JP2005328679A - Permanent magnet reluctance type rotating electric machine - Google Patents

Permanent magnet reluctance type rotating electric machine Download PDF

Info

Publication number
JP2005328679A
JP2005328679A JP2004146332A JP2004146332A JP2005328679A JP 2005328679 A JP2005328679 A JP 2005328679A JP 2004146332 A JP2004146332 A JP 2004146332A JP 2004146332 A JP2004146332 A JP 2004146332A JP 2005328679 A JP2005328679 A JP 2005328679A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
cavity
electric machine
reluctance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004146332A
Other languages
Japanese (ja)
Other versions
JP4580683B2 (en
Inventor
Kazuto Sakai
和人 堺
Norio Takahashi
則雄 高橋
Eiji Shimomura
英二 霜村
Masanori Shin
政憲 新
Hiroshi Kaneiwa
浩志 金岩
Sukeyasu Mochizuki
資康 望月
Wataru Ito
伊藤  渉
Masakatsu Matsubara
正克 松原
Takashi Araki
貴志 荒木
Takao Hirano
恭男 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2004146332A priority Critical patent/JP4580683B2/en
Publication of JP2005328679A publication Critical patent/JP2005328679A/en
Application granted granted Critical
Publication of JP4580683B2 publication Critical patent/JP4580683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating electric machine that increases torque, increases an output in weak magnetic flux control, improves efficiency by reducing a harmonic loss, reduces vibration, and so on. <P>SOLUTION: A permanent magnet reluctance type rotating electric machine is constituted of a rotor 1 comprising a rotor iron core 2 formed with first cavities 5 and second cavities 6, first permanent magnets 3 arranged in the first cavities of the rotor, and second permanent magnets 4 arranged in the second cavities. The first permanent magnets are arranged in a V shape, and the second magnets are arranged at the external circumferential side of the first permanent magnets. Two of the first permanent magnets and two of the second magnets form one pole as a magnetic pole of the permanent magnet, and the magnetic pole 11 that generates reluctance torque is formed of a part of the rotor iron core between the adjacent first permanent magnets of different magnetic poles and the second permanent magnets. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、永久磁石式リラクタンス型回転電機に関する。   The present invention relates to a permanent magnet type reluctance type rotating electrical machine.

一般に、永久磁石モータとしては、回転子鉄心外周に永久磁石を貼り付けた表面磁石型永久磁石モータと、永久磁石を回転子内に埋め込んだ埋め込み型永久磁石モータとが知られており、可変速駆動用としては、埋め込み型永久磁石モータが適している。   Generally, as permanent magnet motors, there are known a surface magnet type permanent magnet motor in which a permanent magnet is attached to the outer periphery of a rotor core and an embedded type permanent magnet motor in which a permanent magnet is embedded in a rotor. An embedded permanent magnet motor is suitable for driving.

図12を用いて、埋め込み型永久磁石モータの回転子の構成を説明する。回転子101の外周部には、長方形の空洞102が等配で極数の数だけ設けてある。この回転子は4極であり、4個の空洞102を設けて永久磁石103を挿入してある。永久磁石103は、回転子101の径方向、または長方形状の断面の長い辺に垂直に磁化される。鉄心104は、空洞を打抜いた電磁鋼板を積層して形成してある(公知例としては非特許文献1参照)。   The configuration of the rotor of the embedded permanent magnet motor will be described with reference to FIG. In the outer peripheral portion of the rotor 101, rectangular cavities 102 are provided in equal numbers and in the number of poles. This rotor has four poles, four cavities 102 are provided, and a permanent magnet 103 is inserted. The permanent magnet 103 is magnetized perpendicularly to the radial direction of the rotor 101 or to the long side of the rectangular cross section. The iron core 104 is formed by laminating electromagnetic steel sheets punched out of cavities (see Non-Patent Document 1 as a known example).

また、可変速特性に優れている高出力のモータとしては永久磁石式リラクタンス型回転電機が知られている。図13は、永久磁石式リラクタンス型回転電機の回転子を示しており、これを用いて説明する。この回転子201では、回転子鉄心202にV字状に設けた空洞203内に永久磁石204が配置され、この永久磁石204による磁極と、リラクタンストルクを発生するための鉄心の磁極205とで構成されている。この永久磁石式リラクタンス型回転電機は、リラクタンストルクと、永久磁石及び電流の相互作用によるトルク(磁石トルク)との両方を利用するものである。   In addition, a permanent magnet reluctance type rotating electrical machine is known as a high output motor excellent in variable speed characteristics. FIG. 13 shows a rotor of a permanent magnet type reluctance type rotating electrical machine, which will be described with reference to FIG. In this rotor 201, a permanent magnet 204 is disposed in a cavity 203 provided in a V-shape on the rotor core 202, and is composed of a magnetic pole by this permanent magnet 204 and a magnetic pole 205 of the iron core for generating reluctance torque. Has been. This permanent magnet type reluctance rotating electrical machine utilizes both reluctance torque and torque (magnet torque) due to the interaction between the permanent magnet and current.

特に、リラクタンストルクは、磁石トルクと同等からそれ以上の大きさを得ることができる特徴がある。可変速駆動時において、中・低速回転時はリラクタンストルクと磁石トルクとで駆動し、高速時は主にリラクタンストルクで駆動できるので、高出力で広い可変速運転が可能となる(公知例としては特許文献1、2参照)。
特開平11−27913号公報(第4頁) 特開平11−136912号公報 埋込磁石同期モータの設計と制御(オーム社)
In particular, the reluctance torque is characterized by being able to obtain a magnitude equal to or greater than the magnet torque. During variable speed drive, it can be driven by reluctance torque and magnet torque during medium and low speed rotations, and can be driven mainly by reluctance torque at high speeds, which enables high output and wide variable speed operation. (See Patent Documents 1 and 2).
JP 11-27913 A (page 4) JP-A-11-136912 Design and control of embedded magnet synchronous motor (Ohm)

上述した埋め込み型永久磁石モータでは、リラクタンストルクは磁石トルクよりも小さく、特に中・高回転速度域で適用する弱め磁束制御時では、その磁石トルクも小さくなるので、中・高速時に出力不足となる。   In the above-described embedded permanent magnet motor, the reluctance torque is smaller than the magnet torque, and particularly when the flux-weakening control is applied in the middle / high rotation speed range, the magnet torque also becomes smaller, resulting in insufficient output at the middle / high speed. .

永久磁石式リラクタンス型回転電機においても、ハイブリッド自動車用駆動モータでは、車の駆動性能を向上させるために、さらなる小型・高トルク、高出力が要求されている。   Even in the permanent magnet type reluctance type rotating electrical machine, in order to improve the driving performance of a hybrid vehicle drive motor, further miniaturization, high torque and high output are required.

また、弱め磁束制御時に電流により逆磁界の磁束を発生させる場合、永久磁石端部近傍の空隙面では永久磁石の磁束密度は急激に低下しているので、この領域では電流による磁束が多く残って分布する。これが回転機内に高調波磁束として分布して、電圧を増加させ、中・高速時の出力を低下させる。   In addition, when the magnetic flux of the reverse magnetic field is generated by the current during the flux weakening control, the magnetic flux density of the permanent magnet is abruptly decreased on the gap surface near the end of the permanent magnet, so that a large amount of magnetic flux due to the current remains in this region. Distributed. This is distributed as harmonic magnetic flux in the rotating machine, increasing the voltage and decreasing the output at medium and high speeds.

さらに、前記の高調波磁束により鉄損が増加し、高調波磁束による電磁力で振動が発生する。これは前記の埋め込み型永久磁石モータでも同様に生じて問題となる。   Furthermore, the iron loss increases due to the harmonic magnetic flux, and vibration is generated by electromagnetic force due to the harmonic magnetic flux. This similarly occurs in the above-described embedded permanent magnet motor and causes a problem.

本発明は上述した課題を解決するためになされたものであり、高トルク化と弱め磁束制御時の高出力化、損失低減による高効率化、低振動化等を図ることのできる永久磁石式リラクタンス型回転電機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a permanent magnet type reluctance capable of achieving high torque, high output at the time of flux-weakening control, high efficiency by reducing loss, low vibration, and the like. An object of the present invention is to provide a rotary electric machine.

