JP2015089149A - Multi-gap type rotary electric machine - Google Patents

Multi-gap type rotary electric machine Download PDF

Info

Publication number
JP2015089149A
JP2015089149A JP2013223066A JP2013223066A JP2015089149A JP 2015089149 A JP2015089149 A JP 2015089149A JP 2013223066 A JP2013223066 A JP 2013223066A JP 2013223066 A JP2013223066 A JP 2013223066A JP 2015089149 A JP2015089149 A JP 2015089149A
Authority
JP
Japan
Prior art keywords
magnet
rotor
magnetic pole
stator
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013223066A
Other languages
Japanese (ja)
Other versions
JP5904188B2 (en
Inventor
啓次 近藤
Keiji Kondo
啓次 近藤
草瀬 新
Arata Kusase
新 草瀬
武雄 前川
Takeo Maekawa
武雄 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013223066A priority Critical patent/JP5904188B2/en
Priority to DE102013113657.5A priority patent/DE102013113657A1/en
Priority to CN201310660024.5A priority patent/CN103872869B/en
Priority to US14/100,039 priority patent/US10020698B2/en
Publication of JP2015089149A publication Critical patent/JP2015089149A/en
Application granted granted Critical
Publication of JP5904188B2 publication Critical patent/JP5904188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent demagnetization of a magnet at a rotor magnetic pole end part without deteriorating motor performance, and to improve a demagnetization resistance of an inner magnet 9 to an outer magnet 10.SOLUTION: Counter-stator side surfaces of an inner magnet 9 and an outer magnet 10 are inclined so that magnet thicknesses P2 and P4 of respective magnetic pole end parts are gradually reduced from the center side in a circumferential direction toward a circumferential direction end. That is, a radial direction width of a rotor yoke 4d becomes larger (wider) gradually as it goes toward the circumferential direction end of an inner rotor magnetic pole and an outer rotor magnetic pole. Thereby, in the vicinity of the magnetic pole end part where a q-axis magnetic flux generating a reluctance torque and a d-axis magnetic flux generating a magnet torque are the most concentrated, magnetic saturation at the rotor yoke 4d can be suppressed. As a result, because magnetic leakage to the inner magnet 9 and the outer magnet 10 can be prevented, local demagnetization of the inner magnet 9 and the outer magnet 10 at the magnetic pole end part can be prevented.

Description

本発明は、産業用、自動車用などの様々な用途に適用可能であり、とりわけ、ハイブリッド自動車の走行用モータに用いて好適なマルチギャップ型回転電機に関する。   The present invention can be applied to various uses such as industrial use and automobile use, and particularly relates to a multi-gap type rotating electrical machine suitable for use in a running motor of a hybrid car.

従来、小型で高出力なモータとして、磁石によるマグネットトルクに加えて、鉄心吸引力であるリラクタンストルクを活用できるIPMモータ(磁石埋め込み型モータ)が広く知られている。このIPMモータにおいて、図8に示すように、ロータ100の内径側と外径側とに内側ステータ110と外側ステータ120を配置したダブルステータ型モータがある。
例えば、特許文献1に開示されたダブルステータ型モータは、内側ステータ110に対向するロータ鉄心101の内周側に内側磁石130、外周側に外側磁石140がそれぞれ埋設されて、周方向に隣り合う磁石磁極間に内側ロータ突極102、外側ロータ突極103が形成されている。
2. Description of the Related Art Conventionally, as a small and high-power motor, an IPM motor (magnet embedded motor) that can utilize reluctance torque that is an iron core attractive force in addition to magnet torque by a magnet is widely known. In this IPM motor, as shown in FIG. 8, there is a double stator type motor in which an inner stator 110 and an outer stator 120 are arranged on the inner diameter side and the outer diameter side of the rotor 100.
For example, in the double stator motor disclosed in Patent Document 1, an inner magnet 130 is embedded on the inner peripheral side of the rotor core 101 facing the inner stator 110, and an outer magnet 140 is embedded on the outer peripheral side, and adjacent to each other in the circumferential direction. An inner rotor salient pole 102 and an outer rotor salient pole 103 are formed between the magnet magnetic poles.

特開2007−261342号公報JP 2007-261342 A

ところが、特許文献1のモータは、以下の理由により実用化には課題がある。
a)ロータ鉄心101に埋設される永久磁石(内側磁石130、外側磁石140)、とりわけ磁極端部(周方向の両端部)における局所減磁が生じやすい。
b)ロータ100の内外に内側ステータ110と外側ステータ120とを配置するダブルステータ型モータの場合、外側磁石140に比べて内側磁石130がより減磁しやすい。
However, the motor of Patent Document 1 has a problem in practical use for the following reasons.
a) Local demagnetization tends to occur at the permanent magnets (inner magnet 130, outer magnet 140) embedded in the rotor core 101, particularly at the magnetic pole ends (both ends in the circumferential direction).
b) In the case of a double stator type motor in which the inner stator 110 and the outer stator 120 are arranged inside and outside the rotor 100, the inner magnet 130 is more easily demagnetized than the outer magnet 140.

本願発明者は、上記問題点を考察した結果、次の根本的原因があることに気づいた。
上記a)の最も大きな要因は、内側磁気回路の磁束と外側磁気回路の磁束とが合流して流れるロータヨークにおいて磁気飽和を起こしやすいため磁石内部へ磁気漏れを生じ、その結果、磁石に大きな反磁界が掛かることにある。
磁気飽和を起こしやすい理由は、図8に太線矢印で示すように、リラクタンストルクを発生するq軸磁束(図9参照)と、マグネットトルクを発生するd軸磁束(図10参照)とが最も集中する磁石磁極の端部付近においてロータヨーク幅Wが狭いためである。
また、局所減磁を引き起こすその他の理由は、磁石磁極間のロータ突極102、103で磁気飽和を起こしやすいため磁気漏れを生じ、その結果、ロータ突極近傍の磁極端部に大きな反磁界が掛かることにある。磁気飽和を起こしやすい理由は、図9に示すように、q軸磁束が磁石磁極間の狭いロータ突極102、103に集中して流れるためである。
As a result of considering the above problems, the present inventor has found that there is the following root cause.
The largest factor of a) is that magnetic saturation is likely to occur in the rotor yoke where the magnetic flux of the inner magnetic circuit and the magnetic flux of the outer magnetic circuit merge and flow, so that magnetic leakage occurs inside the magnet, resulting in a large demagnetizing field in the magnet. It is in that it takes.
The reason why magnetic saturation is likely to occur is that the q-axis magnetic flux (see FIG. 9) that generates reluctance torque and the d-axis magnetic flux (see FIG. 10) that generates magnet torque are the most concentrated, as shown by thick arrows in FIG. This is because the rotor yoke width W is narrow in the vicinity of the end of the magnet magnetic pole.
Another reason for causing local demagnetization is that magnetic saturation is likely to occur in the rotor salient poles 102 and 103 between the magnetic poles, resulting in magnetic leakage. As a result, a large demagnetizing field is generated at the magnetic pole ends near the rotor salient poles. It is in hanging. The reason why the magnetic saturation is likely to occur is that the q-axis magnetic flux concentrates on the narrow rotor salient poles 102 and 103 between the magnetic poles as shown in FIG.

