contraction of the bridge girder 3 The bending vibration of the bridge girder 3 in the V direction due to the above is allowed by elastic expansion and contraction of the elastic plate 102.

大きな地震等において橋脚2に対して橋桁3に例えば一定以上のH方向における一方の方向の相対的振動変位が生じると、滑り支承1は、図5に示すように、湾曲凸面72と湾曲凹面74との相互接触を生じさせると共に斯かる接触後に湾曲凸面72と湾曲凹面74との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2から鉛直方向に移動させて上部側滑り面76の下部側滑り面78への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、湾曲凸面72と湾曲凹面74との間の滑りを介して橋桁3を下降させ、上部側滑り面76の下部側滑り面78からのV方向の離反を解除させて上部側滑り面76の下部側滑り面78への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、湾曲凸面71と湾曲凹面73との相互接触を生じさせるようにし、以下、湾曲凸面72と湾曲凹面74との相互接触の場合と同様に動作し、而して、これら湾曲凸面72及び湾曲凹面74の相互接触と湾曲凸面71及び湾曲凹面73の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな地震等に基づく大きな運動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   When a relative vibration displacement in one direction in the H direction, for example, above a certain level, occurs in the bridge girder 3 with respect to the pier 2 in a large earthquake or the like, the sliding bearing 1 has a curved convex surface 72 and a curved concave surface 74 as shown in FIG. And a sliding between the curved convex surface 72 and the curved concave surface 74 to raise the bridge girder 3 and to move the bridge girder 3 in the vertical direction from the pier 2 to move the upper side sliding surface. 76 is released from contact with the lower sliding surface 78, and after such movement and release, the bridge girder is slipped between the curved convex surface 72 and the curved concave surface 74 with relative vibration displacement in the other direction in the H direction. 3 is released, the separation of the upper side sliding surface 76 from the lower side sliding surface 78 in the V direction is released, and the contact of the upper side sliding surface 76 with the lower side sliding surface 78 is recovered. Large relative vibration variation in the other direction Then, the curved convex surface 71 and the curved concave surface 73 are brought into mutual contact, and thereafter, the same operation as in the case of mutual contact between the curved convex surface 72 and the curved concave surface 74 is performed. In the mutual contact of the concave surface 74 and the mutual contact of the curved convex surface 71 and the curved concave surface 73, a large kinetic energy based on a large earthquake or the like causing a relative displacement in the H direction to a certain level or more in the bridge girder 3 with respect to the pier 2 is applied to the bridge girder 3. Thus, the relative displacement in the H direction of the bridge girder 3 with respect to the pier 2 is not caused.

橋脚2に対して橋桁3をH方向に移動自在に支持するべく、橋脚2と橋桁3との間に介在される橋梁用の滑り支承1であって、橋桁3側に配される上部側滑り面76と、上部側滑り面76にH方向に滑り移動自在に接触すると共に上部側滑り面76を介して橋桁3の荷重を受けるように橋脚2側に配される下部側滑り面78と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段80とを具備しており、復元力発生手段80が、基台90を介して橋脚2に固定されると共に下部側滑り面78に対して交差方向に伸びる変位面としての湾曲凸面71及び72と、湾曲凸面71及び72の夫々に対面した対抗面としての湾曲凹面73及び74とを有しており、橋脚2に対する橋桁3の一定以上のH方向の相対的変位において湾曲凸面71及び72への湾曲凹面73及び74の接触に基いて橋桁3を橋脚2から鉛直方向に移動させるようになっている以上の滑り支承1によっても、大きな地震等に基づく大きな振動エネルギを橋桁3の橋脚2からのV方向の位置エネルギに変換して運動エネルギを吸収でき、斯かる大きな振動エネルギに基づく橋桁3と橋脚2との間の相対的なH方向の大変位を防止でき、而して、橋脚2から橋桁3の脱落を防止でき、しかも、大きな地震等に基づく大きな振動エネルギを効果的に利用できて、損壊の虞をなくし得る上に、製造に費用及び占有空間の低減を図り得る。   In order to support the bridge girder 3 so as to be movable in the H direction with respect to the pier 2, a sliding support 1 for the bridge interposed between the pier 2 and the bridge girder 3, and an upper side slip arranged on the bridge girder 3 side A lower side sliding surface 78 disposed on the pier 2 side so as to be in sliding contact with the upper side sliding surface 76 in the H direction and receive the load of the bridge girder 3 via the upper side sliding surface 76, Restoring force generating means 80 for generating a restoring force with respect to the relative displacement in the H direction of the bridge girder 3 with respect to the bridge pier 2 above a certain level. The restoring force generating means 80 is fixed to the pier 2 via the base 90. And curved convex surfaces 71 and 72 as displacement surfaces extending in the crossing direction with respect to the lower sliding surface 78, and curved concave surfaces 73 and 74 as opposing surfaces facing the curved convex surfaces 71 and 72, respectively. H, more than a certain amount of bridge girder 3 to pier 2 The above-mentioned sliding bearing 1 is adapted to move the bridge girder 3 in the vertical direction from the pier 2 based on the contact of the curved concave surfaces 73 and 74 with the curved convex surfaces 71 and 72 in a relative displacement of The large vibration energy based on the bridge girder 3 can be converted into the position energy in the V direction from the pier 2 of the bridge girder 3 to absorb the kinetic energy, and the relative H direction trouble between the bridge girder 3 and the pier 2 based on the large vibration energy can be absorbed. The position of the bridge girder 3 can be prevented from falling off from the pier 2 and the large vibration energy based on a large earthquake can be used effectively, eliminating the risk of damage and cost for manufacturing. In addition, the occupied space can be reduced.

図1に示す滑り支承1の復元力発生手段11では、変位面としての傾斜した平坦面からなる傾斜面53及び58を有する一対の変位機構26及び27を基台本体38のH方向の両傾斜面36及び37に設け、対抗面としての傾斜した平坦面からなる滑り面66及び69を有した滑り板32及び33を支持部材28及び29の夫々の傾斜面30及び31に固着したが、これに代えて、図6及び図7に示すように、変位面としての傾斜した平坦面からなる傾斜面53及び58を有する一対の変位機構26及び27を基台本体38とは独立に鍔部21に設け、対抗面としての傾斜した平坦面からなる滑り面66及び69を上部側滑り面5と共に滑り板8に設けてもよい。   In the restoring force generating means 11 of the sliding bearing 1 shown in FIG. 1, a pair of displacement mechanisms 26 and 27 having inclined surfaces 53 and 58 that are inclined flat surfaces serving as displacement surfaces are inclined in both directions in the H direction of the base body 38. Sliding plates 32 and 33 provided on the surfaces 36 and 37 and having sliding surfaces 66 and 69 made of inclined flat surfaces as opposing surfaces are fixed to the inclined surfaces 30 and 31 of the support members 28 and 29, respectively. Instead, as shown in FIGS. 6 and 7, a pair of displacement mechanisms 26 and 27 having inclined surfaces 53 and 58 each having an inclined flat surface as a displacement surface are provided independently of the base body 38. Sliding surfaces 66 and 69 made of inclined flat surfaces as opposing surfaces may be provided on the sliding plate 8 together with the upper side sliding surface 5.

図6及び図7に示す滑り支承1において、変位機構26及び27は、H方向に直交する方向において円柱状の基台本体38を挟んで鍔部21に固着されていると共に夫々に共用の略三角形の突起部材111及び112を具備しており、突起部材111及び112の夫々は、変位面としての傾斜した平坦面からなる傾斜面53と、同じく他方の変位面としての傾斜した平坦面からなる傾斜面58とを有しており、鍔部21を介して橋脚2に固定された二つの傾斜面53に二つの隙間65をもって対面すると共に対抗面としての傾斜した平坦面からなる二つの滑り面66は、滑り板8のH方向の一端側であってH方向に直交する方向の両端縁に設けられており、鍔部21を介して橋脚2に固定された二つの傾斜面58に二つの隙間68をもって対面すると共に対抗面としての傾斜した平坦面からなる二つの滑り面69は、滑り板8のH方向の他端側であってH方向に直交する方向の両端縁に設けられており、下部側滑り面9を上面に有した滑り板10及び衝撃吸収用の弾性板42は円板状の形状を有している。   In the sliding bearing 1 shown in FIGS. 6 and 7, the displacement mechanisms 26 and 27 are fixed to the flange portion 21 with the columnar base body 38 sandwiched in the direction orthogonal to the H direction and are commonly used for each. Triangular projecting members 111 and 112 are provided, and each of the projecting members 111 and 112 is composed of an inclined surface 53 that is an inclined flat surface as a displacement surface and an inclined flat surface that is also the other displacement surface. And two sliding surfaces comprising two inclined surfaces 53 which are fixed to the pier 2 via the flange 21 with two gaps 65 and which are inclined flat surfaces as opposing surfaces. 66 is provided at one end side in the H direction of the sliding plate 8 and at both end edges in the direction orthogonal to the H direction, and two two inclined surfaces 58 fixed to the bridge pier 2 via the flange 21 are provided. Pair with gap 68 In addition, the two sliding surfaces 69, which are inclined flat surfaces as opposing surfaces, are provided at both ends of the sliding plate 8 at the other end side in the H direction and perpendicular to the H direction, The sliding plate 10 having the surface 9 on the upper surface and the elastic plate 42 for shock absorption have a disk shape.

