JP5302764B2 - Sliding bearings for structures - Google Patents

Sliding bearings for structures Download PDF

Info

Publication number
JP5302764B2
JP5302764B2 JP2009115759A JP2009115759A JP5302764B2 JP 5302764 B2 JP5302764 B2 JP 5302764B2 JP 2009115759 A JP2009115759 A JP 2009115759A JP 2009115759 A JP2009115759 A JP 2009115759A JP 5302764 B2 JP5302764 B2 JP 5302764B2
Authority
JP
Japan
Prior art keywords
sliding
sliding surface
cross
horizontal
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009115759A
Other languages
Japanese (ja)
Other versions
JP2010265927A (en
Inventor
聖二 篠原
信彦 谷口
幸郎 足立
祥久 加藤
泰幸 岩里
裕惠 宇野
康之 石井
宮崎  貞義
英彰 横川
修 河内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2009115759A priority Critical patent/JP5302764B2/en
Publication of JP2010265927A publication Critical patent/JP2010265927A/en
Application granted granted Critical
Publication of JP5302764B2 publication Critical patent/JP5302764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、基礎、橋脚等の下部構造物と建物、橋桁等の上部構造物との間に介在されて下部構造物に対して上部構造物を水平方向に移動自在に支持する構造物用の滑り支承に関する。   The present invention is for a structure which is interposed between a lower structure such as a foundation and a bridge pier and an upper structure such as a building and a bridge girder and supports the upper structure so as to be movable in a horizontal direction with respect to the lower structure. Regarding sliding bearings.

滑り支承は、地震等による地盤の振動を建物、橋桁等の上部構造物に伝達しないで地震等による上部構造物の倒壊を防止するようになっている。また、橋梁に用いられる滑り支承は、上記に加えて、温度変化による橋桁の伸縮を滑りにより吸収するようになっている。   The sliding bearing prevents the collapse of the upper structure due to an earthquake or the like without transmitting the vibration of the ground due to the earthquake or the like to the upper structure such as a building or a bridge girder. In addition to the above, the sliding bearing used for the bridge absorbs the expansion and contraction of the bridge girder due to the temperature change by the sliding.

特開平10−73145号公報JP-A-10-73145 特開平11−81237号公報JP-A-11-81237

ところで、大きな地震等により下部構造物に対して上部構造物が大きく変位すると、単に平坦な面同士の滑りを用いた滑り支承では、下部構造物から上部構造物が脱落してしまう虞がある上に、仮に、斯かる脱落を防止するために脱落防止機構を設けても、大きな地震等に基づく大きな振動エネルギが脱落防止機構に直接加わることとなり、脱落防止機構が損壊する虞もあり、また、大きな振動エネルギに対する脱落防止機構は、その製造に費用も嵩む上に大きなスペースを必要とし必ずしも満足できるものではない。   By the way, if the upper structure is largely displaced with respect to the lower structure due to a large earthquake or the like, the sliding structure using simply sliding between flat surfaces may cause the upper structure to fall from the lower structure. Even if a drop-off prevention mechanism is provided to prevent such drop-off, a large vibration energy based on a large earthquake or the like is directly added to the drop-off prevention mechanism, and the drop-off prevention mechanism may be damaged. The drop-off prevention mechanism for large vibration energy is not always satisfactory because it is expensive to manufacture and requires a large space.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、大きな地震等に基づく大きな運動エネルギである振動エネルギを位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、而して、下部構造物から上部構造物の脱落を防止でき、しかも、損壊の虞のない上に、製造費の低減及び占有空間の低減を図り得る構造物用の滑り支承を提供することにある。   The present invention has been made in view of the above points, and its object is to effectively absorb large vibration energy by converting vibration energy, which is large kinetic energy based on a large earthquake, etc., into potential energy. Thus, it is possible to provide a sliding bearing for a structure that can prevent the upper structure from falling off from the lower structure and that can be prevented from being damaged and that can reduce the manufacturing cost and the occupied space. There is.

下部構造物と上部構造物との間に介在される本発明の構造物用の滑り支承は、上部構造物側に配されると共に水平面に対して平行に伸びる上部側の水平滑り面と、この上部側の水平滑り面に接触して上部側の水平滑り面を介して上部構造物の荷重を受けるように下部構造物側に配されると共に水平面に対して平行に伸びる下部側の水平滑り面と、下部構造物に対する上部構造物の水平方向の相対的変位に対する復元力を発生する復元力発生手段とを具備しており、復元力発生手段は、水平方向に関して上部側の水平滑り面を間にして上部構造物に固定されると共に水平面に対して交差方向に伸びる一対の上部側の交差滑り面と、水平方向に関して下部側の水平滑り面を間にして下部構造物に固定されると共に水平面に対して交差方向に伸びて一対の上部側の交差滑り面の夫々に夫々摺動自在に接触する一対の下部側の交差滑り面と、一対の上部側の交差滑り面のうちの一方の交差滑り面と当該一方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を少なくとも水平方向に変位自在に弾性的に支持する一方の弾性手段と、一対の上部側の交差滑り面のうちの他方の交差滑り面と当該他方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を少なくとも水平方向に変位自在に弾性的に支持する他方の弾性手段とを具備している。   The sliding bearing for the structure of the present invention interposed between the lower structure and the upper structure is arranged on the upper structure side and extends parallel to the horizontal plane. The lower horizontal sliding surface which is arranged on the lower structure side so as to contact the upper horizontal sliding surface and receive the load of the upper structure through the upper horizontal sliding surface and which extends parallel to the horizontal plane. And a restoring force generating means for generating a restoring force with respect to the relative displacement in the horizontal direction of the upper structure with respect to the lower structure, the restoring force generating means sandwiching the horizontal sliding surface on the upper side with respect to the horizontal direction. And fixed to the lower structure with a pair of upper side sliding surfaces extending in the direction intersecting the horizontal plane and a lower horizontal sliding surface in the horizontal direction. Extending in the crossing direction A pair of lower side sliding surfaces that are slidably in contact with each of the upper side sliding surfaces of the pair, and one of the pair of upper side sliding surfaces and one of the upper side sliding surfaces. One elastic means for elastically supporting at least one of the lower-side cross-sliding surfaces slidably in contact with the surface at least horizontally, and a pair of upper-side cross-sliding surfaces At least one cross-sliding surface of the other cross-sliding surface and the lower cross-sliding surface slidably contacting the other cross-sliding surface is elastically displaceable at least horizontally And the other elastic means to support.

