JP3025177B2 - Seismic isolation method for bridges using existing bearings - Google Patents

Seismic isolation method for bridges using existing bearings

Info

Publication number
JP3025177B2
JP3025177B2 JP7192913A JP19291395A JP3025177B2 JP 3025177 B2 JP3025177 B2 JP 3025177B2 JP 7192913 A JP7192913 A JP 7192913A JP 19291395 A JP19291395 A JP 19291395A JP 3025177 B2 JP3025177 B2 JP 3025177B2
Authority
JP
Japan
Prior art keywords
existing
seismic isolation
isolation device
bearing
bearings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7192913A
Other languages
Japanese (ja)
Other versions
JPH0941321A (en
Inventor
剛啓 日紫喜
哲夫 竹田
広幸 南雲
雄二 新原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Bridgestone Corp
Oiles Corp
Original Assignee
Kajima Corp
Bridgestone Corp
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Bridgestone Corp, Oiles Corp filed Critical Kajima Corp
Priority to JP7192913A priority Critical patent/JP3025177B2/en
Publication of JPH0941321A publication Critical patent/JPH0941321A/en
Application granted granted Critical
Publication of JP3025177B2 publication Critical patent/JP3025177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、古い耐震設計基
準で建設された道路橋などの橋梁(免震化されていな
い)の耐震補強に免震技術を適用する場合に用いる既存
支承を利用した橋梁の免震工法に関するものである。特
に、大地震により被害が予想される都市内高架橋や高速
道路において、大規模な交通規制を伴った施工を実施す
ることが困難な場合に適用される。また、橋梁形式とし
ては、支承構造を持つ橋梁であれば、鋼橋でもコンクリ
ート橋でも適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes use of existing bearings used when seismic isolation technology is applied to seismic reinforcement of bridges (not seismically isolated) such as road bridges constructed according to old seismic design standards. This is related to the seismic isolation method for bridges. In particular, the present invention is applied to a case where it is difficult to carry out construction with large-scale traffic regulation on an urban viaduct or an expressway that is likely to be damaged by a large earthquake. As for the bridge type, any steel bridge or concrete bridge can be applied as long as the bridge has a bearing structure.

【0002】[0002]

【従来の技術】古い耐震設計基準で建設された免震化さ
れていない既設の道路橋などの橋梁を免震化する場合、
従来においては、既存橋桁をジャッキアップして既存橋
脚上面との間に作業に必要なスペースを確保した後、既
存の支承(可動沓や固定沓)を撤去し、次いでこの既存
支承が設置されていた位置に免震支承(鉛プラグ入り積
層ゴム支承や高減衰ゴム支承)を新たに設置するのが一
般的である。
2. Description of the Related Art When seismic isolation of an existing non-isolated bridge such as a road bridge constructed according to the old seismic design standards,
Conventionally, the existing bridge girder is jacked up to secure the space required for work between the existing bridge pier and the upper surface of the existing pier, then the existing bearings (movable and fixed shoes) are removed, and then the existing bearing is installed. It is common to install new seismic isolation bearings (laminated rubber bearings with lead plugs or high-damping rubber bearings) at the positions where they are located.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
ような従来工法では、既存支承があった位置に免震支承
を取付けるため、免震支承の平面寸法,高さとも制約を
受け、使用できる免震装置が制限されるなどの問題があ
る。また、コンクリートのはつり,既存支承の撤去,免
震支承の据え付け,アンカー工事等が必要であり、工費
・工期が増加し、さらに既設橋桁を大幅にジャッキアッ
プする必要があるため、周辺道路の交通規制を行う必要
があり、交通量の多い都市部の道路橋などの場合、社会
的影響が大きい。
However, according to the conventional method as described above, since the seismic isolation bearing is mounted at the position where the existing bearing was located, there are restrictions on the plane dimensions and height of the seismic isolation bearing, so that it is possible to use the seismic isolation bearing. There are problems such as the restriction of seismic devices. In addition, concrete suspension, removal of existing bearings, installation of seismic isolation bearings, anchor work, etc. are required, which increases construction costs and construction time, and requires the existing bridge girders to be greatly jacked up. Regulations need to be implemented, and in the case of road bridges in urban areas with heavy traffic, social impact is large.