上述した目的を達成するために、本発明の永久磁石式リラクタンス型回転電機は、磁気異方性を有する回転子と、前記回転子に設けられた複数の第1の永久磁石及び複数の第2の永久磁石とを有し、前記第1の永久磁石の磁化方向と前記第2の永久磁石の磁化方向は異なり、前記第2の永久磁石は前記回転子の外周面にほぼ垂直に向かう方向に磁化され、前記第1の永久磁石が前記回転子の外周面と固定子の間の空隙内に形成する磁束の方向の磁気抵抗を高くするように構成されたことを特徴としている。   In order to achieve the above-described object, a permanent magnet type reluctance type rotating electrical machine of the present invention includes a rotor having magnetic anisotropy, a plurality of first permanent magnets and a plurality of second magnets provided on the rotor. The magnetization direction of the first permanent magnet is different from the magnetization direction of the second permanent magnet, and the second permanent magnet is in a direction substantially perpendicular to the outer peripheral surface of the rotor. It is magnetized, and the first permanent magnet is configured to increase the magnetic resistance in the direction of the magnetic flux formed in the gap between the outer peripheral surface of the rotor and the stator.

本発明の永久磁石式リラクタンス型回転電機は、最大電流を第2の永久磁石の磁束密度が最大となる位相で流すようにすることで、第1の永久磁石の磁束密度が小さい位相においても大きなトルクを得ることができる。また、弱め磁束制御時に電流により発生する高調波磁束が、第2の永久磁石により発生する空隙磁束によって相殺されるため、高調波磁束による出力低下を防ぐことができると同時に、高調波磁束による鉄損、電磁力による振動・騒音を低減することができる。   The permanent magnet type reluctance type rotating electrical machine of the present invention has a large current even in a phase where the magnetic flux density of the first permanent magnet is small by allowing the maximum current to flow in a phase where the magnetic flux density of the second permanent magnet is maximized. Torque can be obtained. In addition, since the harmonic magnetic flux generated by the current during the flux weakening control is canceled out by the gap magnetic flux generated by the second permanent magnet, it is possible to prevent a decrease in output due to the harmonic magnetic flux, and at the same time, iron by the harmonic magnetic flux. Loss, vibration and noise due to electromagnetic force can be reduced.

以下、本発明に係る永久磁石式リラクタンス型回転電機の実施形態について、図面を参照して説明する。なお、本実施形態の回転電機は8極の場合で説明しているが、他の極数であってもよい。   Hereinafter, embodiments of a permanent magnet type reluctance type rotating electrical machine according to the present invention will be described with reference to the drawings. In addition, although the rotating electrical machine of the present embodiment has been described with eight poles, other numbers of poles may be used.

図1は本発明の第1の実施形態の回転電機の断面図である。本実施形態の回転子1は、回転子鉄心2と、この回転子鉄心2の外周部の8箇所においてそれぞれV字状に配置された二つの第1の永久磁石3、3及び二つの第2の永久磁石4、4とから構成される。なお、回転子1の周囲には固定子(図示せず)が配置され、回転子1の外周面との間に空隙を形成している。   FIG. 1 is a sectional view of a rotating electrical machine according to a first embodiment of the present invention. The rotor 1 of the present embodiment includes a rotor core 2 and two first permanent magnets 3 and 3 and two second cores arranged in a V shape at eight locations on the outer periphery of the rotor core 2. Permanent magnets 4 and 4. A stator (not shown) is disposed around the rotor 1, and a gap is formed between the rotor 1 and the outer peripheral surface.

第1の永久磁石3、3は、回転子鉄心2の外周部の8箇所において、回転子鉄心2の外周面に向けて開いたV字状を成すように設けられた二つの第1の空洞5、5内に配置されている。また、第2の永久磁石4、4は、第1の空洞5、5の外周側端部の近傍に形成された第2の空洞6、6内に配置されている。なお、第2の永久磁石4、4は、第1の永久磁石3、3よりも回転子1の外周側に配置され、かつ回転子1の外周面に近接している。   The first permanent magnets 3, 3 are two first cavities provided so as to form V-shapes that are open toward the outer peripheral surface of the rotor core 2 at eight locations on the outer peripheral portion of the rotor core 2. 5 and 5. Further, the second permanent magnets 4, 4 are disposed in second cavities 6, 6 formed in the vicinity of the outer peripheral side end portions of the first cavities 5, 5. The second permanent magnets 4, 4 are arranged on the outer peripheral side of the rotor 1 with respect to the first permanent magnets 3, 3 and are close to the outer peripheral surface of the rotor 1.

第1の永久磁石3の磁化方向は、図2に示すように、V字の側面に垂直な方向(長方形状の断面の長い辺に対して垂直)とし、V字状に配置した二つの第1の永久磁石3、3は、それらの間に同じ極を形成する。第1の永久磁石3に連なる第2の永久磁石4も同極とする。   As shown in FIG. 2, the magnetization direction of the first permanent magnet 3 is set to a direction perpendicular to the V-shaped side surface (perpendicular to the long side of the rectangular cross section), and two first magnets arranged in a V-shape. One permanent magnet 3, 3 forms the same pole between them. The second permanent magnet 4 connected to the first permanent magnet 3 has the same polarity.

第1の永久磁石3、3をV字状に配置したことで、V字の中心軸に向かって第1の永久磁石3、3の磁束を集中して磁束密度を高くすることができる。また、第1の永久磁石3の端部及び回転子鉄心2を介して漏れる磁束はV字の外周側端部と内周側端部のみの狭い領域となるため、漏れ磁束を少なくすることができる。また、V字状に配置することにより、直線状の一個の磁石で1極を形成する場合と比べ、回転子鉄心断面積に対する磁石断面積を大きくすることができる。さらに、回転子鉄心2におけるV字状の永久磁石3、3に挟まれる部分を広くすることができるため、V字に沿って回転子鉄心2の磁気飽和が緩和されて多くの電機子巻線による磁束を流すことができる。   Since the first permanent magnets 3 and 3 are arranged in a V shape, the magnetic flux density of the first permanent magnets 3 and 3 can be concentrated toward the central axis of the V shape to increase the magnetic flux density. Further, since the magnetic flux leaking through the end portion of the first permanent magnet 3 and the rotor core 2 is a narrow region of only the V-shaped outer peripheral end portion and inner peripheral end portion, the leakage magnetic flux may be reduced. it can. Moreover, by arranging in V shape, the magnet cross-sectional area with respect to the rotor core cross-sectional area can be increased as compared with the case where one pole is formed by a single linear magnet. Furthermore, since the portion sandwiched between the V-shaped permanent magnets 3 and 3 in the rotor core 2 can be widened, the magnetic saturation of the rotor core 2 is relaxed along the V-shape, and many armature windings The magnetic flux by can be sent.

第1の永久磁石の磁化方向をV字の側面に垂直な方向としたことで、第1の永久磁石3、3の磁束はV字の中心軸を中心として起磁力を高めて、回転子鉄心2におけるV字で挟まれた部分の空隙中に磁束を分布させることができる。これにより、リラクタンストルクを発生させると同時に電流と永久磁石の鎖交磁束によるトルクも発生させることができる。   By making the magnetization direction of the first permanent magnet perpendicular to the V-shaped side surface, the magnetic flux of the first permanent magnets 3 and 3 increases the magnetomotive force around the V-shaped central axis, and the rotor core The magnetic flux can be distributed in the air gap in the portion sandwiched by the V-shapes in FIG. As a result, reluctance torque can be generated, and at the same time, torque due to the linkage flux between the current and the permanent magnet can be generated.

なお、第2の永久磁石4を第1の永久磁石3よりも回転子1の外周側に配置しているのは、第1の永久磁石3が形成する磁気回路において、第2の永久磁石が磁気抵抗にならないようにするためである。すなわち、回転子鉄心2における第1の永久磁石3の磁化方向の部分に第2の永久磁石を配置しないようにするためで、第1の永久磁石3の磁化方向と略直角方向に配置することになるので、第1の永久磁石3の端部側に配置する。第1の永久磁石3の端部は回転子1の内周側と外周側にあるが、空隙に近い外周側に第2の永久磁石4を配置することで、第2の永久磁石4の鎖交磁束を得る。   The second permanent magnet 4 is arranged on the outer peripheral side of the rotor 1 with respect to the first permanent magnet 3 in the magnetic circuit formed by the first permanent magnet 3. This is to prevent magnetic resistance. That is, in order not to arrange the second permanent magnet in the portion of the rotor core 2 in the magnetization direction of the first permanent magnet 3, it is arranged in a direction substantially perpendicular to the magnetization direction of the first permanent magnet 3. Therefore, it is arranged on the end side of the first permanent magnet 3. The end portions of the first permanent magnet 3 are on the inner peripheral side and the outer peripheral side of the rotor 1, but by arranging the second permanent magnet 4 on the outer peripheral side close to the gap, the chain of the second permanent magnet 4 Get the flux.