上記b)の要因は、ダブルステータ型モータでは、外側磁気回路に比べ内側磁気回路の方が磁気飽和を起こしやすいため磁気漏れを生じ、その結果、内側磁石130の近傍に大きな反磁界が掛かることにある。磁気飽和を起こしやすい理由は、ロータ100の外径側に配置される外側ステータ120に対し、ロータ100の内径側に配置される内側ステータ110の占有面積が狭くなるためである。つまり、外側ステータ120と同等のスロット面積を内側ステータ110に確保しようとすると、内側ステータ110のティース幅が細くならざるを得ないためである。
ここで、そもそも磁石減磁が生じる原因は、磁石の保持力(磁石厚さに比例)に対し反磁界が大きいためである。従って、磁石減磁の対処法として有効なのは、磁石厚さを増加させることである。しかしダブルステータ型モータにおいて、その方式を採用すると、ロータヨークあるいは内外いずれかのステータのバックヨークが狭くなり、磁気飽和を起こしてモータ性能を低下させてしまうという結果になる。
The factor of b) is that in the double stator motor, the inner magnetic circuit is more likely to cause magnetic saturation than the outer magnetic circuit, so that magnetic leakage occurs, and as a result, a large demagnetizing field is applied in the vicinity of the inner magnet 130. It is in. The reason why magnetic saturation is likely to occur is that the area occupied by the inner stator 110 disposed on the inner diameter side of the rotor 100 is smaller than the outer stator 120 disposed on the outer diameter side of the rotor 100. That is, if the slot area equivalent to that of the outer stator 120 is to be secured in the inner stator 110, the teeth width of the inner stator 110 must be reduced.
Here, the reason why magnet demagnetization occurs in the first place is that the demagnetizing field is larger than the magnet holding force (proportional to the magnet thickness). Therefore, it is effective to increase the magnet thickness as a countermeasure against the magnet demagnetization. However, if this method is adopted in a double stator type motor, the rotor yoke or the back yoke of the inner or outer stator becomes narrow, resulting in magnetic saturation and a reduction in motor performance.

本発明は、上記事情に基づいて成されたもので、第1の目的として、性能を低下させることなくロータ磁極端部における磁石の減磁を防ぐこと、第2の目的として、外側磁石に対し内側磁石の減磁耐力を向上させることのできるマルチギャップ型回転電機を提供することにある。   The present invention has been made on the basis of the above circumstances. As a first object, it is possible to prevent demagnetization of the magnet at the rotor magnetic pole end without degrading the performance, and as a second object, to the outer magnet. An object of the present invention is to provide a multi-gap rotating electric machine that can improve the demagnetization resistance of an inner magnet.

(請求項1に係る発明)
本発明は、回転軸と同心に配置されて回転軸と一体に回転する環状のロータと、このロータの内径側にギャップを有して配置される内側ステータと、ロータの外径側にギャップを有して配置される外側ステータとを有し、ロータは、軟磁性材料によって形成されるロータ鉄心と、このロータ鉄心の内周側に埋設されて内側ロータ磁極を形成する内側磁石と、ロータ鉄心の外周側に埋設されて外側ロータ磁極を形成する外側磁石とを有し、ロータ鉄心は、周方向に隣り合う内側ロータ磁極間および外側ロータ磁極間にそれぞれロータ内側突極およびロータ外側突極を形成するマルチギャップ型回転電機であって、内側ロータ磁極および外側ロータ磁極の周方向の両端部をそれぞれ磁極端部と呼び、内側磁石および外側磁石の径方向厚さをそれぞれ磁石厚さと呼び、内側磁石の外周側の表面および外側磁石の内周側の表面をそれぞれ反ステータ側表面と呼ぶ時に、内側磁石と外側磁石の両方またはどちらか一方は、磁極端部での磁石厚さが周方向の中央側から周方向端に向かって次第に小さくなるように反ステータ側表面が傾斜していることを特徴とする。
(Invention according to Claim 1)
The present invention includes an annular rotor arranged concentrically with a rotating shaft and rotating integrally with the rotating shaft, an inner stator arranged with a gap on the inner diameter side of the rotor, and a gap on the outer diameter side of the rotor. A rotor iron core formed of a soft magnetic material, an inner magnet embedded in an inner peripheral side of the rotor iron core to form an inner rotor magnetic pole, and the rotor iron core And an outer magnet that forms an outer rotor magnetic pole, and the rotor core has a rotor inner salient pole and a rotor outer salient pole between the inner rotor magnetic poles adjacent to each other in the circumferential direction and the outer rotor magnetic pole, respectively. In the multi-gap rotating electric machine to be formed, both end portions in the circumferential direction of the inner rotor magnetic pole and the outer rotor magnetic pole are called magnetic pole ends, and the radial thicknesses of the inner magnet and the outer magnet are respectively set. When the outer peripheral surface of the inner magnet and the inner peripheral surface of the outer magnet are referred to as the anti-stator side surfaces, the inner magnet and / or the outer magnet are magnets at the magnetic pole ends. The anti-stator side surface is inclined so that the thickness gradually decreases from the central side in the circumferential direction toward the circumferential end.