【0004】また、既設橋梁を免震化する場合、桁間の
遊間が少ないために許容される橋桁の変位量が少ない。
従って、長周期化で地震力を低減する方法よりも、橋桁
の変位を少なくし、かつ高減衰化を図るような免震化が
必要である。通常の免震支承では、積層ゴムで水平方向
に柔らかく支えて固有周期を増大させ、鉛プラグや高減
衰ゴムによる履歴減衰・粘性減衰でエネルギーを吸収し
ているが、このような通常の免震支承では、少ない変位
で、かつ高減衰化を図ることは困難である。
[0004] Further, when an existing bridge is to be seismically isolated, the allowable displacement of the bridge girder is small because the play between the girder is small.
Therefore, seismic isolation is required to reduce the displacement of the bridge girder and increase the damping compared to the method of reducing the seismic force by increasing the period. In a normal seismic isolation bearing, the natural period is increased by supporting it softly in the horizontal direction with laminated rubber, and energy is absorbed by hysteretic damping and viscous damping with a lead plug or high damping rubber. With a bearing, it is difficult to achieve high damping with a small displacement.

【0005】この発明は、前述のような問題点を解消す
べくなされたもので、その目的は、既設橋梁の免震化工
事を従来工法よりも簡単に行うことができ、しかも橋桁
の変位を少なくし、かつ高減衰化を図ることのできる既
存支承を利用した橋梁の免震工法を提供することにあ
る。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to make it possible to perform seismic isolation work on an existing bridge more easily than the conventional method, and to reduce the displacement of the bridge girder. It is an object of the present invention to provide a seismic isolation method for bridges using existing bearings that can reduce the amount of vibration and increase damping.

【0006】[0006]

【課題を解決するための手段】本発明では、前記目的を
達成するために、次のような手段を採用する。即ち、 既存支承を撤去することなくすべり支承化する。既
設橋梁の支承形式は、材料的には鋼製とゴム製に分けら
れ、さらに鋼製支承には、線支承,支承板支承,ピン支
承,ローラー支承などがあり、このような既存支承に若
干の改造を施すことにより、既存支承を許容変位量の大
きなすべり支承にする。
According to the present invention, the following means are employed to achieve the above object. In other words, sliding bearings will be used without removing existing bearings. Existing bridges are classified into steel and rubber materials in terms of material. Steel bearings include wire bearings, bearing plate bearings, pin bearings, and roller bearings. The existing bearing is made a sliding bearing with a large allowable displacement by remodeling.

【0007】 このすべり支承に加えて、免震装置を
既設橋桁下面と既設橋脚上面または既設橋脚上部側面と
の間に配設する。即ち、既存橋桁に復元力と減衰を付加
するために免震装置を取付ける。これは、すべり支承だ
けでは、地震後に残留変位が残る可能性があるためであ
る。この免震装置には、従来から免震橋梁に用いられて
いるものと同様の鉛プラグ入り積層ゴム支承や高減衰ゴ
ム支承を使用することができる。
In addition to the sliding bearing, a seismic isolation device is disposed between the lower surface of the existing bridge girder and the upper surface of the existing pier or the upper side surface of the existing pier. That is, a seismic isolation device is installed to add restoring force and damping to the existing bridge girder. This is because there is a possibility that residual displacement will remain after the earthquake with only the slip bearing. For this seismic isolation device, a laminated rubber bearing containing lead plugs or a high damping rubber bearing similar to those conventionally used for seismic isolation bridges can be used.