また、第2の永久磁石4を回転子1の外周部に近接して配置することで、第2の永久磁石4の磁化面がほぼ空隙に対向するので、回転子鉄心2内での第2の永久磁石4の漏れ磁束を少なくすることができる。   Further, by arranging the second permanent magnet 4 close to the outer peripheral portion of the rotor 1, the magnetization surface of the second permanent magnet 4 is almost opposed to the air gap, so that the second permanent magnet 4 in the rotor core 2 is second. The leakage magnetic flux of the permanent magnet 4 can be reduced.

そして、V字状に配置した二つの第1の永久磁石3、3及びそれに連なる二つの第2の永久磁石4、4からなる組が形成する磁極は、隣り合う組と異極を形成するよう配置する。例えば、一組のV字状に配置した第1の永久磁石3、3がN極を形成すると、その隣のV字状に配置した第1の永久磁石3、3の組はS極を形成する。   The magnetic pole formed by the pair of the two first permanent magnets 3 and 3 arranged in a V shape and the two second permanent magnets 4 and 4 connected to the first permanent magnets 3 and 4 forms a different polarity from the adjacent pair. Deploy. For example, when the first permanent magnets 3 and 3 arranged in a V shape form an N pole, the set of the first permanent magnets 3 and 3 arranged in an adjacent V shape forms an S pole. To do.

図3は図2の要部拡大図である。同図に示すように、第1の永久磁石3が挿入される第1の空洞5における外周側端部と、第2の永久磁石4が挿入される第2の空洞6との間には第3の空洞7が形成されている。   FIG. 3 is an enlarged view of a main part of FIG. As shown in the figure, there is a gap between the outer peripheral side end portion of the first cavity 5 into which the first permanent magnet 3 is inserted and the second cavity 6 into which the second permanent magnet 4 is inserted. 3 cavities 7 are formed.

第1の空洞5と第2の空洞6と第3の空洞7は連続するように形成されている。そして、第1の空洞5と第2の空洞6の間に挟まれた第3の空洞7内には磁性の突起12が設けられている。ここでは、磁性の突起12は、第1の永久磁石3の外周側端部の角と第2の永久磁石4の第3の空洞7側の端部の角に接している。   The first cavity 5, the second cavity 6, and the third cavity 7 are formed to be continuous. A magnetic protrusion 12 is provided in the third cavity 7 sandwiched between the first cavity 5 and the second cavity 6. Here, the magnetic protrusion 12 is in contact with the corner of the outer peripheral side end portion of the first permanent magnet 3 and the end corner of the second permanent magnet 4 on the third cavity 7 side.

突起12は、第1の永久磁石3の前記端部の一辺と第2の永久磁石4の前記端部の一辺に接し、その接する面(辺)の範囲は第1及び第2の永久磁石3、4の位置決めが可能な最低長さとする。そして、磁性の突起12の先端部分は第1及び第2の永久磁石3、4に接する面の終点から半円を描く形状としてある。   The protrusion 12 is in contact with one side of the end portion of the first permanent magnet 3 and one side of the end portion of the second permanent magnet 4, and the range of the contact surface (side) is the first and second permanent magnets 3. 4 is the minimum length that can be positioned. The tip portion of the magnetic protrusion 12 has a shape that draws a semicircle from the end point of the surface in contact with the first and second permanent magnets 3 and 4.

突起12は先端が半円状なので突起12の先端部と対向するd軸バイパス磁路の鉄心面が最短距離になり、この部分に減磁界も集中する。したがって、第1の永久磁石3の端部と第2の永久磁石4の端部に生じる局所的に大きな減磁界を緩和することができる。   Since the tip of the protrusion 12 is semicircular, the iron core surface of the d-axis bypass magnetic path facing the tip of the protrusion 12 is the shortest distance, and the demagnetizing field is concentrated in this portion. Therefore, a locally large demagnetizing field generated at the end of the first permanent magnet 3 and the end of the second permanent magnet 4 can be mitigated.

なお、突起12の先端形状は半円状に限られるものではなく、山型の形状であれば同様の効果を得ることができる。また、突起12は第1の永久磁石3の位置決めを行うと共に第1の永久磁石3の遠心力の一部を受ける作用もある。   Note that the tip shape of the protrusion 12 is not limited to a semicircular shape, and a similar effect can be obtained as long as it has a mountain shape. In addition, the protrusion 12 serves to position the first permanent magnet 3 and to receive a part of the centrifugal force of the first permanent magnet 3.

第3の空洞7に面して第2の永久磁石4の外周側端部近傍にある鉄心部16は、第2の永久磁石4の外側面に対面する回転子鉄心2の外周側の部分の径方向厚みよりもよりも厚くしてある。   The iron core portion 16 facing the third cavity 7 and in the vicinity of the outer peripheral end portion of the second permanent magnet 4 is an outer peripheral portion of the rotor iron core 2 facing the outer surface of the second permanent magnet 4. It is thicker than the radial thickness.

この鉄心部16は、第2の永久磁石4における第1の永久磁石3側の端部に接して第2の永久磁石4を位置決めすることができる。同時に鉄心部16はd軸バイパス磁路となるのでd軸方向に流れる磁束が増加する。さらに、鉄心部16におけるd軸バイパス磁路方向の磁気抵抗は小さくなるので、トルクリプルが低減される。   The iron core portion 16 can contact the end portion of the second permanent magnet 4 on the first permanent magnet 3 side to position the second permanent magnet 4. At the same time, since the iron core portion 16 becomes a d-axis bypass magnetic path, the magnetic flux flowing in the d-axis direction increases. Further, since the magnetic resistance in the d-axis bypass magnetic path direction in the iron core portion 16 is reduced, torque ripple is reduced.

第1の永久磁石3の内周側端部には第4の空洞8を設けてあり、第1の空洞5と第4の空洞8は連続して形成されている。そして、第1の永久磁石3の端部と第4の空洞8の間の一部に回転子鉄心2と一体になった突起13を設けて第1の永久磁石3を位置決めしている。   The 4th cavity 8 is provided in the inner peripheral side edge part of the 1st permanent magnet 3, and the 1st cavity 5 and the 4th cavity 8 are formed continuously. Then, a protrusion 13 integrated with the rotor core 2 is provided at a part between the end portion of the first permanent magnet 3 and the fourth cavity 8 to position the first permanent magnet 3.

第4の空洞8は、内周側断面が曲率の大きな曲線で囲まれた形状で、これらの第4の空洞8、8間には鉄心のブリッジ15が形成されている。この曲率の大きな曲線で形成される鉄心のブリッジ15は、曲線部分で応力集中を緩和するので、第1の永久磁石3と回転子鉄心2の遠心力に耐えることができる。   The fourth cavity 8 has a shape in which an inner peripheral side cross section is surrounded by a curve having a large curvature, and an iron core bridge 15 is formed between the fourth cavities 8 and 8. The bridge 15 of the iron core formed by the curved line having a large curvature can withstand the centrifugal force of the first permanent magnet 3 and the rotor core 2 because the stress concentration is reduced at the curved portion.

また、第4の空洞8はq軸の磁気抵抗を大きくする。第2の永久磁石4の磁化方向は、第2の永久磁石4の径方向断面の中心軸(第2の永久磁石4の中心部を回転子1の径方向に通る)方向を磁化方向としており、図2にその磁化方向を示す。   The fourth cavity 8 increases the q-axis magnetic resistance. The magnetization direction of the second permanent magnet 4 is the direction of the center axis (passing through the central portion of the second permanent magnet 4 in the radial direction of the rotor 1) of the radial section of the second permanent magnet 4 as the magnetization direction. FIG. 2 shows the magnetization direction.

また、図3に示すように、第1の永久磁石3、3が成すV字の中心軸から機械角でα=-11°と11°(電気角は−45°と45°なので、機械角では、±45°÷(8/2)=±11°)の位置を中心軸として2個の第2の永久磁石4を配置してある。   Further, as shown in FIG. 3, the mechanical angle α = −11 ° and 11 ° from the V-shaped central axis formed by the first permanent magnets 3 and 3 (the electrical angle is −45 ° and 45 °, so the mechanical angle Then, the two second permanent magnets 4 are arranged with the position of ± 45 ° ÷ (8/2) = ± 11 °) as the central axis.

第2の永久磁石4における第3の空洞7と反対側の端部には第5の空洞9を設けてある。そして、この第5の空洞9内では、磁性の突起14が、リラクタンストルクを発生する鉄心の磁極11から突出している。   A fifth cavity 9 is provided at the end of the second permanent magnet 4 opposite to the third cavity 7. And in this 5th cavity 9, the magnetic protrusion 14 protrudes from the magnetic pole 11 of the iron core which generates reluctance torque.