本発明のマルチギャップ型回転電機は、内側磁石と外側磁石の両方またはどちらか一方において、磁石の反ステータ側表面を傾斜させることで磁極端部での磁石厚さが周方向の中央側から周方向端に向かって次第に小さくなっている。すなわち、内側ロータ磁極と外側ロータ磁極との間に共有の磁路を形成するロータヨークの径方向幅が内側ロータ磁極および外側ロータ磁極の周方向の中央側から周方向端に向かって次第に大きく(広く)なっている。これにより、磁極端部付近でのロータヨークにおいて磁気飽和を抑制できるので、磁石への磁気漏れを防ぐことができ、その結果、磁極端部における磁石の局所減磁を防止できる。   In the multi-gap rotating electric machine of the present invention, the magnet thickness at the magnetic pole end portion is increased from the central side in the circumferential direction by inclining the anti-stator side surface of the magnet in either or either of the inner magnet and the outer magnet. It gradually becomes smaller toward the direction end. That is, the radial width of the rotor yoke that forms a shared magnetic path between the inner rotor magnetic pole and the outer rotor magnetic pole is gradually increased from the center side in the circumferential direction of the inner rotor magnetic pole and the outer rotor magnetic pole toward the circumferential end (widely). It has become. Thereby, magnetic saturation can be suppressed in the rotor yoke in the vicinity of the magnetic pole end, so that magnetic leakage to the magnet can be prevented, and as a result, local demagnetization of the magnet at the magnetic pole end can be prevented.

実施例1に係るモータの磁気回路を示す周方向1/4断面図である。FIG. 3 is a ¼ cross-sectional view in the circumferential direction illustrating the magnetic circuit of the motor according to the first embodiment. 実施例1に係るロータの一部断面図である。1 is a partial cross-sectional view of a rotor according to Embodiment 1. FIG. 実施例1に係るモータの構成を示す縦断面図である。1 is a longitudinal sectional view showing a configuration of a motor according to Embodiment 1. FIG. 内外ステータ巻線をインバータに接続した結線図である。It is the connection diagram which connected the inner and outer stator windings to the inverter. 実施例2に係るロータの一部断面図である。6 is a partial cross-sectional view of a rotor according to Embodiment 2. FIG. 実施例3に係るロータの一部断面図である。6 is a partial cross-sectional view of a rotor according to Embodiment 3. FIG. 実施例4に係るモータの構成を示す縦断面図である。FIG. 6 is a longitudinal sectional view illustrating a configuration of a motor according to a fourth embodiment. 従来技術に係るモータ磁気回路の一部を示す断面図である。It is sectional drawing which shows a part of motor magnetic circuit which concerns on a prior art. 従来技術に係るq軸磁束の流れを示すロータの一部断面図である。It is a partial cross section figure of the rotor which shows the flow of the q-axis magnetic flux which concerns on a prior art. 従来技術に係るd軸磁束の流れを示すロータの一部断面図である。It is a partial cross section figure of the rotor which shows the flow of the d-axis magnetic flux which concerns on a prior art.

本発明を実施するための形態を以下の実施例により詳細に説明する。   The mode for carrying out the present invention will be described in detail with reference to the following examples.

(実施例1)
実施例1では、本発明のマルチギャップ型回転電機をハイブリッド自動車の走行用モータ(以下、モータ1と言う)に適用した一例を説明する。
モータ1は、図3に示す様に、ロータ保持部材2を介してシャフト3に支持される環状のロータ4と、このロータ4の内径側にギャップを有して配置される内側ステータ5と、ロータ4の外径側にギャップを有して配置される外側ステータ6とを備える。
シャフト3は、本発明の回転軸であり、両端部がそれぞれ軸受7を介してモータハウジング8に回転自在に支持される。
Example 1
In the first embodiment, an example in which the multi-gap rotating electric machine of the present invention is applied to a traveling motor (hereinafter referred to as a motor 1) of a hybrid vehicle will be described.
As shown in FIG. 3, the motor 1 includes an annular rotor 4 that is supported by the shaft 3 via the rotor holding member 2, an inner stator 5 that is disposed with a gap on the inner diameter side of the rotor 4, And an outer stator 6 disposed with a gap on the outer diameter side of the rotor 4.
The shaft 3 is a rotating shaft of the present invention, and both end portions thereof are rotatably supported by the motor housing 8 via bearings 7 respectively.

ロータ保持部材2は、例えば、非磁性SUS材によって形成される円筒ボス部2aと、この円筒ボス部2aの一方の端部より外径方向へ延設されるディスク部2bとを有し、円筒ボス部がシャフト3の外周に嵌合してシャフト3と一体に回転する。
ロータ4は、図1に示す様に、ロータ鉄心4aと、このロータ鉄心4aの内周側に埋設されて内側ロータ磁極を形成する内側磁石9と、ロータ鉄心4aの外周側に埋設されて外側ロータ磁極を形成する外側磁石10とで構成される。なお、図1はモータ1の磁気回路を示す断面図であるが、断面を表示するハッチングは省略している。
The rotor holding member 2 includes, for example, a cylindrical boss portion 2a formed of a nonmagnetic SUS material, and a disk portion 2b extending from one end portion of the cylindrical boss portion 2a in the outer diameter direction. The boss part fits on the outer periphery of the shaft 3 and rotates together with the shaft 3.
As shown in FIG. 1, the rotor 4 includes a rotor core 4a, an inner magnet 9 that is embedded on the inner peripheral side of the rotor core 4a to form an inner rotor magnetic pole, and an outer side that is embedded on the outer peripheral side of the rotor core 4a. It is comprised with the outer magnet 10 which forms a rotor magnetic pole. FIG. 1 is a cross-sectional view showing a magnetic circuit of the motor 1, but hatching for displaying the cross section is omitted.