【0008】免震装置の取付けに関しては、既設橋桁下
面と既設橋脚上面の間のスペースが十分にあり、免震装
置のアンカーが取れる場合には、免震装置を既設橋桁と
既設橋脚との隙間に取付ける。既設橋桁と既設橋脚の隙
間の設置スペースが十分でなく、免震装置が平面寸法・
高さの制約を受ける場合には、既設橋脚の受梁部におけ
る橋軸直角方向に沿う側面から免震装置取付けブラケッ
トを張り出すことによりスペースを確保する。ブラケッ
トは、PC鋼棒などによって既設橋脚の受梁部に固定す
る。
[0008] When mounting the seismic isolation device, if there is sufficient space between the lower surface of the existing bridge girder and the upper surface of the existing pier, and the anchor of the seismic isolation device can be taken, the seismic isolation device is installed in the gap between the existing bridge girder and the existing pier. Attach to There is not enough space for the clearance between the existing bridge girder and the existing pier, and
In the case of height restrictions, the seismic isolation device mounting bracket is extended from the side of the receiving part of the existing pier along the direction perpendicular to the bridge axis to secure space. The bracket is fixed to the receiving part of the existing pier with a PC steel bar or the like.

【0009】以上のような構成において、既存支承が改
造されてすべり支承となり、さらに免震装置が取付けら
れ、既設橋桁がすべり支承と免震装置により支承され
る。既存支承は本体部分をそのまま残して一部が撤去さ
れるため、コンクリートのはつり,アンカー工事が不要
となり、工費・工期の低減を図れ、また工事が簡単とな
り、従来工法のような大規模なジャッキアップを必要と
しない。また、橋脚から張り出した免震装置取付けブラ
ケットを使用することにより、免震装置の平面寸法・高
さに制限を受けることがない。
In the above configuration, the existing bearing is converted into a sliding bearing, a seismic isolation device is further attached, and the existing bridge girder is supported by the sliding bearing and the seismic isolation device. Since the existing bearings are partly removed while leaving the main body part intact, concrete dropping and anchoring work is not required, construction costs and construction time can be reduced, and construction is simplified, and large-scale jacks like the conventional construction method are used. No need for up. Also, by using the seismic isolation device mounting bracket projecting from the pier, there is no restriction on the planar dimensions and height of the seismic isolation device.

【0010】すべり支承により、橋桁重量が支持される
と共に、摩擦による減衰が付加される。一方、免震装置
により、既設橋桁が地震後に元の位置に戻るための復元
力と、装置の履歴などによる減衰が付加される。このよ
うなすべり支承と免震装置の併用により、地震時に橋梁
には免震装置の減衰だけでなく、すべり支承の摩擦減衰
も付加されるため、少ない変位で高減衰化が可能とな
り、遊間の少ない既設橋梁の免震化に最適となる。
The sliding bearing supports the weight of the bridge girder and adds damping due to friction. On the other hand, the seismic isolation device adds a restoring force for the existing bridge girder to return to the original position after the earthquake and a damping due to the history of the device. The combined use of such a sliding bearing and seismic isolation device adds not only the damping of the seismic isolation device but also the frictional damping of the sliding bearing to the bridge during an earthquake. Ideal for seismic isolation of existing bridges.

【0011】[0011]

【発明の実施の形態】以下、この発明を図示する一実施
例に基づいて説明する。これは、既設の道路橋に適用し
た例である。図1に示すように、既設橋桁(鋼桁・PC
桁・RC桁)Aと既設橋脚(RC橋脚・鋼橋脚)Bの間
に配置されている複数の既存支承を改造してすべり支承
1とし、さらに、既設橋桁Aと既設橋脚Bとの間に免震
装置2を新たに複数配設し、すべり支承1と免震装置2
を併用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings. This is an example applied to an existing road bridge. As shown in Fig. 1, the existing bridge girder (steel girder / PC
Girder / RC girder) A and existing bridge piers (RC piers / steel piers) B are converted to a plurality of existing bearings to make them slide bearings 1. Further, between existing bridge girder A and existing pier B A plurality of seismic isolation devices 2 are newly installed, and the sliding bearing 1 and the seismic isolation device 2
To be used together.