本発明によれば、水平面に対して平行に伸びる上部側の水平滑り面が同じく水平面に対して平行に伸びる下部側の水平滑り面に、水平面に対して交差方向に伸びた上部側の交差滑り面が同じく水平面に対して交差方向に伸びた下部側の交差滑り面に夫々接触し、弾性手段が交差滑り面を水平方向に変位自在に弾性的に支持している結果、下部構造物に対する上部構造物の水平方向の相対的変位の生起前においては、上部側の水平滑り面を介して上部構造物の荷重を下部側の水平滑り面で受けて、上部側の交差滑り面が下部側の交差滑り面に接触した状態で上部構造物を下部構造物で支持でき、下部構造物に対する上部構造物の水平方向の一定以下の相対的変位においては、弾性手段により支持された交差滑り面の当該弾性手段の弾性変形を介する水平方向の変位に伴って上部側の水平滑り面に対して下部側の水平滑り面が水平方向に相対的に滑り、而して、斯かる下部構造物に対する上部構造物の水平方向の一定以下の相対的変位においても、上部側の水平滑り面を介して上部構造物の荷重を下部側の水平滑り面で受けて、上部側の交差滑り面が下部側の交差滑り面に接触した状態で上部構造物を下部構造物で支持でき、下部構造物に対する上部構造物の水平方向の一定以上の相対的変位においては、弾性手段により支持された交差滑り面の当該弾性手段の弾性変形の減少に起因する水平方向の変位の減少で上部側の交差滑り面に対して下部側の交差滑り面が相対的に滑り、而して、斯かる下部構造物に対する上部構造物の水平方向の一定以上の相対的変位においては、上部側の水平滑り面と下部側の水平滑り面との相互の接触が解除されて上部側の水平滑り面が下部側の水平滑り面から離れ、上部構造物が上昇される結果、下部構造物に対する上部構造物の水平方向の一定以上の相対的変位を生じさせる振動エネルギを上部構造物の上昇で吸収することができる。   According to the present invention, the upper horizontal sliding surface extending parallel to the horizontal plane is also applied to the lower horizontal sliding surface extending parallel to the horizontal plane. As a result of the surface contacting the lower crossing sliding surface extending in the crossing direction with respect to the horizontal plane, and the elastic means elastically supporting the crossing sliding surface so as to be displaceable in the horizontal direction, Prior to the occurrence of relative displacement in the horizontal direction of the structure, the load on the upper structure is received by the lower horizontal sliding surface via the upper horizontal sliding surface, and the upper cross sliding surface is moved to the lower side. The upper structure can be supported by the lower structure in contact with the cross sliding surface, and the horizontal displacement of the upper structure relative to the lower structure is less than a certain level in the horizontal direction. Via elastic deformation of elastic means The horizontal sliding surface on the lower side slides relative to the horizontal sliding surface on the upper side relative to the horizontal sliding surface on the upper side, and thus the horizontal direction of the upper structure relative to the lower structure is constant. Even in the following relative displacements, the load on the upper structure is received by the lower horizontal sliding surface via the upper horizontal sliding surface, and the upper sliding surface is in contact with the lower sliding surface. The upper structure can be supported by the lower structure, and when the horizontal displacement of the upper structure with respect to the lower structure exceeds a certain level, the elastic deformation of the elastic means on the cross sliding surface supported by the elastic means is reduced. Due to the reduction of the horizontal displacement due to the lower side, the lower side cross-sliding surface slides relative to the upper side cross-sliding surface, so that the upper structure has a certain horizontal direction or more relative to the lower structure. The relative displacement of the upper water The mutual contact between the sliding surface and the lower horizontal sliding surface is released, the upper horizontal sliding surface is separated from the lower horizontal sliding surface, and the upper structure is lifted. The vibrational energy that causes a certain relative displacement in the horizontal direction can be absorbed by the rising of the superstructure.

したがって、本発明によれば、上部側の交差滑り面と下部側の交差滑り面との接触を常時維持した状態で上部構造物を下部構造物で水平方向に移動自在に支持でき、上部構造物の上昇への移行を大きな衝撃を生じさせないで行うことができる上に、大きな地震等に基づく大きな運動エネルギである振動エネルギを上部構造物の下部構造物からの鉛直方向の上昇移動をもって位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、斯かる大きな振動エネルギに基づく上部構造物と下部構造物との間の相対的な水平方向の大変位を防止でき、而して、下部構造物から上部構造物の脱落を防止でき、しかも、大きな地震等に基づく大きな振動エネルギを効果的に利用できて、損壊の虞をなくし得る上に、製造費の低減及び占有空間の低減を図り得る上に、変位面への対抗面の接触において摩擦力による減衰効果も期待できる。   Therefore, according to the present invention, the upper structure can be supported by the lower structure so as to be movable in the horizontal direction in a state in which the contact between the upper side sliding surface and the lower side sliding surface is always maintained. In addition to making the transition to ascending without causing a large impact, vibration energy, which is a large kinetic energy based on a large earthquake, etc. is converted into potential energy by moving the upper structure from the lower structure in the vertical direction. Can effectively absorb large vibrational energy and prevent large relative horizontal displacement between the upper structure and the lower structure based on such large vibrational energy, and thus the lower structure It is possible to prevent the superstructure from falling off, and to effectively use the large vibration energy based on a large earthquake, etc., eliminating the possibility of damage, and reducing the manufacturing cost and the occupied space. In order to obtain aim, damping effect can be expected due to frictional force at the contact of the opposing surfaces of the displacement surfaces.

本発明では、一対の上部側の交差滑り面の夫々は、上部側の水平滑り面側の夫々から下方に傾斜して互いに逆方向に伸びており、一対の下部側の交差滑り面の夫々は、下部側の水平滑り面側の夫々から下方に傾斜して互いに逆方向に伸びていても、これに代えて、上部側の水平滑り面側の夫々から上方に傾斜して互いに逆方向に伸びており、一対の下部側の交差滑り面の夫々は、下部側の水平滑り面側の夫々から上方に傾斜して互いに逆方向に伸びていてもよい。   In the present invention, each of the pair of upper side sliding surfaces is inclined downwardly from each of the upper side horizontal sliding surfaces and extends in opposite directions, and each of the pair of lower side sliding surfaces is Even if they are inclined downward from the respective horizontal sliding surfaces on the lower side and extend in opposite directions, instead, they are inclined upward from the respective horizontal sliding surfaces on the upper side and extend in opposite directions. Each of the pair of lower side sliding surfaces may incline upward from each of the lower side horizontal sliding surfaces and extend in directions opposite to each other.

本発明の好ましい例では、一方の弾性手段は、一対の上部側の交差滑り面のうちの一方の交差滑り面と当該一方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を、当該少なくとも一つの交差滑り面に摺動自在に接触する交差滑り面に弾性的に押し付けており、他方の弾性手段は、一対の上部側の交差滑り面のうちの他方の交差滑り面と当該他方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を、当該少なくとも一つの交差滑り面に摺動自在に接触する交差滑り面に弾性的に押し付けており、本好ましい例によれば、小さな振動領域において上部構造物を好ましく固定できる。   In a preferred example of the present invention, the one elastic means includes one cross-sliding surface of the pair of upper-side cross-sliding surfaces and a lower cross-sliding surface slidably contacting the one cross-sliding surface. At least one cross-sliding surface is elastically pressed against the cross-sliding surface slidably contacting the at least one cross-sliding surface, and the other elastic means is a pair of upper side cross-sliding surfaces And sliding at least one of the cross-sliding surfaces of the other cross-sliding surface and the lower cross-sliding surface slidably in contact with the other cross-sliding surface onto the at least one cross-sliding surface It is elastically pressed against the intersecting sliding surface that freely contacts, and according to this preferred example, the upper structure can be preferably fixed in a small vibration region.

本発明の構造物用の滑り支承は、好ましい例では、上部構造物が橋桁であって、下部構造物が橋脚である橋梁用であり、一対の上部側の交差滑り面及び一対の下部側の交差滑り面の夫々は、橋軸方向において上部側の水平滑り面及び下部側の水平滑り面を間にして上部構造物及び下部構造物の夫々に固定されるようになっている。   In a preferred example, the sliding bearing for a structure of the present invention is for a bridge in which the upper structure is a bridge girder and the lower structure is a bridge pier, and a pair of upper side sliding surfaces and a pair of lower side Each of the intersecting sliding surfaces is fixed to each of the upper structure and the lower structure with the horizontal sliding surface on the upper side and the horizontal sliding surface on the lower side in between in the bridge axis direction.

