JP2004104962A - Permanent magnet type reluctance rotary electric machine - Google Patents

Permanent magnet type reluctance rotary electric machine Download PDF

Info

Publication number
JP2004104962A
JP2004104962A JP2002266682A JP2002266682A JP2004104962A JP 2004104962 A JP2004104962 A JP 2004104962A JP 2002266682 A JP2002266682 A JP 2002266682A JP 2002266682 A JP2002266682 A JP 2002266682A JP 2004104962 A JP2004104962 A JP 2004104962A
Authority
JP
Japan
Prior art keywords
rotor
rotor core
pair
permanent magnet
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002266682A
Other languages
Japanese (ja)
Inventor
Takao Hirano
平野 恭男
Nobutake Aikura
相倉 伸建
Akito Kondo
近藤 明人
Masakazu Saka
坂 政和
Nobuhiro Mizutani
水谷 伸弘
Masakatsu Matsubara
松原 正克
Sukeyasu Mochizuki
望月 資康
Takashi Araki
荒木 貴志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2002266682A priority Critical patent/JP2004104962A/en
Publication of JP2004104962A publication Critical patent/JP2004104962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Abstract

<P>PROBLEM TO BE SOLVED: To prevent drop in an output as much as possible which is caused by leakage of magnetic flux of a permanent magnet or demagnetization of the permanent magnet, in a permanent magnet type reluctance rotary electric machine. <P>SOLUTION: A pair of almost rectangular magnet insert holes 3 and 3 where the distance therebetween increases as reaching toward the outer periphery are formed on the outer peripheral part of a rotor core 2. Permanent magnets 4 and 4 are inserted and fixed in the pair of magnet insert holes 3 and 3. A plurality of voids 11 are formed in the rotor core 2 between the pair of permanent magnets 4 and 4. These voids 11 are composed of eight holes, in four rows, almost parallel to the permanent magnets 4 and 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石を複合した永久磁石式リラクタンス型回転電機に関するものである。
【0002】
【従来の技術】
永久磁石式リラクタンス型回転電機は、磁束が通り易い部分(d軸と称する)と磁束が通り難い部分(q軸と称する)とが形成され(所謂磁気的凹凸が形成され)、且つ、永久磁石を有する回転子を備えており、回転子は、固定子巻線が施された固定子内に配置されている。そして、回転子においては、磁気抵抗の小さい部分(d軸)では空隙磁束密度が高く、磁気抵抗の大きい部分(q軸)では空隙磁束密度が小さくなり、この磁束密度の変化によってリラクタンストルクが発生し、又、永久磁石と固定子の磁極との間の磁気吸引力及び磁気反発力によってもトルクが発生する。
【0003】
図30は従来の永久磁石式リラクタンス型回転電機の回転子の一例を示すもので、8極の場合ある。即ち、回転子1は、円環状の多数の珪素鋼板を積層してなる回転子鉄心2を有する。回転子鉄心2の外周部には、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部3、3が形成されており(従って、一対の磁石挿入孔部3、3は、外周側からみてハ字形になっている。)、この一対の磁石挿入孔部3、3に永久磁石4、4が挿入されて接着により固定されている。更に、回転子鉄心2の外周部には、一対の永久磁石4、4間に位置して空洞部5が形成されており、この空洞部5は、一対の永久磁石4、4に平行な二辺部と外周に沿う辺部とを有する略三角形状をなしている。そして、回転子1において、一対の磁石挿入孔部3、3及び永久磁石4、4並びに空洞部5が設けられた部分6が磁束の通り難い部分(q軸)であり、部分6、6間の部分7が磁極たる磁束の通り易い部分(d軸)である。この回転子1は、固定子巻線が施された図示しない回転子内に配置されるようになっている。
【0004】
【発明が解決しようとする課題】
上記従来に構成では、回転子鉄心2において、一対の磁石挿入孔部3、3(一対の永久磁石4、4)の内周側端部間にブリッジ部8が必然的に形成されるとともに、一対の磁石挿入孔部3、3(一対の永久磁石4、4)の外周側端部と外周との間にチップ部9が必然的に形成される。このため、永久磁石4の磁束がこのブリッジ部8、チップ部9を通ってN極からS極に漏洩し、それだけ固定子の磁極に作用する分が少なくなって出力が低下する問題がある。
又、固定子巻線からの逆極性の磁束が永久磁石4を通ると特にその端部にでも通ると、永久磁石4に減磁作用が生じて、これにより出力が低下する問題があった。
【0005】
本発明は上述の事情に鑑みてなされたものであり、その目的は、永久磁石の磁束漏洩もしくは永久磁石の減磁作用による出力の低下を極力防止することができるを永久磁石式リラクタンス型回転電機を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられ、永久磁石に略平行な複数個の空洞部とを備えて構成されていることを特徴とする。
【0007】
このような構成によれば、固定子巻線からの磁束が複数個の空洞部により永久磁石を通ることを極力阻止されるようになり、従って、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0008】
請求項2記載の永久磁石式リラクタンス型回転電機は、空洞部は更に細分化されていることを特徴とする。このような構成によっても、請求項1と同様の効果が得られる。
【0009】
請求項3記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられ、各永久磁石に略平行な辺部と外周に沿う辺部とを有する略三角形状の空洞部と、前記回転子鉄心に設けられ、各永久磁石のブリッジ部側端部及びチップ部側端部に位置し且つ前記空洞部側に位置する複数個の孔部とを備えて構成されていることを特徴とする。
【0010】
このような構成によれば、固定子巻線からの磁束が複数個の孔部により永久磁石の端部を通ることを極力阻止されるようになり、従って、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0011】
請求項4記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられ、各永久磁石に略平行な辺部と外周に沿う辺部とを有し前記一対の永久磁石の一方に近接する略三角形状の空洞部とを備えて構成されていることを特徴とする。
【0012】
このような構成によれば、固定子巻線からの磁束が空洞部によりこれと近接する側の永久磁石を通ることを極力阻止されるようになり、従って、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0013】
請求項5記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開する略V字形の磁石挿入孔部と、この磁石挿入孔部にこれに沿うように挿入固定された永久磁石と、前記回転子鉄心に前記永久磁石の両辺部間に位置して設けられた空洞部とを備えて構成されていることを特徴とする。
【0014】
このような構成によれば、磁石挿入孔部が略V字形をなすともに、この磁石挿入孔部に挿入される永久磁石も略V字形をなすので、永久磁石の内周側に磁束漏洩の原因となる端部が形成されないばかりか、回転子鉄心に磁束漏洩路となるブリッジ部も形成されないので、磁束漏洩による出力の低下を極力防止することができる。
【0015】
請求項6記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開する略V字形の磁石挿入孔部と、この磁石挿入孔部の両辺部に挿入固定された一対の永久磁石と、前記回転子鉄心に前記永久磁石の両辺部間に位置して設けられた空洞部とを備えて構成されていることを特徴とする。
【0016】
このような構成によれば、回転子鉄心に磁束漏洩路となるブリッジ部が形成されないので、磁束漏洩による出力の低下を極力防止することができる。
【0017】
請求項7記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開し且つその両辺部の外周側端部が開放する略V字形の磁石挿入孔部と、この磁石挿入孔部の両辺部に挿入固定された一対の永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成されていることを特徴とする。
【0018】
このような構成によれば、回転子鉄心における永久磁石の両端部側に磁束漏洩路となるブリッジ部及びチップ部が形成されないので、磁束漏洩による出力の低下を極力防止することができる。
【0019】
請求項8記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開し且つその両辺部の外周側端部が開放する略V字形の磁石挿入孔部と、この磁石挿入孔部の両辺部に挿入固定された一対の永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置してその回転子鉄心を貫通するようにして設けられ、前記回転子鉄心の両端板に支持された支え棒とを備えて構成されていることを特徴とする。このような構成によっても、請求項7と同様の効果が得られる。
【0020】
請求項9記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対抗距離が順次大となり且つ外周側端部が開放する略長方形状の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成されていることを特徴とする。
【0021】
このような構成によれば、回転子鉄心における永久磁石の外周側の端部側に磁束漏洩路となるチップ部が形成されないので、磁束漏洩による出力の低下を極力防止することができる。
【0022】
請求項10記載の永久磁石式リラクタンス型回転電機は、一対の磁石挿入孔部の開放端部に磁石の端部を係止する係止突部を有することを特徴とする。このような構成によっても、請求項8と同様の効果を得ることができる。
【0023】
請求項11記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、内周側に向かうに従ってその永久磁石の厚み寸法が大になるように構成されていることを特徴とする。
【0024】
このような構成によれば、固定子巻線からの磁束は、永久磁石をその内周側に向かうほど通りにくくなるので、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0025】
請求項12記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、外周側に向かうに従ってその永久磁石の厚み寸法が大になるように構成されていることを特徴とする。
【0026】
このような構成によれば、固定子巻線からの磁束は、永久磁石をその外周側に向かうほど通りにくくなるので、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0027】
請求項13記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、その永久磁石の両端部の厚み寸法が他の部位より大になるように構成されていることを特徴とする。
【0028】
このような構成によれば、固定子巻線からの磁束は、永久磁石の両端部を通りにくくなるので、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0029】
請求項14記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、その永久磁石が主磁石とその両端部に位置してこれよりも厚み寸法が大になる端部磁石とからなるように構成されていることを特徴とする。このような構成によっても、請求項13と同様の効果を得ることができる。
【0030】
請求項15記載の永久磁石式リラクタンス型回転電機は、固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、これらの一対の磁石挿入孔部に挿入固定された永久磁石と、前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記一対の磁石挿入孔部及び永久磁石は、一方の永久磁石が他方の永久磁石よりも厚み寸法が大になるように構成されていることを特徴とする。
【0031】
このような構成によれば、固定子巻線からの磁束は、厚み寸法の大なる一方の永久磁石を通りにくくなるので、永久磁石の減磁作用による出力の低下を極力防止することができる。
【0032】
【発明の実施の形態】
(第1の実施例)
以下、本発明の第1の実施例について、図1及び図2を参照して説明するに、図2は、本実施例の永久磁石式リラクタンス型回転電機の構成を示す径方向断面図、図1は、その回転子の部分拡大断面図であり、図30と同一部分には同一符号を付して説明を省略する。
【0033】
図1及び図2において、回転子10は、回転子鉄心2に一対の永久磁石4、4間に位置して複数個の空洞部11が形成されている構成に特徴を有する。この空洞部11は、永久磁石4、4に略平行な各4列計8個の孔部からなる。そして、回転子10において、一対の磁石挿入孔部3、3及び永久磁石4、4並びに空洞部11が設けられた部分12が磁束の通り難い部分(q軸)である。
図2において、固定子13は、円環状の多数の珪素鋼板を積層してなる固定子鉄心14のスロット15内に固定子巻線16を収納して構成されている。そして、この固定子13内に回転子10が配置されている。
【0034】
しかして、回転子10には、磁束が通り難い部分(q軸)12と磁束が通り易い部分(d軸)7とが形成されている(所謂磁気的凹凸が形成されている)ので、これらの部分12及び7上の空隙部分で、固定子巻線16に電流を流すことにより蓄えられる磁気エネルギーが異なり、この磁気エネルギーの変化によりリラクタンストルクが発生する。また、回転子10には、永久磁石4、4も設けられているので、永久磁石4、4と固定子13の磁極との間の磁気吸引力及び磁気反発力によってもトルクが発生する。これにより、回転子10が回転するようになる。
【0035】
このような本実施例によれば、固定子巻線16からの磁束が複数個の空洞部11により永久磁石4を通ることを極力阻止されるようになり、従って、永久磁石4の減磁作用による出力の低下を極力防止することができる。また、複数個の空洞部11により部分(q軸)12の磁束の通り難さが著しくなり、従って、突極比が増してリラクタンストルクが増大し、出力が増大する。しかも、複数個の空洞部11の中央部に鉄心部分が存在するので、回転子10の遠心強度を上げることができる。
【0036】
(第2の実施例)
図3は本発明の第2の実施例を示すもので、図1と異なるところは、回転子鉄心2に、空洞部11を更に細分化して10個の孔部からなる空洞部17が形成されていて、磁束の通り難い部分(q軸)18とされ、以て、回転子19が構成されている。
この第2の実施例によっても、上記第1の実施例と同様の効果を得ることができるものである。
【0037】
(第3の実施例)
図4は本発明の第3の実施例を示すもので、図30と異なるところは、回転子鉄心2に、一対の永久磁石4、4のブリッジ部8側端部及びチップ部9側端部に位置し且つ前記空洞部5側に位置する複数個たる4個の孔部20が形成されていて、磁束の通り難い部分(q軸)21とされ、以て、回転子22が構成されている。
このような第3の実施例によれば、固定子巻線16(図2参照)からの磁束が4個の孔部20により永久磁石4、4の端部を通ることを極力阻止されるようになり、従って、永久磁石4、4の減磁作用による出力の低下を極力防止することができる。
【0038】
(第4の実施例)
図5及び図6は本発明の第4の実施例を示すもので、図30と異なるところは、回転子鉄心2に、空洞部5と同様の略三角形状の空洞部23が一対の永久磁石4、4の一方に永久磁石4に近接するように形成されていて、磁束の通り難い部分(q軸)24とされ、以て、回転子25が構成されている。
【0039】
しかして、回転子25は、磁束の通り難い部分(q軸)24と磁束が通り易い部分(d軸)7とによりリラクタンストルクが作用するとともに、永久磁石4と固定子13においてN極とN極とは反発し且つN極とS極とは吸引しあうことにより磁気的トルクが作用して、矢印方向(反時計方向)に回転する(図6参照)。この場合、永久磁石4に極に固定子3の同じ極が相対的に近づくと、その磁束により永久磁石4は減磁作用を受ける。以上のことは、第1ないし第3の実施例でも同様である。
【0040】
しかるに、この第4のに実施例においては、空洞部23が一対の永久磁石4、4の一方すなわち時計方向側の永久磁石4に近接するように形成されているので、固定子巻線16(図2参照)からの磁束がその空洞部23により一方の永久磁石4を通り難くなり、したがって、永久磁石4の減磁作用による出力の低下を極力防止することができる。
【0041】
(第5の実施例)
図7は本発明の第5の実施例を示すもので、図30と異なるところは、回転子鉄心2に、一対の磁石挿入孔部3、3の代わりに、磁石挿入孔部3、3を両辺部とし且つブリッジ部8部分で連続する略V字形の磁石挿入孔部26が形成され、この磁石挿入孔部26にこれに沿うようにして略V字形の永久磁石27が挿入されて接着により固定されて、磁束の通り難い部分(q軸)28とされ、以て、回転子29が構成されている。
【0042】
このような第5の実施例によれば、磁石挿入孔部26が略V字形をなすともに、この磁石挿入孔部26に挿入される永久磁石27も略V字形をなすので、永久磁石27の内周側に磁束漏洩の原因となる端部が形成されないばかりか、回転子鉄心2に磁束漏洩路となるブリッジ部8も形成されないので、磁束漏洩による出力の低下を極力防止することができる。
【0043】
(第6の実施例)
図8は本発明の第6の実施例を示すもので、図7及び図30と異なるところは、回転子鉄心2に、略V字形の磁石挿入孔部26の両辺部に一対の永久磁石4、4が挿入されて接着により固定されて、磁束の通り難い部分(q軸)30が形成され、以て、回転子31が構成されている。
この第6に実施例によれば、永久磁石4、4の内周側に端部が形成されてはいるが、回転子鉄心2に磁束漏洩路となるブリッジ部8が形成されないので、請求項5と同様の効果を奏する。
【0044】
(第7の実施例)
図9は本発明の第7の実施例を示すもので、図8と異なるところは、回転子鉄心2に、磁石挿入孔部26の代わりに、両辺部の外周側端部が開放する(すなわち、チップ部9、9が存在しない)略V字形の磁石挿入孔部32が形成されて、磁束の通り難い部分(q軸)33が形成され、以て、回転子34が構成されている。この場合、永久磁石4、4を磁石挿入孔部32に固定する接着剤としては、他の実施例で用いる接着剤よりも接着力が大で、且つ、経年劣化の極めて少ないものを用いるものとする。
この第7の実施例によれば、回転子鉄心2に磁束漏洩路となるチップ部9、9も形成されていないので、上記第7の実施例に比し、永久磁石4の磁束漏洩を一層阻止することができて、出力の低下を一層防止することができる。
【0045】
(第8の実施例)
図10は本発明の第8の実施例を示すもので、図9と異なるところは、回転子鉄心2に、空洞部5の代わりに、円形状の空洞部35が形成されているとともに、この空洞部35にこれを貫通するように非磁性材製の支え棒36が嵌合若しくは圧入され、この支え棒36は、回転子鉄心2の両端板に支持されて、磁束の通り難い部分(q軸)37が形成され、以て、回転子38が構成されている。尚、部分37には、部分37を構成する積層鉄心を結束するかしめ部39が形成されている。
このような第8の実施例によれば、上記第7の実施例と同様の効果が得られるとともに、支え棒36により遠心強度を増すことができ、また、かしめ部39により部分37の積層鉄心を結束できるので、組立て性もよくなる。
尚、かしめ部39は必要に応じて設ければよい。
【0046】
(第9の実施例)
図11は本発明の第9の実施例を示すもので、図30と異なるところは、回転子鉄心2に、磁石挿入孔部3、3の代わりに、両辺部の外周側端部が開放する(すなわち、チップ部9、9が存在しない)磁石挿入孔部40、40が形成されて、磁束の通り難い部分(q軸)41が形成され、以て、回転子42が構成されている。
この第9の実施例によれば、回転子鉄心2に磁束漏洩路となるチップ部9、9も形成されていないので、永久磁石4の磁束漏洩を阻止することができて、出力の低下を極力防止することができる。
【0047】
(第10の実施例)
図12は本発明の第10の実施例を示すもので、図11と異なるところは、磁石挿入孔部40、40の外周側の開放端部に、永久磁石4、4の外周側端面に係止する係止突起43、43が形成されており、以て、回転子44が構成されている。
このような第10の実施例によれば、上記第9の実施例と同様の効果を得ることができるとともに、回転子44の回転時に永久磁石4に遠心力が作用しても、係止突起43により永久磁石4の抜止めが行われる。
【0048】
(第11の実施例)
