WO2022044090A1 - Rotor - Google Patents

Rotor Download PDF

Info

Publication number
WO2022044090A1
WO2022044090A1 PCT/JP2020/031898 JP2020031898W WO2022044090A1 WO 2022044090 A1 WO2022044090 A1 WO 2022044090A1 JP 2020031898 W JP2020031898 W JP 2020031898W WO 2022044090 A1 WO2022044090 A1 WO 2022044090A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
axis
peripheral portion
outer peripheral
permanent magnet
Prior art date
Application number
PCT/JP2020/031898
Other languages
French (fr)
Japanese (ja)
Inventor
秀範 内田
秀樹 久田
Original Assignee
株式会社 東芝
東芝インフラシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝インフラシステムズ株式会社 filed Critical 株式会社 東芝
Priority to JP2020569917A priority Critical patent/JPWO2022044090A1/ja
Priority to PCT/JP2020/031898 priority patent/WO2022044090A1/en
Publication of WO2022044090A1 publication Critical patent/WO2022044090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • An embodiment of the present invention relates to a rotor.
  • a rotary electric machine which includes a cylindrical stator and a rotor rotatably supported inside the stator, and rotates the rotor by a rotating magnetic field generated by the stator. Further, with respect to a rotary electric machine, a technique of forming a hole or the like in a rotor core is also known in order to reduce the weight of the rotor. By the way, when the shaft is press-fitted into the rotor core, a force that pushes the permanent magnet embedded in the rotor core outward in the radial direction acts on the rotor core, which may cause deformation of the rotor core.
  • Japanese Unexamined Patent Publication No. 2009-303446 Japanese Unexamined Patent Publication No. 2012-75208 Japanese Unexamined Patent Publication No. 2013-208014 Japanese Unexamined Patent Publication No. 2016-323340
  • An object of the present embodiment is to provide a rotor capable of suppressing deformation of the rotor core.
  • the rotor of this embodiment is A substantially cylindrical rotor core, a first permanent magnet and a second permanent magnet forming magnetic poles in the rotor core, and a shaft press-fitted into the rotor core are provided, and the rotor core includes an inner peripheral portion surrounding the shaft.
  • the outer peripheral portion comprises an outer peripheral portion that surrounds the inner peripheral portion with a gap interposed therebetween, and a plurality of first ribs that are inclined in the radial direction and connect the inner peripheral portion and the outer peripheral portion.
  • a first hole surrounded by a first hole into which the first permanent magnet is inserted, a second hole into which the second permanent magnet is inserted, an outer peripheral surface of the rotor core, the first hole, and the second hole.
  • FIG. 1 is a cross-sectional view of the rotary electric machine 1 of the present embodiment.
  • FIG. 2 is a cross-sectional view of the rotary electric machine 1 shown in FIG. 1 along the line AB of the rotor 3.
  • FIG. 3 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG. 2.
  • FIG. 4 is a cross-sectional view taken along the line AB of the rotor 3 of the modified example of the rotary electric machine 1 shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG.
  • FIG. 1 is a cross-sectional view of the rotary electric machine 1 of the present embodiment.
  • the rotary electric machine 1 of the present embodiment is configured as an embedded permanent magnet type (IPM: Interior Permanent Magnet) rotary electric machine, and is suitably applied to a drive motor or a generator in, for example, a hybrid electric vehicle (HEV) or an electric vehicle (EV). Will be done.
  • the rotary electric machine 1 includes a substantially cylindrical stator 2, a substantially cylindrical rotor 3 in which a permanent magnet is embedded, a housing 10 for accommodating the stator 2 and the rotor 3, and a cover 11 fixed to the housing 10. I have.
  • the stator 2 includes a cylindrical stator core 21 and a winding 22 mounted on the stator core 21.
  • the stator core 21 is configured as a laminated body in which a large number of magnetic materials, for example, annular electromagnetic steel sheets, are laminated concentrically.
  • the housing 10 has a substantially cylindrical inner peripheral surface 10A.
  • the stator core 21 is fixed to the inner peripheral surface 10A.
  • the structure of the stator 2 is not particularly limited, and a general structure can be widely adopted.
  • the rotor 3 is located inside the stator 2 and is arranged with a slight gap (air gap) between the rotor 3 and the stator 2.