本発明によれば、大きな地震等において上部構造物の上昇への移行を大きな衝撃を生じさせないで行うことができる上に、斯かる大きな地震等に基づく大きな運動エネルギである振動エネルギを位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、而して、下部構造物から上部構造物の脱落を防止でき、しかも、損壊の虞のない上に、製造費の低減及び占有空間の低減を図り得る構造物用の滑り支承を提供することができる。   According to the present invention, it is possible to make a transition to a rise of a superstructure without causing a large impact in a large earthquake or the like, and to convert vibration energy, which is a large kinetic energy based on such a large earthquake or the like, into potential energy. It can be converted to effectively absorb large vibration energy, and thus the upper structure can be prevented from falling off from the lower structure, and there is no risk of damage, and the manufacturing cost and the occupied space can be reduced. It is possible to provide a sliding bearing for a possible structure.

本発明の好ましい例の側面説明図である。It is side explanatory drawing of the preferable example of this invention. 図1に示す例の橋脚側の平面説明図である。It is plane explanatory drawing by the side of the pier of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG. 図1に示す例の動作説明図である。It is operation | movement explanatory drawing of the example shown in FIG.

本発明の構造物用の滑り支承は、橋脚等の下部構造物に対する橋桁等の上部構造物の例えば橋軸方向の相対的変位の生起前においては、上部側の水平滑り面を下部側の水平滑り面に、上部側の交差滑り面を下部側の交差滑り面に夫々接触させると共に、橋脚等の下部構造物に対する橋桁等の上部構造物の例えば橋軸方向の大きな相対的変位までは、弾性手段の弾性変形により上部側の交差滑り面の下部側の交差滑り面への接触を維持させつつ上部側の水平滑り面を下部側の水平滑り面に接触させる一方、下部構造物に対する上部構造物の例えば橋軸方向の大きな相対的変位においては、弾性手段の弾性変形の減少又は弾性変形限界による上部側の交差滑り面と下部側の交差滑り面との滑り接触移動(摺動)に基いて上部側の水平滑り面の下部側の水平滑り面への接触を解除させて上部構造物を下部構造物から鉛直方向に上昇移動させるようにしたものである。   The sliding bearing for a structure according to the present invention has a structure in which an upper horizontal sliding surface is placed on a lower horizontal side before a relative displacement of the upper structure such as a bridge girder with respect to a lower structure such as a bridge pier occurs, for example, in the bridge axis direction. The upper cross-sliding surface is brought into contact with the lower cross-sliding surface, and the upper structure such as a bridge girder with respect to the lower structure such as a bridge pier is elastic up to a large relative displacement in the bridge axis direction, for example. The upper horizontal sliding surface is brought into contact with the lower horizontal sliding surface while the upper side sliding surface is kept in contact with the lower cross sliding surface by elastic deformation of the means, while the upper structure with respect to the lower structure For example, in the case of a large relative displacement in the direction of the bridge axis, it is based on sliding contact movement (sliding) between the upper side sliding surface and the lower side sliding surface due to a decrease in elastic deformation of the elastic means or the elastic deformation limit. Lower side of upper horizontal sliding surface Of by releasing the contact with the horizontal sliding surface in which the upper structure was set to raise the movement from the lower structure in the vertical direction.

次に、本発明の実施の形態の例を図に基づいて更に詳細に説明する。尚、本発明は、これら例に何等限定されないのである。   Next, an example of an embodiment of the present invention will be described in more detail based on the drawings. The present invention is not limited to these examples.

図1及び図2において、本例の構造物用としての橋梁用の滑り支承1は、下部構造物としての橋脚2に対して上部構造物としての橋桁3を水平方向において橋軸方向H(以下、H方向という)に移動自在に支持するべく、橋脚2と橋桁3との間に介在される。   1 and 2, a sliding bearing 1 for a bridge as a structure according to the present embodiment is configured so that a bridge girder 3 as an upper structure is bridged in a bridge axis direction H (hereinafter referred to as a lower structure) with respect to a pier 2 as a lower structure. In order to support the movably in the H direction), it is interposed between the pier 2 and the bridge girder 3.

滑り支承1は、ボルト等を介して橋桁3の下面4に固着されている取付板5を介して上面で橋桁3の下面4に固着されていると共に上部側の水平滑り面6を下面に有している滑り板7と、水平滑り面6にH方向に滑り移動自在に接触すると共に水平滑り面6、滑り板7及び取付板5を介して橋桁3の鉛直方向V(以下、V方向という)の荷重を受ける下部側の円形の水平滑り面8を上面に有した円板状の滑り板9と、橋脚2に対する橋桁3のH方向の相対的変位に対する復元力を発生する復元力発生手段10とを具備している。   The sliding bearing 1 is fixed to the lower surface 4 of the bridge girder 3 on the upper surface via a mounting plate 5 fixed to the lower surface 4 of the bridge girder 3 with bolts or the like, and has an upper horizontal sliding surface 6 on the lower surface. The sliding plate 7 is in contact with the horizontal sliding surface 6 so as to be slidably movable in the H direction, and the vertical direction V (hereinafter referred to as V direction) of the bridge girder 3 through the horizontal sliding surface 6, the sliding plate 7 and the mounting plate 5. ) And a restoring force generating means for generating a restoring force with respect to the relative displacement in the H direction of the bridge girder 3 with respect to the pier 2. 10.

橋脚2は、水平面に対して平行に平坦に伸びた水平上面11と、水平上面11のH方向の両端部から連続して水平面に対して交差方向であるA方向及びB方向に伸びる傾斜上面12及び13を有しており、傾斜上面12及び13は、水平上面11を中心としてH方向に関して対称に配置、形成されており、橋桁3の下面4は、水平面に対して平行に平坦に伸びている。本例では、A方向及びB方向は、水平面に対して角度α=5°〜45°の範囲の一つの角度である20°の角度αをもっているが、本発明では、斯かる範囲の角度に限定されない。   The pier 2 includes a horizontal upper surface 11 extending flat in parallel with the horizontal plane, and an inclined upper surface 12 extending in the A direction and the B direction, which are intersecting directions with respect to the horizontal plane, continuously from both ends of the horizontal upper surface 11 in the H direction. The inclined upper surfaces 12 and 13 are arranged and formed symmetrically with respect to the H direction with the horizontal upper surface 11 as the center, and the lower surface 4 of the bridge girder 3 extends flat in parallel to the horizontal plane. Yes. In this example, the A direction and the B direction have an angle α of 20 °, which is one angle in the range of angle α = 5 ° to 45 ° with respect to the horizontal plane. It is not limited.

橋桁3側に配された水平滑り面6は、水平面に対して平行に平坦に伸びており、水平水平滑り面6に接触して水平水平滑り面6を介して橋桁3の荷重を受けるように橋脚2側に配された水平滑り面8は、水平滑り面6と同様に水平面に対して平行に平坦に伸びており、滑り板9は、橋脚2の水平上面11にアンカーボルト15等を介して固着された支持基台16の凹所17にV方向に移動自在に配されており、凹所17において当該凹所17の底面を規定する支持基台16の凹所面18と滑り板9の下面19との間には当該凹所面18に取外し自在に単に接触して又は加硫接着されて天然ゴム又は合成ゴム等からなる円板状の弾性部材20が配されており、橋桁3は、弾性部材20を押圧した状態での滑り板9及び支持基台16を介して橋脚2にH方向に移動自在に支持されており、滑り板7の水平滑り面6と支持基台16の上面21との間には、凹所17への雨水、塵埃の浸入を阻止するための円環状の弾性体からなるシールリング22が滑り板9において上面21から凹所17の外部に突出する部分を囲繞して配されている。   The horizontal sliding surface 6 arranged on the bridge girder 3 side extends flat in parallel to the horizontal plane so that it touches the horizontal horizontal sliding surface 6 and receives the load of the bridge girder 3 through the horizontal horizontal sliding surface 6. The horizontal sliding surface 8 arranged on the pier 2 side extends flat in parallel to the horizontal surface like the horizontal sliding surface 6, and the sliding plate 9 is attached to the horizontal upper surface 11 of the pier 2 via anchor bolts 15 or the like. The support base 16 is fixed to the recess 17 so as to be movable in the V direction. The recess 17 defines the bottom surface of the recess 17 in the recess 17 and the sliding plate 9. A disc-shaped elastic member 20 made of natural rubber or synthetic rubber is disposed between the lower surface 19 and the concave surface 18 so as to be detachably contacted or vulcanized and bonded, and made of natural rubber or synthetic rubber. Is a bridge pier via the sliding plate 9 and the support base 16 in a state where the elastic member 20 is pressed. A circle for preventing rainwater and dust from entering the recess 17 between the horizontal sliding surface 6 of the sliding plate 7 and the upper surface 21 of the supporting base 16. A seal ring 22 made of an annular elastic body is disposed so as to surround a portion of the sliding plate 9 that protrudes from the upper surface 21 to the outside of the recess 17.