ロータ鉄心4aは、例えば、電磁鋼板をプレスで円環状に打ち抜いた複数枚のコアシートを積層して構成され、その積層方向に挿通されるリベットまたはスルーボルト等の締結部材(図示せず)により連結されてディスク部2bに固定される(図3参照)。
このロータ鉄心4aには、図2(a)に示すように、周方向に隣り合う内側ロータ磁極(内側磁石9)同士の間にロータ内側突極4bが形成され、周方向に隣り合う外側ロータ磁極(外側磁石10)同士の間にロータ外側突極4cが形成される。
ロータ内側突極4bとロータ外側突極4cは、ロータ鉄心4aの周方向において同位置に形成される。また、内側ロータ磁極(内側磁石9)と外側ロータ磁極(外側磁石10)との間には、内側磁束と外側磁束とが合流して流れるロータヨーク4dが環状に形成される。なお、内側磁束とは、内側ステータ5との間でロータ内側突極4bを通じてロータ鉄心4aを流れる磁束であり、外側磁束とは、外側ステータ6との間でロータ外側突極4cを通じてロータ鉄心4aを流れる磁束である。
For example, the rotor core 4a is formed by laminating a plurality of core sheets obtained by punching electromagnetic steel plates into a ring shape with a press, and by a fastening member (not shown) such as a rivet or a through bolt inserted in the laminating direction. It is connected and fixed to the disk portion 2b (see FIG. 3).
As shown in FIG. 2A, the rotor iron core 4a has a rotor inner salient pole 4b formed between the inner rotor magnetic poles (inner magnets 9) adjacent in the circumferential direction, and the outer rotor adjacent in the circumferential direction. A rotor outer salient pole 4c is formed between the magnetic poles (outer magnets 10).
The rotor inner salient pole 4b and the rotor outer salient pole 4c are formed at the same position in the circumferential direction of the rotor iron core 4a. Further, between the inner rotor magnetic pole (inner magnet 9) and the outer rotor magnetic pole (outer magnet 10), a rotor yoke 4d in which the inner magnetic flux and the outer magnetic flux are joined and formed in an annular shape is formed. The inner magnetic flux is a magnetic flux that flows through the rotor iron core 4 a through the rotor inner salient pole 4 b with the inner stator 5, and the outer magnetic flux is the rotor iron core 4 a through the rotor outer salient pole 4 c with the outer stator 6. The magnetic flux flowing through

ロータ鉄心4aの内周側には、内側磁石9を挿入するための内側磁石挿入孔11が形成され、ロータ鉄心4aの外周側には、外側磁石10を挿入するための外側磁石挿入孔12が形成される。但し、外側磁石挿入孔12は、ロータ鉄心4aの外周側が閉じた孔形状に形成されるのに対し、内側磁石挿入孔11は、ロータ鉄心4aの内周側が開口した凹溝形状に形成される。すなわち、外側磁石10は、周囲が囲まれた状態で外側磁石挿入孔12に挿入される磁石埋設型であるのに対し、内側磁石9は、径方向の内周面が露出した状態で内側磁石挿入孔11に挿入される、いわゆるインセット型と呼ばれる構造を採用している。なお、本発明では、インセット型も含めて「磁石埋設型」と定義する。
内側磁石9と外側磁石10は、図1に矢印で示す様に、ロータ4の径方向に対向する互いの磁極が同極を有し、且つ、内側ロータ磁極と外側ロータ磁極の磁界の向きが周方向で交互に異なるように着磁される。
An inner magnet insertion hole 11 for inserting the inner magnet 9 is formed on the inner peripheral side of the rotor core 4a, and an outer magnet insertion hole 12 for inserting the outer magnet 10 is formed on the outer peripheral side of the rotor core 4a. It is formed. However, the outer magnet insertion hole 12 is formed in a hole shape in which the outer peripheral side of the rotor core 4a is closed, whereas the inner magnet insertion hole 11 is formed in a concave groove shape in which the inner peripheral side of the rotor core 4a is opened. . That is, the outer magnet 10 is a magnet-embedded type that is inserted into the outer magnet insertion hole 12 in a state in which the periphery is surrounded, whereas the inner magnet 9 is an inner magnet with a radially inner peripheral surface exposed. A so-called inset type structure that is inserted into the insertion hole 11 is employed. In the present invention, it is defined as a “magnet buried type” including an inset type.
As shown by arrows in FIG. 1, the inner magnet 9 and the outer magnet 10 have the same magnetic poles facing each other in the radial direction of the rotor 4, and the directions of the magnetic fields of the inner rotor magnetic pole and the outer rotor magnetic pole are It is magnetized so as to be alternately different in the circumferential direction.

内側ステータ5は、図1に示す様に、複数の内側スロット5aが周方向に等間隔に形成される内側ステータ鉄心5bと、この内側ステータ鉄心5bに巻装(例えば全節巻)される三相(U、V、W)の内側ステータ巻線5cとで構成される。
外側ステータ6は、図1に示す様に、複数の外側スロット6aが周方向に等間隔に形成される外側ステータ鉄心6bと、この外側ステータ鉄心6bに巻装(例えば全節巻)される三相(X、Y、Z)の外側ステータ巻線6cとで構成される。
また、内側ステータ5と外側ステータ6は、互いのスロット数が同数である。
As shown in FIG. 1, the inner stator 5 includes an inner stator core 5b in which a plurality of inner slots 5a are formed at equal intervals in the circumferential direction, and three (for example, full-pitch winding) wound around the inner stator core 5b. It is comprised with the inner side stator winding 5c of a phase (U, V, W).
As shown in FIG. 1, the outer stator 6 includes an outer stator core 6b in which a plurality of outer slots 6a are formed at equal intervals in the circumferential direction, and three (for example, full-pitch winding) wound around the outer stator core 6b. The outer stator winding 6c of the phase (X, Y, Z).
Further, the inner stator 5 and the outer stator 6 have the same number of slots.

内側ステータ巻線5cと外側ステータ巻線6cは、例えば、図4に示す様に、互いの相巻線同士がそれぞれ直列に接続されて星型結線され、反中性点側の各相端部がインバータ13に接続される。インバータ13は、ロータ4の回転位置を検出するロータ位置検出センサ(図示せず)の検出情報を基に、電子制御装置であるECU(図示せず)によって制御され、直流電源Bの電力を交流電力に変換して内側ステータ巻線5cおよび外側ステータ巻線6cに供給する。
上記の内側ステータ5と外側ステータ6は、インバータ13を通じて内側ステータ巻線5cおよび外側ステータ巻線6cが励磁されると、円周方向の同一位置でロータ4を挟んで径方向に対向する互いの磁極同士が同一極性となるように巻線起磁力を生成する。
For example, as shown in FIG. 4, the inner stator winding 5 c and the outer stator winding 6 c are connected to each other in series and connected in a star shape, and each phase end portion on the anti-neutral point side. Is connected to the inverter 13. The inverter 13 is controlled by an ECU (not shown), which is an electronic control device, based on detection information of a rotor position detection sensor (not shown) that detects the rotational position of the rotor 4, and converts the power of the DC power source B to AC. It is converted into electric power and supplied to the inner stator winding 5c and the outer stator winding 6c.
When the inner stator winding 5c and the outer stator winding 6c are excited through the inverter 13, the inner stator 5 and the outer stator 6 are opposed to each other in the radial direction across the rotor 4 at the same circumferential position. A winding magnetomotive force is generated so that the magnetic poles have the same polarity.