【0012】既設橋桁Aの下面と既設橋脚Bの上面との
間にスペースが十分にあり、かつ免震装置のアンカー工
事が可能な場合には、図1(a)に示すように、既設橋
桁Aの下面と既設橋脚Bの上面との間に免震装置2を配
設する。また、免震装置2は各すべり支承1の間に配設
する。なお、免震装置2の設置位置・設置台数は、これ
に限定されることはない。
When there is sufficient space between the lower surface of the existing bridge girder A and the upper surface of the existing bridge pier B and anchor work of the seismic isolation device is possible, as shown in FIG. The seismic isolation device 2 is arranged between the lower surface of A and the upper surface of the existing pier B. Further, the seismic isolation device 2 is disposed between the respective slide bearings 1. In addition, the installation position and the installation number of the seismic isolation device 2 are not limited to this.

【0013】既設橋桁Aと既設橋脚Bの間のスペースが
小さく、免震装置2の取付けが困難な場合には、図1
(b)に示すように、既設橋脚Bの受梁部B1 における
橋軸直角方向に平行な両側面に免震装置取付けブラケッ
ト3を突設し、既設橋桁Bの下面とブラケット3の上面
との間に免震装置2を配設する。
If the space between the existing bridge girder A and the existing pier B is small and it is difficult to mount the seismic isolation device 2, FIG.
(B), the projecting an isolator mounting bracket 3 on both side surfaces parallel to the bridge axis perpendicular direction in the receiving beam portion B 1 of the existing piers B, a top surface of the lower surface and the bracket 3 of the existing bridge deck B The seismic isolation device 2 is installed between the two.

【0014】すべり支承1は、既存支承の本体部分をそ
のまま残してすべり支承化する。既存支承の形式によっ
て改良方法が異なるが、例えば、既存支承の上沓および
下沓を取り外し、図2(a)に示すように、既設橋桁A
の既存のアンカーバーaを利用してステンレス製上沓1
0を溶接などで固定し、既設橋脚B側に、フッ素樹脂す
べり板(PTFE板)11,鋼製プレート12,ゴムプ
レート13を備えたステンレス製下沓14を配置する。
The sliding bearing 1 is formed as a sliding bearing while leaving the main body of the existing bearing as it is. The improvement method differs depending on the type of the existing bearing.
After removing the lower shoe, as shown in FIG.
Stainless steel upper shoe 1 using existing anchor bar a
0 is fixed by welding or the like, and a stainless steel lower shoe 14 having a fluororesin slide plate (PTFE plate) 11, a steel plate 12, and a rubber plate 13 is disposed on the existing pier B side.

【0015】下沓14は上部中央の凹部に鋼製プレート
12,ゴムプレート13を収納した部材であり、新たに
制作して既設橋脚Bの上面にアンカーボルトを介して固
定し、あるいは残存するアンカーフレームなどに溶接な
どで固定する。フッ素樹脂すべり板11は、鋼製プレー
ト12の上部中央の凹部に収納する。
The lower shoe 14 is a member in which a steel plate 12 and a rubber plate 13 are housed in a recess in the upper center, and is newly manufactured and fixed to the upper surface of the existing pier B via anchor bolts, or the remaining anchor. Fix to the frame by welding. The fluororesin slide plate 11 is housed in a recess at the upper center of the steel plate 12.