  • the rotor 3 includes a shaft 31, a substantially cylindrical rotor core 32, and a permanent magnet (not shown in FIG. 1).
  • the shaft 31 and the rotor core 32 are configured to be rotatable about the central axis C.
  • Bearings 41 and 42 are attached to the shaft 31.
  • the bearings 41 and 42 are fixed by the housing 10 and the cover 11.
  • the shaft 31 is rotatably supported by the housing 10 and the cover 11 around the central axis C via bearings 41 and 42.
  • the illustrated example simply shows an example of a bearing structure that supports the shaft 31, and a detailed description of the structure will be omitted.
  • the rotor core 32 is configured as a laminated body in which a large number of magnetic materials, for example, a large number of annular electromagnetic steel plates such as silicon steel are laminated concentrically.
  • the outer peripheral surface 32S of the rotor core 32 faces the inner peripheral surface 2S of the stator 2 with a slight gap.
  • the rotor core 32 has a hole 32H formed coaxially with the central axis C at the center thereof. The hole 32H penetrates the rotor core 32 in the axial direction.
  • the shaft 31 is press-fitted into the hole 32H and extends coaxially with the rotor core 32.
  • the axial direction corresponds to the direction in which the shaft 31 or the central axis C shown in FIG. 1 extends.
  • the radial direction described later corresponds to a direction in which a straight line connecting the central axis C and the outer peripheral surface 32S of the rotor core 32 extends in a cross section orthogonal to the central axis C
  • the circumferential direction corresponds to a rotor in the cross section. It corresponds to the direction along the circumference of 3.
  • FIG. 2 is a cross-sectional view of the rotary electric machine 1 shown in FIG. 1 along the line AB of the rotor 3.
  • the rotor 3 has a plurality of magnetic poles, for example, eight magnetic poles.
  • the axis extending in the radial direction of the rotor core 32 through the boundary between the magnetic poles adjacent to each other in the circumferential direction and the central axis C is called the q-axis, and the axis electrically separated by 90 ° in the circumferential direction from the q-axis. That is, the axis passing through the center of one magnetic pole in the circumferential direction and the central axis C is referred to as the d-axis.
  • the direction in which the interlinkage magnetic flux formed by the stator is likely to flow is referred to as the q-axis.
  • the d-axis and the q-axis are provided alternately in the circumferential direction of the rotor core 32 and in a predetermined phase.
  • One magnetic pole portion of the rotor core 32 means a region between two q-axis adjacent to each other in the circumferential direction (a circumferential angle region of 1/8 circumference).
  • the rotor 3 includes a shaft 31, a rotor core 32, and a plurality of permanent magnets M.
  • a plurality of permanent magnets M for example, two permanent magnets M, are inserted in the rotor core 32 for each magnetic pole. At each magnetic pole, the two permanent magnets M are arranged line-symmetrically with respect to the d-axis. These permanent magnets M are fixed to the rotor core 32 with, for example, an adhesive.
  • the permanent magnet M is formed, for example, in the shape of an elongated flat plate having a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 32. That is, each permanent magnet M is embedded over almost the entire length of the rotor core 32.
  • the permanent magnet M may be configured by combining magnets divided into a plurality of magnets in the axial direction. Each permanent magnet M has a pair of long sides and a pair of short sides in the cross section.
  • the shape of the cross section of the permanent magnet M is not limited to a rectangular shape (rectangular shape), and may be a parallelogram. Each permanent magnet M is magnetized in a direction perpendicular to the long side.
  • the two permanent magnets M located on both sides of the d-axis in the circumferential direction that is, the two permanent magnets M constituting one magnetic pole are arranged so that the magnetization directions are the same. Further, the two permanent magnets M located on both sides of the q-axis in the circumferential direction are arranged so that the magnetization directions are opposite to each other.
  • the rotor core 32 includes an inner peripheral portion 321 that surrounds the shaft 31, an outer peripheral portion 322 that surrounds the inner peripheral portion 321 with the gap 32C interposed therebetween, and a plurality of first ribs R1 that connect the inner peripheral portion 321 and the outer peripheral portion 322. have.
  • the gap 32C penetrates the rotor core 32 in the axial direction.
  • the void 32C is partitioned by the first rib R1.
  • one first rib R1 is provided for each magnetic pole. That is, the rotor core 32 has eight first ribs R1.