滑り板7及び9の夫々は、ポリテトラフルオロエチレン樹脂等の低摩擦特性を有する合成樹脂又は斯かる合成樹脂にガラス繊維及び有機繊維等の補強材を混入した補強材入合成樹脂からなっている。   Each of the sliding plates 7 and 9 is made of a synthetic resin having a low friction characteristic such as a polytetrafluoroethylene resin or a synthetic resin containing a reinforcing material in which a reinforcing material such as glass fiber and organic fiber is mixed into the synthetic resin. .

復元力発生手段10は、H方向に関して水平滑り面6を間にして橋桁3に固定されると共に水平面に対して交差方向であるA方向及びB方向に伸びる一対の上部側の交差滑り面31及び32を有した滑り板33及び34と、H方向に関して水平滑り面8を間にして橋脚2に固定されると共に水平面に対して交差方向であるA方向及びB方向に伸びて一対の上部側の交差滑り面31及び32の夫々に夫々A方向及びB方向に摺動自在に接触する一対の下部側の交差滑り面35及び36を有した滑り板37及び38と、交差滑り面31及び32のうちの一方の交差滑り面、本例では交差滑り面31と当該一方の交差滑り面31にA方向に摺動自在に接触する下部側の交差滑り面35とのうちの少なくとも一つの交差滑り面、本例では交差滑り面35を少なくともH方向、本例ではH方向とV方向とを含むC方向、即ちA方向に直交するC方向に変位自在に弾性的に支持する一方の弾性手段39と、交差滑り面31及び32のうちの他方の交差滑り面、本例では交差滑り面32と当該他方の交差滑り面32にB方向に摺動自在に接触する下部側の交差滑り面36とのうちの少なくとも一つの交差滑り面、本例では交差滑り面36を少なくとも水平方向H方向、本例ではH方向とV方向とを含むD方向、即ちB方向に直交するD方向に変位自在に弾性的に支持する他方の弾性手段40と、鍔部45及び46を有していると共に滑り板33を橋桁3に固定する支持基台47と、支持基台47と同様に鍔部48及び49を有していると共に滑り板34を橋桁3に固定する支持基台50と、滑り板37及び弾性手段39を支持していると共に橋脚2の傾斜上面13にアンカーボルト55により固着された支持基台56と、滑り板38及び弾性手段40を支持していると共に橋脚2の傾斜上面13にアンカーボルト61により固着された支持基台62とを具備している。   The restoring force generating means 10 is fixed to the bridge girder 3 with the horizontal sliding surface 6 in between with respect to the H direction, and a pair of upper side sliding surfaces 31 extending in the A direction and the B direction that are crossing the horizontal plane and A pair of sliding plates 33 and 34 having 32 and a horizontal sliding surface 8 with respect to the H direction and being fixed to the pier 2 and extending in the A direction and the B direction intersecting with the horizontal plane, The sliding plates 37 and 38 having a pair of lower sliding surfaces 35 and 36 that are slidably in contact with the cross sliding surfaces 31 and 32 in the A direction and the B direction, respectively, At least one of the cross-sliding surfaces, of the cross-sliding surface 31 in this example, and the cross-sliding surface 35 on the lower side that slidably contacts the one cross-sliding surface 31 in the A direction. In this example, crossed sliding surface 3 One elastic means 39 that elastically displaceably supports at least the H direction, in this example, the C direction including the H direction and the V direction, that is, the C direction orthogonal to the A direction, At least one of the cross-slide surfaces of the other cross-slide surface, in this example, the cross-slide surface 32 and the lower cross-slide surface 36 slidably contacting the other cross-slide surface 32 in the B direction. In the present example, the other elastic means that elastically supports the cross sliding surface 36 so as to be displaceable in at least the horizontal direction H direction, in this example, the D direction including the H direction and the V direction, that is, the D direction orthogonal to the B direction. 40, and a support base 47 for fixing the sliding plate 33 to the bridge girder 3 and the flanges 48 and 49 and the sliding plate 34 as well as the support base 47. Support base 50 for fixing the frame to the bridge girder 3 and a sliding plate 7 and the elastic means 39, and the support base 56 fixed to the inclined upper surface 13 of the pier 2 by the anchor bolt 55, the sliding plate 38 and the elastic means 40, and the inclined upper surface 13 of the pier 2 are supported. And a support base 62 fixed to the base with an anchor bolt 61.

滑り板33、34、37及び38の夫々は、ポリテトラフルオロエチレン樹脂等の低摩擦特性を有する合成樹脂又は斯かる合成樹脂にガラス繊維及び有機繊維等の補強材を混入した補強材入合成樹脂からなっていてもよく、また、摩擦力による減衰効果を期待するときは、高摩擦特性を有する例えば制動用材料等からなっていてもよい。   Each of the sliding plates 33, 34, 37 and 38 is a synthetic resin having a low friction characteristic such as polytetrafluoroethylene resin or a synthetic resin containing a reinforcing material in which a reinforcing material such as glass fiber and organic fiber is mixed in the synthetic resin. In addition, when a damping effect due to frictional force is expected, it may be made of, for example, a braking material having high friction characteristics.

上部側の水平滑り面6側から下方に傾斜して交差滑り面32と逆にA方向に伸びた交差滑り面31を有した滑り板33は、鍔部46にボルト等を介して取付けられた基板71に固着されており、上部側の水平滑り面6側から下方に傾斜して交差滑り面31と逆にB方向に伸びた交差滑り面32を有した滑り板34は、鍔部49にボルト等を介して取付けられた基板72に固着されている。   A sliding plate 33 having an intersecting sliding surface 31 inclined downward from the horizontal sliding surface 6 on the upper side and extending in the direction A opposite to the intersecting sliding surface 32 is attached to the flange 46 via a bolt or the like. A sliding plate 34 that is fixed to the substrate 71 and has a crossing sliding surface 32 that is inclined downward from the horizontal sliding surface 6 side on the upper side and extends in the B direction opposite to the crossing sliding surface 31 is attached to the flange portion 49. It is fixed to a substrate 72 attached via bolts or the like.