【0016】すべり面は、ステンレス製上沓10と耐候
性に優れたフッ素樹脂すべり板11とで構成され、ステ
ンレス製上沓10の大きさは、免震化した後の既設橋桁
Aの変位量から決定される。フッ素樹脂すべり板11の
大きさは、既設橋桁Aの重量(鉛直荷重)による面圧か
ら決定される。
The sliding surface is composed of a stainless steel upper shoe 10 and a fluororesin sliding plate 11 having excellent weather resistance. The size of the stainless steel upper shoe 10 is the displacement amount of the existing bridge girder A after seismic isolation. Is determined from The size of the fluororesin slide plate 11 is determined from the surface pressure due to the weight (vertical load) of the existing bridge girder A.

【0017】なお、ゴムプレート13は回転変形を除去
するための部材であり、鋼製プレート12の下面に配設
する。さらに、鋼製プレート12の上面には、フッ素樹
脂すべり板11を取り囲むようにシールリング15を立
設し、すべり面に砂などが入り込むのを防止する。ま
た、気象条件が厳しい場合などには、ステンレス部材の
劣化を防ぐため、ステンレス製上沓10の外周部分から
カバー16をステンレス製下沓14を取り囲むように垂
設する。
The rubber plate 13 is a member for removing rotational deformation, and is provided on the lower surface of the steel plate 12. Further, a seal ring 15 is provided upright on the upper surface of the steel plate 12 so as to surround the fluororesin slide plate 11 to prevent sand or the like from entering the slide surface. When the weather condition is severe, the cover 16 is suspended from the outer periphery of the upper stainless steel shoe 10 so as to surround the lower stainless steel shoe 14 in order to prevent deterioration of the stainless steel member.

【0018】以上のようなすべり支承1においては、既
存支承の本体部分をそのまま残してすべり支承化するた
め、既設橋桁Aを若干ジャッキアップするだけでよい。
従って、従来工法のようなコンクリートはつり,アンカ
ー工事を必要とせず、工費・工期を低減でき、また大規
模なジャッキアップを必要とせず、周辺道路の交通規制
が必要ないか、あるいは最小限の規制で済む。
In the above-described sliding bearing 1, the existing bridge girder A need only be slightly jacked up in order to form a sliding bearing while leaving the main body of the existing bearing as it is.
Therefore, concrete such as the conventional method does not require hanging or anchoring work, can reduce the construction cost and construction period, does not require large-scale jack-up, and does not require or minimize traffic regulation on the surrounding roads. Only needs to be done.

【0019】また、地震時には、ステンレス製上沓10
とフッ素樹脂すべり板11の摩擦による減衰が免震装置
2による減衰に付加され、少ない変位で高減衰化が可能
となる。さらに、フッ素樹脂すべり板11は、その摩擦
特性が明確であるため、設計しやすいという利点もあ
る。
In the event of an earthquake, the upper shoe 10 made of stainless steel may be used.
The damping due to the friction of the sliding plate 11 and the fluororesin is added to the damping by the seismic isolation device 2, and the high damping is possible with a small displacement. Further, the fluororesin slide plate 11 has an advantage that its frictional characteristics are clear, so that it is easy to design.

【0020】免震装置2は、図2(b)に示すように、
従来から免震橋梁に用いられているものと同様の鉛プラ
グ入り積層ゴム支承や高減衰ゴム支承であり、上下の連
結板20が既設橋桁Aおよび既設橋脚B(あるいはブラ
ケット3)にアンカーボルトなどによりそれぞれ固定さ
れる。また、鉛直荷重を支持しないため、大変形時のゴ
ムの座屈がなく、積層ゴム21内部の鉄板22を通常よ
りも少なくしたものを使用することができ、経済的な免
震装置の設計が可能となる。
The seismic isolation device 2 is, as shown in FIG.
This is a laminated rubber bearing or high damping rubber bearing containing lead plugs similar to those conventionally used for seismic isolation bridges. The upper and lower connecting plates 20 are attached to the existing bridge girder A and the existing pier B (or bracket 3) by anchor bolts or the like. Are fixed respectively. Further, since the vertical load is not supported, there is no rubber buckling at the time of large deformation, and the iron plate 22 inside the laminated rubber 21 can be used less than usual. It becomes possible.