次に、請求項1に係る本発明の特徴を有する内側磁石9および外側磁石10について図2を参照して説明する。なお、図2は内側ロータ磁極と外側ロータ磁極を含むロータ4の一部断面図であるが、断面を表示するハッチングは省略している。
まず、内側磁石9および外側磁石10の各所を以下の通り定義する。
a)内側ロータ磁極および外側ロータ磁極の周方向の中央部を磁極中央と呼び、その磁極中央での内側磁石9の厚さをP1と表記し、外側磁石10の厚さをP3と表記する。
b)内側ロータ磁極および外側ロータ磁極の周方向の両端部を磁極端部と呼び、その磁極端部での内側磁石9の厚さをP2と表記し、外側磁石10の厚さをP4と表記する。
c)内側磁石9の外周側の表面および外側磁石10の内周側の表面すなわちロータヨーク側の表面をそれぞれ反ステータ側表面と呼ぶ。
実施例1の内側磁石9と外側磁石10は、それぞれP1>P2、P3>P4の関係を有し、且つ、図2(a)に示すように、P2、P4が磁極中央側から周方向端に向かって次第に小さくなるように反ステータ側表面が傾斜している。
Next, an inner magnet 9 and an outer magnet 10 having the features of the present invention according to claim 1 will be described with reference to FIG. FIG. 2 is a partial cross-sectional view of the rotor 4 including the inner rotor magnetic pole and the outer rotor magnetic pole, but hatching for displaying the cross section is omitted.
First, each part of the inner magnet 9 and the outer magnet 10 is defined as follows.
a) The central portion of the inner rotor magnetic pole and the outer rotor magnetic pole in the circumferential direction is referred to as the magnetic pole center, the thickness of the inner magnet 9 at the magnetic pole center is denoted as P1, and the thickness of the outer magnet 10 is denoted as P3.
b) The circumferential end portions of the inner and outer rotor magnetic poles are called magnetic pole ends, the thickness of the inner magnet 9 at the magnetic pole ends is expressed as P2, and the thickness of the outer magnet 10 is expressed as P4. To do.
c) The outer peripheral surface of the inner magnet 9 and the inner peripheral surface of the outer magnet 10, that is, the rotor yoke surface, are referred to as anti-stator side surfaces, respectively.
The inner magnet 9 and the outer magnet 10 of Example 1 have a relationship of P1> P2 and P3> P4, respectively, and as shown in FIG. 2A, P2 and P4 are circumferential ends from the magnetic pole center side. The surface on the side opposite to the stator is inclined so as to gradually become smaller.

(実施例1の作用および効果)
実施例1のモータ1は、ロータ鉄心4aの内周側に内側磁石9が埋設され、外周側に外側磁石10が埋設された磁石埋設型ロータ4を採用しているので、マグネットトルクとリラクタンストルクの双方を活用できる。
また、ロータ4は、内側ロータ磁極および外側ロータ磁極の磁極端部において、内側磁石9および外側磁石10の反ステータ側表面を傾斜させることで、磁石厚さP2、P4が磁極中央側から周方向端に向かって次第に小さくなっている。言い換えると、内側ロータ磁極と外側ロータ磁極との間に共有の磁路を形成するロータヨーク4dの径方向幅が、内側ロータ磁極および外側ロータ磁極の周方向端に向かって次第に大きく(広く)なっている。これにより、図2(b)に太線矢印で示すように、リラクタンストルクを発生するq軸磁束とマグネットトルクを発生するd軸磁束とが最も集中する磁極端部付近でのロータヨーク4dにおいて磁気飽和を抑制できる。その結果、内側磁石9および外側磁石10への磁気漏れを防ぐことができるので、モータ性能を低下させることなく、磁極端部における内側磁石9および外側磁石10の局所減磁を防止できる。
(Operation and Effect of Example 1)
Since the motor 1 according to the first embodiment employs the magnet-embedded rotor 4 in which the inner magnet 9 is embedded on the inner peripheral side of the rotor core 4a and the outer magnet 10 is embedded on the outer peripheral side, magnet torque and reluctance torque are employed. Both can be utilized.
In addition, the rotor 4 tilts the anti-stator side surfaces of the inner magnet 9 and the outer magnet 10 at the magnetic pole ends of the inner rotor magnetic pole and the outer rotor magnetic pole, so that the magnet thicknesses P2 and P4 are circumferential from the magnetic pole center side. It gradually becomes smaller toward the edge. In other words, the radial width of the rotor yoke 4d that forms a shared magnetic path between the inner rotor magnetic pole and the outer rotor magnetic pole gradually increases (widens) toward the circumferential ends of the inner rotor magnetic pole and the outer rotor magnetic pole. Yes. As a result, as shown by a thick arrow in FIG. 2B, magnetic saturation is caused in the rotor yoke 4d near the magnetic pole end where the q-axis magnetic flux generating the reluctance torque and the d-axis magnetic flux generating the magnet torque are most concentrated. Can be suppressed. As a result, since magnetic leakage to the inner magnet 9 and the outer magnet 10 can be prevented, local demagnetization of the inner magnet 9 and the outer magnet 10 at the magnetic pole end can be prevented without deteriorating the motor performance.

以下、本発明に係る実施例2〜4を説明する。
なお、実施例1と共通する符号は実施例1と同一部品あるいは同一機能を有するものであり、説明は実施例1を参照する。
(実施例2)
この実施例2は、図5(a)に示すように、外側ロータ磁極において外側磁石10のステータ側表面と周方向端面とが交差する角部に面取りが形成されている。なお、外側磁石10のステータ側表面とは、実施例1に記載した反ステータ側表面と反対側の表面、つまり、外側磁石10の外周側の表面である。
Examples 2 to 4 according to the present invention will be described below.
Reference numerals common to the first embodiment have the same components or functions as those of the first embodiment, and the first embodiment is referred to for the description.
(Example 2)
In the second embodiment, as shown in FIG. 5A, chamfers are formed at corners of the outer rotor magnetic poles where the stator side surface of the outer magnet 10 and the circumferential end surface intersect. The stator side surface of the outer magnet 10 is a surface opposite to the anti-stator side surface described in the first embodiment, that is, the outer peripheral surface of the outer magnet 10.