図6及び図7に示す滑り支承1においても、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の振動を下部側滑り面9に対する上部側滑り面5のH方向の滑りにより許容して、小さな地震に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、地震において橋桁3にH方向の過大な荷重が生じないようにし、温度変化による橋桁3の伸縮等に基づく橋桁3のH方向の振動の橋脚2への伝達を阻止して、橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性板42の弾性伸縮により許容し、また、大きな地震等において橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位が生じると、例えば二つの滑り面66と二つの傾斜面53との相互接触を生じさせると共に斯かる接触後に滑り面66と傾斜面53との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させて上部側滑り面5の下部側滑り面9への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、滑り面66と傾斜面53との間の滑りを介して橋桁3を下降させ、上部側滑り面5の下部側滑り面9からのV方向の離反を解除させて上部側滑り面5の下部側滑り面9への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、二つの滑り面69と二つの傾斜面58との相互接触を生じさせるようにし、以下、滑り面66と傾斜面53との相互接触の場合と同様に動作し、而して、これら二つの滑り面66及び傾斜面53の相互接触と二つの滑り面69及び傾斜面58の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   Also in the sliding bearing 1 shown in FIGS. 6 and 7, the vibration of the bridge girder 3 in the H direction with respect to the pier 2 based on the expansion and contraction of the bridge girder 3 due to a small earthquake or a temperature change is applied to the H of the upper sliding surface 5 with respect to the lower sliding surface 9. Allowed by slipping in the direction, preventing transmission of vibration in the H direction of the pier 2 due to a small earthquake to the bridge girder 3, so that an excessive load in the H direction is not generated on the bridge girder 3 in the earthquake, due to temperature change The transmission of vibration in the H direction of the bridge girder 3 based on the expansion and contraction of the bridge girder 3 to the pier 2 is prevented, so that an excessive load in the H direction is not generated on the pier 2 in the expansion and contraction of the bridge girder 3 and The flexural vibration of the bridge girder 3 in the V direction due to traveling or the like is allowed by elastic expansion and contraction of the elastic plate 42, and relative vibration displacement in one direction in the H direction above a certain level on the bridge girder 2 with respect to the pier 2 in a large earthquake or the like. Occurs For example, the two sliding surfaces 66 and the two inclined surfaces 53 are brought into mutual contact and, after such contact, sliding is caused between the sliding surface 66 and the inclined surface 53 to raise the bridge girder 3, thereby 2 to the V direction to release the contact of the upper side sliding surface 5 with the lower side sliding surface 9, and after such movement and release, relative sliding displacement in the other direction in the H direction, The bridge girder 3 is lowered through sliding with the inclined surface 53 to release the V-direction separation from the lower sliding surface 9 of the upper sliding surface 5 to the lower sliding surface 9 of the upper sliding surface 5. Next, a large relative vibration displacement in the other direction in the H direction causes mutual contact between the two sliding surfaces 69 and the two inclined surfaces 58. It operates in the same way as in the case of mutual contact with the inclined surface 53. In the mutual contact between the two sliding surfaces 66 and the inclined surface 53 and the mutual contact between the two sliding surfaces 69 and the inclined surface 58, a large vibration that causes a relative displacement in the H direction to a certain degree or more in the bridge girder 3 with respect to the pier 2. The energy is converted into the potential energy of the bridge girder 3 so as not to cause excessive displacement of the bridge girder 3 in the H direction with respect to the pier 2.

図6及び図7に示す滑り支承1では、H方向に直交する方向において基台本体38を挟んで鍔部21に固着されてなる夫々に共用の略三角形の突起部材111及び112を具備した変位機構26及び27を用いたが、これに代えて、図8及び図9に示すように、鍔部21に一体形成された二つの基台本体38にH方向に直交する方向において挟まれた共用の略三角形の突起部材121を具備した変位機構26及び27を用いてもよい。   In the sliding bearing 1 shown in FIG. 6 and FIG. 7, the displacement provided with the substantially triangular projecting members 111 and 112 respectively fixed to the flange portion 21 with the base body 38 sandwiched in the direction orthogonal to the H direction. Although the mechanisms 26 and 27 are used, instead of this, as shown in FIGS. 8 and 9, the common base material sandwiched in the direction perpendicular to the H direction between the two base main bodies 38 integrally formed with the flange portion 21. Alternatively, the displacement mechanisms 26 and 27 having the substantially triangular protruding member 121 may be used.

即ち、図8及び図9に示す滑り支承1は、ボルト等を介して橋桁3の下面6に固着されている共に上部側滑り面5を下面に有している滑り板8と、上部側滑り面5にH方向に滑り移動自在に接触すると共に上部側滑り面5及び滑り板8を介して橋桁3のV方向の荷重を受ける下部側滑り面9を夫々上面に有した二つの滑り板10と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段11とを具備しており、滑り板8は、H方向に伸びた滑り板本体122と、滑り板本体122のH方向の中央部のH方向に直交する方向の端縁から当該H方向に直交する方向に一体的に突出すると共に下面に上部側滑り面5を夫々有した一対の突出板部123とを具備しており、復元力発生手段11の基台24は、H方向に直交する方向に並んでいると共に夫々截頭四角錐体からなる一対の基台本体38と、各基台本体38の下端面39に一体的に設けられた鍔部21とを具備しており、下部側滑り面9を上面に有した各滑り板10は、各基台本体38において滑り板支持機構25により支持されており、鍔部21及び一対の基台本体38に一体に形成されている変位機構26及び27に共用の突起部材121は、変位面としての傾斜した平坦面からなる傾斜面53と、同じく他方の変位面としての傾斜した平坦面からなる傾斜面58とを有しており、鍔部21及び一対の基台本体38を介して橋脚2に固定された傾斜面53に隙間65をもって対面すると共に対抗面としての傾斜した平坦面からなる滑り面66は、滑り板本体122のH方向の一端側に設けられており、鍔部21及び一対の基台本体38を介して橋脚2に固定された傾斜面58に隙間68をもって対面すると共に対抗面としての傾斜した平坦面からなる滑り面69は、滑り板本体122のH方向の他端側に設けられている。   That is, the sliding support 1 shown in FIGS. 8 and 9 includes a sliding plate 8 that is fixed to the lower surface 6 of the bridge girder 3 with bolts or the like and that has an upper sliding surface 5 on the lower surface, and an upper sliding surface. Two sliding plates 10 each having a lower side sliding surface 9 on the upper surface, which is slidably in contact with the surface 5 in the H direction and receives a load in the V direction of the bridge girder 3 via the upper side sliding surface 5 and the sliding plate 8. And a restoring force generating means 11 for generating a restoring force with respect to the relative displacement in the H direction of the bridge girder 3 with respect to the bridge pier 2 more than a certain level. The sliding plate 8 includes a sliding plate main body 122 extending in the H direction. A pair of protrusions that integrally protrude in the direction orthogonal to the H direction from the edge in the direction orthogonal to the H direction at the central portion of the sliding plate main body 122 in the H direction and have the upper side sliding surface 5 on the lower surface, respectively. And the base 24 of the restoring force generating means 11 A pair of base main bodies 38 that are arranged in a direction orthogonal to the H direction and are each composed of a truncated quadrangular pyramid, and a flange 21 that is integrally provided on the lower end surface 39 of each base main body 38 are provided. Each sliding plate 10 having the lower side sliding surface 9 on the upper surface is supported by the sliding plate support mechanism 25 in each base body 38 and is formed integrally with the flange portion 21 and the pair of base main bodies 38. The projecting member 121 shared by the displacement mechanisms 26 and 27 has an inclined surface 53 formed of an inclined flat surface as a displacement surface and an inclined surface 58 formed of an inclined flat surface as the other displacement surface. The sliding surface 66 formed of an inclined flat surface facing the inclined surface 53 fixed to the pier 2 via the flange 21 and the pair of base bodies 38 with a gap 65 is formed as a sliding plate. One end side of the main body 122 in the H direction The sliding surface 69, which is provided with a gap 68 and faces the inclined surface 58 fixed to the pier 2 via the flange portion 21 and the pair of base main bodies 38 with a gap 68, is formed as a sliding surface. It is provided on the other end side in the H direction of the plate body 122.