第5の空洞9で形成される空隙面のブリッジ状鉄心曲線部は、第2の永久磁石4とV字状の第1の永久磁石3に挟まれた鉄心による遠心力の一部を受けており、曲線にすることによる応力を緩和している。同時に磁路断面も細くなり漏れ磁束も抑制することができる。   The bridge-shaped iron core curve portion of the air gap surface formed by the fifth cavity 9 receives a part of the centrifugal force caused by the iron core sandwiched between the second permanent magnet 4 and the V-shaped first permanent magnet 3. The stress due to the curve is relaxed. At the same time, the magnetic path cross section is narrowed, and the leakage magnetic flux can be suppressed.

突起14は第2の永久磁石4の位置決めとなり、突起14の内周側にできる円状の空洞部は第2の永久磁石4の角部に配置できるので、この円状空洞部による第2の永久磁石4の磁力の低下を少なくでき、また、第2の永久磁石4にかかる減磁界も小さくできる。   The protrusion 14 serves as the positioning of the second permanent magnet 4, and the circular cavity formed on the inner peripheral side of the protrusion 14 can be disposed at the corner of the second permanent magnet 4. The decrease in magnetic force of the permanent magnet 4 can be reduced, and the demagnetizing field applied to the second permanent magnet 4 can also be reduced.

また、V字状に配置した第1の永久磁石3、3が挟み込む鉄心間に第6の空洞10を設けてある。この第6の空洞10は鉄心の強度及び加工上許す限り回転子2の外周側に位置させる。このような第6の空洞10を設けたことで、q軸の磁気抵抗が増加するのでリラクタンストルクが増加する。また、第6の空洞10により回転子2の外周面のq軸部分に磁気的障壁ができるので、回転子2の表面に漏れる磁束を低減でき、同時にd軸バイパス磁路にd軸磁束を集めることができる。   Moreover, the 6th cavity 10 is provided between the iron cores which the 1st permanent magnets 3 and 3 arrange | positioned at V shape pinch | interpose. The sixth cavity 10 is positioned on the outer peripheral side of the rotor 2 as far as the strength and processing of the iron core allow. Providing such a sixth cavity 10 increases the reluctance torque because the q-axis magnetic resistance increases. In addition, since the sixth cavity 10 forms a magnetic barrier on the q-axis portion of the outer peripheral surface of the rotor 2, magnetic flux leaking to the surface of the rotor 2 can be reduced, and at the same time, d-axis magnetic flux is collected in the d-axis bypass magnetic path be able to.

上述したように、永久磁石としての磁極は、2個の第1の永久磁石3、3と2個の第2の永久磁石4、4により1極を形成する。そして、第1の永久磁石3、3及び第2の永久磁石4、4を1組として、隣合う組の磁極は異極となるように構成される。隣合う永久磁石の極の間には、磁気吸引力によりリラクタンストルクを発生する磁極11が鉄心の一部で形成されている。このリラクタンストルクを生じる鉄心の磁極11が8個あり、放射状に磁気的に結合された形状となっている。   As described above, the magnetic pole as a permanent magnet forms one pole by the two first permanent magnets 3 and 3 and the two second permanent magnets 4 and 4. The first permanent magnets 3 and 3 and the second permanent magnets 4 and 4 are set as one set, and adjacent sets of magnetic poles are configured to have different polarities. Between the poles of adjacent permanent magnets, a magnetic pole 11 that generates a reluctance torque by magnetic attraction is formed by a part of the iron core. There are eight iron core magnetic poles 11 that generate this reluctance torque, and they are radially magnetically coupled.

なお、固定子には、分布巻、または集中巻の電機子巻線が適用できる。   The stator may be distributed winding or concentrated winding armature winding.

このように構成された本実施の形態の作用について説明する。   The operation of the present embodiment configured as described above will be described.

はじめにリラクタンストルクに関する作用について述べる。回転子1の一つの磁極11と隣り合う磁極11は鉄心2で磁気的に結合されているので磁気抵抗が小さくなる。図2に示すように、この方向をd軸とする。さらに第1の永久磁石3の外周側に沿ってd軸と並列にd軸バイパス磁路が形成される。   First, the effect on the reluctance torque will be described. Since the magnetic pole 11 adjacent to one magnetic pole 11 of the rotor 1 is magnetically coupled by the iron core 2, the magnetic resistance is reduced. As shown in FIG. 2, this direction is taken as the d-axis. Further, a d-axis bypass magnetic path is formed in parallel with the d-axis along the outer peripheral side of the first permanent magnet 3.

一方、V字状に配置された二つの第1の永久磁石3、3の中心軸はq軸方向となる。このq軸方向は、第1の空洞5、第2の空洞6、第3の空洞7、第4の空洞8、第5の空洞9、第6の空洞10が設けられているため磁束が遮られ、磁気抵抗は高くなる。この磁気抵抗の差により磁気吸引力の差が生じて大きなリラクタンストルクを発生する。   On the other hand, the central axes of the two first permanent magnets 3 and 3 arranged in a V shape are in the q-axis direction. In this q-axis direction, since the first cavity 5, the second cavity 6, the third cavity 7, the fourth cavity 8, the fifth cavity 9, and the sixth cavity 10 are provided, the magnetic flux is blocked. And the magnetic resistance becomes high. Due to this difference in magnetic resistance, a difference in magnetic attractive force is generated, and a large reluctance torque is generated.

次に永久磁石の磁束と電流の磁気的相互作用で生じるトルクについて述べる。図4は従来の一般的な永久磁石モータにおける永久磁石の空隙磁束密度分布と電流の関係を示したものである。磁束密度分布はほぼ正弦波状に分布し、最大トルクを得るために磁束密度が最大値の位置で電流が最大値になる位相である90°で通電される。永久磁石と電流によるトルク(磁石トルク)と、補助的なリラクタンストルクとを有する埋め込み型永久磁石モータは、一般的には、電流位相が110°〜135°程度で駆動される。   Next, torque generated by the magnetic interaction between the magnetic flux and current of the permanent magnet will be described. FIG. 4 shows the relationship between the magnetic flux density distribution of the permanent magnet and the current in a conventional general permanent magnet motor. The magnetic flux density distribution is distributed almost sinusoidally, and energization is performed at 90 ° which is the phase at which the current reaches the maximum value at the position where the magnetic flux density is the maximum value in order to obtain the maximum torque. An embedded permanent magnet motor having a permanent magnet, a torque due to current (magnet torque), and an auxiliary reluctance torque is generally driven at a current phase of about 110 ° to 135 °.

図5は、従来の永久磁石モータ、及び埋め込み型永久磁石モータにおいて、電流位相が135°で電流を通電したときの空隙磁束密度と電流の関係を示している。電流値が最大となる135°では磁束密度は減少しており、永久磁石の磁束と電流によるトルクは小さくなる。   FIG. 5 shows the relationship between the gap magnetic flux density and the current when a current is applied at a current phase of 135 ° in the conventional permanent magnet motor and the embedded permanent magnet motor. At 135 ° where the current value is maximum, the magnetic flux density decreases, and the torque due to the magnetic flux and current of the permanent magnet decreases.

また、図13に示す従来の永久磁石式リラクタンス型回転電機においては、回転子201に第1の永久磁石204のみをV字状に配置しており、V字の中心軸(q軸)近傍に多くの磁束が分布する。第1の永久磁石204の端部から鉄心の磁極間は永久磁石の磁束は急激に減少する。この場合も、電流値が最大となる135°では磁束密度は減少して永久磁石の磁束と電流による磁石トルクは小さくなる。   Further, in the conventional permanent magnet type reluctance type rotating electrical machine shown in FIG. 13, only the first permanent magnet 204 is arranged in a V shape on the rotor 201, and is located near the center axis (q axis) of the V shape. Many magnetic fluxes are distributed. Between the end of the first permanent magnet 204 and the magnetic poles of the iron core, the magnetic flux of the permanent magnet decreases rapidly. In this case as well, at 135 ° where the current value is maximum, the magnetic flux density decreases and the magnet torque due to the magnetic flux and current of the permanent magnet decreases.

本実施形態では、第2の永久磁石4の径方向の中心軸が、第1の永久磁石3のV字の中心軸から機械角でα=−11°と11°に位置しているので電気角では45°と135°の位置に配置されていることになる。   In the present embodiment, since the central axis in the radial direction of the second permanent magnet 4 is located at α = −11 ° and 11 ° in mechanical angle from the V-shaped central axis of the first permanent magnet 3, electricity The corners are arranged at 45 ° and 135 ° positions.