図13は本発明の第11の実施例を示すもので、図30と異なるところは、回転子鉄心2に、磁石挿入孔部3、3の代わりに、内周側に向かうに従って幅寸法が順次大になる磁石挿入孔部45、45が形成され、これらの磁石挿入孔部45、45に内周側に向かうに従って厚み寸法が順次大となる永久磁石46、46が挿入されて接着により固定されて、磁束の通り難い部分(q軸)47が形成され、以て、回転子48が構成されている。
このような第11の実施例によれば、固定子巻線16(図2参照)からの磁束は、永久磁石47をその内周側に向かうほど通りにくくなるので、永久磁石46の減磁作用による出力の低下を極力防止することができる。
【0049】
(第12の実施例)
図14は本発明の第12の実施例を示すもので、図13と異なるところは、回転子鉄心2に、磁石挿入孔部45、45の代わりに、外周側に向かうに従って幅寸法が順次大になる磁石挿入孔部49、49が形成され、これらの磁石挿入孔部49、49に外周側に向かうに従って厚み寸法が順次大となる永久磁石50、50が挿入されて接着により固定されて、磁束の通り難い部分(q軸)51が形成され、以て、回転子52が構成されている。
このような第12の実施例によれば、固定子巻線16(図2参照)からの磁束は、永久磁石50をその外周側に向かうほど通りにくくなるので、永久磁石50の減磁作用による出力の低下を極力防止することができる。
【0050】
(第13の実施例)
図15は本発明の第13の実施例を示すものであり、図30と異なるところは、回転子鉄心2に、磁石挿入孔部3、3の代わりに、両端部の幅寸法が他の部位より大なる磁石挿入孔部53、53が形成され、これらの磁石挿入孔部53、53に両端部の厚み寸法が他の部位より大なる永久磁石54、54が挿入固定されて、磁束の通り難い部分(q軸)55が形成され、以て、回転子56が構成されている。
このような第13の実施例によれば、固定子巻線16(図2参照)からの磁束は、永久磁石54の両端部を通りにくくなるので、永久磁石54の減磁作用による出力の低下を極力防止することができる。
【0051】
(第14の実施例)
図16は本発明の第14の実施例を示すものであり、図15と異なるところは、回転子鉄心2の磁石挿入孔部53、53に、永久磁石54、54、の代わりに、主磁石57aとその両端部に位置してこれよりも厚み寸法が大になる端部磁石57b、57bとからなる永久磁石57、57が挿入固定されて、磁束の通り難い部分(q軸)58が形成され、以て、回転子59が構成されている。
このような第14の実施例によっても、上記第13の実施例と同様の効果を奏する。
【0052】
(第15の実施例)
図17は本発明の第15の実施例を示すものであり、図30と異なるところは、回転子鉄心2に、一対の磁石挿入孔部3、3のうちの一方たる時計方向側の磁石挿入孔部3の代わりに、これよりも幅寸法の大なる磁石挿入孔部60が形成され、子の磁石挿入孔部60に永久磁石4よりも厚み寸法の大なる永久磁石61が挿入固定されて、磁束の通り難い部分(q軸)62が形成され、以て、回転子63が構成されている。
このような第15の実施例によれば、固定子巻線16(図2参照)からの磁束は、永久磁石61を通りにくくなるので、永久磁石61の減磁作用による出力の低下を極力防止することができる。
【0053】
尚、図18ないし図29は、本発明の開発途中の段階で提案された構成例であり、以下これらを参考例として説明するに、図1ないし図17、図30のいずれかと同一部分には同一符号を付して示す。
【0054】
(第1の参考例)
図18は第1の参考例を示すもので、これは、一対の永久磁石4、4間に、これらと平行な辺部を有する二条のV字形の空洞部64と、逆三角形状の空洞部65とが形成された構成である。
【0055】
(第2の参考例)
図19は第2の参考例を示すもので、これは、図18に示す空洞部64、65の代わりに、これらの中央角部に丸みを持たせた状態の空洞部66、67が設けられた構成である。
【0056】
(第3の参考例)
図20は第3の参考例を示すもので、これは、図30に示すチップ部9、9に相当する部位に切欠部68、68が形成された構成である。
【0057】
(第4の参考例)
図21は第4の参考例を示すもので、これは、図30に示すチップ部9、9に相当する部位に三角形状の孔部69、69が形成された構成である。
【0058】
(第5の参考例)
図22は第5の参考例を示すもので、これは、図30に示すチップ部9、9に相当する部位に切欠部68、68が形成されているとともに、ブリッジ部8に相当する部位に三角形状の孔部70が形成された構成である。
【0059】
(第6の参考例)
図23は第6の参考例を示すもので、これは、図30に示すチップ部9、9に相当する部位に三角形状の孔部69、69が形成されているとともに、ブリッジ部8に相当する部位に三角形状の孔部70が形成された構成である。
【0060】
(第7の参考例)
図24は第7の参考例を示すもので、これは、磁石挿入孔部3、3に、図30に示すブリッジ8、8に相当する部位に位置して内周側に延びる補助孔部3a、3aが設けられているとともに、チップ部9、9に相当する部位に位置して外周側に延びる補助孔部3b、3bが設けられ、更に、補助孔部3a、3aおよび3b、3bに、永久磁石4、4の端面に係止する係止突起71、71および72、72が形成された構成である。
【0061】
(第8の参考例)
図25は第8の参考例を示すもので、これは、補助孔部3b、3bに、図23に示す係止突起72、72の代わりに、永久磁石4の端面に係止突起72、72とは反対側から係止する係止突起73、73が形成された構成である。
【0062】
(第9の参考例)
図26は第9の参考例を示すもので、これは、図24において、補助孔部3a、3aに、永久磁石4、4の端面に係止突起71、71とは反対側から係止する係止突起74、74が更に形成された構成である。
【0063】
(第10の参考例)
図27は第10の参考例を示すもので、これは、角補助孔部3aおよび3bに係止突起71、74および72、73が形成された構成である。
【0064】
(第11の参考例)
図28は第11の参考例を示すもので、これは、回転子鉄心2に、略三角形状の空洞部23aが一対の永久磁石4、4の一方の永久磁石4に近接するように形成されていている部分24aと、略三角形状の空洞部23bが一対の永久磁石4、4の他方の永久磁石4に近接するように形成されていている部分24bとが交互に形成された構成である。
【0065】
(第12の参考例)
図29は第12の参考例を示すもので、これは、部分6、6間のピッチが交互に大小となるように(したがって、部分7、7間のピッチも交互に大小になるように)した構成である。
【0066】
尚、本発明は上記しかつ図面に示す実施例にのみ限定されるものではなく、例えば、各実施例では永久磁石を磁石挿入孔部に接着により固定するようにしたが、代わりに圧入により固定してもよい等、要旨を逸脱しない範囲内で適宜変形して実施し得ることは勿論である。
【0067】
【発明の効果】
以上説明したように、本発明の永久磁石式リラクタンス型回転電機は、永久磁石の磁束漏洩もしくは永久磁石の減磁作用による出力の低下を極力防止することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す腰部の拡大断面図
【図2】全体の断面図
【図3】本発明の第2の実施例を示す図1相当図
【図4】本発明の第3の実施例を示す図1相当図
【図5】本発明の第4の実施例を示す図1相当図
【図6】作用説明用の図2相当図
【図7】本発明の第5の実施例を示す図1相当図
【図8】本発明の第6の実施例を示す図1相当図
【図9】本発明の第7の実施例を示す図1相当図
【図10】本発明の第8の実施例を示す図1相当図
【図11】本発明の第9の実施例を示す図1相当図
【図12】本発明の第10の実施例を示す図1相当図
【図13】本発明の第11の実施例を示す図1相当図
【図14】本発明の第12の実施例を示す図1相当図
【図15】本発明の第13の実施例を示す図1相当図
【図16】本発明の第14の実施例を示す図1相当図
【図17】本発明の第15の実施例を示す図1相当図
【図18】第1の参考例を示す図1相当図
【図19】第2の参考例を示す図1相当図
【図20】第3の参考例を示す図1相当図
【図21】第4の参考例を示す図1相当図
【図22】第5の参考例を示す図1相当図
【図23】第6の参考例を示す図1相当図
【図24】第7の参考例を示す図1相当図
【図25】第8の参考例を示す図1相当図
【図26】第9の参考例を示す図1相当図
【図27】第10の参考例を示す図1相当図
【図28】第11の参考例を示す図2相当図
【図29】第12の参考例を示す図2相当図
【図30】従来例を示す回転子の断面図
【符号の説明】
図面中、2は回転子鉄心、3は磁石挿入孔部、4は永久磁石、5は空洞部、8はブリッジ部、9はチップ部、10は回転子、11は空洞部、13は固定子、14は固定子鉄心、16は固定子巻線、17および18は空洞部、19は回転子、20は孔部、22は回転子、23は空洞部、25は回転子、26は磁石挿入孔部、27は永久磁石、29および31は回転子、32は磁石挿入孔部、34は回転子、35は空洞部、36は支え棒、38は回転子、40は磁石挿入孔部、42は回転子、43は係止突起、44は回転子、45は磁石挿入孔部、46は永久磁石、48は回転子、49は磁石挿入孔部、50は永久磁石、52は回転子、53は磁石挿入孔部、54は永久磁石、56は回転子、57は永久磁石、57aは主磁石、57bは端部磁石、59は回転子、60は磁石挿入孔部、61は永久磁石、63は回転子を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a permanent magnet type reluctance type rotating electric machine combining permanent magnets.
[0002]
[Prior art]
The permanent magnet type reluctance type rotary electric machine has a portion through which magnetic flux easily passes (referred to as d-axis) and a portion through which magnetic flux does not pass easily (referred to as q-axis) (so-called magnetic irregularities are formed). , And the rotor is disposed in the stator on which the stator windings are provided. In the rotor, the air gap magnetic flux density is high in a portion having a small magnetic resistance (d-axis), and the air gap magnetic flux density is low in a portion having a large magnetic resistance (q-axis). In addition, a torque is also generated by a magnetic attraction force and a magnetic repulsion force between the permanent magnet and the magnetic pole of the stator.
[0003]
FIG. 30 shows an example of a rotor of a conventional permanent magnet type reluctance type rotating electric machine, which has eight poles. That is, the rotor 1 has a rotor core 2 formed by laminating a number of annular silicon steel plates. A pair of substantially rectangular magnet insertion holes 3, 3 are formed in the outer peripheral portion of the rotor core 2 so that the opposing distances are gradually increased toward the outer periphery (accordingly, the pair of magnet insertion holes 3, 3). Are shaped like a letter C when viewed from the outer peripheral side.) The permanent magnets 4, 4 are inserted into the pair of magnet insertion holes 3, 3, and are fixed by bonding. Further, a hollow portion 5 is formed in the outer peripheral portion of the rotor core 2 between the pair of permanent magnets 4, 4. It has a substantially triangular shape having sides and sides along the outer periphery. In the rotor 1, the portion 6 where the pair of magnet insertion holes 3 and 3 and the permanent magnets 4 and 4 and the cavity 5 are provided is a portion (q axis) where it is difficult for magnetic flux to pass therethrough. Is a portion (d-axis) where the magnetic flux as a magnetic pole easily passes. The rotor 1 is arranged in a rotor (not shown) on which a stator winding is provided.
[0004]
[Problems to be solved by the invention]
In the above-described conventional configuration, in the rotor core 2, the bridge portion 8 is inevitably formed between the inner peripheral ends of the pair of magnet insertion holes 3, 3 (the pair of permanent magnets 4, 4). The tip portion 9 is inevitably formed between the outer periphery and the outer periphery of the pair of magnet insertion holes 3 and 3 (the pair of permanent magnets 4 and 4). For this reason, the magnetic flux of the permanent magnet 4 leaks from the N pole to the S pole through the bridge section 8 and the tip section 9, and there is a problem that the amount acting on the magnetic pole of the stator is reduced and the output is reduced.
In addition, when a magnetic flux of the opposite polarity from the stator winding passes through the permanent magnet 4, especially when it passes through the end thereof, a demagnetizing effect is generated in the permanent magnet 4, thereby causing a problem that the output is reduced.
[0005]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a permanent magnet type reluctance type rotating electric machine which can prevent a magnetic flux from leaking from a permanent magnet or a decrease in output due to a demagnetizing action of the permanent magnet. Is to provide.
[0006]
[Means for Solving the Problems]
The permanent magnet type reluctance type rotating electric machine according to claim 1 includes a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. And a plurality of cavities provided on the rotor core between the pair of permanent magnets and substantially parallel to the permanent magnets.
[0007]
According to such a configuration, the magnetic flux from the stator winding is prevented from passing through the permanent magnet by the plurality of cavities as much as possible. Therefore, the output reduction due to the demagnetizing action of the permanent magnet is minimized. Can be prevented.
[0008]
The permanent magnet type reluctance type rotating electric machine according to claim 2 is characterized in that the cavity is further subdivided. With such a configuration, the same effect as that of the first aspect can be obtained.
[0009]
The permanent magnet type reluctance type rotating electric machine according to claim 3 includes a stator having a stator winding, and a rotor having a rotor core.
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet, a substantially triangular hollow portion provided between the pair of permanent magnets in the rotor core and having sides substantially parallel to each permanent magnet and sides along the outer periphery; The permanent magnet is provided on the rotor core, and is provided with a plurality of holes located on the bridge-side end and the tip-side end of each permanent magnet and located on the cavity side. I do.
[0010]
According to such a configuration, the magnetic flux from the stator winding is prevented as much as possible from passing through the end of the permanent magnet by the plurality of holes, and therefore, the output of the permanent magnet due to the demagnetizing action is reduced. Reduction can be prevented as much as possible.
[0011]
The permanent magnet type reluctance type rotating electric machine according to claim 4 includes a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. Permanent magnets, provided on the rotor core between the pair of permanent magnets, and having a side portion substantially parallel to each permanent magnet and a side portion along the outer periphery, one of the pair of permanent magnets. And a substantially triangular cavity adjacent thereto.
[0012]
According to such a configuration, the magnetic flux from the stator winding is prevented as much as possible from passing through the permanent magnet on the side adjacent to the cavity, and therefore, the output due to the demagnetizing action of the permanent magnet is reduced. Reduction can be prevented as much as possible.