  • the inner peripheral portion 321 corresponds to the portion of the rotor core 32 between the shaft 31 and the gap 32C, and is formed in an annular shape surrounding the shaft 31.
  • the outer peripheral portion 322 corresponds to a portion of the rotor core 32 between the gap 32C and the outer peripheral surface 32S, and is formed in an annular shape surrounding the inner peripheral portion 321. That is, the outer peripheral portion 322 is located outside the inner peripheral portion 321 in the radial direction and is separated from the inner peripheral portion 321.
  • the outer edge E1 of the inner peripheral portion 321 faces the inner edge E2 of the outer peripheral portion 322 with the gap 32C interposed therebetween.
  • Each of the first ribs R1 is connected to the outer edge E1 of the inner peripheral portion 321 and the inner edge E2 of the outer peripheral portion 322, respectively.
  • the first rib R1 corresponds to a portion of the rotor core 32 between the gaps 32C adjacent in the circumferential direction.
  • the first rib R1 is formed in a linear shape inclined with respect to the radial direction. Further, the first rib R1 is inclined with respect to the d-axis and the q-axis.
  • the extending direction of the first rib R1 is, for example, substantially parallel to the tangential direction of the outer edge E1.
  • the direction from the connection position between the first rib R1 and the outer peripheral portion 322 to the connection position between the first rib R1 and the inner peripheral portion 321 is right with respect to the central axis C in the cross section. It is a rotation and coincides with the rotation direction A of the rotor 3.
  • the outer peripheral portion 322 has a plurality of holes H.
  • the plurality of holes H each penetrate the rotor core 32 in the axial direction.
  • the permanent magnet M is inserted in the hole H.
  • Such a hole H may be referred to as a magnet holding hole, a magnet insertion hole, or the like. Focusing on one magnetic pole, the holes H are formed on both sides in the circumferential direction with the d-axis in between. These two holes H are arranged so that the distance in the circumferential direction gradually increases from the central axis C toward the outer peripheral surface 32S of the rotor core 32 in the cross section.
  • the outer peripheral portion 322 has a plurality of holes 323.
  • the plurality of holes 323 each penetrate the rotor core 32 in the axial direction.
  • the plurality of holes 323 are arranged in the circumferential direction at equal intervals.
  • Each of the holes 323 is formed on the q-axis. That is, the holes 323 are formed between the holes H provided in the magnetic poles adjacent to each other in the circumferential direction.
  • FIG. 3 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG. 2.
  • the permanent magnet located on the left side across the d-axis is shown as the first permanent magnet M1
  • the hole is shown as the first hole H1
  • the permanent magnet located on the right side across the d-axis is the first.
  • the two permanent magnets M2 are used, and the holes are shown as the second holes H2.
  • the first permanent magnet M1 is inserted into the first hole H1.
  • the second permanent magnet M2 is inserted into the second hole H2.
  • Each of the first permanent magnet M1 and the second permanent magnet M2 has a short side facing the d-axis, and the distance between the d-axis and the short side gradually increases from the outer circumference to the inner circumference of the rotor core 32. It is arranged like this.
  • the outer peripheral portion 322 is a fan-shaped first core portion C1 surrounded by the outer peripheral surface 32S of the rotor core 32 and the first hole H1 and the second hole H2 in addition to the first hole H1 and the second hole H2.
  • a second core portion C2 located between the first hole H1 and the second hole H2 and the gap 32C, and a first core portion C1 and a second core portion between the first hole H1 and the second hole H2. It has a bridge BR that connects to C2.
  • the first hole H1 has a rectangular magnet holding region H11 corresponding to the cross-sectional shape of the first permanent magnet M1, a void region H12 extending from the magnet holding region H11 toward the bridge BR, and an outer periphery from the magnet holding region H11. It has a void region H13 extending toward the surface 32S.
  • the second core portion C2 has a pair of holding protrusions C22 and C23 protruding from the edge C21 in contact with the long side of the first permanent magnet M1 at both ends in the longitudinal direction of the magnet holding region H11 toward the first core portion C1. There is.
  • the holding protrusion C22 faces the gap region H12
  • the holding protrusion C23 faces the gap region H13.
  • the first core portion C1 has a holding projection C13 protruding from the edge C11 in contact with the long side of the first permanent magnet M1 toward the second core portion C2.