図6は本実施形態における空隙磁束密度と電流の関係を示している。尚、第2の永久磁石4の磁束密度分布は近似的に正弦波分布で模式的に表している。第2の永久磁石4の磁束は45°と135°を最大値として分布する。電流は135°で最大値になる位相で制御すると、第2の永久磁石4の磁束が最大の領域において電流は最大値で流れるため大きなトルクが発生する。   FIG. 6 shows the relationship between the gap magnetic flux density and the current in this embodiment. The magnetic flux density distribution of the second permanent magnet 4 is schematically represented by a sinusoidal distribution. The magnetic flux of the second permanent magnet 4 is distributed with 45 ° and 135 ° as maximum values. If the current is controlled at a phase at which the current reaches a maximum value at 135 °, a large torque is generated because the current flows at the maximum value in a region where the magnetic flux of the second permanent magnet 4 is maximum.

したがって、第1の永久磁石3の磁束量が少なくなる135°の位相で最大電流を流す駆動を行っても磁石トルクを有効に利用できる。そして、リラクタンストルクもこのときほぼ最大であり、総合トルクは従来よりも大きくなる。   Therefore, the magnet torque can be used effectively even if the drive is performed such that the maximum current flows at a phase of 135 ° where the amount of magnetic flux of the first permanent magnet 3 is reduced. The reluctance torque is also substantially maximum at this time, and the total torque is larger than the conventional torque.

なお、このような効果を得るためには、第2の永久磁石4、4の中心軸が、第1の永久磁石3、3のV字の中心軸から、電気角で−20°〜−80°の範囲内と20°〜80°の範囲内、特に、−45°±10°の範囲内と45°±10°の範囲内に位置するように第2の永久磁石4、4を配置するのがよい。   In order to obtain such an effect, the central axis of the second permanent magnets 4, 4 is −20 ° to −80 in electrical angle from the V-shaped central axis of the first permanent magnets 3, 3. The second permanent magnets 4 and 4 are arranged so as to be located within a range of 20 ° and within a range of 20 ° to 80 °, in particular within a range of −45 ° ± 10 ° and within a range of 45 ° ± 10 °. It is good.

弱め磁束制御では、図2に示すように、永久磁石3の磁束ψpmと逆方向の磁束ψiqを電流により発生させて、永久磁石の磁束ψpmを相殺させる。総和としては磁束量を減少させている。V字状に配置された第1の永久磁石3、3で挟まれる領域の空隙面では、第1の永久磁石3の磁束と電流の磁束が相殺されて磁束を大幅に減少でき、磁束の総和として0にすることもできる。   In the weakening magnetic flux control, as shown in FIG. 2, a magnetic flux ψiq in a direction opposite to the magnetic flux ψpm of the permanent magnet 3 is generated by current to cancel the magnetic flux ψpm of the permanent magnet. As the sum, the amount of magnetic flux is reduced. On the air gap surface in the region sandwiched between the first permanent magnets 3 and 3 arranged in a V shape, the magnetic flux of the first permanent magnet 3 and the magnetic flux of the current are offset, and the magnetic flux can be greatly reduced. Can also be set to zero.

しかし、上述した弱め磁束による電流により弱め磁束制御を行った場合、合成磁束の総和は0にしても、図7に示すようにV字状に配置された第1の永久磁石3、3で挟まれた領域以外では電流による磁束ψiqhが残る。本発明では、図8に示すように、弱め磁束制御の電流により生じて残った磁束ψiqhは、第2の永久磁石4が空隙中に生じる磁束により相殺されて合成の磁束密度ψΣは小さくなる。   However, when the flux weakening control is performed by the current due to the flux weakening described above, even if the total of the combined magnetic flux is 0, the first permanent magnets 3 and 3 arranged in a V shape as shown in FIG. The magnetic flux ψiqh due to the current remains in the area other than the region where the current is generated. In the present invention, as shown in FIG. 8, the remaining magnetic flux ψiqh generated by the current of the flux-weakening control is offset by the magnetic flux generated in the gap by the second permanent magnet 4 and the combined magnetic flux density ψΣ is reduced.

以上により、本発明の回転電機では総合トルクは増加し、弱め磁束時の合成磁束密度分布は全領域で低減することができる。   As described above, in the rotating electrical machine of the present invention, the total torque increases, and the resultant magnetic flux density distribution at the time of the weak magnetic flux can be reduced in the entire region.

さらに、第2の永久磁石4の径方向中心軸が、第1の永久磁石3のV字の中心軸から機械角でα=-13。75°と13.75°(電気角55°÷(8/2)=13.75°)になる位置になるように第2の永久磁石4を配置すると、図9に示すように、第2の永久磁石4の磁束密度の高い部分は、電気角で35°(90°−55°=35°)と145°(90°+55°=145°)の位置に配置され、合成の磁束密度は全領域で大幅に低減され、ほぼ0になる。   Further, the radial central axis of the second permanent magnet 4 is α = −13.75 ° and 13.75 ° in terms of mechanical angle from the V-shaped central axis of the first permanent magnet 3 (electrical angle 55 ° ÷ ( 8/2) = 13.75 °), when the second permanent magnet 4 is arranged, the portion of the second permanent magnet 4 having a high magnetic flux density has an electrical angle as shown in FIG. At 35 ° (90 ° -55 ° = 35 °) and 145 ° (90 ° + 55 ° = 145 °), and the resultant magnetic flux density is greatly reduced to almost zero in all regions.

これにより、主に第1の永久磁石3により発生する基本波磁束ψpmは弱め磁束電流により減少させ、弱め磁束時に残る高調波磁束ψiqhは第2の永久磁石4により低減できる。   Thus, the fundamental magnetic flux ψpm generated mainly by the first permanent magnet 3 can be reduced by the weak magnetic flux current, and the harmonic magnetic flux ψiqh remaining at the time of the weak magnetic flux can be reduced by the second permanent magnet 4.

したがって、弱め磁束制御時に電流による高調波磁束が低減でき、効果的に高調波を含む総磁束量を減少させることができる。同時に高調波による鉄損、電磁力による振動・騒音を低減できる。   Therefore, the harmonic magnetic flux due to the current can be reduced during the flux-weakening control, and the total magnetic flux including the harmonics can be effectively reduced. At the same time, iron loss due to harmonics, vibration and noise due to electromagnetic force can be reduced.

このような効果を得るためには、第2の永久磁石4、4の中心軸が、第1の永久磁石3、3のV字の中心軸から、電気角で−55°±10°の範囲内と55°±10°の範囲内に位置するように第2の永久磁石4、4を配置するのがよい。   In order to obtain such an effect, the central axis of the second permanent magnets 4, 4 is in the range of −55 ° ± 10 ° in electrical angle from the V-shaped central axis of the first permanent magnets 3, 3. It is preferable to arrange the second permanent magnets 4 and 4 so as to be located within the range of 55 ° ± 10 °.

なお、各空洞の空いているスペースには非磁性材の部材を挿入することができる。例えば、非磁性材として導電性のある銅を挿入することにより高調波磁束を低減できる。また、回転子2の回転バランスをとるときは、空洞のスペースに非磁性材の重りを挿入して回転バランスをとるようにしてもよい。   A non-magnetic member can be inserted into the empty space of each cavity. For example, harmonic magnetic flux can be reduced by inserting conductive copper as a nonmagnetic material. Further, when balancing the rotation of the rotor 2, a non-magnetic material weight may be inserted into the hollow space to balance the rotation.

次に、本発明に係る永久磁石式リラクタンス型回転電機の第2の実施形態を図10を用いて説明する。なお第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。   Next, a second embodiment of the permanent magnet type reluctance rotating electric machine according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

本実施形態では、回転子1の各極において、第1の永久磁石3、3が回転子鉄心2の第1の空洞5、5内にV字状に配置され、第2の永久磁石4、4は、第1の永久磁石3、3の端面に接するようにして回転子鉄心2内で空隙の広い面に対向するように配置される。   In this embodiment, in each pole of the rotor 1, the first permanent magnets 3, 3 are arranged in a V shape in the first cavities 5, 5 of the rotor core 2, and the second permanent magnets 4, 4 is disposed so as to be in contact with the end surfaces of the first permanent magnets 3 and 3 so as to face a wide gap surface in the rotor core 2.