[0013]
The permanent magnet type reluctance type rotating electric machine according to claim 5 includes a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on the outer peripheral portion of the rotor core, and has a substantially V-shaped magnet insertion hole portion whose both sides expand toward the outer periphery, and is inserted and fixed along the magnet insertion hole portion. And a hollow portion provided in the rotor core between both sides of the permanent magnet.
[0014]
According to such a configuration, the magnet insertion hole is substantially V-shaped, and the permanent magnet inserted into the magnet insertion hole is also substantially V-shaped. In addition to the fact that no end portion is formed, a bridge portion serving as a magnetic flux leakage path is not formed in the rotor core, so that a decrease in output due to magnetic flux leakage can be prevented as much as possible.
[0015]
The permanent magnet type reluctance type rotating electric machine according to claim 6 includes a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a substantially V-shaped magnet insertion hole portion whose both sides expand toward the outer periphery, and a pair of magnet insertion holes fixed to both sides of the magnet insertion hole portion. And a hollow portion provided in the rotor core between both sides of the permanent magnet.
[0016]
According to such a configuration, since a bridge portion serving as a magnetic flux leakage path is not formed in the rotor core, a decrease in output due to magnetic flux leakage can be prevented as much as possible.
[0017]
The permanent magnet type reluctance type rotating electric machine according to claim 7 includes a stator having a stator winding and a rotor having a rotor core,
A substantially V-shaped magnet insertion hole portion provided on an outer peripheral portion of the rotor core, with both sides expanding toward the outer periphery, and with outer peripheral ends of the both sides being open; The rotor core is provided with a pair of permanent magnets inserted and fixed to both sides of the insertion hole, and a cavity provided in the rotor core between the pair of permanent magnets. .
[0018]
According to such a configuration, since the bridge portion and the tip portion serving as magnetic flux leakage paths are not formed on both ends of the permanent magnet in the rotor core, a decrease in output due to magnetic flux leakage can be prevented as much as possible.
[0019]
The permanent magnet type reluctance type rotating electric machine according to claim 8, comprising a stator having a stator winding and a rotor having a rotor core,
A substantially V-shaped magnet insertion hole portion provided on an outer peripheral portion of the rotor core, with both sides expanding toward the outer periphery, and with outer peripheral ends of the both sides being open; A pair of permanent magnets inserted and fixed to both sides of the insertion hole, and provided on the rotor core so as to be located between the pair of permanent magnets and penetrate the rotor core, And a support rod supported by both end plates. With such a configuration, the same effect as that of the seventh aspect can be obtained.
[0020]
The permanent magnet type reluctance type rotating electric machine according to claim 9 includes a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on the outer peripheral portion of the rotor core, the opposing distance is gradually increased toward the outer periphery, and a pair of substantially rectangular magnet insertion holes whose outer end is opened, and a pair of these magnet insertion holes. It is characterized by comprising a permanent magnet inserted and fixed in a magnet insertion hole, and a cavity provided in the rotor core between the pair of permanent magnets.
[0021]
According to such a configuration, since a tip portion serving as a magnetic flux leakage path is not formed at the outer peripheral end of the permanent magnet in the rotor core, a decrease in output due to magnetic flux leakage can be prevented as much as possible.
[0022]
According to a tenth aspect of the present invention, there is provided a permanent magnet type reluctance type rotating electric machine characterized in that an open end of a pair of magnet insertion holes has a locking projection for locking an end of a magnet. With such a configuration, the same effect as the eighth aspect can be obtained.
[0023]
The permanent magnet type reluctance type rotating electric machine according to claim 11, comprising a stator having a stator winding, and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet and a cavity provided in the rotor core between the pair of permanent magnets,
The magnet insertion hole and the permanent magnet are configured such that the thickness dimension of the permanent magnet increases toward the inner peripheral side.
[0024]
According to such a configuration, it becomes more difficult for the magnetic flux from the stator winding to pass through the permanent magnet toward the inner peripheral side, so that a decrease in output due to the demagnetizing action of the permanent magnet can be prevented as much as possible.
[0025]
The permanent magnet type reluctance type rotating electric machine according to claim 12, comprising a stator having a stator winding, and a rotor having a rotor iron core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet and a cavity provided in the rotor core between the pair of permanent magnets,
The magnet insertion hole and the permanent magnet are configured such that the thickness dimension of the permanent magnet increases toward the outer peripheral side.
[0026]
According to such a configuration, it becomes more difficult for the magnetic flux from the stator winding to pass through the permanent magnet toward the outer periphery thereof, so that a decrease in output due to the demagnetizing action of the permanent magnet can be prevented as much as possible.
[0027]
A permanent magnet type reluctance type rotating electric machine according to claim 13, comprising a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet and a cavity provided in the rotor core between the pair of permanent magnets,
The magnet insertion hole portion and the permanent magnet are characterized in that the thickness dimension of both ends of the permanent magnet is larger than other portions.
[0028]
According to such a configuration, it is difficult for the magnetic flux from the stator winding to pass through both ends of the permanent magnet, so that a decrease in output due to the demagnetizing action of the permanent magnet can be prevented as much as possible.
[0029]
The permanent magnet type reluctance type rotating electric machine according to claim 14, comprising a stator having a stator winding and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet and a cavity provided in the rotor core between the pair of permanent magnets,
The magnet insertion hole and the permanent magnet are characterized in that the permanent magnet is constituted by a main magnet and end magnets located at both ends thereof and having a larger thickness dimension than the main magnet. . With such a configuration, the same effect as that of the thirteenth aspect can be obtained.
[0030]
The permanent magnet type reluctance type rotating electric machine according to claim 15 includes a stator having a stator winding, and a rotor having a rotor core,
The rotor is provided on an outer peripheral portion of the rotor core, and has a pair of substantially rectangular magnet insertion holes whose facing distance sequentially increases toward the outer periphery, and is inserted and fixed in the pair of magnet insertion holes. A permanent magnet and a cavity provided in the rotor core between the pair of permanent magnets,
The pair of magnet insertion holes and the permanent magnets are characterized in that one permanent magnet is configured to have a larger thickness dimension than the other permanent magnet.
[0031]
According to such a configuration, it is difficult for the magnetic flux from the stator winding to pass through one of the permanent magnets having a large thickness dimension, so that a decrease in output due to the demagnetizing action of the permanent magnet can be prevented as much as possible.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 2 is a cross-sectional view in the radial direction showing a configuration of a permanent magnet type reluctance type rotary electric machine of the present embodiment. 1 is a partially enlarged cross-sectional view of the rotor, and the same portions as those in FIG. 30 are denoted by the same reference numerals and description thereof is omitted.
[0033]
1 and 2, a rotor 10 is characterized in that a plurality of hollow portions 11 are formed in a rotor core 2 between a pair of permanent magnets 4. The hollow portion 11 is composed of a total of eight holes in four rows substantially parallel to the permanent magnets 4, 4. In the rotor 10, the portion 12 where the pair of magnet insertion holes 3, 3 and the permanent magnets 4, 4 and the cavity portion 11 are provided is a portion (q axis) where it is difficult for the magnetic flux to pass.
In FIG. 2, the stator 13 is configured such that a stator winding 16 is housed in a slot 15 of a stator core 14 formed by laminating a number of annular silicon steel plates. The rotor 10 is disposed inside the stator 13.
[0034]
Thus, the rotor 10 is formed with a portion (q axis) 12 through which magnetic flux hardly passes and a portion (d axis) 7 through which magnetic flux easily passes (so-called magnetic irregularities are formed). The magnetic energy stored by flowing a current through the stator winding 16 differs between the air gap portions on the portions 12 and 7, and a change in the magnetic energy generates reluctance torque. In addition, since the rotor 10 is also provided with the permanent magnets 4, torque is generated by the magnetic attraction force and the magnetic repulsion between the permanent magnets 4, 4 and the magnetic poles of the stator 13. This causes the rotor 10 to rotate.