下部側の水平滑り面8側から下方に傾斜して交差滑り面36と逆にA方向に伸びた交差滑り面35を有した円板状の滑り板37は、支持基台56の上面75に形成された凹所76に当該上面75から部分的に凹所76外部に突出してC方向に移動自在に装着されており、下部側の水平滑り面8側から下方に傾斜して交差滑り面35と逆に伸びた交差滑り面36を有した円板状の滑り板38は、支持基台62の上面77に形成された凹所78に当該上面77から部分的に凹所78外部に突出してD方向に移動自在に装着されており、滑り板33の交差滑り面31と支持基台56の上面75との間には、凹所76への雨水、塵埃の浸入を阻止するための円環状の弾性体からなるシールリング79が滑り板37の突出部を囲繞して配されており、同様に、滑り板34の交差滑り面32と支持基台62の上面77との間には、凹所78への雨水、塵埃の浸入を阻止するための円環状の弾性体からなるシールリング80が滑り板38の突出部を囲繞して配されている。   A disc-shaped slide plate 37 having a cross slide surface 35 inclined downward from the horizontal slide surface 8 on the lower side and extending in the direction A opposite to the cross slide surface 36 is formed on the upper surface 75 of the support base 56. The formed recess 76 is mounted so as to partially protrude from the upper surface 75 to the outside of the recess 76 so as to be movable in the C direction, and is inclined downward from the horizontal sliding surface 8 on the lower side to cross the sliding surface 35. A disc-shaped sliding plate 38 having a crossed sliding surface 36 extending in the opposite direction extends from a top surface 77 of the support base 62 to the outside of the concave portion 78. It is mounted so as to be movable in the direction D, and an annular shape between the cross sliding surface 31 of the sliding plate 33 and the upper surface 75 of the support base 56 is used to prevent rainwater and dust from entering the recess 76. A seal ring 79 made of an elastic body is disposed so as to surround the protruding portion of the sliding plate 37. Further, between the cross sliding surface 32 of the sliding plate 34 and the upper surface 77 of the support base 62, there is a seal ring 80 made of an annular elastic body for preventing rainwater and dust from entering the recess 78. The protruding portion of the sliding plate 38 is disposed so as to surround it.

弾性手段39は、凹所76において当該凹所76の底面を規定する支持基台56の凹所面85と滑り板37の下面86との間に当該凹所面85に取外し自在に単に接触して又は加硫接着されて配された天然ゴム又は合成ゴム等からなる円板状の弾性部材87を有しており、弾性手段40は、弾性手段39と同様に、凹所78において当該凹所78の底面を規定する支持基台62の凹所面88と滑り板38の下面89との間に当該凹所面88に取外し自在に単に接触して又は加硫接着されて配された天然ゴム又は合成ゴム等からなる円板状の弾性部材90を有している。   The elastic means 39 detachably contacts the recess surface 85 between the recess surface 85 of the support base 56 that defines the bottom surface of the recess 76 and the lower surface 86 of the sliding plate 37 at the recess 76. Or a disc-shaped elastic member 87 made of natural rubber or synthetic rubber or the like that is vulcanized and bonded, and the elastic means 40 is similar to the elastic means 39 in the recess 78. Natural rubber disposed between the recessed surface 88 of the support base 62 defining the bottom surface of 78 and the lower surface 89 of the sliding plate 38 so as to be detachably simply contacted or vulcanized and bonded. Or it has the disk-shaped elastic member 90 which consists of synthetic rubbers.

弾性手段39は、一対の上部側の交差滑り面31及び32のうちの一方の交差滑り面31と当該一方の交差滑り面31にA方向に摺動自在に接触する下部側の交差滑り面35とのうちの少なくとも一つの交差滑り面、本例では交差滑り面35を、当該交差滑り面35にA方向に摺動自在に接触する交差滑り面31に弾性的に押し付けている。   The elastic means 39 includes one cross-sliding surface 31 of a pair of upper-side cross-sliding surfaces 31 and 32 and a lower cross-sliding surface 35 that slidably contacts the one cross-sliding surface 31 in the A direction. At least one of the cross-sliding surfaces, in this example, the cross-sliding surface 35 is elastically pressed against the cross-sliding surface 31 slidably contacting the cross-sliding surface 35 in the A direction.

弾性手段40は、一対の上部側の交差滑り面31及び32のうちの他方の交差滑り面32と当該他方の交差滑り面32にB方向に摺動自在に接触する下部側の交差滑り面36とのうちの少なくとも一つの交差滑り面、本例では交差滑り面36を、当該交差滑り面36にB方向に摺動自在に接触する交差滑り面32に弾性的に押し付けている。   The elastic means 40 includes the other cross-sliding surface 32 of the pair of upper-side cross-sliding surfaces 31 and 32 and the lower cross-sliding surface 36 that slidably contacts the other cross-sliding surface 32 in the B direction. And, in this example, the cross-sliding surface 36 is elastically pressed against the cross-sliding surface 32 slidably contacting the cross-sliding surface 36 in the B direction.

復元力発生手段10において、交差滑り面31、滑り板33、交差滑り面35、滑り板37、弾性手段39、支持基台47及び支持基台56と、交差滑り面32、滑り板34、交差滑り面36、滑り板38、弾性手段40、支持基台50及び支持基台62とは、夫々水平上面11を中心としてH方向に関して互いに対称に配置、形成されている。   In the restoring force generating means 10, the cross sliding surface 31, the sliding plate 33, the cross sliding surface 35, the sliding plate 37, the elastic means 39, the support base 47 and the support base 56, the cross sliding surface 32, the sliding plate 34, the crossing The sliding surface 36, the sliding plate 38, the elastic means 40, the support base 50, and the support base 62 are disposed and formed symmetrically with respect to the H direction with the horizontal upper surface 11 as the center.