また、ロータ鉄心4aに形成された外側磁石挿入孔12には、面取りされた外側磁石10の角部との間に空間Sが設けられている。
この実施例2の構成では、外側磁石挿入孔12に設けられる空間Sが磁気的ギャップとして作用するため、図5(b)に示すように、外側磁石10に掛かる反磁界強度(図中に破線矢印で示す磁束)を低減することができる。その結果、磁極端部における外側磁石10の減磁をさらに抑制できる。なお、面取りされた外側磁石10の角部に対応して外側磁石挿入孔12に空間Sを設ける代わりに、その空間Sにアルミニウムや樹脂等の非磁性物質を配設することも可能である。
Further, a space S is provided between the outer magnet insertion hole 12 formed in the rotor core 4a and a corner portion of the chamfered outer magnet 10.
In the configuration of the second embodiment, since the space S provided in the outer magnet insertion hole 12 acts as a magnetic gap, as shown in FIG. 5B, the demagnetizing field strength applied to the outer magnet 10 (broken line in the figure). (Magnetic flux indicated by an arrow) can be reduced. As a result, the demagnetization of the outer magnet 10 at the magnetic pole end can be further suppressed. Instead of providing the space S in the outer magnet insertion hole 12 corresponding to the corners of the chamfered outer magnet 10, a nonmagnetic substance such as aluminum or resin can be provided in the space S.

(実施例3)
この実施例3は、図6(a)に示すように、外側磁石挿入孔12の内周側と外周側とを連結して外側磁石挿入孔12を周方向に二分割するブリッジ13を設けた事例である。この場合、外側ロータ磁極を形成する外側磁石10は、ブリッジ13によって分割された二か所の外側磁石挿入孔12に分かれて挿入される。言い換えると、外側ロータ磁極は、ブリッジ13で分割された二か所の外側磁石挿入孔12に挿入される2個一組の外側磁石10によって形成される。
この実施例3の構成では、図6(b)に示すように、外側磁束がブリッジ13を通過して内側磁石9に加わる反磁界と対抗するため、内側磁石9における減磁を低減できる。
(Example 3)
In the third embodiment, as shown in FIG. 6A, a bridge 13 is provided that connects the inner peripheral side and the outer peripheral side of the outer magnet insertion hole 12 and divides the outer magnet insertion hole 12 in the circumferential direction. This is an example. In this case, the outer magnet 10 forming the outer rotor magnetic pole is inserted in two outer magnet insertion holes 12 divided by the bridge 13. In other words, the outer rotor magnetic pole is formed by a set of two outer magnets 10 inserted into two outer magnet insertion holes 12 divided by the bridge 13.
In the configuration of the third embodiment, the demagnetization in the inner magnet 9 can be reduced because the outer magnetic flux opposes the demagnetizing field applied to the inner magnet 9 through the bridge 13 as shown in FIG. 6B.

また、ロータ鉄心4aに外側磁石挿入孔12を分割するブリッジ13を設けることで、ロータ4の耐遠心力強度を高めることができる。つまり、ロータ4の回転により外側磁石10に遠心力が作用した時に、外側磁石10の外周面(ステータ側表面)を覆っているロータ鉄心4aの薄肉部(外側磁石挿入孔12の外周側)が外側磁石10に押されて径方向の外側へ膨らむことを防止できる。これにより、ロータ4の外周が外側ステータ6の内周と接触することを回避でき、ロータ4と外側ステータ6との間の磁気ギャップを均一に維持できる。   In addition, by providing the bridge 13 that divides the outer magnet insertion hole 12 in the rotor iron core 4a, the centrifugal strength of the rotor 4 can be increased. That is, when the centrifugal force acts on the outer magnet 10 by the rotation of the rotor 4, the thin portion (the outer peripheral side of the outer magnet insertion hole 12) of the rotor core 4 a covering the outer peripheral surface (stator side surface) of the outer magnet 10. It is possible to prevent the outer magnet 10 from being pressed and bulging outward in the radial direction. Thereby, it can avoid that the outer periphery of the rotor 4 contacts the inner periphery of the outer side stator 6, and the magnetic gap between the rotor 4 and the outer side stator 6 can be maintained uniformly.

(実施例4)
この実施例4は、三面ギャップ型モータ1の一例である。
三面ギャップ型モータ1は、図7に示す様に、ロータ4の反ディスク部側(図示左側)の端面にギャップを有して対向する側面ステータ14を備える。この側面ステータ14は、内側ステータ鉄心5bと外側ステータ鉄心6bとに連結される側面ステータ鉄心14aと、この側面ステータ鉄心14aに巻装(例えば全節巻)されて内側ステータ巻線5cと外側ステータ巻線6cとを直列に接続する側面ステータ巻線14bとを備える。
この三面ギャップ型モータ1は、ロータ4とステータ5、6、14との間で三面に磁気ギャップを形成するので、実施例1〜3の何れかに記載した事例を適用することにより、さらなるトルクアップが可能である。
Example 4
The fourth embodiment is an example of the three-surface gap type motor 1.
As shown in FIG. 7, the three-sided gap type motor 1 includes side stators 14 that face each other with a gap on the end face of the rotor 4 on the side opposite to the disk portion (left side in the figure). The side stator core 14 is connected to the inner stator core 5b and the outer stator core 6b. The side stator core 14a is wound around the side stator core 14a (for example, full-pitch winding), and the inner stator winding 5c and the outer stator are wound. A side stator winding 14b that connects the winding 6c in series is provided.
Since this three-surface gap type motor 1 forms a magnetic gap on three surfaces between the rotor 4 and the stators 5, 6, and 14, further torque can be obtained by applying the example described in any one of the first to third embodiments. Up is possible.