[0035]
According to this embodiment, the magnetic flux from the stator winding 16 is prevented from passing through the permanent magnet 4 by the plurality of cavities 11 as much as possible. The output can be prevented from lowering as much as possible. Further, the plurality of cavities 11 make it difficult for the magnetic flux of the portion (q-axis) 12 to pass therethrough. Therefore, the salient pole ratio increases, the reluctance torque increases, and the output increases. In addition, since the iron core portion exists in the center of the plurality of hollow portions 11, the centrifugal strength of the rotor 10 can be increased.
[0036]
(Second embodiment)
FIG. 3 shows a second embodiment of the present invention. The difference from FIG. 1 is that the cavity 11 is further subdivided into the rotor core 2 to form a cavity 17 having ten holes. Thus, a portion (q-axis) 18 where the magnetic flux is difficult to pass is formed, and thus a rotor 19 is configured.
According to the second embodiment, the same effect as that of the first embodiment can be obtained.
[0037]
(Third embodiment)
FIG. 4 shows a third embodiment of the present invention. What is different from FIG. 30 is that the rotor core 2 has a pair of permanent magnets 4, 4 at the ends of the bridge portion 8 and at the tip 9 side. , And a plurality of four holes 20 located on the side of the cavity 5 are formed as a portion (q-axis) 21 where magnetic flux is difficult to pass, thereby forming a rotor 22. I have.
According to the third embodiment, the magnetic flux from the stator winding 16 (see FIG. 2) is prevented from passing through the ends of the permanent magnets 4 by the four holes 20 as much as possible. Therefore, a decrease in output due to the demagnetizing action of the permanent magnets 4 and 4 can be prevented as much as possible.
[0038]
(Fourth embodiment)
5 and 6 show a fourth embodiment of the present invention. The difference from FIG. 30 is that a substantially triangular cavity 23 similar to the cavity 5 is provided in the rotor core 2 as a pair of permanent magnets. One of the magnets 4 and 4 is formed so as to be close to the permanent magnet 4 and is a portion (q-axis) 24 where it is difficult for the magnetic flux to pass therethrough.
[0039]
Thus, the rotor 25 acts on the reluctance torque by the portion (q-axis) 24 where the magnetic flux hardly passes and the portion (d-axis) 7 where the magnetic flux is easy to pass, and the N pole and the N pole in the permanent magnet 4 and the stator 13. The magnetic pole acts by repelling the poles and attracting the north pole and the south pole to rotate in the arrow direction (counterclockwise) (see FIG. 6). In this case, when the same pole of the stator 3 relatively approaches the permanent magnet 4, the magnetic flux causes the permanent magnet 4 to be demagnetized. The same applies to the first to third embodiments.
[0040]
However, in the fourth embodiment, since the cavity 23 is formed so as to be close to one of the pair of permanent magnets 4, that is, the clockwise permanent magnet 4, the stator winding 16 ( The magnetic flux from (see FIG. 2) is less likely to pass through one of the permanent magnets 4 due to the cavity 23, and therefore, a decrease in output due to the demagnetizing action of the permanent magnet 4 can be prevented as much as possible.
[0041]
(Fifth embodiment)
FIG. 7 shows a fifth embodiment of the present invention. The difference from FIG. 30 is that the rotor core 2 has magnet insertion holes 3 instead of a pair of magnet insertion holes 3. A substantially V-shaped magnet insertion hole portion 26 is formed on both sides and continuous at the bridge portion 8, and a substantially V-shaped permanent magnet 27 is inserted along the magnet insertion hole portion 26 by bonding. It is a fixed portion (q-axis) 28 that is hard to pass magnetic flux, and thus constitutes a rotor 29.
[0042]
According to the fifth embodiment, the magnet insertion hole 26 has a substantially V shape, and the permanent magnet 27 inserted into the magnet insertion hole 26 has a substantially V shape. Not only is no end formed on the inner circumference side causing magnetic flux leakage, but also a bridge portion 8 serving as a magnetic flux leakage path is not formed in the rotor core 2, so that a decrease in output due to magnetic flux leakage can be prevented as much as possible.
[0043]
(Sixth embodiment)
FIG. 8 shows a sixth embodiment of the present invention. The difference from FIGS. 7 and 30 is that a pair of permanent magnets 4 are provided on both sides of a substantially V-shaped magnet insertion hole 26 in the rotor core 2. , 4 are inserted and fixed by bonding to form a portion (q-axis) 30 in which magnetic flux is difficult to pass, thereby forming a rotor 31.
According to the sixth embodiment, although the end portions are formed on the inner peripheral side of the permanent magnets 4, the bridge portion 8 serving as a magnetic flux leakage path is not formed in the rotor core 2. This has the same effect as 5.
[0044]
(Seventh embodiment)
FIG. 9 shows a seventh embodiment of the present invention. The difference from FIG. 8 is that the outer peripheral ends of both sides are opened in the rotor core 2 instead of the magnet insertion holes 26 (that is, FIG. 9). , No tip parts 9, 9) are formed, and a magnet insertion hole 32 having a substantially V-shape is formed, and a portion (q axis) 33 through which magnetic flux does not easily pass is formed. Thus, a rotor 34 is configured. In this case, as an adhesive for fixing the permanent magnets 4 and 4 to the magnet insertion hole 32, an adhesive having a larger adhesive strength than the adhesive used in the other embodiments and having extremely little aging is used. I do.
According to the seventh embodiment, the tip portions 9 and 9 serving as magnetic flux leakage paths are not formed in the rotor core 2, so that the magnetic flux leakage of the permanent magnet 4 is further reduced as compared with the seventh embodiment. It is possible to prevent the output from lowering.
[0045]
(Eighth embodiment)
FIG. 10 shows an eighth embodiment of the present invention. The difference from FIG. 9 is that a circular cavity 35 is formed in the rotor core 2 instead of the cavity 5, and A support bar 36 made of a non-magnetic material is fitted or press-fitted into the hollow portion 35 so as to penetrate the hollow portion 35. The support bar 36 is supported by both end plates of the rotor core 2 and has a portion (q The shaft 37 is formed, and thus, a rotor 38 is configured. Note that the portion 37 is formed with a caulking portion 39 for binding the laminated iron cores constituting the portion 37.
According to the eighth embodiment, the same effects as those of the seventh embodiment can be obtained, the centrifugal strength can be increased by the support rod 36, and the laminated core of the portion 37 can be formed by the caulking portion 39. Can be bound, so that the assemblability is improved.
The caulking portion 39 may be provided as needed.
[0046]
(Ninth embodiment)
FIG. 11 shows a ninth embodiment of the present invention. The difference from FIG. 30 is that the outer peripheral ends of both sides are opened in the rotor core 2 instead of the magnet insertion holes 3 and 3. The magnet insertion holes 40, 40 (that is, the absence of the tip portions 9, 9) are formed to form a portion (q-axis) 41 in which magnetic flux is difficult to pass, thereby forming the rotor 42.
According to the ninth embodiment, since the rotor core 2 is not provided with the tip portions 9 serving as magnetic flux leakage paths, the magnetic flux leakage of the permanent magnet 4 can be prevented, and the output can be reduced. It can be prevented as much as possible.
[0047]
(Tenth embodiment)
FIG. 12 shows a tenth embodiment of the present invention. The difference from FIG. 11 is that the outer peripheral end faces of the permanent magnets 4 and 4 are related to the outer open ends of the magnet insertion holes 40 and 40. Locking projections 43, 43 for stopping are formed, and thus a rotor 44 is configured.
According to the tenth embodiment, the same effects as those of the ninth embodiment can be obtained, and even if a centrifugal force acts on the permanent magnet 4 when the rotor 44 rotates, the locking projections 43 prevents the permanent magnet 4 from coming off.
[0048]
(Eleventh embodiment)
FIG. 13 shows an eleventh embodiment of the present invention. The difference from FIG. 30 is that the width of the rotor core 2 is sequentially reduced toward the inner circumference instead of the magnet insertion holes 3 and 3. Magnet insertion holes 45, 45 which become larger are formed, and permanent magnets 46, 46 whose thickness dimension gradually increases toward the inner peripheral side are inserted into these magnet insertion holes 45, 45 and fixed by bonding. Thus, a portion (q-axis) 47 in which the magnetic flux is difficult to pass is formed, and thus the rotor 48 is configured.
According to such an eleventh embodiment, the magnetic flux from the stator winding 16 (see FIG. 2) becomes more difficult to pass through the permanent magnet 47 toward the inner peripheral side thereof. The output can be prevented from lowering as much as possible.
[0049]
(Twelfth embodiment)
FIG. 14 shows a twelfth embodiment of the present invention. The difference from FIG. 13 is that, instead of the magnet insertion holes 45, the width of the rotor core 2 is gradually increased toward the outer peripheral side. Are formed, and permanent magnets 50, 50 whose thickness dimensions gradually increase toward the outer peripheral side are inserted into these magnet insertion holes 49, 49, and are fixed by bonding. A portion (q-axis) 51 in which magnetic flux is hard to pass is formed, and thus a rotor 52 is configured.
According to the twelfth embodiment, the magnetic flux from the stator winding 16 (see FIG. 2) becomes harder to pass through the permanent magnet 50 toward the outer peripheral side thereof. A decrease in output can be prevented as much as possible.
[0050]
(Thirteenth embodiment)