【0021】免震装置2をブラケットを介して既設橋脚
Bに取付ける場合には、図3に示すように、橋軸方向に
一対のブラケット3をPC鋼棒4とナットなどの締結部
材5で固定する。このブラケット方式では、免震装置2
の平面寸法・高さの制限を受けることがないので、任意
の免震装置を使用でき、また免震装置の設計を自由に行
うことができる。
When the seismic isolation device 2 is mounted on the existing pier B via a bracket, as shown in FIG. 3, a pair of brackets 3 are fixed in the bridge axis direction by a PC steel rod 4 and a fastening member 5 such as a nut. I do. In this bracket system, seismic isolation device 2
Since there is no restriction on the planar dimensions and height of the seismic isolation device, any seismic isolation device can be used and the seismic isolation device can be designed freely.

【0022】なお、以上は既設の道路橋に適用した例に
ついて説明したが、その他の既設橋梁における免震化に
も適用できることはいうまでもない。
Although an example in which the present invention is applied to an existing road bridge has been described above, it is needless to say that the present invention can be applied to seismic isolation of other existing bridges.

【0023】[0023]

【発明の効果】前述の通り、この発明においては、既存
支承を改造してすべり支承化し、さらに免震装置を配設
し、すべり支承と免震装置を併用するようにしたため、
次のような効果を奏する。
As described above, in the present invention, the existing bearing is modified to be a sliding bearing, and furthermore, a seismic isolation device is provided, and the sliding bearing and the seismic isolation device are used together.
The following effects are obtained.

【0024】(1) 従来工法のように、コンクリートはつ
り, アンカー工事を必要とせず、工費および工期を低減
できる。また、工事が簡単となるため、従来工法のよう
な大規模なジャッキアップを必要とせず、交通規制も必
要ないか最小限で済む。従って、交通量の多い都市部の
既設の道路橋などに極めて有効となる。
(1) Unlike the conventional construction method, concrete does not require hanging and anchoring work, and the construction cost and construction period can be reduced. In addition, since the construction is simplified, a large-scale jack-up unlike the conventional method is not required, and traffic regulation is not required or minimized. Therefore, it is extremely effective for existing road bridges in urban areas with heavy traffic.

【0025】(2) すべり支承と免震装置を併用すること
により、免震装置だけの場合に比べて、少ない変位で高
減衰化を図ることができ、桁間の遊間の少ない既設橋梁
の免震化に最適である。
(2) By using the sliding bearing and the seismic isolation device together, it is possible to achieve high damping with a small displacement as compared with the case of using only the seismic isolation device, and to isolate the existing bridge with little play between the girder. Ideal for seismicity.

【0026】(3) すべり支承,免震装置とも、その力学
的な特性が明確であるため、設計しやすく、かつ従来の
鋼製支承に比べても耐久性に優れている。
(3) Since the mechanical characteristics of both the sliding bearing and the seismic isolation device are clear, the sliding bearing and the seismic isolation device are easy to design and have excellent durability compared with the conventional steel bearing.

【0027】(4) 免震装置の取付けにブラケット方式を
採用することにより、免震装置の平面寸法・高さの制限
を受けることがなく、任意の免震装置を使用することが
できる。また、免震装置は鉛直荷重を支持しなくてもよ
いため、従来の免震支承に比べて免震装置の設計を自由
に行うことができる。
(4) By adopting the bracket system for mounting the seismic isolation device, any seismic isolation device can be used without being limited by the planar dimensions and height of the seismic isolation device. Further, since the seismic isolation device does not need to support the vertical load, the seismic isolation device can be designed more freely than the conventional seismic isolation bearing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る免震工法を示し、(a)は既設
橋桁と既設橋脚との間に免震装置を取り付ける場合の横
断面図、(b)はブラケット方式による免震装置の取り
付けを示す側面図である。
1A and 1B show a seismic isolation method according to the present invention, wherein FIG. 1A is a cross-sectional view of a case where a seismic isolation device is installed between an existing bridge girder and an existing pier, and FIG. FIG.