図8及び図9に示す滑り支承1でも、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の振動を下部側滑り面9に対する上部側滑り面5のH方向の滑りにより許容して、小さな地震に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、小さな地震において橋桁3にH方向の過大な荷重が生じないようにし、温度変化による橋桁3の伸縮等に基づく橋桁3のH方向の振動の橋脚2への伝達を阻止して、橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性板42の弾性伸縮により許容し、また、大きな地震等において橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位が生じると、滑り面66と傾斜面53との相互接触を生じさせると共に斯かる接触後に滑り面66と傾斜面53との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させて上部側滑り面5の下部側滑り面9への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、滑り面66と傾斜面53との間の滑りを介して橋桁3を下降させ、上部側滑り面5の下部側滑り面9からのV方向の離反を解除させて上部側滑り面5の下部側滑り面9への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、滑り面69と傾斜面58との相互接触を生じさせるようにし、以下、滑り面66と傾斜面53との相互接触の場合と同様に動作し、而して、これら滑り面66及び傾斜面53の相互接触と滑り面69及び傾斜面58の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   8 and 9, the vibration in the H direction of the bridge girder 3 with respect to the bridge pier 2 based on the expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change is also caused in the H direction of the upper sliding surface 5 with respect to the lower sliding surface 9. Allowing for slippage, preventing transmission of vibration in the H direction of the pier 2 due to a small earthquake to the bridge girder 3 so that an excessive load in the H direction does not occur on the bridge girder 3 in a small earthquake, The transmission of vibration in the H direction of the bridge girder 3 based on the expansion and contraction of the bridge girder 3 to the pier 2 is prevented, so that an excessive load in the H direction is not generated on the pier 2 in the expansion and contraction of the bridge girder 3 and The flexural vibration of the bridge girder 3 in the V direction due to traveling or the like is allowed by elastic expansion and contraction of the elastic plate 42, and relative vibration displacement in one direction in the H direction above a certain level on the bridge girder 2 with respect to the pier 2 in a large earthquake or the like Occurs The sliding surface 66 and the inclined surface 53 are brought into mutual contact with each other, and after such contact, sliding is caused between the sliding surface 66 and the inclined surface 53 to raise the bridge girder 3 so that the bridge girder 3 is moved in the V direction from the pier 2. The movement of the upper side sliding surface 5 to the lower side sliding surface 9 is released, and after such movement and release, the relative vibration displacement in the other direction in the H direction causes the sliding surface 66 and the inclined surface 53 to move. The bridge girder 3 is lowered through the sliding between the upper side sliding surface 5 and the lower side sliding surface 9 from the lower side sliding surface 9 is released to recover the contact of the upper side sliding surface 5 with the lower side sliding surface 9. Next, a large relative vibration displacement in the other direction in the H direction causes mutual contact between the sliding surface 69 and the inclined surface 58, and hereinafter, in the case of mutual contact between the sliding surface 66 and the inclined surface 53. Thus, the phases of the sliding surface 66 and the inclined surface 53 are the same. In the contact and the mutual contact of the sliding surface 69 and the inclined surface 58, the large vibration energy that causes the bridge girder 3 to have a relative displacement in the H direction beyond a certain level with respect to the pier 2 is converted into the potential energy of the bridge girder 3. The relative displacement in the H direction of the bridge girder 3 with respect to is not caused.

ところで、以上の滑り支承1では、一体物からなる基台24又は90を用いたが、これに代えて、図10に示すように、下側基台本体131と下側基台本体131に重ね合わされていると共に下側基台本体131に対してH方向及びV方向に移動自在な上側基台本体132とからなる2つに分割された基台本体38を有した基台24を用いてもよい。   By the way, in the above-mentioned sliding bearing 1, the base 24 or 90 made of a single body is used. Instead, as shown in FIG. 10, the lower base main body 131 and the lower base main body 131 are overlapped with each other. The base 24 having the base body 38 divided into two parts, which is composed of the upper base body 132 that is movable in the H direction and the V direction with respect to the lower base body 131, is also used. Good.

即ち、橋脚2に対して橋桁3をH方向に移動自在に支持するべく、橋脚2と橋桁3との間に介在される図10に示す滑り支承1は、ボルト等を介して橋桁3の下面6に固着されている取付板7を介して上面で橋桁3の下面6に固着されていると共に上部側滑り面5を下面に有している滑り板8と、上部側滑り面5にH方向に滑り移動自在に接触すると共に上部側滑り面5、滑り板8及び取付板7を介して橋桁3のV方向の荷重を受ける下部側滑り面9を上面に有した滑り板10と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段11とを具備している。   That is, the sliding support 1 shown in FIG. 10 interposed between the bridge pier 2 and the bridge girder 3 to support the bridge girder 3 so as to be movable in the H direction with respect to the pier 2 is provided on the bottom surface of the bridge girder 3 via bolts or the like. A sliding plate 8 fixed to the lower surface 6 of the bridge girder 3 on the upper surface via a mounting plate 7 fixed to the upper surface 6 and having an upper side sliding surface 5 on the lower surface, and an H direction on the upper side sliding surface 5 A sliding plate 10 having a lower side sliding surface 9 on the upper surface and a lower side sliding surface 9 that receives a load in the V direction of the bridge girder 3 via the upper side sliding surface 5, the sliding plate 8 and the mounting plate 7. Restoring force generating means 11 for generating a restoring force with respect to a relative displacement in the H direction of a certain level or more of the bridge girder 3 with respect to.

図10に示す滑り支承1の復元力発生手段11は、下側基台本体131及び上側基台本体132からなる2つに分割された基台本体38を有すると共に下側基台本体131に一体的に形成された鍔部21を有して当該鍔部21で橋脚2の上面22にアンカーボルト・ナット23(図1参照)等を介して固着された基台24と、基台24のV方向の上端に設けられた滑り板支持機構25と、基台24の下側基台本体131のH方向の両側面に設けられた一対の変位機構26及び27と、下部側滑り面9に対する上部側滑り面5の一定以上のH方向の相対的変位を禁止する禁止機構135とを具備している。   The restoring force generating means 11 of the sliding bearing 1 shown in FIG. 10 has a base body 38 that is divided into two parts including a lower base body 131 and an upper base body 132 and is integrated with the lower base body 131. And a base 24 that is fixed to the upper surface 22 of the pier 2 via anchor bolts and nuts 23 (see FIG. 1), etc. A sliding plate support mechanism 25 provided at the upper end in the direction, a pair of displacement mechanisms 26 and 27 provided on both side surfaces in the H direction of the lower base body 131 of the base 24, and an upper portion with respect to the lower side sliding surface 9 And a prohibiting mechanism 135 that prohibits a relative displacement of the side sliding surface 5 in the H direction beyond a certain level.

截頭四角錐体からなると共に下端面141で一体的に鍔部21に形成されている下側基台本体131は、H方向に伸びた平坦な上端面142と、H方向に対して夫々補角関係を持って傾斜した平坦な傾斜面143及び144とを具備しており、四角柱体からなる上側基台本体132は、H方向に伸びた平坦な上端面145と、V方向に伸びると共にH方向において互いに対面する一対の側端面146及び147と、下側基台本体131を受容する凹所148が形成された下端面149とを具備している。   The lower base body 131 made of a truncated quadrangular pyramid and integrally formed on the flange portion 21 at the lower end surface 141 has a flat upper end surface 142 extending in the H direction and a complement to the H direction. It has flat inclined surfaces 143 and 144 which are inclined with an angular relationship, and an upper base body 132 made of a quadrangular prism body has a flat upper end surface 145 extending in the H direction, and extends in the V direction. A pair of side end surfaces 146 and 147 facing each other in the H direction and a lower end surface 149 formed with a recess 148 for receiving the lower base body 131 are provided.