FIG. 15 shows a thirteenth embodiment of the present invention, which is different from FIG. 30 in that the rotor core 2 has magnets other than the magnet insertion holes 3 and 3 in which both ends have other widths. Larger magnet insertion holes 53, 53 are formed, and permanent magnets 54, 54 whose both end portions are larger in thickness than other portions are inserted and fixed in these magnet insertion holes 53, 53, so that the magnetic flux can pass. A difficult portion (q-axis) 55 is formed, and thus a rotor 56 is configured.
According to the thirteenth embodiment, since the magnetic flux from the stator winding 16 (see FIG. 2) hardly passes through both ends of the permanent magnet 54, the output is reduced due to the demagnetizing action of the permanent magnet 54. Can be prevented as much as possible.
[0051]
(14th embodiment)
FIG. 16 shows a fourteenth embodiment of the present invention. The difference from FIG. 15 is that the magnet insertion holes 53, 53 of the rotor core 2 are replaced with permanent magnets 54, 54 instead of main magnets 54, 54. Permanent magnets 57, 57, which are 57a and end magnets 57b, 57b located at both ends thereof and having a larger thickness dimension, are inserted and fixed to form a portion (q-axis) 58 in which magnetic flux is difficult to pass. Thus, the rotor 59 is configured.
According to the fourteenth embodiment, the same effect as in the thirteenth embodiment can be obtained.
[0052]
(Fifteenth embodiment)
FIG. 17 shows a fifteenth embodiment of the present invention. The difference from FIG. 30 is that the magnet insertion on the clockwise side, which is one of the pair of magnet insertion holes 3, is inserted into the rotor core 2. Instead of the hole 3, a magnet insertion hole 60 having a larger width than this is formed, and a permanent magnet 61 having a thickness larger than the permanent magnet 4 is inserted and fixed in the magnet insertion hole 60 of the child. Thus, a portion (q-axis) 62 in which magnetic flux is difficult to pass is formed, and thus a rotor 63 is formed.
According to the fifteenth embodiment, the magnetic flux from the stator winding 16 (see FIG. 2) hardly passes through the permanent magnet 61, so that a decrease in output due to the demagnetizing action of the permanent magnet 61 is prevented as much as possible. can do.
[0053]
FIGS. 18 to 29 are configuration examples proposed in the course of the development of the present invention. Hereinafter, these will be described as reference examples, and the same parts as those in FIGS. 1 to 17 and FIG. The same reference numerals are given.
[0054]
(First Reference Example)
FIG. 18 shows a first reference example, which includes two V-shaped cavities 64 having sides parallel to a pair of permanent magnets 4, 4 and an inverted triangular cavities. 65 are formed.
[0055]
(Second reference example)
FIG. 19 shows a second reference example, in which, instead of the cavities 64 and 65 shown in FIG. 18, cavities 66 and 67 having rounded central corners are provided. Configuration.
[0056]
(Third reference example)
FIG. 20 shows a third reference example, in which cutouts 68, 68 are formed in portions corresponding to the chip portions 9, 9 shown in FIG.
[0057]
(Fourth reference example)
FIG. 21 shows a fourth reference example, which has a configuration in which triangular holes 69, 69 are formed in portions corresponding to the chip portions 9, 9 shown in FIG.
[0058]
(Fifth reference example)
FIG. 22 shows a fifth reference example, in which notches 68, 68 are formed in portions corresponding to the tip portions 9, 9 shown in FIG. This is a configuration in which a triangular hole 70 is formed.
[0059]
(Sixth reference example)
FIG. 23 shows a sixth reference example in which triangular holes 69, 69 are formed in portions corresponding to the chip portions 9, 9 shown in FIG. This is a configuration in which a triangular hole 70 is formed in a portion where the hole 70 is formed.
[0060]
(Seventh Reference Example)
FIG. 24 shows a seventh reference example, in which the magnet insertion holes 3, 3 are provided with auxiliary holes 3a extending to the inner peripheral side at positions corresponding to the bridges 8, 8 shown in FIG. , 3a are provided, and auxiliary holes 3b, 3b are provided at positions corresponding to the tip portions 9, 9 and extend to the outer peripheral side. Further, the auxiliary holes 3a, 3a and 3b, 3b are provided with: This is a configuration in which locking projections 71, 71 and 72, 72 for locking to end faces of the permanent magnets 4, 4 are formed.
[0061]
(Eighth Reference Example)
FIG. 25 shows an eighth embodiment of the present invention, in which the auxiliary projections 3b, 3b are provided on the end face of the permanent magnet 4 instead of the locking projections 72, 72 shown in FIG. This is a configuration in which locking projections 73, 73 that lock from the opposite side are formed.
[0062]
(Ninth Reference Example)
FIG. 26 shows a ninth reference example. In FIG. 24, the ninth embodiment locks the auxiliary holes 3a, 3a on the end faces of the permanent magnets 4, 4 from the side opposite to the locking projections 71, 71. The locking projections 74 are further formed.
[0063]
(10th reference example)
FIG. 27 shows a tenth reference example, which has a configuration in which locking projections 71, 74, 72, and 73 are formed in the corner auxiliary holes 3a and 3b.
[0064]
(Eleventh Reference Example)
FIG. 28 shows an eleventh reference example in which a substantially triangular hollow portion 23a is formed in the rotor core 2 so as to be close to one of the pair of permanent magnets 4. And a portion 24b in which a substantially triangular hollow portion 23b is formed so as to be close to the other permanent magnet 4 of the pair of permanent magnets 4, 4 is formed alternately. .
[0065]
(Twelfth Reference Example)
FIG. 29 shows a twelfth reference example, in which the pitch between the portions 6, 6 is alternately large and small (therefore, the pitch between the portions 7, 7 is also alternately large and small). This is the configuration.
[0066]
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings. For example, in each embodiment, the permanent magnet is fixed to the magnet insertion hole by bonding, but is fixed by press fitting instead. Needless to say, the present invention can be appropriately modified and implemented without departing from the scope of the invention.
[0067]
【The invention's effect】
As described above, the permanent-magnet-type reluctance-type rotating electric machine of the present invention has an effect that it is possible to prevent the magnetic flux from leaking from the permanent magnet or the output from decreasing due to the demagnetizing action of the permanent magnet.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of a waist showing a first embodiment of the present invention.
FIG. 2 is an overall sectional view.
FIG. 3 is a view corresponding to FIG. 1, showing a second embodiment of the present invention;
FIG. 4 is a view corresponding to FIG. 1, showing a third embodiment of the present invention;
FIG. 5 is a view corresponding to FIG. 1, showing a fourth embodiment of the present invention;
FIG. 6 is a diagram corresponding to FIG. 2 for explaining operation.
FIG. 7 is a view corresponding to FIG. 1, showing a fifth embodiment of the present invention.
FIG. 8 is a view corresponding to FIG. 1, showing a sixth embodiment of the present invention.
FIG. 9 is a view corresponding to FIG. 1, showing a seventh embodiment of the present invention.
FIG. 10 is a view corresponding to FIG. 1, showing an eighth embodiment of the present invention;
FIG. 11 is a view corresponding to FIG. 1, showing a ninth embodiment of the present invention;
FIG. 12 is a view corresponding to FIG. 1, showing a tenth embodiment of the present invention;
FIG. 13 is a view corresponding to FIG. 1, showing an eleventh embodiment of the present invention;
FIG. 14 is a view corresponding to FIG. 1, showing a twelfth embodiment of the present invention;
FIG. 15 is a view corresponding to FIG. 1, showing a thirteenth embodiment of the present invention;
FIG. 16 is a view corresponding to FIG. 1, showing a fourteenth embodiment of the present invention;
FIG. 17 is a view corresponding to FIG. 1, showing a fifteenth embodiment of the present invention;
FIG. 18 is a view corresponding to FIG. 1, showing a first reference example;
FIG. 19 is a diagram corresponding to FIG. 1, showing a second reference example;
FIG. 20 is a view corresponding to FIG. 1, showing a third reference example;
FIG. 21 is a view corresponding to FIG. 1, showing a fourth reference example;
FIG. 22 is a view corresponding to FIG. 1, showing a fifth reference example;
FIG. 23 is a view corresponding to FIG. 1, showing a sixth reference example;
FIG. 24 is a view corresponding to FIG. 1, showing a seventh reference example;
FIG. 25 is a view corresponding to FIG. 1, showing an eighth reference example;
FIG. 26 is a view corresponding to FIG. 1, showing a ninth reference example;
FIG. 27 is a view corresponding to FIG. 1, showing a tenth reference example;
FIG. 28 is a view corresponding to FIG. 2, showing an eleventh reference example;
FIG. 29 is a view corresponding to FIG. 2, showing a twelfth reference example;
FIG. 30 is a sectional view of a rotor showing a conventional example.
[Explanation of symbols]
In the drawing, 2 is a rotor core, 3 is a magnet insertion hole, 4 is a permanent magnet, 5 is a cavity, 8 is a bridge, 9 is a tip, 10 is a rotor, 11 is a cavity, and 13 is a stator. , 14 is a stator core, 16 is a stator winding, 17 and 18 are cavities, 19 is a rotor, 20 is a hole, 22 is a rotor, 23 is a cavity, 25 is a rotor, and 26 is a magnet insert. Hole, 27 is a permanent magnet, 29 and 31 are rotors, 32 is a magnet insertion hole, 34 is a rotor, 35 is a cavity, 36 is a support rod, 38 is a rotor, 40 is a magnet insertion hole, 42 is Is a rotor, 43 is a locking projection, 44 is a rotor, 45 is a magnet insertion hole, 46 is a permanent magnet, 48 is a rotor, 49 is a magnet insertion hole, 50 is a permanent magnet, 52 is a rotor, 53 Is a magnet insertion hole, 54 is a permanent magnet, 56 is a rotor, 57 is a permanent magnet, 57a is a main magnet, and 57b is an end magnet. 59 rotor 60 magnet insertion holes, 61 permanent magnet, 63 shows the rotor.