【図2】(a)は、この発明に係るすべり支承の一例を
示す断面図、(b)はこの発明に係る免震装置の断面図
である。
FIG. 2A is a cross-sectional view showing an example of a sliding bearing according to the present invention, and FIG. 2B is a cross-sectional view of a seismic isolation device according to the present invention.

【図3】この発明に係る免震装置取付けブラケットの固
定状態を示し、(a)は正面図、(b)は側面図であ
る。
3A and 3B show a fixed state of the seismic isolation device mounting bracket according to the present invention, wherein FIG. 3A is a front view and FIG. 3B is a side view.

【符号の説明】[Explanation of symbols]

A…既設橋桁、B…既設橋脚、B1 …受梁部、1…すべ
り支承、2…免震装置、3…免震装置取付けブラケッ
ト、4…PC鋼棒、5…締結部材 10…ステンレス製上沓、11…フッ素樹脂すべり板
(PTFE板)、12…鋼製プレート、13…ゴムプレ
ート、14…ステンレス製下沓、15…シールリング、
16…カバー 20…上下接合板、21…積層ゴム、22…鉄板。
A: Existing bridge girder, B: Existing pier, B 1 ... Beam receiving part, 1 ... Slip bearing, 2 ... Seismic isolation device, 3 ... Seismic isolation device mounting bracket, 4 ... PC steel bar, 5 ... Fastening member 10 ... Stainless steel Upper shoe, 11: Fluororesin sliding board (PTFE board), 12: Steel plate, 13: Rubber plate, 14: Stainless steel lower shoe, 15: Seal ring,
16 ... Cover 20 ... Top and bottom joining plate, 21 ... Laminated rubber, 22 ... Iron plate.

フロントページの続き (72)発明者 竹田 哲夫 東京都調布市飛田給2丁目19番1号 鹿 島建設株式会社技術研究所内 (72)発明者 南雲 広幸 東京都調布市飛田給2丁目19番1号 鹿 島建設株式会社技術研究所内 (72)発明者 新原 雄二 東京都調布市飛田給2丁目19番1号 鹿 島建設株式会社技術研究所内 (58)調査した分野(Int.Cl.7,DB名) E01D 19/04 E01D 21/00 Continued on the front page (72) Inventor Tetsuo Takeda 2-9-1-1, Tobita-Shi, Chofu-shi, Tokyo Kashima Construction Co., Ltd. (72) Inventor Hiroyuki Nagumo 2-191-1, Tobita-Shi, Chofu-shi, Tokyo Kashima (72) Inventor Yuji Niihara 2-9-1-1, Tobita-shi, Chofu-shi, Tokyo Kashima Construction Co., Ltd. (58) Investigated field (Int. Cl. 7 , DB name) E01D 19 / 04 E01D 21/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 既設の橋梁を免震化するに際し、既存支
承を撤去することなく、この既存支承を改造してすべり
支承化し、既設橋桁下面と既設橋脚上面または既設橋脚
上部側面との間に免震装置を配設することを特徴とする
既存支承を利用した橋梁の免震工法。
When the existing bridge is seismically isolated, the existing bearing is modified to be a sliding bearing without removing the existing bearing, and the existing bridge is replaced with a sliding bearing, and the lower surface of the existing bridge girder and the upper surface of the existing pier or the upper side of the existing pier are removed. A seismic isolation method for bridges using existing bearings, characterized by installing seismic isolation devices.
JP7192913A 1995-07-28 1995-07-28 Seismic isolation method for bridges using existing bearings Expired - Lifetime JP3025177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7192913A JP3025177B2 (en) 1995-07-28 1995-07-28 Seismic isolation method for bridges using existing bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7192913A JP3025177B2 (en) 1995-07-28 1995-07-28 Seismic isolation method for bridges using existing bearings