(変形例)
実施例1では、内側ロータ磁極と外側ロータ磁極の両方に請求項1に記載した構成を適用している。つまり、内側磁石9と外側磁石10の両方に磁極端部の反ステータ側表面を傾斜させているが、内側磁石9と外側磁石10のどちらか一方のみ磁極端部の反ステータ側表面を傾斜させても良い。
実施例2では、外側磁石10の角部に面取りを設けた事例を記載したが、外側磁石10だけでなく、内側磁石9の角部に面取りを設けることもできる。この場合、面取りされた内側磁石9の角部に対応して内側磁石挿入孔11に空間を設ける、あるいはアルミニウムや樹脂等の非磁性物質を配設することは外側ロータ磁極の場合と同じである。
実施例3では、外側磁石挿入孔12をブリッジ13によって二分割した事例を記載したが、外側磁石挿入孔12を2本以上のブリッジ13により分割することも出来る。
(Modification)
In the first embodiment, the configuration described in claim 1 is applied to both the inner rotor magnetic pole and the outer rotor magnetic pole. That is, the anti-stator side surface of the magnetic pole end is inclined to both the inner magnet 9 and the outer magnet 10, but only one of the inner magnet 9 and the outer magnet 10 is inclined to the anti-stator side surface of the magnetic pole end. May be.
In the second embodiment, an example in which chamfering is provided at the corner portion of the outer magnet 10 is described. However, not only the outer magnet 10 but also chamfering can be provided at the corner portion of the inner magnet 9. In this case, providing a space in the inner magnet insertion hole 11 corresponding to the corner portion of the chamfered inner magnet 9 or disposing a nonmagnetic material such as aluminum or resin is the same as in the case of the outer rotor magnetic pole. .
In the third embodiment, an example in which the outer magnet insertion hole 12 is divided into two by the bridge 13 is described. However, the outer magnet insertion hole 12 can also be divided by two or more bridges 13.

1 モータ(マルチギャップ型回転電機)
3 シャフト(回転軸)
4 ロータ
4a ロータ鉄心
4b ロータ内側突極
4c ロータ外側突極
5 内側ステータ
6 外側ステータ
9 内側磁石(内側ロータ磁極)
10 外側磁石(外側ロータ磁極)
13 ブリッジ
1 Motor (Multi-gap type rotating electrical machine)
3 Shaft (Rotating shaft)
4 rotor 4a rotor core 4b rotor inner salient pole 4c rotor outer salient pole 5 inner stator 6 outer stator 9 inner magnet (inner rotor magnetic pole)
10 Outer magnet (outer rotor magnetic pole)
13 Bridge

Claims (4)

回転軸(3)と同心に配置されて前記回転軸(3)と一体に回転する環状のロータ(4)と、
このロータ(4)の内径側にギャップを有して配置される内側ステータ(5)と、
前記ロータ(4)の外径側にギャップを有して配置される外側ステータ(6)とを有し、
前記ロータ(4)は、軟磁性材料によって形成されるロータ鉄心(4a)と、このロータ鉄心(4a)の内周側に埋設されて内側ロータ磁極を形成する内側磁石(9)と、前記ロータ鉄心(4a)の外周側に埋設されて外側ロータ磁極を形成する外側磁石(10)とを有し、前記ロータ鉄心(4a)は、周方向に隣り合う前記内側ロータ磁極間および前記外側ロータ磁極間にそれぞれロータ内側突極(4b)およびロータ外側突極(4c)を形成するマルチギャップ型回転電機(1)であって、
前記内側ロータ磁極および前記外側ロータ磁極の周方向の両端部をそれぞれ磁極端部と呼び、
前記内側磁石(9)および前記外側磁石(10)の径方向厚さをそれぞれ磁石厚さと呼び、
前記内側磁石(9)の外周側の表面および前記外側磁石(10)の内周側の表面をそれぞれ反ステータ側表面と呼ぶ時に、
前記内側磁石(9)と前記外側磁石(10)の両方またはどちらか一方は、前記磁極端部での磁石厚さが周方向の中央側から周方向端に向かって次第に小さくなるように前記反ステータ側表面が傾斜していることを特徴とするマルチギャップ型回転電機。
An annular rotor (4) disposed concentrically with the rotating shaft (3) and rotating integrally with the rotating shaft (3);
An inner stator (5) disposed with a gap on the inner diameter side of the rotor (4);
An outer stator (6) disposed with a gap on the outer diameter side of the rotor (4),
The rotor (4) includes a rotor core (4a) formed of a soft magnetic material, an inner magnet (9) embedded in an inner peripheral side of the rotor core (4a) to form an inner rotor magnetic pole, and the rotor An outer magnet (10) embedded in the outer peripheral side of the iron core (4a) to form an outer rotor magnetic pole, and the rotor iron core (4a) is disposed between the inner rotor magnetic poles adjacent in the circumferential direction and the outer rotor magnetic pole. A multi-gap rotating electrical machine (1) that forms a rotor inner salient pole (4b) and a rotor outer salient pole (4c), respectively,
Both ends of the inner rotor magnetic pole and the outer rotor magnetic pole in the circumferential direction are called magnetic pole ends,
The radial thicknesses of the inner magnet (9) and the outer magnet (10) are called magnet thicknesses, respectively.
When the outer peripheral surface of the inner magnet (9) and the inner peripheral surface of the outer magnet (10) are called anti-stator side surfaces, respectively.
The inner magnet (9) and / or the outer magnet (10) may be configured so that the magnet thickness at the magnetic pole end portion gradually decreases from the circumferential center to the circumferential end. A multi-gap rotating electric machine characterized in that a stator side surface is inclined.
請求項1に記載したマルチギャップ型 回転電機(1)において、
前記内側磁石(9)の内周側の表面および前記外側磁石(10)の外周側の表面をそれぞれステータ側表面と呼ぶ時に、
前記内側磁石(9)と前記外側磁石(10)の両方またはどちらか一方は、前記磁極端部での前記ステータ側表面と周方向端面とが交差する角部に面取りが形成され、
前記ロータ鉄心(4a)は、前記面取りされた前記内側磁石(9)、前記外側磁石(10)の角部に非磁性部を有することを特徴とするマルチギャップ型回転電機。
In the multi-gap type rotating electrical machine (1) according to claim 1,
When the surface on the inner peripheral side of the inner magnet (9) and the surface on the outer peripheral side of the outer magnet (10) are respectively referred to as a stator side surface,
Both or one of the inner magnet (9) and the outer magnet (10) is chamfered at a corner where the stator side surface and the circumferential end surface intersect at the magnetic pole end,
The rotor iron core (4a) is a multi-gap type rotating electrical machine having nonmagnetic portions at corners of the chamfered inner magnet (9) and outer magnet (10).
請求項2に記載したマルチギャップ型 回転電機(1)において、
前記非磁性部は空間(S)であることを特徴とするマルチギャップ型回転電機。
In the multi-gap type rotating electrical machine (1) according to claim 2,
The non-magnetic portion is a space (S), and is a multi-gap rotating electric machine.
請求項1〜3のいずれか一項に記載したマルチギャップ型 回転電機(1)において、
前記ロータ鉄心(4a)は、径方向の外周側に磁石挿入孔(12)を有すると共に、この磁石挿入孔(12)の内周側と外周側とを連結して前記磁石挿入孔(12)を周方向に分割する少なくとも1つ以上のブリッジ(13)を有し、
前記外側ロータ磁極は、前記ブリッジ(13)によって分割された前記磁石挿入孔(12)に挿入される前記外側磁石(10)によって形成されることを特徴とするマルチギャップ型回転電機。
In the multi-gap type rotating electrical machine (1) according to any one of claims 1 to 3,
The rotor core (4a) has a magnet insertion hole (12) on the radially outer peripheral side, and connects the inner peripheral side and outer peripheral side of the magnet insertion hole (12) to form the magnet insertion hole (12). At least one bridge (13) that divides
The multi-gap rotating electrical machine, wherein the outer rotor magnetic pole is formed by the outer magnet (10) inserted into the magnet insertion hole (12) divided by the bridge (13).
JP2013223066A 2012-12-07 2013-10-28 Multi-gap rotating electric machine Active JP5904188B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013223066A JP5904188B2 (en) 2013-10-28 2013-10-28 Multi-gap rotating electric machine
DE102013113657.5A DE102013113657A1 (en) 2012-12-07 2013-12-06 Rotary electric machine in multiple air gap design
CN201310660024.5A CN103872869B (en) 2012-12-07 2013-12-09 Multiple level formula electric rotating machine
US14/100,039 US10020698B2 (en) 2012-12-07 2013-12-09 Multi-gap type rotary electric machine including inner and outer stators and a rotor with inner and outer magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013223066A JP5904188B2 (en) 2013-10-28 2013-10-28 Multi-gap rotating electric machine