Claims (15)

固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられ、永久磁石に略平行な複数個の空洞部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A plurality of cavities provided in the rotor core between the pair of permanent magnets and substantially parallel to the permanent magnets;
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
空洞部は、更に細分化されていることを特徴とする請求項1記載の永久磁石式リラクタンス型回転電機。2. The permanent magnet type reluctance type rotating electric machine according to claim 1, wherein the hollow portion is further subdivided. 固定子巻線を有する固定子と、回転子鉄心有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられ、各永久磁石に略平行な辺部と外周に沿う辺部とを有する略三角形状の空洞部と、
前記回転子鉄心に設けられ、各永久磁石のブリッジ部側端部及びチップ部側端部に位置し且つ前記空洞部側に位置する複数個の孔部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A substantially triangular cavity having a side portion substantially parallel to each permanent magnet and a side portion along the outer periphery provided in the rotor core between the pair of permanent magnets,
A plurality of holes provided in the rotor core, located at the bridge-side end and the tip-side end of each permanent magnet, and located at the cavity side,
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
固定子巻線を有する固定子と、回転子鉄心有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられ、各永久磁石に略平行な辺部と外周に沿う辺部とを有し前記一対の永久磁石の一方に近接する略三角形状の空洞部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A substantially triangular shape which is provided on the rotor core between the pair of permanent magnets, has sides substantially parallel to the respective permanent magnets, and sides along the outer periphery, and is close to one of the pair of permanent magnets. Of the cavity,
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開する略V字形の磁石挿入孔部と、
この磁石挿入孔部にこれに沿うように挿入固定された永久磁石と、
前記回転子鉄心に前記永久磁石の両辺部間に位置して設けられた空洞部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A substantially V-shaped magnet insertion hole portion provided on an outer peripheral portion of the rotor core and having both sides expanding toward the outer periphery;
A permanent magnet inserted and fixed in the magnet insertion hole so as to follow it,
A cavity provided in the rotor core between both sides of the permanent magnet,
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開する略V字形の磁石挿入孔部と、
この磁石挿入孔部の両辺部に挿入固定された一対の永久磁石と、
前記回転子鉄心に前記永久磁石の両辺部間に位置して設けられた空洞部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A substantially V-shaped magnet insertion hole portion provided on an outer peripheral portion of the rotor core and having both sides expanding toward the outer periphery;
A pair of permanent magnets inserted and fixed to both sides of the magnet insertion hole,
A cavity provided in the rotor core between both sides of the permanent magnet,
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開し且つその両辺部の外周側端部が開放する略V字形の磁石挿入孔部と、
この磁石挿入孔部の両辺部に挿入固定された一対の永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A substantially V-shaped magnet insertion hole portion provided on the outer peripheral portion of the rotor core, with both sides expanding toward the outer periphery and the outer peripheral ends of the both sides being open;
A pair of permanent magnets inserted and fixed to both sides of the magnet insertion hole,
A hollow portion provided in the rotor core between the pair of permanent magnets,
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、両辺部が外周に向かうに従って拡開し且つその両辺部の外周側端部が開放する略V字形の磁石挿入孔部と、
この磁石挿入孔部の両辺部に挿入固定された一対の永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置してその回転子鉄心を貫通するようにして設けられ、前記回転子鉄心の両端板に支持された支え棒と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A substantially V-shaped magnet insertion hole portion provided on the outer peripheral portion of the rotor core, with both sides expanding toward the outer periphery and the outer peripheral ends of the both sides being open;
A pair of permanent magnets inserted and fixed to both sides of the magnet insertion hole,
A support rod provided between the pair of permanent magnets in the rotor core so as to penetrate the rotor core, and supported by both end plates of the rotor core;
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対抗距離が順次大となり且つ外周側端部が開放する略長方形状の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部と、
を備えて構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer periphery of the rotor core, and whose opposing distances are gradually increased toward the outer periphery and whose outer end is open,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A hollow portion provided in the rotor core between the pair of permanent magnets,
A permanent magnet type reluctance type rotating electric machine characterized by comprising:
一対の磁石挿入孔部の開放端部に磁石の端部を係止する係止突部を有することを特徴とする請求項9記載の永久磁石式リラクタンス型回転電機。The permanent magnet type reluctance type rotating electric machine according to claim 9, further comprising a locking projection that locks an end of the magnet at an open end of the pair of magnet insertion holes. 固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、内周側に向かうに従ってその永久磁石の厚み寸法が大になるように構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A cavity provided in the rotor core between the pair of permanent magnets,
The permanent magnet type reluctance type rotating electric machine, wherein the magnet insertion hole and the permanent magnet are configured such that the thickness dimension of the permanent magnet increases toward the inner peripheral side.
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、外周側に向かうに従ってその永久磁石の厚み寸法が大になるように構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A cavity provided in the rotor core between the pair of permanent magnets,
The permanent magnet type reluctance type rotating electric machine, wherein the magnet insertion hole and the permanent magnet are configured such that the thickness dimension of the permanent magnet increases toward the outer peripheral side.
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、その永久磁石の両端部の厚み寸法が他の部位より大になるように構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A cavity provided in the rotor core between the pair of permanent magnets,
The permanent magnet type reluctance type rotating electric machine, wherein the magnet insertion hole and the permanent magnet are configured such that the thickness dimension of both ends of the permanent magnet is larger than other portions.
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記磁石挿入孔部及び永久磁石は、その永久磁石が主磁石とその両端部に位置してこれよりも厚み寸法が大になる端部磁石とを備えてなるように構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A cavity provided in the rotor core between the pair of permanent magnets,
The magnet insertion hole and the permanent magnet are characterized in that the permanent magnet is configured to include a main magnet and end magnets located at both ends thereof and having a larger thickness dimension than the main magnet. Permanent magnet type reluctance type rotating electric machine.
固定子巻線を有する固定子と、回転子鉄心を有する回転子とを具備し、
前記回転子は、
前記回転子鉄心の外周部に設けられ、外周に向かうに従って対向距離が順次大となる略長方形の一対の磁石挿入孔部と、
これらの一対の磁石挿入孔部に挿入固定された永久磁石と、
前記回転子鉄心に前記一対の永久磁石間に位置して設けられた空洞部とを備えて構成され、
前記一対の磁石挿入孔部及び永久磁石は、一方の永久磁石が他方の永久磁石よりも厚み寸法が大になるように構成されていることを特徴とする永久磁石式リラクタンス型回転電機。
A stator having a stator winding, and a rotor having a rotor core,
The rotor,
A pair of substantially rectangular magnet insertion holes, which are provided on the outer peripheral portion of the rotor core, and whose facing distance increases in order toward the outer periphery,
A permanent magnet inserted and fixed in the pair of magnet insertion holes,
A cavity provided in the rotor core between the pair of permanent magnets,
The permanent magnet type reluctance type rotating electric machine, wherein the pair of magnet insertion holes and the permanent magnets are configured such that one permanent magnet has a larger thickness dimension than the other permanent magnet.
JP2002266682A 2002-09-12 2002-09-12 Permanent magnet type reluctance rotary electric machine Pending JP2004104962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266682A JP2004104962A (en) 2002-09-12 2002-09-12 Permanent magnet type reluctance rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266682A JP2004104962A (en) 2002-09-12 2002-09-12 Permanent magnet type reluctance rotary electric machine