第1の永久磁石3、3の磁化方向はV字の両側面に垂直な方向(長方形断面の長い辺に対して垂直)とし、V字状に配置した2つの第1の永久磁石3、3は、それらの間に同じ極を形成する。そして、隣合うV字状に配置した第1の永久磁石3、3の組とは異極を形成するよう配置する。例えば、V字状に配置した第1の永久磁石3、3がV字間にN極を形成すると、隣のV字状に配置した第1の永久磁石3の組はS極を形成する。   The magnetization directions of the first permanent magnets 3 and 3 are perpendicular to both side surfaces of the V shape (perpendicular to the long sides of the rectangular cross section), and the two first permanent magnets 3 and 3 arranged in a V shape are used. Form the same pole between them. And it arrange | positions so that a different pole may be formed with the group of the 1st permanent magnets 3 and 3 arrange | positioned in adjacent V shape. For example, when the first permanent magnets 3 and 3 arranged in a V shape form an N pole between the V shapes, the set of first permanent magnets 3 arranged in an adjacent V shape forms an S pole.

第2の永久磁石4、4の磁化方向は空隙の広い面を向いており、V字状の第1の永久磁石3、3に連なる第2の永久磁石4、4を一組として同じ極を形成する。そして、隣合うV字状の第1の永久磁石3、3につながる第2の永久磁石4、4とは互いに異なる極にする。   The magnetization directions of the second permanent magnets 4 and 4 are directed to a wide surface, and the same poles are formed with the second permanent magnets 4 and 4 connected to the V-shaped first permanent magnets 3 and 3 as a set. Form. The second permanent magnets 4 and 4 connected to the adjacent V-shaped first permanent magnets 3 and 3 are poles different from each other.

本実施形態の基本的な作用は第1の実施形態と同様である。本実施形態の場合では、第1の永久磁石3と第2の永久磁石4の間に空洞が無いので、第1の実施形態の回転子と同じ断面積の場合には、永久磁石の磁束量を第1の実施形態よりも多くすることができる。したがって、永久磁石と電流による磁石トルクを増加させることができる。   The basic operation of this embodiment is the same as that of the first embodiment. In the case of the present embodiment, since there is no cavity between the first permanent magnet 3 and the second permanent magnet 4, in the case of the same cross-sectional area as the rotor of the first embodiment, the amount of magnetic flux of the permanent magnet Can be made larger than in the first embodiment. Therefore, the magnet torque due to the permanent magnet and current can be increased.

次に、本発明に係る永久磁石式リラクタンス型回転電機の第3の実施形態を図11を用いて説明する。なお第1の実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。   Next, a third embodiment of the permanent magnet type reluctance type rotating electrical machine according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.

本実施形態では、第3の空洞7の一部に磁性の突起17を設けて第2の永久磁石4の端部まで突出させてある。突起17と第2の永久磁石4の端部との間は空間ができる形状としてある。第2の永久磁石4の端部側面に突起17を接触させるので、突起17と鉄心間に磁界が集中して、電流の磁界による第2の永久磁石4の減磁を緩和できる。   In the present embodiment, a magnetic protrusion 17 is provided on a part of the third cavity 7 so as to protrude to the end of the second permanent magnet 4. A space is formed between the protrusion 17 and the end of the second permanent magnet 4. Since the protrusion 17 is brought into contact with the end side surface of the second permanent magnet 4, the magnetic field is concentrated between the protrusion 17 and the iron core, and the demagnetization of the second permanent magnet 4 due to the magnetic field of the current can be mitigated.

なお、本発明の構成は上述した各実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で上記の各実施形態に種々の改変を施すことができる。   The configuration of the present invention is not limited to the above-described embodiments, and various modifications can be made to the above-described embodiments without departing from the gist of the present invention.

本発明の第1の実施形態の回転子の断面図。Sectional drawing of the rotor of the 1st Embodiment of this invention. 実施形態の永久磁石の磁束と電流による磁束の流れを示す図。The figure which shows the flow of the magnetic flux by the magnetic flux of the permanent magnet of embodiment, and an electric current. 図1の要部の拡大図。The enlarged view of the principal part of FIG. 従来の永久磁石回転電機における空隙磁束密度分布と電流の関係(相差角90°の位相で最大電流を通電)を示す図A diagram showing the relationship between the air gap magnetic flux density distribution and the current in a conventional permanent magnet rotating electrical machine (the maximum current is applied with a phase difference angle of 90 °). 従来の永久磁石回転電機における空隙磁束密度分布と電流の関係(相差角135°の位相で最大電流を通電)を示す図。The figure which shows the relationship (air current is supplied with the maximum current with the phase of a phase difference angle of 135 degrees) between the air gap magnetic flux density distribution and the current in the conventional permanent magnet rotating electric machine. 実施形態における空隙磁束密度分布と電流の関係(相差角135°の位相で最大電流を通電)を示す図。The figure which shows the relationship (air current is supplied with the largest electric current with the phase of a phase difference angle of 135 degrees) between air gap magnetic flux density distribution and electric current in embodiment. 実施形態における弱め磁束時の空隙磁束密度分布(第1の永久磁石の磁束と電流による弱め磁束)を示す図。The figure which shows the space | gap magnetic flux density distribution at the time of the weak magnetic flux in embodiment (the magnetic flux of the 1st permanent magnet, and the weak magnetic flux by an electric current). 実施形態における空隙磁束密度分布(第2の永久磁石を45°と135°(第1の永久磁石の空隙磁束密度分布の中心軸から−45°と45°)の位置に配置したときの磁束密度分布)を示す図。Void magnetic flux density distribution in the embodiment (magnetic flux density when the second permanent magnet is disposed at 45 ° and 135 ° (−45 ° and 45 ° from the central axis of the void magnetic flux density distribution of the first permanent magnet) FIG. 実施形態における空隙磁束密度分布(第2の永久磁石を35°と145°(第1の永久磁石の空隙磁束密度分布の中心軸から−55°と55°)の位置に配置したときの磁束密度分布)を示す図。Void magnetic flux density distribution in the embodiment (magnetic flux density when the second permanent magnet is disposed at positions of 35 ° and 145 ° (−55 ° and 55 ° from the central axis of the void magnetic flux density distribution of the first permanent magnet) FIG. 本発明の第2の実施形態の回転子の断面図。Sectional drawing of the rotor of the 2nd Embodiment of this invention. 本発明の第3の実施形態の回転子の要部拡大図。The principal part enlarged view of the rotor of the 3rd Embodiment of this invention. 従来の埋め込み型永久磁石回転電機の回転子の断面図。Sectional drawing of the rotor of the conventional embedded permanent magnet rotary electric machine. 従来の永久磁石式リラクタンス型回転電機の回転子の断面図。Sectional drawing of the rotor of the conventional permanent magnet type reluctance type rotary electric machine.

符号の説明Explanation of symbols

1 回転子
2 回転子鉄心
3 第1の永久磁石
4 第2の永久磁石
5 第1の空洞
6 第2の空洞
7 第3の空洞
8 第4の空洞
9 第5の空洞
10 第6の空洞
11 鉄心の磁極(リラクタンストルクを発生する磁極)
12 第3の空洞にある突起
13 第4の空洞にある突起
14 第5の空洞にある突起
15 内周側鉄心ブリッジ
16 鉄心A部
17 第3の空洞にある突起
DESCRIPTION OF SYMBOLS 1 Rotor 2 Rotor core 3 1st permanent magnet 4 2nd permanent magnet 5 1st cavity 6 2nd cavity 7 3rd cavity 8 4th cavity 9 5th cavity 10 6th cavity 11 Iron core magnetic pole (magnetic pole generating reluctance torque)
12 Protrusion in the third cavity 13 Protrusion in the fourth cavity 14 Protrusion in the fifth cavity 15 Inner peripheral iron core bridge 16 Iron core A portion 17 Protrusion in the third cavity

Claims (24)