図10において、滑り板支持機構25は、上側基台本体132の上端面145に形成された凹所41と、凹所41に配されて上側基台本体132に加硫接着又は嵌合された天然ゴム又は合成ゴム等からなる衝撃吸収用の弾性板42とを具備しており、滑り板10がその下面44で弾性板42の上面43に加硫接着又は弾性板42に重ね合わされて凹所41において上側基台本体132に嵌合されており、これにより、滑り板支持機構25は、弾性板42を介して滑り板10を上側基台本体132上で支持しており、変位機構26は、下側基台本体131のH方向の一方の側面である下側基台本体131の傾斜面143に形成された凹所51と、下部側滑り面9に対して交差方向に伸びる変位面としての、H方向に伸びる上部側滑り面5及び下部側滑り面9に対して傾斜した平坦面からなる傾斜面53を有すると共に凹所51に配されて下側基台本体131に傾斜面53に対する裏面で固着された滑り板54とを具備しており、変位機構27は、変位機構26と同様に、下側基台本体131のH方向の他方の側面である下側基台本体131の傾斜面144に形成された凹所56と、下部側滑り面9に対して交差方向に伸びる変位面としての、H方向に伸びる上部側滑り面5及び下部側滑り面9に対して傾斜した平坦面からなる傾斜面58を有すると共に凹所56に配されて下側基台本体131に傾斜面58に対する裏面で固着されている滑り板59とを具備しており、凹所148は、H方向に伸びた平坦な底面152とH方向に対して夫々補角関係を持って傾斜した平坦な傾斜面150及び151とによって規定されており、橋脚2に下側基台本体131を介して固定された傾斜面53に接触すると共に傾斜面53と同一角度をもって傾斜した傾斜面150は、傾斜面53に対面した対抗面となっており、橋脚2に下側基台本体131を介して固定された傾斜面58に接触すると共に傾斜面58と同一角度をもって傾斜した傾斜面151は、傾斜面58に対面した対抗面となっており、本例の場合も、滑り板54及び59は、滑り板32及び33並びに滑り板8及び10と同様に、ポリテトラフルオロエチレン樹脂等の低摩擦特性を有する合成樹脂又は斯かる合成樹脂にガラス繊維及び有機繊維等の補強材を混入した補強材入合成樹脂からなっているとよい。   In FIG. 10, the sliding plate support mechanism 25 is provided with a recess 41 formed on the upper end surface 145 of the upper base body 132, and is vulcanized or bonded to the upper base body 132 by being disposed in the recess 41. And a shock absorbing elastic plate 42 made of natural rubber or synthetic rubber, etc., and the sliding plate 10 is vulcanized or overlapped with the upper surface 43 of the elastic plate 42 at its lower surface 44 or recessed. 41, the sliding plate support mechanism 25 supports the sliding plate 10 on the upper base body 132 via the elastic plate 42, and the displacement mechanism 26 is As a displacement surface extending in a crossing direction with respect to the recess 51 formed in the inclined surface 143 of the lower base body 131 that is one side surface of the lower base body 131 in the H direction, and the lower side sliding surface 9. Upper side sliding surface 5 extending in the H direction and below And a sliding plate 54 that has a sloped surface 53 that is a flat surface that is sloped with respect to the side sliding surface 9 and that is disposed in the recess 51 and is fixed to the lower base body 131 on the back surface with respect to the sloped surface 53. Similarly to the displacement mechanism 26, the displacement mechanism 27 includes a recess 56 formed on the inclined surface 144 of the lower base body 131, which is the other side surface of the lower base body 131 in the H direction, and a lower side. As a displacement surface extending in the crossing direction with respect to the sliding surface 9, the upper surface sliding surface 5 extending in the H direction and an inclined surface 58 composed of a flat surface inclined with respect to the lower side sliding surface 9 are disposed in the recess 56. And a sliding plate 59 fixed to the lower base body 131 on the back surface with respect to the inclined surface 58. The recess 148 has a flat bottom surface 152 extending in the H direction and the H direction. Flat inclined surface 15 inclined with a complementary angle relationship And the inclined surface 150 that contacts the inclined surface 53 fixed to the pier 2 via the lower base body 131 and is inclined at the same angle as the inclined surface 53 faces the inclined surface 53. The inclined surface 151 that is in contact with the inclined surface 58 fixed to the pier 2 via the lower base body 131 and is inclined at the same angle as the inclined surface 58 faces the inclined surface 58. In the case of this example, the sliding plates 54 and 59 are similar to the sliding plates 32 and 33 and the sliding plates 8 and 10, and the synthetic resin having a low friction characteristic such as polytetrafluoroethylene resin or the like. The synthetic resin may be made of a synthetic resin containing a reinforcing material in which a reinforcing material such as glass fiber and organic fiber is mixed.

禁止機構135は、H方向において上側基台本体132を隙間をもって挟んで配置されていると共に取付板7にボルト、溶接等により固着された一対の禁止板155及び156と、禁止板155及び156の夫々及び取付板7にボルト、溶接等により固着されていると共に禁止板155及び156の夫々を補強する補強部材157及び158とを具備しており、一対の禁止板155及び156は、滑り板8に対する上側基台本体132のH方向の相対的な移動において上側基台本体132の側端面146及び147に衝突して上側基台本体132のそれ以上のH方向の相対的な移動を禁止するようになっている。   The prohibiting mechanism 135 includes a pair of prohibiting plates 155 and 156 that are arranged with a gap between the upper base body 132 in the H direction and fixed to the mounting plate 7 by bolts, welding, and the like, and the prohibiting plates 155 and 156. Reinforcing members 157 and 158 that reinforce each of the prohibiting plates 155 and 156 are fixed to the respective mounting plates 7 by bolts, welding, and the like, and the pair of prohibiting plates 155 and 156 are provided with the sliding plate 8. In the relative movement of the upper base body 132 in the H direction, the upper base body 132 collides with the side end surfaces 146 and 147 of the upper base body 132 so as to prohibit further relative movement of the upper base body 132 in the H direction. It has become.

図10に示す以上の滑り支承1は、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の振動を、図11に示すように、下部側滑り面9に対する上部側滑り面5のH方向の滑りにより許容して、小さな地震に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、小さな地震において橋桁3にH方向の過大な荷重が生じないようし、温度変化による橋桁3の伸縮等の伸縮等に基づく橋桁3のH方向の変位の橋脚2への伝達を阻止して、橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性板42の弾性伸縮により許容する。   The above-described sliding bearing 1 shown in FIG. 10 is adapted to cause vibrations in the H direction of the bridge girder 3 relative to the pier 2 based on expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change, as shown in FIG. Allowed by sliding in the H direction of the side sliding surface 5, prevents transmission of the vibration in the H direction of the pier 2 due to a small earthquake to the bridge girder 3, and an excessive load in the H direction is generated on the bridge girder 3 in a small earthquake. The transmission of the displacement in the H direction of the bridge girder 3 to the pier 2 due to expansion and contraction of the bridge girder 3 due to temperature change is prevented, and an excessive load in the H direction is applied to the pier 2 in the expansion and contraction of the bridge girder 3. Then, bending vibration of the bridge girder 3 in the V direction due to traveling of the automobile is allowed by elastic expansion and contraction of the elastic plate 42.

図10に示す滑り支承1は、大きな地震等において橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位が生じると、例えば図12に示すように、禁止板155への上側基台本体132の側端面146の衝突を生じさせて上側基台本体132のそれ以上のH方向の相対的な移動を禁止した後に、傾斜面150と傾斜面53との間に滑りを生じさせて上側基台本体132の上昇と共に橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させ、斯かる移動後、H方向における他方の方向の相対的振動変位で、傾斜面150と傾斜面53との間の滑りを介して上側基台本体132の下降と共に橋桁3を下降させて橋桁3を元の位置に復帰させ、次に、H方向における他方の方向の大きな相対的振動変位では、禁止板156への上側基台本体132の側端面147の衝突を生じさせて上側基台本体132のそれ以上のH方向の相対的な移動を禁止した後に、傾斜面151と傾斜面58との間に滑りを生じさせて、以下、傾斜面150と傾斜面53との間の滑りの場合と同様に動作し、而して、これら傾斜面150及び傾斜面53の間の滑りと傾斜面151及び傾斜面58の間の滑りとにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな運動エネルギである振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   In the sliding bearing 1 shown in FIG. 10, when a relative vibration displacement in one direction in the H direction of a certain level or more occurs in the bridge girder 3 with respect to the pier 2 in a large earthquake or the like, for example, as shown in FIG. After the side end surface 146 of the upper base body 132 collides with the upper base body 132 to prevent further relative movement in the H direction, the upper base body 132 slides between the inclined surface 150 and the inclined surface 53. As the upper base body 132 is raised, the bridge girder 3 is raised, and the bridge girder 3 is moved from the pier 2 in the V direction, and after such movement, the relative vibration displacement in the other direction in the H direction causes an inclined surface. The bridge girder 3 is lowered with the lowering of the upper base body 132 through the sliding between 150 and the inclined surface 53 to return the bridge girder 3 to its original position, and then the large relative in the other direction in the H direction. In the case of vibration displacement, the prohibition plate 15 After the side end surface 147 of the upper base main body 132 collides with the upper base body 132 to prevent further relative movement in the H direction, the upper base main body 132 slips between the inclined surface 151 and the inclined surface 58. In the following, the same operation as in the case of the slip between the inclined surface 150 and the inclined surface 53 is performed, and thus the slip between the inclined surface 150 and the inclined surface 53 and the inclined surface 151 and the inclined surface are performed. 58, the vibration energy, which is a large kinetic energy that causes the bridge girder 3 to have a relative displacement in the H direction beyond a certain level with respect to the bridge pier 2, is converted into the positional energy of the bridge girder 3 and the bridge girder 3 with respect to the pier 2 is slipped. The excessive displacement in the H direction is not caused.

上述の滑り支承1は、上部側滑り面5を有する滑り板8又は滑り板10を支持する基台24若しくは90に、復元力発生手段11又は80の少なくとも一部を設けたが、図13及び図14に示すように、これら滑り板8又は基台24若しくは90とは別個に復元力発生手段11を設けてもよい。   In the above-described sliding bearing 1, at least a part of the restoring force generating means 11 or 80 is provided on the base 24 or 90 that supports the sliding plate 8 or the sliding plate 10 having the upper side sliding surface 5. As shown in FIG. 14, the restoring force generating means 11 may be provided separately from the sliding plate 8 or the base 24 or 90.