Publications (1)

Publication Number Publication Date
JP2004104962A true JP2004104962A (en) 2004-04-02

Family

ID=32265428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266682A Pending JP2004104962A (en) 2002-09-12 2002-09-12 Permanent magnet type reluctance rotary electric machine

Country Status (1)

Country Link
JP (1) JP2004104962A (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328679A (en) * 2004-05-17 2005-11-24 Toshiba Corp Permanent magnet reluctance type rotating electric machine
JP2006081377A (en) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd Rotor of rotary electric machine
JP2006271184A (en) * 2005-03-21 2006-10-05 Samsung Electronics Co Ltd Brushless dc motor
WO2006117891A1 (en) * 2005-04-28 2006-11-09 Toyota Jidosha Kabushiki Kaisha Rotor
JP2007336671A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet rotary electric machine
EP1914863A2 (en) * 2006-10-20 2008-04-23 Kabushiki Kaisha Toshiba Permanent-magnet reluctance electrical rotary machine
US7560842B2 (en) 2005-09-21 2009-07-14 Toyota Jidosha Kabushiki Kaisha Permanent magnet type rotating electric machine capable of suppressing deformation of rotor core
WO2009136545A1 (en) 2008-05-08 2009-11-12 ダイキン工業株式会社 Field element
EP2139093A2 (en) * 2008-06-27 2009-12-30 Hitachi, Ltd. Permanent-magnet type electric rotating machine
JP2010178470A (en) * 2009-01-28 2010-08-12 Honda Motor Co Ltd Rotating electrical machine
JP2011035997A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Rotor for ipm motors, and ipm motor
CN102044944A (en) * 2009-10-21 2011-05-04 富士电机系统株式会社 Permanent magnet rotary motor
JP2011125104A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Ipm motor rotor and ipm motor
CN102111027A (en) * 2009-12-24 2011-06-29 株式会社日立制作所 Permanent magnet type rotating electric machine
JP2011147259A (en) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp Reluctance motor
CN102163901A (en) * 2010-02-17 2011-08-24 通用汽车环球科技运作有限责任公司 Interior permanent magnet machine
JP2011217602A (en) * 2010-03-31 2011-10-27 Valeo Equipments Electriques Moteur Flux concentration type synchronous rotating electric machine with permanent magnet
WO2011142911A1 (en) * 2010-05-10 2011-11-17 Remy Technologies, L.L.C. Rotor lamination assembly and method of forming a rotor lamination assembly
WO2012011191A1 (en) * 2010-07-23 2012-01-26 トヨタ自動車株式会社 Rotor and ipm motor
WO2011051153A3 (en) * 2009-10-28 2012-05-31 Bayerische Motoren Werke Aktiengesellschaft Electrical drive motor for a vehicle
JP2012120413A (en) * 2010-12-03 2012-06-21 Honda Motor Co Ltd Rotor
US8227952B2 (en) * 2007-11-16 2012-07-24 Denso Corporation IPM type of synchronous machine
EP2506399A2 (en) 2011-03-28 2012-10-03 Kabushiki Kaisha Toyota Jidoshokki Embedded permanent magnet rotor for rotating electric machine and rotating electric machine
EP2562913A2 (en) 2011-08-21 2013-02-27 Kabushiki Kaisha Toyota Jidoshokki Interior permanent magnet motor
JP2013046434A (en) * 2011-08-22 2013-03-04 Daikin Ind Ltd Rotary electric machine
EP2587634A2 (en) 2011-10-31 2013-05-01 Kabushiki Kaisha Toyota Jidoshokki Rotor for permanent magnet type rotating electrical machine, permanent magnet type rotating electrical machine, and method for manufacturing rotor
JP2013539348A (en) * 2010-09-27 2013-10-17 コルモーゲン コーポレーション Magnetic rotor with built-in bridge for promoting cooling
DE102012010993A1 (en) * 2012-06-02 2013-12-05 Volkswagen Aktiengesellschaft Rotor for an electric motor
WO2014034344A1 (en) * 2012-08-31 2014-03-06 日立オートモティブシステムズ株式会社 Rotating electric machine
WO2014050261A1 (en) 2012-09-26 2014-04-03 ダイキン工業株式会社 Radial gap type rotating electrical machine, blower, compressor, and air conditioner
JP2014064471A (en) * 2014-01-17 2014-04-10 Nippon Soken Inc Rotary electric machine
JP2014100048A (en) * 2012-10-19 2014-05-29 Toshiba Corp Permanent magnet type rotary electric machine
EP2763285A2 (en) 2013-01-30 2014-08-06 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded type rotor for rotating electrical machine and rotating electrical machine having permanent magnet embedded type rotor
US8957560B2 (en) 2011-03-03 2015-02-17 Denso Corporation Electric rotating machine
JP2015097437A (en) * 2013-11-15 2015-05-21 株式会社デンソー Rotor for rotary electric machine
JP2015139255A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 rotor
EP2698900A4 (en) * 2011-04-15 2016-03-30 Mitsubishi Heavy Ind Automotive Thermal Sys Co Ltd Electric motor and electric compressor using same
EP3024122A3 (en) * 2014-11-18 2016-08-10 Steering Solutions IP Holding Corporation Injection molded buried permanent magnet motor for an electric power steering system
EP3154157A1 (en) * 2015-10-08 2017-04-12 Samsung Electronics Co., Ltd. Bldc motor
JP2018129938A (en) * 2017-02-08 2018-08-16 本田技研工業株式会社 Rotary electric machine
CN108847731A (en) * 2018-07-16 2018-11-20 武汉理工通宇新源动力有限公司 A kind of automobile permanent magnet synchronous motor rotor structure and vehicle
DE102017005415A1 (en) * 2017-06-09 2018-12-27 Volkswagen Aktiengesellschaft Synchronous machine with magnetic flux deflection
US10205359B2 (en) 2013-11-18 2019-02-12 Steering Solutions Ip Holding Corporation Low cost permanent magnet motor for an electric power steering system
WO2019102580A1 (en) * 2017-11-24 2019-05-31 三菱電機株式会社 Permanent magnet rotating electric machine
JP2019140843A (en) * 2018-02-14 2019-08-22 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
CN111149281A (en) * 2017-09-28 2020-05-12 三菱电机株式会社 Permanent magnet type rotating electrical machine
CN111953098A (en) * 2019-05-17 2020-11-17 Tdk株式会社 Rotating electrical machine
JP6785522B1 (en) * 2019-11-13 2020-11-18 三菱電機株式会社 Rotating machine
CN112994288A (en) * 2019-12-12 2021-06-18 中车永济电机有限公司 Permanent magnet motor rotor magnetic circuit topological structure
CN113131643A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
DE112019005396T5 (en) 2018-10-30 2021-07-22 Mitsubishi Electric Corporation ROTATING ELECTRIC MACHINE
WO2021214824A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Rotor, motor, compressor, air conditioning device, and rotor manufacturing method
JPWO2022044090A1 (en) * 2020-08-24 2022-03-03
EP1990895B1 (en) * 2007-05-09 2022-07-13 Danfoss Power Solutions (US) Company Stress distributing permanent magnet rotor geometry for electric machines
DE102021202725A1 (en) 2021-03-22 2022-09-22 Zf Friedrichshafen Ag Electric drive unit and method of manufacturing an electric drive unit
WO2023079679A1 (en) * 2021-11-05 2023-05-11 株式会社 東芝 Rotor for rotary electric machine
WO2023105701A1 (en) 2021-12-09 2023-06-15 株式会社 東芝 Rotor of rotary electric machine
US11967863B2 (en) 2019-11-13 2024-04-23 Mitsubishi Electric Corporation Rotating electric machine