Publications (2)

Publication Number Publication Date
JP2015089149A true JP2015089149A (en) 2015-05-07
JP5904188B2 JP5904188B2 (en) 2016-04-13

Family

ID=53051425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013223066A Active JP5904188B2 (en) 2012-12-07 2013-10-28 Multi-gap rotating electric machine

Country Status (1)

Country Link
JP (1) JP5904188B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181958A1 (en) * 2018-03-23 2019-09-26 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
WO2020100807A1 (en) * 2018-11-15 2020-05-22 株式会社デンソー Rotating electric machine
CN112436704A (en) * 2020-11-30 2021-03-02 江苏大学 Radial double-winding switch reluctance motor for electric automobile and power converter thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165394A (en) * 2000-09-13 2002-06-07 Sanyo Denki Co Ltd Synchronous motor with built-in permanent magnet
JP2007068357A (en) * 2005-09-01 2007-03-15 Toshiba Industrial Products Manufacturing Corp Rotor of rotary electric machine and rotary electric machine using the same
JP2010098853A (en) * 2008-10-16 2010-04-30 Toyota Auto Body Co Ltd Double stator motor
WO2010058609A1 (en) * 2008-11-19 2010-05-27 三菱電機株式会社 Rotor of motor and motor and fan and compressor
JP2011103759A (en) * 2009-05-29 2011-05-26 Asmo Co Ltd Rotor and motor
JP2013219950A (en) * 2012-04-10 2013-10-24 Denso Corp Synchronous motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165394A (en) * 2000-09-13 2002-06-07 Sanyo Denki Co Ltd Synchronous motor with built-in permanent magnet
JP2007068357A (en) * 2005-09-01 2007-03-15 Toshiba Industrial Products Manufacturing Corp Rotor of rotary electric machine and rotary electric machine using the same
JP2010098853A (en) * 2008-10-16 2010-04-30 Toyota Auto Body Co Ltd Double stator motor
WO2010058609A1 (en) * 2008-11-19 2010-05-27 三菱電機株式会社 Rotor of motor and motor and fan and compressor
JP2011103759A (en) * 2009-05-29 2011-05-26 Asmo Co Ltd Rotor and motor
JP2013219950A (en) * 2012-04-10 2013-10-24 Denso Corp Synchronous motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181958A1 (en) * 2018-03-23 2019-09-26 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
JPWO2019181958A1 (en) * 2018-03-23 2020-12-03 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
JP7024856B2 (en) 2018-03-23 2022-02-24 株式会社アイシン Rotor for rotary electric machine
US11482898B2 (en) 2018-03-23 2022-10-25 Aisin Corporation Rotor for rotary electric machine
WO2020100807A1 (en) * 2018-11-15 2020-05-22 株式会社デンソー Rotating electric machine
JP2020088920A (en) * 2018-11-15 2020-06-04 株式会社デンソー Rotary electric machine
CN113016120A (en) * 2018-11-15 2021-06-22 株式会社电装 Rotating electrical machine
CN112436704A (en) * 2020-11-30 2021-03-02 江苏大学 Radial double-winding switch reluctance motor for electric automobile and power converter thereof

Also Published As

Publication number Publication date
JP5904188B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
CN109510347B (en) Rotating electrical machine
US9252634B2 (en) Synchronous motor
US10020698B2 (en) Multi-gap type rotary electric machine including inner and outer stators and a rotor with inner and outer magnets
JP5488625B2 (en) Double stator synchronous motor
JP5796613B2 (en) Multi-gap rotating electric machine
JP5849890B2 (en) Double stator type motor
JP5259927B2 (en) Permanent magnet rotating electric machine
JP5722301B2 (en) Embedded magnet type synchronous motor rotor and embedded magnet type synchronous motor
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
JP5857799B2 (en) Hybrid excitation type rotating electric machine
JP7076188B2 (en) Variable magnetic force motor
JP2009131070A (en) Magnet type synchronous machine
JP2010213457A (en) Embedded magnet type motor
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP2018198534A (en) Rotary electric machine
JP4491260B2 (en) Rotor for bearingless motor and bearingless motor
JP2007043864A (en) Axial air gap synchronous machine
JP5904188B2 (en) Multi-gap rotating electric machine
JP2013132124A (en) Core for field element
JP5390752B2 (en) Embedded magnet motor
JP2015154588A (en) Axial gap type motor
JP2009065803A (en) Magnet synchronous machine
JPWO2017073275A1 (en) Magnet rotor, rotating electric machine including magnet rotor, and electric vehicle including rotating electric machine
JP2015216786A (en) Permanent magnet embedded rotary electric machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R151 Written notification of patent or utility model registration

Ref document number: 5904188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250