  • the holding protrusion C13 faces the holding protrusion C23.
  • the magnet holding region H11 is formed between the edge C11 and the edge C21.
  • the edges C11 and C21 are substantially parallel to each other and are inclined with respect to the d-axis, respectively.
  • the void regions H12 and H13 in the first hole H1 function as a flux barrier that suppresses magnetic flux leakage from both ends of the first permanent magnet M1 in the longitudinal direction to the rotor core 32, and also contributes to weight reduction of the rotor core 32.
  • the second hole H2 has a rectangular magnet holding region H21 corresponding to the cross-sectional shape of the second permanent magnet M2, a void region H22 extending from the magnet holding region H21 toward the bridge BR, and an outer periphery from the magnet holding region H21. It has a void region H23 extending toward the surface 32S.
  • the second core portion C2 has a pair of holding protrusions C25 and C26 protruding from the edge C24 in contact with the long side of the second permanent magnet M2 at both ends in the longitudinal direction of the magnet holding region H21 toward the first core portion C1. There is.
  • the holding protrusion C25 faces the gap region H22, and the holding protrusion C26 faces the gap region H23.
  • the first core portion C1 has a holding projection C16 protruding from the edge C14 in contact with the long side of the second permanent magnet M2 toward the second core portion C2.
  • the holding protrusion C16 faces the holding protrusion C26.
  • the magnet holding region H21 is formed between the edge C14 and the edge C24.
  • the edges C14 and C24 are substantially parallel to each other and are inclined with respect to the d-axis, respectively.
  • the void regions H22 and H23 in the second hole H2 function as a flux barrier that suppresses magnetic flux leakage from both ends of the second permanent magnet M2 in the longitudinal direction to the rotor core 32, and also contributes to weight reduction of the rotor core 32.
  • the bridge BR is located between the void region H12 of the first hole H1 and the void region H22 of the second hole H2.
  • the bridge BR extends in the radial direction, and extends substantially parallel to the d-axis at a position overlapping the d-axis. In the example shown in FIG. 3, there is only one bridge BR.
  • the outer peripheral surface 32S has a first notch N1 communicating with the first hole H1 and a second notch N2 communicating with the second hole H2. That is, each of the first hole H1 and the second hole H2 extends toward the outer peripheral surface 32S and is open or open to the outer periphery of the rotor core 32. In short, in the rotor core 32, no bridge is formed between the outer peripheral surface 32S and the first hole H1 and between the outer peripheral surface 32S and the second hole H2. These first notch N1 and second notch N2 each penetrate the rotor core 32 in the axial direction. Since such a first notch N1 and a second notch N2 are formed, magnetic flux leakage is suppressed.
  • the first core portion C1 is connected to the second core portion C2 by one bridge BR. Therefore, a bridge is provided between the outer peripheral surface 32S and the first hole H1 and between the outer peripheral surface 32S and the second hole H2 (a configuration in which the first notch and the second notch are not formed).
  • the support strength of the first core portion C1 is low, and stress tends to concentrate on the bridge BR.
  • One first rib R1 is a first straight line LN1 passing through an angle MC1 far from the d-axis and parallel to the d-axis among the angles MC1 and MC2 facing the d-axis of the first permanent magnet M1, and the second permanent magnet M2.
  • the first rib R1 is connected to the outer peripheral portion 322 on the extension line of the bridge BR. In the example shown in FIG. 3, the connection position between the first rib R1 and the outer peripheral portion 322 is located on the d-axis.
  • the first straight line LN1 may pass through the angle MC2, and the second straight line LN2 may pass through the angle MC4. Further, the first straight line LN1 may pass through the holding protrusion C22, and the second straight line LN2 may pass through the holding protrusion C25.
  • a hole 323 penetrating the rotor core 32 is formed on the q-axis.
  • the weight of the rotor core 32 is reduced. It is desirable that the shape and size of the hole 323 are set so as not to obstruct the passage of the magnetic flux for producing the reluctance torque.
  • FIG. 4 is a cross-sectional view taken along the line AB of the rotor 3 of the modified example of the rotary electric machine 1 shown in FIG.
  • the rotor core 32 has a plurality of second ribs R2 connecting the inner peripheral portion 321 and the outer peripheral portion 322 in addition to the first rib R1 as compared with the example shown in FIG. It differs in that.