磁気異方性を有する回転子と、前記回転子に設けられた複数の第1の永久磁石及び複数の第2の永久磁石とを有し、前記第1の永久磁石の磁化方向と前記第2の永久磁石の磁化方向は異なり、前記第2の永久磁石は前記回転子の外周面にほぼ垂直に向かう方向に磁化され、前記第1の永久磁石が前記回転子の外周面と固定子の間の空隙内に形成する磁束の方向の磁気抵抗を高くするように構成されたことを特徴とする永久磁石式リラクタンス型回転電機。   A rotor having magnetic anisotropy; a plurality of first permanent magnets and a plurality of second permanent magnets provided on the rotor; and a magnetization direction of the first permanent magnet and the second The direction of magnetization of the permanent magnets is different, the second permanent magnet is magnetized in a direction substantially perpendicular to the outer peripheral surface of the rotor, and the first permanent magnet is located between the outer peripheral surface of the rotor and the stator. A permanent magnet type reluctance type rotating electrical machine characterized in that the magnetic resistance in the direction of the magnetic flux formed in the gap is increased. 前記第2の永久磁石は前記第1の永久磁石よりも前記回転子の外周側に配置されたことを特徴とする請求項1記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type rotating electrical machine according to claim 1, wherein the second permanent magnet is arranged on an outer peripheral side of the rotor with respect to the first permanent magnet. 前記回転子は、前記第1の永久磁石を挿入する第1の空洞及び前記第2の永久磁石を挿入する第2の空洞を設けた鉄心を有することを特徴とする請求項1又は2記載の永久磁石式リラクタンス型回転電機。   3. The rotor according to claim 1, wherein the rotor has an iron core provided with a first cavity into which the first permanent magnet is inserted and a second cavity into which the second permanent magnet is inserted. Permanent magnet type reluctance type rotating electrical machine. 前記第1の永久磁石及び前記第2の永久磁石により一つの磁極を構成すると共に、この磁極が前記回転子の外周部に周方向に間隔をおいて複数個設けられ、隣り合う前記磁極が互いに異極となるように構成されたことを特徴とする請求項1〜3のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The first permanent magnet and the second permanent magnet constitute one magnetic pole, and a plurality of the magnetic poles are provided on the outer peripheral portion of the rotor at intervals in the circumferential direction. The permanent magnet type reluctance rotating electric machine according to any one of claims 1 to 3, wherein the permanent magnet type reluctance rotating electric machine is configured to have different polarities. 隣り合う前記磁極の間には、リラクタンストルクを発生する磁極が前記回転子の鉄心の一部により形成されていることを特徴とする請求項4記載の永久磁石式リラクタンス型回転電機。   5. The permanent magnet type reluctance rotating electric machine according to claim 4, wherein a magnetic pole for generating reluctance torque is formed between a part of the adjacent magnetic poles by a part of the iron core of the rotor. 前記各磁極において、前記第1の永久磁石が、前記回転子の外周側に向けて開いたV字状を成すように配置されたことを特徴とする請求項4又は5記載の永久磁石式リラクタンス型回転電機。   6. The permanent magnet type reluctance according to claim 4, wherein in each of the magnetic poles, the first permanent magnet is arranged so as to form a V shape that opens toward an outer peripheral side of the rotor. Type rotating electric machine. 前記第2の永久磁石は、前記回転子の外周面に近接して配置されたことを特徴とする請求項2記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type rotating electrical machine according to claim 2, wherein the second permanent magnet is arranged close to an outer peripheral surface of the rotor. 前記第1の空洞と前記第2の空洞の間に第3の空洞が設けられたことを特徴とする請求項3記載の永久磁石式リラクタンス型回転電機。   The permanent magnet reluctance rotating electric machine according to claim 3, wherein a third cavity is provided between the first cavity and the second cavity. 前記第3の空洞内に突出する磁性の突起が設けられたことを特徴とする請求項8記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance rotating electric machine according to claim 8, wherein a magnetic protrusion protruding in the third cavity is provided. 前記第1の空洞における前記第3の空洞と反対側の端部に第4の空洞が設けられたことを特徴とする請求項8又は請求項9記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance rotating electric machine according to claim 8 or 9, wherein a fourth cavity is provided at an end of the first cavity opposite to the third cavity. 前記第2の空洞における前記第3の空洞と反対側の端部に第5の空洞が設けられたことを特徴とする請求項10記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance rotating electric machine according to claim 10, wherein a fifth cavity is provided at an end of the second cavity opposite to the third cavity. 前記第1の永久磁石の磁化方向は、前記第1の永久磁石により形成されるV字の側面に対してほぼ垂直に向かう方向であることを特徴とする請求項6記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type according to claim 6, wherein the magnetization direction of the first permanent magnet is a direction substantially perpendicular to a V-shaped side surface formed by the first permanent magnet. Rotating electric machine. 前記第2の永久磁石は、その磁化方向が前記回転子の外周面にほぼ垂直に向かうように配置されたことを特徴とする請求項1〜12のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type according to any one of claims 1 to 12, wherein the second permanent magnet is arranged so that a magnetization direction thereof is substantially perpendicular to an outer peripheral surface of the rotor. Rotating electric machine. 前記第2の永久磁石の中心部を前記回転子の径方向に通る中心軸が、前記第1の永久磁石が形成する磁束密度分布の中心から、電気角で−20°〜−80°の範囲内と20°〜80°の範囲内に位置するように前記第2の永久磁石が配置されたことを特徴とする請求項1〜13のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The central axis passing through the central portion of the second permanent magnet in the radial direction of the rotor ranges from −20 ° to −80 ° in electrical angle from the center of the magnetic flux density distribution formed by the first permanent magnet. The permanent magnet type reluctance rotating electric machine according to any one of claims 1 to 13, wherein the second permanent magnet is arranged so as to be located within a range of 20 ° to 80 °. 前記第2の永久磁石の中心部を前記回転子の径方向に通る中心軸が、前記第1の永久磁石が形成する磁束密度分布の中心から、電気角で−45°±10°の範囲内と45°±10°の範囲内に位置するように前記第2の永久磁石が配置されたことを特徴とする請求項1〜14のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The central axis passing through the central portion of the second permanent magnet in the radial direction of the rotor is within a range of −45 ° ± 10 ° in electrical angle from the center of the magnetic flux density distribution formed by the first permanent magnet. The permanent magnet type reluctance rotating electric machine according to any one of claims 1 to 14, wherein the second permanent magnet is disposed so as to be within a range of 45 ° ± 10 °. 前記第2の永久磁石の中心部を前記回転子の径方向に通る中心軸が、前記第1の永久磁石が形成する磁束密度分布の中心から、電気角で−55°±10°の範囲内と55°±10°の範囲内に位置するように前記第2の永久磁石が配置されたことを特徴とする請求項1〜14のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The central axis passing through the central portion of the second permanent magnet in the radial direction of the rotor is within the range of −55 ° ± 10 ° in electrical angle from the center of the magnetic flux density distribution formed by the first permanent magnet. The permanent magnet type reluctance type rotating electric machine according to any one of claims 1 to 14, wherein the second permanent magnet is arranged so as to be located within a range of 55 ° ± 10 °. 前記磁性の突起の先端部が山型であることを特徴とする請求項9記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type rotating electrical machine according to claim 9, wherein a tip end portion of the magnetic protrusion has a mountain shape. 前記磁性の突起が、前記第1の永久磁石の端部及び前記第2の永久磁石の端部に接触するか、前記各端部との間に隙間が形成されるように配置され、前記突起の先端部は、前記各端部の角部から湾曲すると共に前記各角部間をつなぐ半円状の凸形状であることを特徴とする請求項9又は17記載の永久磁石式リラクタンス型回転電機。   The magnetic protrusions are arranged so as to contact the end portions of the first permanent magnet and the end portions of the second permanent magnet, or to form gaps between the end portions, and the protrusions. 18. The permanent magnet type reluctance rotating electric machine according to claim 9, wherein the tip of each has a semicircular convex shape that curves from a corner of each end and connects between the corners. . 前記第5の空洞内に突出する磁性の突起が設けられたことを特徴とする請求項11記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type rotating electrical machine according to claim 11, wherein a magnetic protrusion protruding in the fifth cavity is provided. 前記突起を、前記回転子の鉄心におけるリラクタンストルクを発生する磁極から突出させたことを特徴とする請求項19記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance type rotating electrical machine according to claim 19, wherein the protrusion is protruded from a magnetic pole generating reluctance torque in the iron core of the rotor. 前記第2の永久磁石における前記第1の永久磁石側の端部が接する前記回転子の鉄心の外周側の部分は、前記第2の永久磁石の側面に対面する前記回転子の鉄心の外周側の部分よりも厚くしてあることを特徴とする請求項1〜20のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The outer peripheral portion of the rotor core that contacts the end of the first permanent magnet in the second permanent magnet is on the outer peripheral side of the rotor core facing the side surface of the second permanent magnet. The permanent magnet type reluctance type rotating electrical machine according to any one of claims 1 to 20, wherein the permanent magnet type reluctance type rotating electrical machine is thicker than the portion. V字状に配置された前記第1の永久磁石により挟み込まれるように前記回転子の鉄心に空洞が設けられたことを特徴とする請求項6記載の永久磁石式リラクタンス型回転電機。   The permanent magnet type reluctance rotating electric machine according to claim 6, wherein a cavity is provided in the iron core of the rotor so as to be sandwiched between the first permanent magnets arranged in a V shape. 前記第2の空洞内には、前記第2の永久磁石の端部まで突出させた磁性の突起が設けられたことを特徴とする請求項3、8、9、10、11、17、18、19、20のいずれか一項記載の永久磁石式リラクタンス型回転電機。   The magnetic cavity which protruded to the edge part of the said 2nd permanent magnet was provided in the said 2nd cavity, The 3, 8, 9, 10, 11, 17, 18, The permanent magnet type reluctance rotary electric machine according to any one of 19 and 20. 前記各空洞内に非磁性材の部材が挿入されたことを特徴とする請求項3、8、9、10、11、17、18、19、20、22のいずれか一項記載の永久磁石式リラクタンス型回転電機。
The permanent magnet type according to any one of claims 3, 8, 9, 10, 11, 17, 18, 19, 20, and 22, wherein a member made of a nonmagnetic material is inserted into each of the cavities. Reluctance type rotating electric machine.
JP2004146332A 2004-05-17 2004-05-17 Permanent magnet type reluctance type rotating electrical machine Active JP4580683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004146332A JP4580683B2 (en) 2004-05-17 2004-05-17 Permanent magnet type reluctance type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004146332A JP4580683B2 (en) 2004-05-17 2004-05-17 Permanent magnet type reluctance type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2005328679A true JP2005328679A (en) 2005-11-24
JP4580683B2 JP4580683B2 (en) 2010-11-17