図13及び図14に示す橋梁用の滑り支承1は、ボルト等を介して橋桁3の下面6に固着されている取付板7を介して上面で橋桁3の下面6に固着されていると共に上部側滑り面5を下面に有している滑り板8と、上部側滑り面5にH方向に滑り移動自在に接触すると共に上部側滑り面5、滑り板8及び取付板7を介して橋桁3のV方向荷重を受ける下部側滑り面9を上面に有した滑り板10と、滑り板10を橋脚2上で支持する支持台161と、橋脚2に対する橋桁3の一定以上のH方向の相対的変位に対する復元力を発生する復元力発生手段11とを具備している。   13 and 14 is fixed to the lower surface 6 of the bridge girder 3 on the upper surface via a mounting plate 7 fixed to the lower surface 6 of the bridge girder 3 via bolts and the like. A sliding plate 8 having a side sliding surface 5 on the lower surface, and a bridge girder 3 through the upper side sliding surface 5, the sliding plate 8 and the mounting plate 7 while being in contact with the upper side sliding surface 5 slidably in the H direction. A sliding plate 10 having a lower sliding surface 9 on the upper surface for receiving a load in the V direction, a support base 161 for supporting the sliding plate 10 on the pier 2, and a relative degree of the bridge girder 3 with respect to the pier 2 in a certain H direction. And a restoring force generating means 11 for generating a restoring force against the displacement.

支持台161は、上端面162で滑り板10を支持した四角柱体からなる支持台本体163と、支持台本体163に一体的に設けられた鍔部164とを具備しており、鍔部164は、アンカーボルト・ナット23(図1参照)等を介して橋脚2の上面22に固着されており、滑り板10は、滑り板支持機構25(図1参照)を介して支持台本体163の上端面162に固着されている。   The support base 161 includes a support base body 163 made of a quadrangular prism body that supports the sliding plate 10 with an upper end surface 162, and a flange portion 164 provided integrally with the support base body 163. Is fixed to the upper surface 22 of the pier 2 via anchor bolts / nuts 23 (see FIG. 1) or the like, and the sliding plate 10 is attached to the support base body 163 via the sliding plate support mechanism 25 (see FIG. 1). It is fixed to the upper end surface 162.

図13及び図14に示す復元力発生手段11は、鍔部165で橋脚2の上面22にアンカーボルト・ナット166を介して固着された橋脚側固定台167と、鍔部168で取付板7及びボルト等を介して橋桁3の下面6に固着された橋桁側固定台169とを具備している。   The restoring force generating means 11 shown in FIGS. 13 and 14 includes a bridge pier side fixing base 167 fixed to the upper surface 22 of the pier 2 with anchor bolts and nuts 166 at the flange portion 165, and the mounting plate 7 and A bridge girder-side fixing base 169 fixed to the lower surface 6 of the bridge girder 3 via bolts or the like is provided.

橋脚側固定台167は、鍔部165に加えて、鍔部165に一体形成された固定ピン171と、固定ピン171が貫通すると共に鍔部165に加硫接着された衝撃吸収用の弾性部材172と、固定ピン171の上端部が隙間をもって挿入されていると共に弾性部材172に加硫接着された変位部材173とを具備しており、変位部材173は、下部側滑り面9に対して交差方向に伸びる変位面であって、H方向に対して互いに補角関係をもって傾斜している一対の平坦な傾斜面174及び175からなる逆V字状の上面を有している。   In addition to the flange portion 165, the pier side fixing base 167 includes a fixing pin 171 formed integrally with the flange portion 165, and an elastic member 172 for shock absorption through which the fixing pin 171 passes and is vulcanized and bonded to the flange portion 165. And a displacement member 173 in which the upper end portion of the fixing pin 171 is inserted with a gap and is vulcanized and bonded to the elastic member 172. The displacement member 173 intersects the lower sliding surface 9 in a crossing direction. And has an inverted V-shaped upper surface composed of a pair of flat inclined surfaces 174 and 175 which are inclined with a complementary angle to each other in the H direction.

橋桁側固定台169は、鍔部168に加えて、鍔部165に一体形成されていると共にH方向に対して互いに補角関係をもって傾斜している一対の平坦な傾斜面176及び177からなる逆V字状の下面を有した固定台本体178と、傾斜面176に固着されていると共に傾斜面174に隙間179をもって対面した対抗面としての傾斜した平坦面からなる滑り面180を有した滑り板181と、傾斜面177に固着されていると共に傾斜面175に隙間182をもって対面した対抗面としての傾斜した平坦面からなる滑り面183を有した滑り板184とを具備している。   The bridge girder-side fixing base 169 is reversely formed of a pair of flat inclined surfaces 176 and 177 that are integrally formed with the flange portion 165 in addition to the flange portion 168 and are inclined with a complementary angle with respect to the H direction. A sliding plate having a fixed base body 178 having a V-shaped lower surface, and a sliding surface 180 which is fixed to the inclined surface 176 and which is an inclined flat surface as a facing surface facing the inclined surface 174 with a gap 179. 181 and a sliding plate 184 having a sliding surface 183 formed of an inclined flat surface as an opposing surface that is fixed to the inclined surface 177 and faces the inclined surface 175 with a gap 182.

橋脚側固定台167を介して橋脚2に固定された傾斜面174と滑り面180とは、互いに同一の傾斜角を有しており、橋脚側固定台167を介して橋脚2に固定された傾斜面175と滑り面183とは、互いに同一の傾斜角を有している。   The inclined surface 174 and the sliding surface 180 fixed to the pier 2 via the pier side fixing base 167 have the same inclination angle, and the inclination fixed to the pier 2 via the pier side fixing base 167. The surface 175 and the sliding surface 183 have the same inclination angle.

図13及び図14に示す復元力発生手段11を具備した滑り支承1は、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の振動を下部側滑り面9に対する上部側滑り面5のH方向の滑りにより許容して、小さな地震に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、小さな地震において橋桁3にH方向の過大な荷重が生じないようにし、温度変化による橋桁3の伸縮等に基づく橋桁3のH方向の変位の橋脚2への伝達を阻止して、橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性板42(図1参照)の弾性伸縮により許容する一方、大きな地震等において橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位が生じると、滑り支承1は、例えば図15に示すように、傾斜面174と滑り面180との相互接触を生じさせると共に斯かる接触後に傾斜面174と滑り面180との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させて上部側滑り面5の下部側滑り面9への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、傾斜面174と滑り面180との間の滑りを介して橋桁3を下降させ、上部側滑り面5の下部側滑り面9からのV方向の離反を解除させて上部側滑り面5の下部側滑り面9への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、傾斜面175と滑り面183との相互接触を生じさせるようにし、以下、傾斜面174と滑り面180との相互接触の場合と同様に動作し、而して、これら傾斜面174及び滑り面180の相互接触と傾斜面175及び滑り面183の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   The sliding bearing 1 having the restoring force generating means 11 shown in FIGS. 13 and 14 is configured to cause vibration in the H direction of the bridge girder 3 to the pier 2 based on the expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change with respect to the lower sliding surface 9. Allowing the upper sliding surface 5 to slide in the H direction and preventing transmission of the vibration in the H direction of the pier 2 due to a small earthquake to the bridge girder 3, an excessive load in the H direction is applied to the bridge girder 3 in a small earthquake. In this way, the transmission of the displacement in the H direction of the bridge girder 3 to the pier 2 due to the expansion and contraction of the bridge girder 3 due to temperature change is prevented, and an excessive load in the H direction is generated on the pier 2 in the expansion and contraction of the bridge girder 3 In the meantime, bending vibration of the bridge girder 3 in the V direction due to traveling of the automobile and the like is allowed by elastic expansion and contraction of the elastic plate 42 (see FIG. 1). In the H direction When the relative vibration displacement in one direction occurs, the sliding bearing 1 causes mutual contact between the inclined surface 174 and the sliding surface 180, for example, as shown in FIG. The bridge girder 3 is lifted by sliding between the surface 180 and the bridge girder 3 is moved in the V direction from the pier 2 to release the contact of the upper side sliding surface 5 with the lower side sliding surface 9, thus moving. After the release, the bridge girder 3 is lowered by the relative vibration displacement in the other direction in the H direction through the sliding between the inclined surface 174 and the sliding surface 180, and from the lower side sliding surface 9 of the upper side sliding surface 5. Is released from the V-direction to restore the contact of the upper-side sliding surface 5 with the lower-side sliding surface 9, and then, in the case of a large relative vibration displacement in the other direction in the H-direction, the inclined surface 175 and the sliding surface Causing mutual contact with H.183, The pier 2 operates in the same manner as in the case of mutual contact between the slope 174 and the sliding surface 180, and thus in the mutual contact between the inclined surface 174 and the sliding surface 180 and the mutual contact between the inclined surface 175 and the sliding surface 183, On the other hand, a large vibration energy that causes a relative displacement in the H direction at a certain level or more in the bridge girder 3 is converted into a positional energy of the bridge girder 3 so as not to cause an excessive relative displacement in the H direction of the bridge girder 2 with respect to the pier 2. ing.