  • the first rib R1 and the second rib R2 are alternately arranged in the circumferential direction between the inner peripheral portion 321 and the outer peripheral portion 322.
  • the first rib R1 and the second rib R2 extend in different directions from each other.
  • the extension direction of the first rib R1 is as described with reference to FIG.
  • the direction from the connection position between the second rib R2 and the outer peripheral portion 322 to the connection position between the second rib R2 and the inner peripheral portion 321 is left with respect to the central axis C in the cross section. It is a rotation and is in the direction opposite to the rotation direction A of the rotor 3.
  • connection position between the first rib R1 and the outer peripheral portion 322 is almost the same as the connection position between the second rib R2 and the outer peripheral portion 322.
  • the connection position between the first rib R1 and the inner peripheral portion 321 is separated from the connection position between the second rib R2 and the inner peripheral portion 321 in the circumferential direction.
  • the gap 32C surrounded by the first rib R1, the second rib R2, and the inner peripheral portion 321 intersects the d-axis and is formed in a substantially triangular shape with the inner peripheral side as the base and the outer peripheral side as the apex in the cross section. Has been done.
  • the gap 32C surrounded by the first rib R1, the second rib R2, and the outer peripheral portion 322 intersects the q-axis and has a substantially fan shape that spreads in the circumferential direction from the inner peripheral side to the outer peripheral side in the cross section. It is formed.
  • FIG. 5 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG.
  • the first rib R1 and the second rib R2 are connected to the outer peripheral portion 322 in the region between the first straight line LN1 and the second straight line LN2.
  • the first straight line LN1 is a line that passes through the angle MC1 of the first permanent magnet M1 and is parallel to the d-axis
  • the second straight line LN2 is a line that passes through the angle MC3 of the second permanent magnet M2 and is parallel to the d-axis.
  • the first rib R1 and the second rib R2 are arranged line-symmetrically with respect to the d-axis (or an extension of the bridge BR). Even in such a modified example, the same effect as described above can be obtained.
  • the present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof.
  • various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.
  • the number of magnetic poles, dimensions, shape, etc. of the rotor 3 are not limited to the above-described embodiment, and can be variously changed according to the design.
  • the number of permanent magnets M installed at each magnetic pole of the rotor 3 is not limited to two, and can be increased as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotor according to the present embodiment comprises: a rotor core; first and second permanent magnets; and a shaft press-fitted into the rotor core. The rotor core has an inner circumferential part, an outer circumferential part, and a first rib for connecting the inner circumferential part and the outer circumferential part. The outer circumferential part has a first hole through which the first permanent magnet is inserted, a second hole through which the second permanent magnet is inserted, a first core portion, a second core portion, and a bridge for connecting the first and second core portions between the first hole and the second hole. An outer circumferential surface has a first notch connected to the first hole, and a second notch connected to the second hole. The first rib is connected to the outer circumferential part in a region between a first straight line that passes through a corner far from a d axis among corners opposite to the d axis of the first permanent magnet and that is parallel to the d axis and a second straight line that passes through a corner far from a d axis among corners opposite to the d axis of the second permanent magnet and that is parallel to the d axis.

Description

ロータRotor
 本発明の実施形態は、ロータに関する。 An embodiment of the present invention relates to a rotor.
 円筒形状のステータと、ステータの内側において回転自在に支持されたロータとを備え、ステータによって発生される回転磁界によってロータを回転させる回転電機が知られている。また、回転電機に関して、ロータの軽量化のために、ロータコアに空孔などを形成する技術も知られている。 
 ところで、ロータコアにシャフトを圧入した際、ロータコアに埋設された永久磁石が径方向の外側に向かって押し出される力が作用し、ロータコアの変形を招くおそれがある。
A rotary electric machine is known which includes a cylindrical stator and a rotor rotatably supported inside the stator, and rotates the rotor by a rotating magnetic field generated by the stator. Further, with respect to a rotary electric machine, a technique of forming a hole or the like in a rotor core is also known in order to reduce the weight of the rotor.
By the way, when the shaft is press-fitted into the rotor core, a force that pushes the permanent magnet embedded in the rotor core outward in the radial direction acts on the rotor core, which may cause deformation of the rotor core.