Publications (2)

Publication Number Publication Date
JPH0941321A JPH0941321A (en) 1997-02-10
JP3025177B2 true JP3025177B2 (en) 2000-03-27

Family

ID=16299066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7192913A Expired - Lifetime JP3025177B2 (en) 1995-07-28 1995-07-28 Seismic isolation method for bridges using existing bearings

Country Status (1)

Country Link
JP (1) JP3025177B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549586B2 (en) * 2001-05-31 2010-09-22 名古屋高速道路公社 Steel bearings and bridge bearing devices
KR100403505B1 (en) * 2001-06-08 2003-10-30 명보산공 주식회사 The Method of Reinforcing A Steel Girder Beam type Bridge and The Structure thereof
KR100767344B1 (en) * 2007-05-09 2007-10-17 협성실업 주식회사 Structure of rubber bearing arrangement for isolating seismic tremor in bridge and rubber bearing therefor
JP5171391B2 (en) * 2008-05-27 2013-03-27 株式会社川金コアテック Concrete girder support replacement method
JP5116707B2 (en) * 2009-02-24 2013-01-09 株式会社Ihiインフラシステム I girder bridge renovation method
JP5302764B2 (en) * 2009-05-12 2013-10-02 阪神高速道路株式会社 Sliding bearings for structures
JP5754920B2 (en) * 2010-11-12 2015-07-29 高田機工株式会社 Mobilization method of support part in bridge
JP6055231B2 (en) * 2012-08-10 2016-12-27 住友ゴム工業株式会社 Bridges and bridge dampers
CN103205927A (en) * 2013-04-18 2013-07-17 东北林业大学 Anti-overturning bridge pier supporting mechanism
JP6216683B2 (en) * 2014-05-15 2017-10-18 靖弘 井上 Bridge member mounting structure of substructure in bridge
CN106087707B (en) * 2016-07-27 2018-02-09 清华大学 A kind of accessory configurations for preventing existing bridge lateral from toppling and its construction method

Also Published As

Publication number Publication date
JPH0941321A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
JP3025177B2 (en) Seismic isolation method for bridges using existing bearings
US5669189A (en) Antiseismic connector of limited vibration for seismic isolation of an structure
US20030099413A1 (en) Seismic isolation bearing
JP4549586B2 (en) Steel bearings and bridge bearing devices
JP2007239306A (en) Method of mounting base isolation damper
Constantinou et al. Experimental and theoretical study of a sliding isolation system for bridges
CN108385546B (en) Winding cable anti-falling beam device for bridge reinforcement
Gimenez et al. Md. Seismic isolation of bridges: devices, common practices in Japan, and examples of application
McKay et al. Seismic isolation: New zealand applications
GB2291074A (en) Anti-seismic arrangement for static electrical converter
Skinner et al. Seismic isolation in New Zealand
JP5000222B2 (en) Building and construction method of building
JP3159643B2 (en) Seismic isolation bridge prevention device
Blakeley et al. Section 6 Mechanical energy dissipating devices
KR20100137898A (en) Expansion joint for multi-road
CN217419296U (en) Self-adaptive fast-assembling shock-absorbing limiting magnetic damping support
KR100448486B1 (en) Apparatus for supporting bridge structures
KR200247446Y1 (en) Bridge falling prevent installation
JP4858848B2 (en) Interdigit connection device
JP3854613B2 (en) Vibration isolation and vibration control structure for structures under elevated
CN215887902U (en) Bridge pin-connected panel prevents roof beam friction pendulum support that falls
CN213142770U (en) X-shaped viaduct shock-absorbing support
JPH0235852Y2 (en)
Olariu et al. Base isolation versus energy dissipation for seismic retrofitting of existing structures
JP3090108B2 (en) Mounting structure of laminated rubber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991221

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160121

Year of fee payment: 16

EXPY Cancellation because of completion of term