図13及び図14に示す復元力発生手段11では、橋脚側固定台167の変位部材173の上面を一対の平坦な傾斜面174及び175からなる逆V字状に形成し、橋桁側固定台169の固定台本体178の下面を一対の平坦な傾斜面176及び177からなる逆V字状に形成したが、これに代えて、図16に示す復元力発生手段11のように、橋脚側固定台167の変位部材173の上面を一対の連続した半円弧凸面191及び192からなる連続する半円弧凸面状に形成し、橋桁側固定台169の固定台本体178の下面を一対の連続した半円弧凹面193及び194からなると共に半円弧凸面191及び192からなる半円弧凸面状の変位部材173の上面の曲率半径よりも大きな連続する半円弧凹面状に形成し、大きな地震等において橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位では、例えば図17に示すように、半円弧凸面191と半円弧凹面193との相互接触を生じさせると共に斯かる接触後に半円弧凸面191と半円弧凹面193との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させて上部側滑り面5の下部側滑り面9への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、半円弧凸面191と半円弧凹面193との間の滑りを介して橋桁3を下降させ、上部側滑り面5の下部側滑り面9からのV方向の離反を解除させて上部側滑り面5の下部側滑り面9への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、半円弧凸面192と半円弧凹面194との相互接触を生じさせるようにし、以下、半円弧凸面191と半円弧凹面193との相互接触の場合と同様に動作させ、而して、これら半円弧凸面191及び半円弧凹面193の相互接触と半円弧凸面192及び半円弧凹面194の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようにしてもよい。   In the restoring force generating means 11 shown in FIGS. 13 and 14, the upper surface of the displacement member 173 of the pier side fixing base 167 is formed in an inverted V shape comprising a pair of flat inclined surfaces 174 and 175, and the bridge girder side fixing base 169. The lower surface of the fixed base body 178 is formed in an inverted V shape consisting of a pair of flat inclined surfaces 176 and 177. Instead of this, like the restoring force generating means 11 shown in FIG. The upper surface of the displacement member 173 of 167 is formed into a continuous semicircular convex surface formed of a pair of continuous semicircular convex surfaces 191 and 192, and the lower surface of the fixing base body 178 of the bridge girder side fixing base 169 is formed as a pair of continuous semicircular concave surfaces. 193 and 194 and semi-circular convex surfaces 191 and 192 are formed into a continuous semi-circular concave shape larger than the radius of curvature of the upper surface of the semi-circular convex surface 191 and 192. When the relative vibration displacement in one direction in the H direction of the bridge girder 3 with respect to the bridge pier 2 is greater than a certain value, for example, as shown in FIG. After such contact, a slip is generated between the semicircular convex surface 191 and the semicircular concave surface 193 to raise the bridge girder 3, and the bridge girder 3 is moved from the pier 2 in the V direction to lower the lower sliding surface 9 of the upper sliding surface 5. After releasing the contact to the bridge, the bridge girder 3 is lowered through the slip between the semicircular arc convex surface 191 and the semicircular arc concave surface 193 with the relative vibration displacement in the other direction in the H direction after such movement and release, The separation of the upper side sliding surface 5 from the lower side sliding surface 9 in the V direction is released to restore the contact of the upper side sliding surface 5 with the lower side sliding surface 9, and then the other direction in the H direction is large. In relative vibration displacement, the semicircular convex surface 192 and Then, mutual contact with the arcuate concave surface 194 is caused, and thereafter, the same operation as in the case of mutual contact between the semicircular arc convex surface 191 and the semicircular arc concave surface 193 is performed. The large vibration energy that causes the bridge girder 3 to have a relative displacement in the H direction of a certain level or more with respect to the pier 2 is converted into the positional energy of the bridge girder 3 in the mutual contact of the semicircular arc convex surface 192 and the semicircular arc concave surface 194. Thus, the relative displacement in the H direction of the bridge girder 3 with respect to the pier 2 may be prevented.

図16に示す復元力発生手段11においても、半円弧凹面193及び194からなる連続した半円弧凹面状の固定台本体178の下面に、当該下面に沿って滑り板を固着してこの滑り板の2つの半円弧凹面からなる連続した半円弧凹面状の下面を半円弧凸面191及び192の対抗面としてもよい。   Also in the restoring force generating means 11 shown in FIG. 16, a sliding plate is fixed to the lower surface of the continuous semicircular concave fixing base body 178 composed of the semicircular concave surfaces 193 and 194 along the lower surface. A continuous semicircular concave surface formed of two semicircular concave surfaces may be opposed to the semicircular arc convex surfaces 191 and 192.

また、復元力発生手段11としては図18に示すようにしてもよい。図18に示す復元力発生手段11は、橋脚2の上面22にアンカーボルト・ナット201及び202を介して固着されていると共にH方向に並んで配された一対の橋脚側固定台203及び204と、鍔部205及び206で取付板7及びボルト等を介して橋桁3の下面6に固着されていると共にH方向に並んで配された一対の橋桁側固定台207及び208とを具備している。   Further, the restoring force generating means 11 may be as shown in FIG. 18 includes a pair of pier-side fixing bases 203 and 204 fixed to the upper surface 22 of the pier 2 via anchor bolts and nuts 201 and 202 and arranged side by side in the H direction. And a pair of bridge girder-side fixing bases 207 and 208 that are fixed to the lower surface 6 of the bridge girder 3 via the mounting plate 7 and bolts or the like at the flange portions 205 and 206 and arranged in the H direction. .

橋脚側固定台203は、H方向に伸びる上部側滑り面5及び下部側滑り面9に対して傾斜した平坦面からなる傾斜面210を上面に有しており、橋脚側固定台204は、H方向に伸びる上部側滑り面5及び下部側滑り面9に対して傾斜した平坦面からなる傾斜面211を上面に有しており、橋脚側固定台203を介して橋脚2に固定されると共に傾斜面210と傾斜面211とからなる傾斜面は、下部側滑り面9に対して交差方向に伸びる変位面となっている。   The pier side fixing base 203 has an inclined surface 210 composed of a flat surface inclined with respect to the upper side sliding surface 5 and the lower side sliding surface 9 extending in the H direction on the upper surface. The upper surface has an inclined surface 211 made of a flat surface inclined with respect to the upper side sliding surface 5 and the lower side sliding surface 9, and is fixed to the pier 2 via the pier side fixing base 203 and inclined. The inclined surface composed of the surface 210 and the inclined surface 211 is a displacement surface extending in the crossing direction with respect to the lower-side sliding surface 9.

橋桁側固定台207は、鍔部205に加えて、鍔部205に一体的に形成されていると共に変位面である傾斜面210に隙間215をもって対面した対抗面としての下に凸の湾曲面216を有した対抗面部材217を有しており、橋桁側固定台208は、鍔部206に加えて、鍔部206に一体的に形成されていると共に変位面である傾斜面211に隙間218をもって対面した対抗面としての下に凸の湾曲面219を有した対抗面部材220を有している。   The bridge girder-side fixing base 207 is formed integrally with the collar part 205 in addition to the collar part 205 and has a curved surface 216 which is convex downward as a facing surface facing the inclined surface 210 which is a displacement surface with a gap 215. The bridge girder-side fixing base 208 is formed integrally with the flange portion 206 and has a gap 218 on the inclined surface 211 as a displacement surface in addition to the flange portion 206. It has a facing member 220 having a convex curved surface 219 below as a facing facing surface.

図18に示す復元力発生手段11では、大きな地震等において橋脚2に対して橋桁3に一定以上のH方向における一方の方向の相対的振動変位では、例えば図19に示すように、湾曲面219と傾斜面211との相互接触を生じさせると共に斯かる接触後に湾曲面219と傾斜面211との間に滑りを生じさせて橋桁3を上昇させ、橋桁3を橋脚2からV方向に移動させて上部側滑り面5の下部側滑り面9への接触を解除し、斯かる移動、解除後、H方向における他方の方向の相対的振動変位で、湾曲面219と傾斜面211との間の滑りを介して橋桁3を下降させ、上部側滑り面5の下部側滑り面9からのV方向の離反を解除させて上部側滑り面5の下部側滑り面9への接触を回復させ、次に、H方向における他方の方向の大きな相対的振動変位では、図20に示すように、湾曲面216と傾斜面210との相互接触を生じさせるようにし、以下、湾曲面219と傾斜面211との相互接触の場合と同様に動作させ、而して、これら湾曲面219及び傾斜面211の相互接触と湾曲面216及び傾斜面210の相互接触とにおいて、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな振動エネルギを橋桁3の位置エネルギに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようにしている。   In the restoring force generating means 11 shown in FIG. 18, in the case of a large earthquake or the like, the relative vibration displacement in one direction in the H direction of the bridge girder 3 with respect to the bridge pier 2 in a certain direction H or more is constant, for example, as shown in FIG. And the inclined surface 211 are brought into mutual contact, and after such contact, the bridge girder 3 is raised by causing a slip between the curved surface 219 and the inclined surface 211, and the bridge girder 3 is moved in the V direction from the pier 2 After the contact of the upper side sliding surface 5 with the lower side sliding surface 9 is released, and after such movement and release, the sliding between the curved surface 219 and the inclined surface 211 is caused by relative vibration displacement in the other direction in the H direction. The bridge girder 3 is lowered through the upper side, the separation of the upper side sliding surface 5 from the lower side sliding surface 9 in the V direction is released, and the contact of the upper side sliding surface 5 with the lower side sliding surface 9 is recovered. , Large relative vibration in the other direction in the H direction In the displacement, as shown in FIG. 20, the curved surface 216 and the inclined surface 210 are brought into mutual contact, and thereafter, the same operation as in the case of mutual contact between the curved surface 219 and the inclined surface 211 is performed. Thus, in the mutual contact between the curved surface 219 and the inclined surface 211 and the mutual contact between the curved surface 216 and the inclined surface 210, large vibration energy that causes a relative displacement in the H direction of the bridge girder 3 to a certain level or more with respect to the bridge pier 2. Is converted into the potential energy of the bridge girder 3 so as not to cause an excessive displacement in the H direction of the bridge girder 3 with respect to the pier 2.