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005328679A (en) * 2004-05-17 2005-11-24 Toshiba Corp Permanent magnet reluctance type rotating electric machine
JP4580683B2 (en) * 2004-05-17 2010-11-17 株式会社東芝 Permanent magnet type reluctance type rotating electrical machine
JP2006081377A (en) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd Rotor of rotary electric machine
JP4574297B2 (en) * 2004-09-13 2010-11-04 日産自動車株式会社 Rotating electrical machine rotor
US7420306B2 (en) * 2005-03-21 2008-09-02 Samsung Electronics Co., Ltd. Brushless DC motor
JP2006271184A (en) * 2005-03-21 2006-10-05 Samsung Electronics Co Ltd Brushless dc motor
US7948138B2 (en) 2005-04-28 2011-05-24 Toyota Jidosha Kabushiki Kaisha Rotor
WO2006117891A1 (en) * 2005-04-28 2006-11-09 Toyota Jidosha Kabushiki Kaisha Rotor
US7560842B2 (en) 2005-09-21 2009-07-14 Toyota Jidosha Kabushiki Kaisha Permanent magnet type rotating electric machine capable of suppressing deformation of rotor core
JP2007336671A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet rotary electric machine
EP1914863A3 (en) * 2006-10-20 2014-09-24 Kabushiki Kaisha Toshiba Permanent-magnet reluctance electrical rotary machine
EP1914863A2 (en) * 2006-10-20 2008-04-23 Kabushiki Kaisha Toshiba Permanent-magnet reluctance electrical rotary machine
EP1990895B1 (en) * 2007-05-09 2022-07-13 Danfoss Power Solutions (US) Company Stress distributing permanent magnet rotor geometry for electric machines
US8227952B2 (en) * 2007-11-16 2012-07-24 Denso Corporation IPM type of synchronous machine
WO2009136545A1 (en) 2008-05-08 2009-11-12 ダイキン工業株式会社 Field element
US8598763B2 (en) 2008-05-08 2013-12-03 Daikin Industries, Ltd. Field element
EP2139093A2 (en) * 2008-06-27 2009-12-30 Hitachi, Ltd. Permanent-magnet type electric rotating machine
JP2010011640A (en) * 2008-06-27 2010-01-14 Hitachi Ltd Permanent magnet type rotary electric machine
JP4627788B2 (en) * 2008-06-27 2011-02-09 株式会社日立製作所 Permanent magnet rotating electric machine
JP2010178470A (en) * 2009-01-28 2010-08-12 Honda Motor Co Ltd Rotating electrical machine
JP2011035997A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Rotor for ipm motors, and ipm motor
JP2011091911A (en) * 2009-10-21 2011-05-06 Fuji Electric Systems Co Ltd Permanent-magnet rotary electric machine
CN102044944A (en) * 2009-10-21 2011-05-04 富士电机系统株式会社 Permanent magnet rotary motor
WO2011051153A3 (en) * 2009-10-28 2012-05-31 Bayerische Motoren Werke Aktiengesellschaft Electrical drive motor for a vehicle
US8575807B2 (en) 2009-10-28 2013-11-05 Bayerische Motoren Werke Aktiengesellschaft Electrical drive motor for a vehicle
CN102844966A (en) * 2009-10-28 2012-12-26 宝马股份公司 Electrical drive motor for vehicle
JP2011125104A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Ipm motor rotor and ipm motor
CN102111027A (en) * 2009-12-24 2011-06-29 株式会社日立制作所 Permanent magnet type rotating electric machine
JP2011135667A (en) * 2009-12-24 2011-07-07 Hitachi Ltd Permanent magnet type rotary electric machine
US20110156521A1 (en) * 2009-12-24 2011-06-30 Hitachi, Ltd. Permanent Magnet Type Rotating Electric Machine
KR101177416B1 (en) * 2009-12-24 2012-08-27 가부시키가이샤 히타치세이사쿠쇼 Permanent magnet type rotating electrical machine
CN102111027B (en) * 2009-12-24 2014-09-10 株式会社日立制作所 Permanent magnet type rotating electric machine
EP2339719A3 (en) * 2009-12-24 2014-01-29 Hitachi, Ltd. Permanent magnet type rotating electric machine
JP2011147259A (en) * 2010-01-14 2011-07-28 Mitsubishi Electric Corp Reluctance motor
CN102163901A (en) * 2010-02-17 2011-08-24 通用汽车环球科技运作有限责任公司 Interior permanent magnet machine
EP2372873B1 (en) * 2010-03-31 2021-07-21 Valeo Equipements Electriques Moteur Synchronous rotating electric machine with permanent magnets and flux concentration
JP2011217602A (en) * 2010-03-31 2011-10-27 Valeo Equipments Electriques Moteur Flux concentration type synchronous rotating electric machine with permanent magnet
WO2011142911A1 (en) * 2010-05-10 2011-11-17 Remy Technologies, L.L.C. Rotor lamination assembly and method of forming a rotor lamination assembly
WO2012011191A1 (en) * 2010-07-23 2012-01-26 トヨタ自動車株式会社 Rotor and ipm motor
JP5382222B2 (en) * 2010-07-23 2014-01-08 トヨタ自動車株式会社 Rotor and IPM motor
JPWO2012011191A1 (en) * 2010-07-23 2013-09-09 トヨタ自動車株式会社 Rotor and IPM motor
CN103026585A (en) * 2010-07-23 2013-04-03 丰田自动车株式会社 Rotor and IPM motor
CN103026585B (en) * 2010-07-23 2014-07-09 丰田自动车株式会社 Rotor and IPM motor
JP2013539348A (en) * 2010-09-27 2013-10-17 コルモーゲン コーポレーション Magnetic rotor with built-in bridge for promoting cooling
JP2012120413A (en) * 2010-12-03 2012-06-21 Honda Motor Co Ltd Rotor
US8957560B2 (en) 2011-03-03 2015-02-17 Denso Corporation Electric rotating machine
JP2012205472A (en) * 2011-03-28 2012-10-22 Toyota Industries Corp Permanent magnet embedded rotor of rotary electric machine, and rotary electric machine
EP2506399A2 (en) 2011-03-28 2012-10-03 Kabushiki Kaisha Toyota Jidoshokki Embedded permanent magnet rotor for rotating electric machine and rotating electric machine
US8766503B2 (en) 2011-03-28 2014-07-01 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded rotor for rotating electric machine and rotating electric machine
EP2506399A3 (en) * 2011-03-28 2017-01-18 Kabushiki Kaisha Toyota Jidoshokki Embedded permanent magnet rotor for rotating electric machine and rotating electric machine
US9369012B2 (en) 2011-04-15 2016-06-14 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Electric motor and electric compressor using the same
EP2698900A4 (en) * 2011-04-15 2016-03-30 Mitsubishi Heavy Ind Automotive Thermal Sys Co Ltd Electric motor and electric compressor using same
EP2562913A2 (en) 2011-08-21 2013-02-27 Kabushiki Kaisha Toyota Jidoshokki Interior permanent magnet motor
CN102957239A (en) * 2011-08-21 2013-03-06 株式会社丰田自动织机 Interior permanent magnet motor
JP2013046434A (en) * 2011-08-22 2013-03-04 Daikin Ind Ltd Rotary electric machine
EP2587634A2 (en) 2011-10-31 2013-05-01 Kabushiki Kaisha Toyota Jidoshokki Rotor for permanent magnet type rotating electrical machine, permanent magnet type rotating electrical machine, and method for manufacturing rotor
KR101686314B1 (en) * 2012-06-02 2016-12-13 폭스바겐 악티엔 게젤샤프트 Rotor for an electric motor
WO2013178436A2 (en) * 2012-06-02 2013-12-05 Volkswagen Aktiengesellschaft Rotor for an electric motor
WO2013178436A3 (en) * 2012-06-02 2014-12-11 Volkswagen Aktiengesellschaft Rotor for an electric motor
DE102012010993A1 (en) * 2012-06-02 2013-12-05 Volkswagen Aktiengesellschaft Rotor for an electric motor
KR20150027136A (en) * 2012-06-02 2015-03-11 폭스바겐 악티엔 게젤샤프트 Rotor for an electric motor
JP2014050208A (en) * 2012-08-31 2014-03-17 Hitachi Automotive Systems Ltd Dynamo-electric machine
US9680341B2 (en) 2012-08-31 2017-06-13 Hitachi Automotive Systems, Ltd. Rotating electric machine including rotor core with slots having protrusions
WO2014034344A1 (en) * 2012-08-31 2014-03-06 日立オートモティブシステムズ株式会社 Rotating electric machine
WO2014050261A1 (en) 2012-09-26 2014-04-03 ダイキン工業株式会社 Radial gap type rotating electrical machine, blower, compressor, and air conditioner
US9923424B2 (en) 2012-09-26 2018-03-20 Daikin Industries, Ltd. Radial gap type rotating electrical machine, blower, compressor, and air conditioner
JP2014100048A (en) * 2012-10-19 2014-05-29 Toshiba Corp Permanent magnet type rotary electric machine
EP2763285A2 (en) 2013-01-30 2014-08-06 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded type rotor for rotating electrical machine and rotating electrical machine having permanent magnet embedded type rotor
JP2015097437A (en) * 2013-11-15 2015-05-21 株式会社デンソー Rotor for rotary electric machine
US9793770B2 (en) 2013-11-15 2017-10-17 Denso Corporation Permanent magnets rotor for rotating electric machine
US10205359B2 (en) 2013-11-18 2019-02-12 Steering Solutions Ip Holding Corporation Low cost permanent magnet motor for an electric power steering system
JP2014064471A (en) * 2014-01-17 2014-04-10 Nippon Soken Inc Rotary electric machine
JP2015139255A (en) * 2014-01-21 2015-07-30 トヨタ自動車株式会社 rotor
US9979243B2 (en) 2014-11-18 2018-05-22 Steering Solutions Ip Holding Corporation Low cost injection molded buried permanent magnet motor for an electric power steering system
EP3024122A3 (en) * 2014-11-18 2016-08-10 Steering Solutions IP Holding Corporation Injection molded buried permanent magnet motor for an electric power steering system
KR102491659B1 (en) * 2015-10-08 2023-01-26 삼성전자주식회사 Interior permanent magnet type bldc motor
KR20170042072A (en) * 2015-10-08 2017-04-18 삼성전자주식회사 Interior permanent magnet type bldc motor
US10404116B2 (en) 2015-10-08 2019-09-03 Samsung Electronics Co., Ltd. BLDC motor
EP3154157A1 (en) * 2015-10-08 2017-04-12 Samsung Electronics Co., Ltd. Bldc motor
JP2018129938A (en) * 2017-02-08 2018-08-16 本田技研工業株式会社 Rotary electric machine
DE102017005415A1 (en) * 2017-06-09 2018-12-27 Volkswagen Aktiengesellschaft Synchronous machine with magnetic flux deflection
US11456633B2 (en) 2017-09-28 2022-09-27 Mitsubishi Electric Corporation Permanent magnet rotating electric machine
CN111149281B (en) * 2017-09-28 2022-06-21 三菱电机株式会社 Permanent magnet type rotating electrical machine
CN111149281A (en) * 2017-09-28 2020-05-12 三菱电机株式会社 Permanent magnet type rotating electrical machine
JPWO2019102580A1 (en) * 2017-11-24 2020-05-28 三菱電機株式会社 Permanent magnet type rotating electric machine
CN111357171A (en) * 2017-11-24 2020-06-30 三菱电机株式会社 Permanent magnet type rotating electrical machine
WO2019102580A1 (en) * 2017-11-24 2019-05-31 三菱電機株式会社 Permanent magnet rotating electric machine
JP7050808B2 (en) 2017-11-24 2022-04-08 三菱電機株式会社 Permanent magnet type rotary electric machine
CN111357171B (en) * 2017-11-24 2022-04-08 三菱电机株式会社 Permanent magnet type rotating electrical machine
JP2019140843A (en) * 2018-02-14 2019-08-22 アイシン・エィ・ダブリュ株式会社 Rotor for rotary electric machine
CN108847731A (en) * 2018-07-16 2018-11-20 武汉理工通宇新源动力有限公司 A kind of automobile permanent magnet synchronous motor rotor structure and vehicle
DE112019005396T5 (en) 2018-10-30 2021-07-22 Mitsubishi Electric Corporation ROTATING ELECTRIC MACHINE
US11929649B2 (en) 2018-10-30 2024-03-12 Mitsubishi Electric Corporation Rotating electric machine with magnet insertion hole arrangement
CN111953098B (en) * 2019-05-17 2024-03-12 Tdk株式会社 Rotary electric machine
JP2020191693A (en) * 2019-05-17 2020-11-26 Tdk株式会社 Rotating electric machine
JP7404653B2 (en) 2019-05-17 2023-12-26 Tdk株式会社 rotating electric machine
CN111953098A (en) * 2019-05-17 2020-11-17 Tdk株式会社 Rotating electrical machine
US11967863B2 (en) 2019-11-13 2024-04-23 Mitsubishi Electric Corporation Rotating electric machine
WO2021095167A1 (en) * 2019-11-13 2021-05-20 三菱電機株式会社 Dynamo-electric machine
CN114651383A (en) * 2019-11-13 2022-06-21 三菱电机株式会社 Rotating electrical machine
JP6785522B1 (en) * 2019-11-13 2020-11-18 三菱電機株式会社 Rotating machine
CN114651383B (en) * 2019-11-13 2023-08-11 三菱电机株式会社 Rotary electric machine
CN112994288A (en) * 2019-12-12 2021-06-18 中车永济电机有限公司 Permanent magnet motor rotor magnetic circuit topological structure
CN112994288B (en) * 2019-12-12 2022-06-14 中车永济电机有限公司 Permanent magnet motor rotor magnetic circuit topological structure
CN113131643A (en) * 2019-12-30 2021-07-16 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
CN113131643B (en) * 2019-12-30 2022-12-02 安徽威灵汽车部件有限公司 Rotor of motor, driving motor and vehicle
JP7433419B2 (en) 2020-04-20 2024-02-19 三菱電機株式会社 Rotor, motor, compressor, air conditioner, and rotor manufacturing method
WO2021214824A1 (en) * 2020-04-20 2021-10-28 三菱電機株式会社 Rotor, motor, compressor, air conditioning device, and rotor manufacturing method
WO2022044090A1 (en) * 2020-08-24 2022-03-03 株式会社 東芝 Rotor
JPWO2022044090A1 (en) * 2020-08-24 2022-03-03
DE102021202725A1 (en) 2021-03-22 2022-09-22 Zf Friedrichshafen Ag Electric drive unit and method of manufacturing an electric drive unit
WO2023079679A1 (en) * 2021-11-05 2023-05-11 株式会社 東芝 Rotor for rotary electric machine
JP7404557B2 (en) 2021-11-05 2023-12-25 株式会社東芝 rotor of rotating electric machine
WO2023105701A1 (en) 2021-12-09 2023-06-15 株式会社 東芝 Rotor of rotary electric machine

Similar Documents

Publication Publication Date Title
JP2004104962A (en) Permanent magnet type reluctance rotary electric machine
JP6992368B2 (en) Variable magnetic flux type permanent magnet type rotary electric machine
EP1158651B1 (en) Permanent magnet reluctance motor
JP5328821B2 (en) Rotating machine rotor
JP5752272B2 (en) Rotor and motor
WO2018043081A1 (en) Rotor and reluctance motor
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
JP3280896B2 (en) Permanent magnet type reluctance type rotating electric machine
JP6589624B2 (en) motor
CN112838693A (en) Rotating electrical machine
KR20080077128A (en) Arrangement of rotor laminates of a permanently excited electrical machine
JP3605475B2 (en) Permanent magnet synchronous motor
JP2009131070A (en) Magnet type synchronous machine
JP7293371B2 (en) Rotor of rotary electric machine
WO2019039413A1 (en) Rotary electric device
US11837919B2 (en) Rotary electric machine
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4574297B2 (en) Rotating electrical machine rotor
JP2005261169A (en) Bearing-less motor and rotor therefor
JP4070630B2 (en) Permanent magnet type reluctance type rotating electrical machine
JPH09266646A (en) Brushless dc motor
JP2018198534A (en) Rotary electric machine
JP2019165592A (en) Rotary electric machine
JP3210634B2 (en) Permanent magnet type reluctance type rotating electric machine
WO2023053285A1 (en) Rotor for dynamoelectric machine