Family

ID=35474571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004146332A Active JP4580683B2 (en) 2004-05-17 2004-05-17 Permanent magnet type reluctance type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP4580683B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
EP1914863A2 (en) * 2006-10-20 2008-04-23 Kabushiki Kaisha Toshiba Permanent-magnet reluctance electrical rotary machine
JP2008187802A (en) * 2007-01-29 2008-08-14 Toyota Industries Corp Rotor for rotary electrical machine, and electric machine
US7612480B2 (en) 2006-12-12 2009-11-03 Nidec Corporation Interior permanent magnet motor
JP2010081754A (en) * 2008-09-26 2010-04-08 Fuji Electric Systems Co Ltd Permanent magnet rotary machine
JP2015023767A (en) * 2013-07-23 2015-02-02 スズキ株式会社 Synchronous reluctance motor
JPWO2013141323A1 (en) * 2012-03-23 2015-08-03 三菱重工業株式会社 Motor and electric compressor using the same
WO2015142646A1 (en) * 2014-03-17 2015-09-24 Fca Us Llc High efficiency internal permanent magnet synchronous electric machine
CN105871097A (en) * 2016-06-06 2016-08-17 上海川也电机有限公司 Low-fluctuation permanent magnetic rotor of electromobile motor
CN106972667A (en) * 2017-05-24 2017-07-21 乐视汽车(北京)有限公司 The rotor and its manufacture method of a kind of motor
CN107294243A (en) * 2017-07-27 2017-10-24 唐山普林亿威科技有限公司 Low torque fluctuates built-in permanent magnet motor rotor and the close method of optimization motor magnetic
JP2020014372A (en) * 2018-07-05 2020-01-23 アイシン・エィ・ダブリュ株式会社 Rotor and rotating electrical machine
CN113644768A (en) * 2021-08-13 2021-11-12 北京中科三环高技术股份有限公司 Motor rotor and IPM motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013094020A (en) * 2011-10-27 2013-05-16 Suzuki Motor Corp Electric rotary machine
WO2015092925A1 (en) 2013-12-20 2015-06-25 三菱電機株式会社 Permanent magnet embedded electric motor, compressor, and refrigerating and air-conditioning device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136912A (en) * 1997-10-31 1999-05-21 Toshiba Corp Permanent magnet type reluctance type rotary electric machine
JPH11308792A (en) * 1998-04-22 1999-11-05 Toshiba Corp Permanent magnet type reluctance rotating machine
JP2002252939A (en) * 2002-01-17 2002-09-06 Toshiba Corp Permanent magnet type reluctance dynamo electric machine
JP2003088071A (en) * 2001-09-06 2003-03-20 Toshiba Corp Reluctance type electric rotating machine
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11136912A (en) * 1997-10-31 1999-05-21 Toshiba Corp Permanent magnet type reluctance type rotary electric machine
JPH11308792A (en) * 1998-04-22 1999-11-05 Toshiba Corp Permanent magnet type reluctance rotating machine
JP2003088071A (en) * 2001-09-06 2003-03-20 Toshiba Corp Reluctance type electric rotating machine
JP2002252939A (en) * 2002-01-17 2002-09-06 Toshiba Corp Permanent magnet type reluctance dynamo electric machine
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051412A (en) * 2006-08-24 2008-03-06 Chubu Electric Power Co Inc Magnetic refrigerating device
EP1914863A2 (en) * 2006-10-20 2008-04-23 Kabushiki Kaisha Toshiba Permanent-magnet reluctance electrical rotary machine
EP1914863A3 (en) * 2006-10-20 2014-09-24 Kabushiki Kaisha Toshiba Permanent-magnet reluctance electrical rotary machine
US7612480B2 (en) 2006-12-12 2009-11-03 Nidec Corporation Interior permanent magnet motor
JP2008187802A (en) * 2007-01-29 2008-08-14 Toyota Industries Corp Rotor for rotary electrical machine, and electric machine
JP2010081754A (en) * 2008-09-26 2010-04-08 Fuji Electric Systems Co Ltd Permanent magnet rotary machine
US9641032B2 (en) 2012-03-23 2017-05-02 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor having magnets embedded in a rotor and electric compressor using same
JPWO2013141323A1 (en) * 2012-03-23 2015-08-03 三菱重工業株式会社 Motor and electric compressor using the same
JP2015023767A (en) * 2013-07-23 2015-02-02 スズキ株式会社 Synchronous reluctance motor
WO2015142646A1 (en) * 2014-03-17 2015-09-24 Fca Us Llc High efficiency internal permanent magnet synchronous electric machine
CN105871097A (en) * 2016-06-06 2016-08-17 上海川也电机有限公司 Low-fluctuation permanent magnetic rotor of electromobile motor
CN106972667A (en) * 2017-05-24 2017-07-21 乐视汽车(北京)有限公司 The rotor and its manufacture method of a kind of motor
CN107294243A (en) * 2017-07-27 2017-10-24 唐山普林亿威科技有限公司 Low torque fluctuates built-in permanent magnet motor rotor and the close method of optimization motor magnetic
CN107294243B (en) * 2017-07-27 2023-07-18 唐山普林亿威科技有限公司 Low-torque-fluctuation built-in permanent magnet motor rotor and motor magnetic density optimization method
JP2020014372A (en) * 2018-07-05 2020-01-23 アイシン・エィ・ダブリュ株式会社 Rotor and rotating electrical machine
JP7235589B2 (en) 2018-07-05 2023-03-08 株式会社アイシン Rotor and rotating electric machine
CN113644768A (en) * 2021-08-13 2021-11-12 北京中科三环高技术股份有限公司 Motor rotor and IPM motor
CN113644768B (en) * 2021-08-13 2022-12-06 北京中科三环高技术股份有限公司 Motor rotor and IPM motor

Also Published As

Publication number Publication date
JP4580683B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
CN109510347B (en) Rotating electrical machine
JP5542423B2 (en) Rotating electric machine rotor and rotating electric machine
JP6423991B2 (en) Rotor and drive motor
JP6992368B2 (en) Variable magnetic flux type permanent magnet type rotary electric machine
JP5502571B2 (en) Permanent magnet rotating electric machine
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2006314152A (en) Permanent-magnet motor
US20110163618A1 (en) Rotating Electrical Machine
US9362790B2 (en) Permanent magnet embedded rotor
EP1643618A2 (en) Rotor for rotary electric machine
JP6048191B2 (en) Multi-gap rotating electric machine
US11837919B2 (en) Rotary electric machine
JP2011078202A (en) Axial gap motor
JP4491260B2 (en) Rotor for bearingless motor and bearingless motor
KR20090067057A (en) Brushless motor
JP2013132124A (en) Core for field element
JP5194984B2 (en) Permanent magnet rotor
JP2000253608A (en) Brushlfss motor
JP2004135375A (en) Rotor structure of coaxial motor
JP6083640B2 (en) Permanent magnet embedded motor
JP2011097783A (en) Rotor of rotary electric machine
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
US7388309B2 (en) Magnetic circuit structure for rotary electric machine
JPWO2019187205A1 (en) Rotating machine
JP2006340507A (en) Stator of rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4580683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350