以上の滑り支承1を橋桁3を直列に配列した連続桁の夫々に設けた場合には、常時、風時、地震時等に橋脚2及び橋桁3間の夫々に伝達される力に対して各滑り支承1でもって適宜分担して受容できるように任意に調節することもできる。   When the above-mentioned sliding support 1 is provided in each of the continuous girders in which the bridge girders 3 are arranged in series, the force transmitted between the bridge pier 2 and the bridge girders 3 is always in the wind or earthquake. The sliding support 1 can be arbitrarily adjusted so that it can be appropriately shared and received.

また、上部側滑り面5、76及び下部側滑り面9、78の摩擦抵抗を小さくすることにより、上部側滑り面5、76に対する下部側滑り面9、78の水平方向の拘束力を小さくでき、温度変化、コンクリート製の橋桁3の場合にはその乾燥収縮及びクリープ等による緩慢な水平変位並びに橋桁3の活荷重撓みに起因する橋桁3の端の回転変形による変位に対する優れた追従性を得ることができる。   Further, by reducing the frictional resistance of the upper side sliding surfaces 5, 76 and the lower side sliding surfaces 9, 78, the horizontal restraining force of the lower side sliding surfaces 9, 78 on the upper side sliding surfaces 5, 76 can be reduced. In the case of a concrete bridge girder 3 of temperature change, excellent followability to a slow horizontal displacement due to drying shrinkage and creep and the displacement due to rotational deformation of the end of the bridge girder 3 due to the deflection of the live load of the bridge girder 3 is obtained. be able to.

橋桁3は、滑り支承1を介して橋脚2上に支持されるのであるが、地震等の消滅後に、橋桁3を元の位置に復帰させる原点復帰機構を橋桁3と橋脚2との間に介在させてもよく、また、地震等における橋桁3の橋脚2に対する振動変位を効果的に減衰させる減衰機構を同じく橋桁3と橋脚2との間に介在させてもよい。   The bridge girder 3 is supported on the pier 2 via the sliding bearing 1, but an origin return mechanism for returning the bridge girder 3 to its original position after the extinction of an earthquake or the like is interposed between the bridge girder 3 and the pier 2 Alternatively, a damping mechanism for effectively attenuating the vibration displacement of the bridge girder 3 with respect to the pier 2 in an earthquake or the like may be interposed between the bridge girder 3 and the pier 2 in the same manner.

本発明の好ましい例の正面説明図である。It is front explanatory drawing of the preferable example of this invention. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 本発明の好ましい他の例の正面説明図である。It is front explanatory drawing of another preferable example of this invention. 図4に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 本発明の好ましい更に他の例の正面説明図である。It is front explanatory drawing of another preferable example of this invention. 図6に示す例の分解斜視説明図である。FIG. 7 is an exploded perspective view of the example shown in FIG. 6. 本発明の好ましい更に他の例の正面説明図である。It is front explanatory drawing of another preferable example of this invention. 図8に示す例の分解斜視説明図である。It is a disassembled perspective explanatory drawing of the example shown in FIG. 本発明の好ましい更に他の例の正面説明図である。It is front explanatory drawing of another preferable example of this invention. 図10に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図10に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 本発明の好ましい更に他の例の正面説明図である。It is front explanatory drawing of another preferable example of this invention. 図13に示す例の復元力発生手段の正面拡大説明図である。It is front expansion explanatory drawing of the restoring force generation | occurrence | production means of the example shown in FIG. 図14に示す例の復元力発生手段の動作説明図である。It is operation | movement explanatory drawing of the restoring force generation | occurrence | production means of the example shown in FIG. 本発明の好ましい更に他の例の復元力発生手段の正面拡大説明図である。It is front expansion explanatory drawing of the restoring force generation | occurrence | production means of another preferable example of this invention. 図16に示す例の復元力発生手段の動作説明図である。It is operation | movement explanatory drawing of the restoring force generation | occurrence | production means of the example shown in FIG. 本発明の好ましい更に他の例の復元力発生手段の正面拡大説明図である。It is front expansion explanatory drawing of the restoring force generation | occurrence | production means of another preferable example of this invention. 図18に示す例の復元力発生手段の動作説明図である。It is operation | movement explanatory drawing of the restoring force generation | occurrence | production means of the example shown in FIG. 図18に示す例の復元力発生手段の動作説明図である。It is operation | movement explanatory drawing of the restoring force generation | occurrence | production means of the example shown in FIG.

符号の説明Explanation of symbols

1 滑り支承
2 橋脚
3 橋桁
5 上部側滑り面
6 下面
7 取付板
8 滑り板
9 下部側滑り面
10 滑り板
DESCRIPTION OF SYMBOLS 1 Sliding bearing 2 Bridge pier 3 Bridge girder 5 Upper side sliding surface 6 Lower surface 7 Mounting plate 8 Sliding plate 9 Lower side sliding surface 10 Sliding plate

Claims (9)

下部構造物に対して上部構造物を水平方向に移動自在に支持するべく、下部構造物と上部構造物との間に介在される構造物用の滑り支承であって、上部構造物側に配される上部側滑り面と、この上部側滑り面に水平方向に滑り移動自在に接触すると共に上部側滑り面を介して上部構造物の荷重を受けるように下部構造物側に配される下部側滑り面と、下部構造物に対する上部構造物の一定以上の水平方向の相対的変位に対する復元力を発生する復元力発生手段とを具備しており、復元力発生手段は、下部構造物及び上部構造物のうちの一方に固定されると共に下部側滑り面に対して交差方向に伸びる変位面とこの変位面に対面した対抗面とを有しており、下部構造物に対する上部構造物の一定以上の水平方向の相対的変位において変位面への対抗面の接触に基いて上部構造物を下部構造物から鉛直方向に移動させるようになっている構造物用の滑り支承。   A sliding bearing for a structure interposed between the lower structure and the upper structure to support the upper structure so as to be movable in the horizontal direction with respect to the lower structure, and is arranged on the upper structure side. And a lower side disposed on the lower structure side so as to be in sliding contact with the upper side sliding surface in a horizontal direction and to receive a load of the upper structure through the upper side sliding surface. And a restoring force generating means for generating a restoring force with respect to a relative displacement of the upper structure with respect to a certain horizontal direction relative to the lower structure. The restoring force generating means includes the lower structure and the upper structure. A displacement surface that is fixed to one of the objects and extends in a direction intersecting with the lower sliding surface, and a facing surface that faces the displacement surface. In relative displacement in the horizontal direction Sliding bearings for structures has an upper structure based on the contact of the anti-surface to move from the lower structure in the vertical direction. 上部側滑り面及び下部側滑り面の夫々は水平方向に伸びた平坦面を有しており、変位面及び対抗面の夫々は、上部側滑り面及び下部側滑り面に対して傾斜した平坦面を有している請求項1に記載の構造物用の滑り支承。   Each of the upper side sliding surface and the lower side sliding surface has a flat surface extending in the horizontal direction, and each of the displacement surface and the opposing surface is a flat surface inclined with respect to the upper side sliding surface and the lower side sliding surface. A sliding bearing for a structure according to claim 1, comprising: 上部側滑り面及び下部側滑り面の夫々は水平方向に伸びた平坦面を有しており、変位面及び対抗面の夫々は湾曲面を有している請求項1に記載の構造物用の滑り支承。   2. The structure for a structure according to claim 1, wherein each of the upper side sliding surface and the lower side sliding surface has a flat surface extending in the horizontal direction, and each of the displacement surface and the opposing surface has a curved surface. Sliding bearing. 変位面は湾曲凸面及び湾曲凹面のうちの一方を有しており、対抗面は湾曲凸面及び湾曲凹面のうちの他方を有している請求項3に記載の構造物用の滑り支承。   The sliding bearing for a structure according to claim 3, wherein the displacement surface has one of a curved convex surface and a curved concave surface, and the opposing surface has the other of the curved convex surface and the curved concave surface. 上部側滑り面及び下部側滑り面の夫々は水平方向に伸びた平坦面を有しており、変位面は湾曲面及び平坦面のうちの一方を有しており、変位面は湾曲面及び平坦面のうちの他方を有している請求項1に記載の構造物用の滑り支承。   Each of the upper side sliding surface and the lower side sliding surface has a flat surface extending in the horizontal direction, the displacement surface has one of a curved surface and a flat surface, and the displacement surface is a curved surface and a flat surface. 2. A sliding bearing for a structure according to claim 1, having the other of the surfaces. 変位面は、上部側滑り面及び下部側滑り面のうちの一方と連続して伸びており、対抗面は、上部側滑り面及び下部側滑り面のうちの他方と連続して伸びている請求項1から5のいずれか一項に記載の構造物用の滑り支承。   The displacement surface extends continuously with one of the upper side sliding surface and the lower side sliding surface, and the opposing surface extends continuously with the other of the upper side sliding surface and the lower side sliding surface. Item 6. A sliding bearing for a structure according to any one of Items 1 to 5. 変位面及び対抗面は、上部側滑り面及び下部側滑り面に対して別個独立に設けられている請求項1から5のいずれか一項に記載の構造物用の滑り支承。   The sliding bearing for a structure according to any one of claims 1 to 5, wherein the displacement surface and the opposing surface are provided independently with respect to the upper side sliding surface and the lower side sliding surface. 変位面及び対抗面のうちの一方は、上部側滑り面及び下部側滑り面のうちの一方と連続して伸びており、変位面及び対抗面のうちの他方は、上部側滑り面及び下部側滑り面のうちの他方に対して別個独立に設けられている請求項1から5のいずれか一項に記載の構造物用の滑り支承。   One of the displacement surface and the opposing surface extends continuously with one of the upper side sliding surface and the lower side sliding surface, and the other of the displacement surface and the opposing surface is the upper side sliding surface and the lower side. The sliding bearing for a structure according to any one of claims 1 to 5, wherein the sliding bearing is provided separately and independently for the other of the sliding surfaces. 復元力発生手段は、下部側滑り面に対する上部側滑り面の一定以上の水平方向の相対的変位を禁止する禁止機構を有している請求項1から8のいずれか一項に記載の構造物用の滑り支承。   The structure according to any one of claims 1 to 8, wherein the restoring force generating means includes a prohibiting mechanism that prohibits a relative displacement in a horizontal direction of the upper side sliding surface with respect to the lower side sliding surface beyond a certain level. Sliding bearing for.
JP2007323335A 2007-12-14 2007-12-14 Sliding bearings for structures Active JP5561661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007323335A JP5561661B2 (en) 2007-12-14 2007-12-14 Sliding bearings for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007323335A JP5561661B2 (en) 2007-12-14 2007-12-14 Sliding bearings for structures