一対の上部側の交差滑り面31及び32並びに一対の下部側の交差滑り面35及び36の夫々がH方向において上部側の水平滑り面6及び下部側の水平滑り面8を間にして橋桁3及び橋脚2の夫々に固定されている以上の滑り支承1は、水平面に対して平行に伸びる上部側の水平滑り面6が同じく水平面に対して平行に伸びる下部側の水平滑り面8に、A及びB方向に伸びた上部側の交差滑り面31及び32が同じくA及びB方向に伸びた下部側の交差滑り面35及び36に夫々接触し、弾性手段39及び40の弾性部材87及び90の夫々が交差滑り面35及び36の夫々をC及びD方向の夫々に変位自在に弾性的に支持している結果、橋脚2に対する橋桁3のH方向の相対的変位の生起前においては、水平滑り面6を介して橋桁3の荷重を水平滑り面8で受けて、交差滑り面31及び32の夫々が交差滑り面35及び36の夫々に接触した状態で橋桁3を橋脚2で支持でき、例えば図3に示すように、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の一定以下の一方の相対的変位においては、弾性手段39の弾性部材87により支持された交差滑り面35の当該弾性手段39の弾性部材87の弾性変形を介するC方向の変位、換言すれば、弾性部材87のC方向の厚み減少、即ち弾性部材87の弾性圧縮に起因する滑り板37の凹所76へのより多くの進入による交差滑り面35のC方向の変位に伴って水平滑り面8に対して水平滑り面6がH方向の一方の方向に相対的に滑る一方、弾性部材90のD方向の厚みの増大、即ち弾性部材90の弾性伸張と共に交差滑り面32が交差滑り面36から離反して交差滑り面32と交差滑り面36との接触が解除され、弾性部材90が無負荷状態のD方向の厚みとなり、斯かる小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向の一定以下の他方の相対的変位においても同様であって、而して、橋脚2に対する橋桁3のH方向の一定以下の相対的変位においても、上部側の水平滑り面6を介して橋桁3の荷重を下部側の水平滑り面8で受けて、上部側の交差滑り面31又は32が下部側の交差滑り面35又は36に接触した状態で橋桁3を橋脚2で支持でき、しかも、小さな地震又は温度変化による橋桁3の伸縮等に基づく橋脚2に対する橋桁3のH方向における振動又は変位を水平滑り面8に対する水平滑り面6のH方向の滑りにより許容して、小さな地震等に基づく橋脚2のH方向の振動の橋桁3への伝達を阻止して、小さな地震等において橋桁3にH方向の過大な荷重が生じないようにし、温度変化による橋桁3の伸縮等に基づく橋桁3のH方向の変位の橋脚2への伝達を阻止して、温度変化による橋桁3の伸縮等において橋脚2にH方向の過大な荷重が生じないようにし、そして、自動車の走行等によるV方向の橋桁3の撓み振動を弾性部材20、87及び90の弾性伸縮により許容する。   Each of the pair of upper side sliding surfaces 31 and 32 and the pair of lower side sliding surfaces 35 and 36 sandwiches the upper horizontal sliding surface 6 and the lower horizontal sliding surface 8 in the H direction between the bridge girder 3. The above-mentioned sliding bearing 1 fixed to each of the bridge piers 2 includes an upper horizontal sliding surface 6 extending parallel to the horizontal plane and a lower horizontal sliding surface 8 extending parallel to the horizontal plane. The upper cross sliding surfaces 31 and 32 extending in the B direction and the lower cross sliding surfaces 35 and 36 extending in the A and B directions are in contact with the elastic members 87 and 90 of the elastic means 39 and 40, respectively. As a result of each elastically supporting each of the sliding surfaces 35 and 36 in the C and D directions so as to be displaceable, the horizontal slippage before the occurrence of the relative displacement in the H direction of the bridge girder 3 with respect to the pier 2 occurs. Load on bridge girder 3 via surface 6 The bridge girder 3 can be supported by the bridge pier 2 with the horizontal sliding surface 8 and the cross sliding surfaces 31 and 32 in contact with the cross sliding surfaces 35 and 36, respectively, for example, as shown in FIG. In one relative displacement in the H direction of the bridge girder 3 with respect to the pier 2 based on the expansion and contraction of the bridge girder 3 due to temperature change, the elastic means 39 of the cross sliding surface 35 supported by the elastic member 87 of the elastic means 39. The displacement in the C direction through the elastic deformation of the elastic member 87, in other words, the decrease in the thickness of the elastic member 87 in the C direction, that is, a larger amount of the elastic member 87 into the recess 76 of the sliding plate 37 due to the elastic compression. The horizontal sliding surface 6 slides relative to the horizontal sliding surface 8 in one direction in the H direction with the displacement in the C direction of the cross sliding surface 35 due to the approach, while the thickness of the elastic member 90 in the D direction increases. That is, the elastic member 9 With the elastic extension, the cross-sliding surface 32 is separated from the cross-sliding surface 36 and the contact between the cross-sliding surface 32 and the cross-sliding surface 36 is released. The same applies to the other relative displacement of the bridge girder 3 with respect to the pier 2 due to an earthquake or a change in temperature due to temperature changes. Even in the following relative displacement, the load of the bridge girder 3 is received by the lower horizontal sliding surface 8 via the upper horizontal sliding surface 6, and the upper cross sliding surface 31 or 32 becomes the lower cross sliding surface. The bridge girder 3 can be supported by the pier 2 in contact with 35 or 36, and the vibration or displacement of the bridge girder 3 in the H direction relative to the pier 2 based on the expansion and contraction of the bridge girder 3 due to a small earthquake or temperature change is applied to the horizontal sliding surface 8. water Allowed by sliding in the H direction of the flat sliding surface 6 to prevent transmission of vibration in the H direction of the pier 2 to the bridge girder 3 due to small earthquakes, etc., and excessive load in the H direction on the bridge girder 3 in small earthquakes, etc. Is prevented, and the displacement of the bridge girder 3 in the H direction based on the expansion and contraction of the bridge girder 3 due to the temperature change is prevented from being transmitted to the pier 2. Thus, the bending vibration of the bridge girder 3 in the V direction due to traveling of the automobile is allowed by elastic expansion and contraction of the elastic members 20, 87 and 90.

大きな地震等において例えば図4に示すように橋脚2に対する橋桁3の一定以上のH方向における一方の方向の相対的振動変位においては、弾性手段39の弾性部材87により支持された交差滑り面35の当該弾性手段39の弾性部材87の弾性変形の減少又は弾性変形の限界に起因するC方向の変位の減少、換言すれば、弾性部材87のC方向の厚み減少の停止に起因する滑り板37の凹所76への進入停止による交差滑り面35のC方向の変位停止で上部側の交差滑り面31に対して下部側の交差滑り面35がA方向に相対的に滑り、而して、斯かる橋脚2に対する橋桁3のH方向の一定以上の一方の方向の相対的変位においては、上部側の水平滑り面6と下部側の水平滑り面8との相互の接触が解除されて上部側の水平滑り面6が下部側の水平滑り面8から離れ、橋桁3が上昇される結果、橋脚2に対する橋桁3のH方向の一定以上の相対的変位を生じさせる振動エネルギを橋桁3で吸収することができ、斯かる解除、上昇後、H方向における他方の方向の相対的振動変位で、傾斜面31と傾斜面35との間の滑りを介して橋桁3を下降させ、水平滑り面6の水平滑り面8からのV方向の離反を解除させて水平滑り面6の水平滑り面8への接触を回復させ、以下、橋脚2に対する橋桁3の一定以上のH方向における他方の方向の相対的振動変位においても同様であって、而して、これら水平滑り面6、傾斜面31及び32と水平滑り面8、傾斜面35及び36との相互接触において、橋脚2に対して橋桁3に一定以上のH方向の相対的変位を生じさせる大きな地震等に基づく大きな運動エネルギである振動エネルギを摩擦エネルギと橋桁3の位置エネルギとに転化して橋脚2に対する橋桁3の過度なH方向の相対的変位を生じさせないようになっている。   In a large earthquake or the like, for example, as shown in FIG. 4, in the relative vibration displacement in one direction in the H direction of the bridge girder 3 with respect to the pier 2 in a certain direction, the cross sliding surface 35 supported by the elastic member 87 of the elastic means 39 is used. Reduction in elastic deformation of the elastic member 87 of the elastic means 39 or reduction in displacement in the C direction due to the limit of elastic deformation, in other words, the slip of the sliding plate 37 due to the stop of thickness reduction in the elastic member 87 in the C direction. By stopping the displacement of the cross-sliding surface 35 in the C direction due to the stop of entering the recess 76, the lower cross-sliding surface 35 slides relative to the upper cross-sliding surface 31 in the A direction. In the relative displacement of the bridge girder 3 with respect to the pier 2 in one direction of a certain direction in the H direction, the mutual contact between the horizontal sliding surface 6 on the upper side and the horizontal sliding surface 8 on the lower side is released and the upper side Horizontal sliding surface 6 is at the bottom As a result of the bridge girder 3 being lifted away from the horizontal sliding surface 8, vibration energy that causes a relative displacement of the bridge girder 3 in the H direction with respect to the pier 2 to be more than a certain level can be absorbed by the bridge girder 3. After the ascent, the bridge girder 3 is lowered through the slip between the inclined surface 31 and the inclined surface 35 by the relative vibration displacement in the other direction in the H direction, and the V direction from the horizontal sliding surface 8 of the horizontal sliding surface 6 The contact of the horizontal sliding surface 6 with the horizontal sliding surface 8 is recovered by releasing the separation of the horizontal sliding surface 6, and the same applies to the relative vibration displacement in the other direction in the H direction of the bridge girder 3 with respect to the pier 2 in a certain H direction. Thus, relative displacement of the bridge girder 3 with respect to the bridge girder 3 in a certain direction in the H direction in mutual contact between the horizontal sliding surface 6 and the inclined surfaces 31 and 32 and the horizontal sliding surface 8 and the inclined surfaces 35 and 36. Based on large earthquakes that cause So as not to cause a relative displacement of the excessive H direction of the bridge girder 3 by converting vibration energy is deal of kinetic energy and potential energy of the friction energy and the bridge girder 3 for the pier 2.