Publications (2)

Publication Number Publication Date
JP2009144429A true JP2009144429A (en) 2009-07-02
JP5561661B2 JP5561661B2 (en) 2014-07-30

Family

ID=40915350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007323335A Active JP5561661B2 (en) 2007-12-14 2007-12-14 Sliding bearings for structures

Country Status (1)

Country Link
JP (1) JP5561661B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265927A (en) * 2009-05-12 2010-11-25 Hanshin Expressway Co Ltd Sliding bearing for structure
JP2011190621A (en) * 2010-03-15 2011-09-29 Mitsubishi Chemical Engineering Corp Friction damper
CN103243643A (en) * 2013-05-20 2013-08-14 成都市新筑路桥机械股份有限公司 Horizontal elastic damping device for bridge
CN103255708A (en) * 2013-05-02 2013-08-21 浙江大学 Novel multi-sliding-face aseismatic bearing
JP2013189842A (en) * 2012-02-17 2013-09-26 Kyoto Univ Plain bearing for structure
WO2015002366A1 (en) * 2013-07-04 2015-01-08 유니슨이테크 주식회사 Pendulum type friction system
CN104831620A (en) * 2015-05-08 2015-08-12 武汉理工大学 Fixed-type aseismic noise reduction rubber support for rail transit bridge
JP2016216919A (en) * 2015-05-15 2016-12-22 東日本旅客鉄道株式会社 Bridge fall prevention structure
CN106592422A (en) * 2016-12-23 2017-04-26 大连理工大学 Bailey beam hinged support
JP2017115960A (en) * 2015-12-24 2017-06-29 清水建設株式会社 Base isolation mechanism
KR102203471B1 (en) * 2019-12-23 2021-01-18 매크로드 주식회사 Bridge bearings with vibration isolation and seismic isolation performance
JP2023514977A (en) * 2020-01-29 2023-04-12 マウレール エンジニアリング ゲーエムベーハー Structural plain bearings and structural bearing systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181237A (en) * 1997-09-04 1999-03-26 Shibata Ind Co Ltd Beam drop preventing device for bridge
JPH1181238A (en) * 1997-09-04 1999-03-26 Shibata Ind Co Ltd Beam drop preventing device for bridge
JP2006241815A (en) * 2005-03-03 2006-09-14 Oriental Construction Co Ltd Sliding bearing with added geometric stiffness, and structure for arranging the bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181237A (en) * 1997-09-04 1999-03-26 Shibata Ind Co Ltd Beam drop preventing device for bridge
JPH1181238A (en) * 1997-09-04 1999-03-26 Shibata Ind Co Ltd Beam drop preventing device for bridge
JP2006241815A (en) * 2005-03-03 2006-09-14 Oriental Construction Co Ltd Sliding bearing with added geometric stiffness, and structure for arranging the bearing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265927A (en) * 2009-05-12 2010-11-25 Hanshin Expressway Co Ltd Sliding bearing for structure
JP2011190621A (en) * 2010-03-15 2011-09-29 Mitsubishi Chemical Engineering Corp Friction damper
JP2013189842A (en) * 2012-02-17 2013-09-26 Kyoto Univ Plain bearing for structure
CN103255708A (en) * 2013-05-02 2013-08-21 浙江大学 Novel multi-sliding-face aseismatic bearing
CN103243643A (en) * 2013-05-20 2013-08-14 成都市新筑路桥机械股份有限公司 Horizontal elastic damping device for bridge
WO2015002366A1 (en) * 2013-07-04 2015-01-08 유니슨이테크 주식회사 Pendulum type friction system
CN104831620A (en) * 2015-05-08 2015-08-12 武汉理工大学 Fixed-type aseismic noise reduction rubber support for rail transit bridge
JP2016216919A (en) * 2015-05-15 2016-12-22 東日本旅客鉄道株式会社 Bridge fall prevention structure
JP2017115960A (en) * 2015-12-24 2017-06-29 清水建設株式会社 Base isolation mechanism
CN106592422A (en) * 2016-12-23 2017-04-26 大连理工大学 Bailey beam hinged support
CN106592422B (en) * 2016-12-23 2018-06-15 大连理工大学 A kind of Bailey beam hinged-support
KR102203471B1 (en) * 2019-12-23 2021-01-18 매크로드 주식회사 Bridge bearings with vibration isolation and seismic isolation performance
JP2023514977A (en) * 2020-01-29 2023-04-12 マウレール エンジニアリング ゲーエムベーハー Structural plain bearings and structural bearing systems

Also Published As

Publication number Publication date
JP5561661B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5561661B2 (en) Sliding bearings for structures
JP5302764B2 (en) Sliding bearings for structures
US3349418A (en) Low friction structural bearing
KR100692956B1 (en) Bearing for supporting a structure and elastic device for the bearing
WO2012114246A1 (en) Antiseismic support
US9399865B2 (en) Seismic isolation systems
KR200473182Y1 (en) Friction pendulum bearing
TW200402501A (en) Isolation platform
JP5985927B2 (en) Sliding bearings for structures
JP2015212489A (en) Damper for use in earthquake-resistant structure of bridge and recovery method of earthquake-resistant structure
JP4893061B2 (en) Viscous vibration damping device and base-isolated building equipped with the same
WO2004111485A2 (en) Friction damper
KR100731210B1 (en) Earthquake Isolation Bearing for Bridges Using Shape Memory Alloy
KR101244717B1 (en) A rolling bearing with a friction with a shock absorber
KR100283782B1 (en) Friction dampening rubber feet for seismic isolation of structures
KR20120009010A (en) Seismic isolation device for a bridge
JP6765563B1 (en) Sliding seismic isolation device and bridge
KR101293331B1 (en) Elastic device and mechanism to control horizontal displacement utilizing a horizontal component of elastic force and bridge bearing using the same
JP3736285B2 (en) Isolation device
JP7324126B2 (en) Bridge seismic device
JP2016216919A (en) Bridge fall prevention structure
KR100997697B1 (en) Bridge bearing
KR101386048B1 (en) Spherical bearing for bridge
KR101291808B1 (en) Seismic isolation device for a bridge
JP2020117999A (en) Sliding base isolation device and bridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130312

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5561661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250