したがって、滑り支承1によれば、上部側の交差滑り面31と下部側の交差滑り面35との接触又は上部側の交差滑り面32と下部側の交差滑り面36との接触を常時維持した状態で橋桁3を橋脚2でH方向に移動自在に支持でき、橋桁3のV方向の上昇への移行を大きな衝撃を生じさせないで行うことができる上に、大きな地震等に基づく大きな運動エネルギである振動エネルギを橋桁3の橋脚2からのV方向の上昇移動をもって位置エネルギに変換して大きな振動エネルギを効果的に吸収でき、斯かる大きな振動エネルギに基づく橋桁3と橋脚2との間の相対的なH方向の大変位を防止でき、而して、橋脚2から橋桁3の脱落を防止でき、しかも、大きな地震等に基づく大きな振動エネルギを効果的に利用できて、損壊の虞をなくし得る上に、製造費の低減及び占有空間の低減を図り得る上に、摩擦力による減衰効果も期待でき、また、角度αを適宜設定することにより、運動エネルギの位置エネルギへの変換特性及び橋脚2の塑性化を任意に制御できる。   Therefore, according to the sliding bearing 1, the contact between the upper cross-slide surface 31 and the lower cross-slide surface 35 or the contact between the upper cross-slide surface 32 and the lower cross-slide surface 36 is always maintained. In this state, the bridge girder 3 can be supported by the pier 2 so as to be movable in the H direction, and the transition of the bridge girder 3 to the upward movement in the V direction can be performed without causing a large impact. A certain vibration energy can be converted into potential energy by moving upward in the V direction from the pier 2 of the bridge girder 3 to effectively absorb a large vibration energy, and the relative between the bridge girder 3 and the pier 2 based on such a large vibration energy. It is possible to prevent a large displacement in the H direction, and to prevent the bridge girder 3 from falling off from the pier 2 and to effectively use large vibration energy based on a large earthquake or the like, thereby eliminating the possibility of damage. In addition, the manufacturing cost can be reduced and the space occupied can be reduced, and a damping effect due to frictional force can be expected. Also, by appropriately setting the angle α, the conversion characteristics of kinetic energy into potential energy and the pier 2 Plasticization can be controlled arbitrarily.

上記の滑り支承1では、橋軸方向であるH方向において復元力を発生させるようにしたが、本発明は、これに限定されないでのであって、例えば、下部構造物としての橋脚2に対して上部構造物としての橋桁3を水平方向においてH方向に対して直交する橋軸直角方向に移動自在に支持するように、橋脚2と橋桁3との間に本発明の滑り支承を介在させて、これにより、H方向に対して直交する橋軸直角方向に復元力を発生させるようにしてもよい。   In the sliding bearing 1 described above, the restoring force is generated in the H direction which is the bridge axis direction. However, the present invention is not limited to this. For example, for the pier 2 as a substructure. The sliding support of the present invention is interposed between the bridge pier 2 and the bridge girder 3 so as to support the bridge girder 3 as the superstructure movably in the direction perpendicular to the bridge axis perpendicular to the H direction in the horizontal direction. Thereby, a restoring force may be generated in a direction perpendicular to the bridge axis perpendicular to the H direction.

1 滑り支承
2 橋脚
3 橋桁
4、19 下面
5 取付板
6、8 水平滑り面
7 滑り板
9 滑り板
10 復元力発生手段
11 水平上面
12、13 傾斜上面
15、55、61 アンカーボルト
16、47、50、56、62 支持基台
17、76、78 凹所
18、85、88 凹所面
20、87、90 弾性部材
21 上面
22 シールリング
31、32、35、36 交差滑り面
33、34、37、38 滑り板
39、40 弾性手段
45、46、48、49 鍔部
DESCRIPTION OF SYMBOLS 1 Sliding bearing 2 Bridge pier 3 Bridge girder 4,19 Lower surface 5 Mounting plate 6, 8 Horizontal sliding surface 7 Sliding plate 9 Sliding plate 10 Restoring force generation means 11 Horizontal upper surface 12, 13 Inclined upper surface 15, 55, 61 Anchor bolt 16, 47, 50, 56, 62 Support base 17, 76, 78 Recess 18, 85, 88 Recess surface 20, 87, 90 Elastic member 21 Upper surface 22 Seal ring 31, 32, 35, 36 Cross sliding surface 33, 34, 37 , 38 Sliding plate 39, 40 Elastic means 45, 46, 48, 49

Claims (4)

下部構造物と上部構造物との間に介在される構造物用の滑り支承であって、上部構造物側に配されると共に水平面に対して平行に伸びる上部側の水平滑り面と、この上部側の水平滑り面に接触して上部側の水平滑り面を介して上部構造物の荷重を受けるように下部構造物側に配されると共に水平面に対して平行に伸びる下部側の水平滑り面と、下部構造物に対する上部構造物の水平方向の相対的変位に対する復元力を発生する復元力発生手段とを具備しており、復元力発生手段は、水平方向に関して上部側の水平滑り面を間にして上部構造物に固定されると共に水平面に対して交差方向に伸びる一対の上部側の交差滑り面と、水平方向に関して下部側の水平滑り面を間にして下部構造物に固定されると共に水平面に対して交差方向に伸びて一対の上部側の交差滑り面の夫々に夫々摺動自在に接触する一対の下部側の交差滑り面と、一対の上部側の交差滑り面のうちの一方の交差滑り面と当該一方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を少なくとも水平方向に変位自在に弾性的に支持する一方の弾性手段と、一対の上部側の交差滑り面のうちの他方の交差滑り面と当該他方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を少なくとも水平方向に変位自在に弾性的に支持する他方の弾性手段とを具備しており、一方の弾性手段は、一対の上部側の交差滑り面のうちの一方の交差滑り面と当該一方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を、当該少なくとも一つの交差滑り面に摺動自在に接触する交差滑り面に弾性的に押し付けており、他方の弾性手段は、一対の上部側の交差滑り面のうちの他方の交差滑り面と当該他方の交差滑り面に摺動自在に接触する下部側の交差滑り面とのうちの少なくとも一つの交差滑り面を、当該少なくとも一つの交差滑り面に摺動自在に接触する交差滑り面に弾性的に押し付けている構造物用の滑り支承。 A sliding bearing for a structure interposed between a lower structure and an upper structure, which is disposed on the upper structure side and extends parallel to the horizontal plane, and an upper horizontal sliding surface A lower horizontal sliding surface which is arranged on the lower structure side so as to contact the horizontal sliding surface on the side and receive the load of the upper structure via the upper horizontal sliding surface and which extends parallel to the horizontal plane; Restoring force generating means for generating a restoring force against the horizontal displacement of the upper structure relative to the lower structure, the restoring force generating means sandwiching the horizontal sliding surface on the upper side in the horizontal direction. Fixed to the upper structure and extended to the horizontal plane in a direction intersecting with the horizontal plane, and fixed to the lower structure with the horizontal sliding plane on the lower side in the horizontal direction between and fixed to the horizontal plane. One that extends in the cross direction A pair of lower-side cross-sliding surfaces that are slidably in contact with each of the upper-side cross-sliding surfaces, one cross-sliding surface of the pair of upper-side cross-sliding surfaces, and the one cross-sliding surface One elastic means for elastically supporting at least one of the lower-side cross-sliding surfaces slidably in contact with the lower-side cross-sliding surface at least horizontally, and a pair of upper-side cross-sliding surfaces Elastically supports at least one cross-sliding surface of the other cross-sliding surface and a lower cross-sliding surface slidably in contact with the other cross-sliding surface at least horizontally. The other elastic means, and the one elastic means is one of the pair of upper side sliding surfaces and the lower side that is slidably in contact with the one side sliding surface. At least one of the intersecting sliding surfaces The differential sliding surface is elastically pressed against the cross sliding surface that is slidably in contact with the at least one cross sliding surface, and the other elastic means is the other of the pair of upper cross sliding surfaces. A cross-slip that slidably contacts at least one cross-sliding surface of the sliding surface and a lower cross-sliding surface that slidably contacts the other cross-sliding surface with the at least one cross-sliding surface A sliding bearing for structures that are elastically pressed against a surface . 一対の上部側の交差滑り面の夫々は、上部側の水平滑り面側の夫々から下方に傾斜して互いに逆方向に伸びており、一対の下部側の交差滑り面の夫々は、下部側の水平滑り面側の夫々から下方に傾斜して互いに逆方向に伸びている請求項1に記載の構造物用の滑り支承。   Each of the pair of upper side sliding surfaces is inclined downwardly from each of the upper side horizontal sliding surfaces and extends in opposite directions, and each of the pair of lower side sliding surfaces is on the lower side. The sliding bearing for a structure according to claim 1, wherein the sliding bearing is inclined downward from each of the horizontal sliding surfaces and extends in opposite directions. 一対の上部側の交差滑り面の夫々は、上部側の水平滑り面側の夫々から上方に傾斜して互いに逆方向に伸びており、一対の下部側の交差滑り面の夫々は、下部側の水平滑り面側の夫々から上方に傾斜して互いに逆方向に伸びている請求項1に記載の構造物用の滑り支承。   Each of the pair of upper side sliding surfaces is inclined upwardly from each of the upper side horizontal sliding surface sides and extends in opposite directions, and each of the pair of lower side sliding surfaces is on the lower side. 2. A sliding bearing for a structure according to claim 1, wherein the sliding bearing is inclined upward from each of the horizontal sliding surfaces and extends in opposite directions. 上部構造物が橋桁であって、下部構造物が橋脚である橋梁用の滑り支承りであり、一対の上部側の交差滑り面及び一対の下部側の交差滑り面の夫々は、橋軸方向において上部側の水平滑り面及び下部側の水平滑り面を間にして上部構造物及び下部構造物の夫々に固定されるようになっている請求項1から3のいずれか一項に記載の構造物用の滑り支承。The upper structure is a bridge girder and the lower structure is a bridge pier, and each of the pair of upper side sliding surfaces and the pair of lower side sliding surfaces is in the direction of the bridge axis. The structure according to any one of claims 1 to 3, wherein the structure is fixed to each of the upper structure and the lower structure with the horizontal sliding surface on the upper side and the horizontal sliding surface on the lower side in between. Sliding bearing for.
JP2009115759A 2009-05-12 2009-05-12 Sliding bearings for structures Active JP5302764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115759A JP5302764B2 (en) 2009-05-12 2009-05-12 Sliding bearings for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115759A JP5302764B2 (en) 2009-05-12 2009-05-12 Sliding bearings for structures

Publications (2)

Publication Number Publication Date
JP2010265927A JP2010265927A (en) 2010-11-25
JP5302764B2 true JP5302764B2 (en) 2013-10-02

Family

ID=43363080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115759A Active JP5302764B2 (en) 2009-05-12 2009-05-12 Sliding bearings for structures

Country Status (1)

Country Link
JP (1) JP5302764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013917A (en) * 2016-06-28 2016-10-12 杜桂菊 Engineering three-dimensional aligning shock-isolation and anti-seismic support
CN106168078A (en) * 2016-06-28 2016-11-30 杜桂菊 Antidumping high-voltage transmission line towers

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255708A (en) * 2013-05-02 2013-08-21 浙江大学 Novel multi-sliding-face aseismatic bearing
CN106120539B (en) * 2016-06-28 2018-01-05 梁建军 Single column pier bridge antidumping structure
CN106087721B (en) * 2016-06-28 2017-09-12 广州市志达钢管有限公司 Ultra-thin aseismatic bearing
CN106087720A (en) * 2016-06-28 2016-11-09 杜桂菊 Engineering aseismatic bearing
CN106087704B (en) * 2016-06-28 2017-10-03 西南交通建设集团股份有限公司 Single column pier bridge antidumping structure
CN106087719B (en) * 2016-06-28 2017-09-29 张刚 Three-dimensional aligning aseismatic bearing
CN106087718B (en) * 2016-06-28 2018-01-09 赵昌军 Aseismatic bearing
CN106522083B (en) * 2016-12-21 2019-06-28 柳州东方工程橡胶制品有限公司 A kind of wind-resistant spherical support

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726893Y2 (en) * 1977-10-20 1982-06-11
JP3025177B2 (en) * 1995-07-28 2000-03-27 鹿島建設株式会社 Seismic isolation method for bridges using existing bearings
JP3022967U (en) * 1995-09-21 1996-04-02 久敏 甲斐 Seismic isolation device
JP2000002783A (en) * 1998-06-15 2000-01-07 Mitsubishi Heavy Ind Ltd Three-dimensional base isolation structure for building
JP2006241815A (en) * 2005-03-03 2006-09-14 Oriental Construction Co Ltd Sliding bearing with added geometric stiffness, and structure for arranging the bearing
JP5561661B2 (en) * 2007-12-14 2014-07-30 オイレス工業株式会社 Sliding bearings for structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106013917A (en) * 2016-06-28 2016-10-12 杜桂菊 Engineering three-dimensional aligning shock-isolation and anti-seismic support
CN106168078A (en) * 2016-06-28 2016-11-30 杜桂菊 Antidumping high-voltage transmission line towers

Also Published As

Publication number Publication date
JP2010265927A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5302764B2 (en) Sliding bearings for structures
JP5561661B2 (en) Sliding bearings for structures
CN103147394B (en) Pulling-resistant bidirectional sliding friction bearing
US9829063B2 (en) Seismic isolator utilizing wedge
US20140026498A1 (en) Antiseismic support
CN203049785U (en) Shock absorption support utilizing shock-absorption control apparatus
TWI284695B (en) Isolation platform
US9399865B2 (en) Seismic isolation systems
CN101265755A (en) Sliding-type laminated plate bearing and structure
KR20120022520A (en) Sliding pendulum isolator
CN102287016A (en) Pendulum type friction wall
KR101295845B1 (en) Seismic isolation device for a bridge
JP4274557B2 (en) Horizontal load elastic support device
KR101297635B1 (en) Structural bearing having attachment devices for sliding materials
JP2010189999A (en) Base-isolation structure and building having the same
JP2016216919A (en) Bridge fall prevention structure
JP2019082219A (en) Base isolation device
JP2006291588A (en) Base-isolated structure
JP3946527B2 (en) Function change repair method for existing elastic bearings
KR101785530B1 (en) Precast floating track system and device for reducing vibration for the same
CN101718116A (en) High damping shock absorption spherical supporting seat
JP2009047290A (en) Omnidirectional vibration damper
CN110924551B (en) Friction sliding bearing seat vibration reduction structure between ground and building
JP2006291670A (en) Base isolating device
JP5721333B2 (en) Sliding foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Ref document number: 5302764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250