特開2009-303446号公報Japanese Unexamined Patent Publication No. 2009-303446 特開2012-75208号公報Japanese Unexamined Patent Publication No. 2012-75208 特開2013-208014号公報Japanese Unexamined Patent Publication No. 2013-208014 特開2016-32340号公報Japanese Unexamined Patent Publication No. 2016-323340
 本実施形態の目的は、ロータコアの変形を抑制することが可能なロータを提供することにある。 An object of the present embodiment is to provide a rotor capable of suppressing deformation of the rotor core.
 本実施形態のロータは、
 略円筒状のロータコアと、前記ロータコアにおいて磁極を構成する第1永久磁石及び第2永久磁石と、前記ロータコアに圧入されたシャフトと、を備え、前記ロータコアは、前記シャフトを囲む内周部と、空隙を挟んで前記内周部を囲む外周部と、径方向に対して傾斜し且つ前記内周部と前記外周部とを接続する複数の第1リブと、を有し、前記外周部は、前記第1永久磁石が挿入される第1孔と、前記第2永久磁石が挿入される第2孔と、前記ロータコアの外周面と前記第1孔及び前記第2孔とで囲まれた第1コア部と、前記第1孔及び前記第2孔と前記空隙との間に位置する第2コア部と、前記第1孔と前記第2孔との間において前記第1コア部と前記第2コア部とを接続するブリッジと、を有し、前記外周面は、前記第1孔に連通する第1切欠と、前記第2孔に連通する第2切欠と、を有し、前記複数の第1リブのうちの1つは、前記シャフトの中心軸と前記磁極の周方向の中心とを通る軸をd軸とすると、前記第1永久磁石の前記d軸に対向する角のうち前記d軸から遠い角を通り且つ前記d軸に平行な第1直線と、前記第2永久磁石の前記d軸に対向する角のうち前記d軸から遠い角を通り且つ前記d軸に平行な第2直線との間の領域で、前記外周部に接続されている。
The rotor of this embodiment is
A substantially cylindrical rotor core, a first permanent magnet and a second permanent magnet forming magnetic poles in the rotor core, and a shaft press-fitted into the rotor core are provided, and the rotor core includes an inner peripheral portion surrounding the shaft. The outer peripheral portion comprises an outer peripheral portion that surrounds the inner peripheral portion with a gap interposed therebetween, and a plurality of first ribs that are inclined in the radial direction and connect the inner peripheral portion and the outer peripheral portion. A first hole surrounded by a first hole into which the first permanent magnet is inserted, a second hole into which the second permanent magnet is inserted, an outer peripheral surface of the rotor core, the first hole, and the second hole. The core portion, the second core portion located between the first hole and the second hole and the gap, and the first core portion and the second core portion between the first hole and the second hole. It has a bridge connecting the core portion, and the outer peripheral surface has a first notch communicating with the first hole and a second notch communicating with the second hole, and the plurality of first holes are provided. Assuming that the axis passing through the central axis of the shaft and the center in the circumferential direction of the magnetic pole is the d-axis, one of the one ribs is the d-axis of the angles facing the d-axis of the first permanent magnet. A first straight line that passes through an angle far from the d-axis and is parallel to the d-axis, and a second straight line that passes through an angle far from the d-axis and is parallel to the d-axis of the angles facing the d-axis of the second permanent magnet. In the area between and, it is connected to the outer peripheral portion.
図1は、本実施形態の回転電機1の断面図である。FIG. 1 is a cross-sectional view of the rotary electric machine 1 of the present embodiment. 図2は、図1に示した回転電機1のうちロータ3のA-B線に沿った横断面図である。FIG. 2 is a cross-sectional view of the rotary electric machine 1 shown in FIG. 1 along the line AB of the rotor 3. 図3は、図2に示したロータ3のうち、1磁極分のロータコア32を拡大して示す横断面図である。FIG. 3 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG. 2. 図4は、図1に示した回転電機1のうち変形例のロータ3のA-B線に沿った横断面図である。FIG. 4 is a cross-sectional view taken along the line AB of the rotor 3 of the modified example of the rotary electric machine 1 shown in FIG. 図5は、図4に示したロータ3のうち、1磁極分のロータコア32を拡大して示す横断面図である。FIG. 5 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG.
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。 Hereinafter, this embodiment will be described with reference to the drawings. It should be noted that the disclosure is merely an example, and those skilled in the art can easily conceive of appropriate changes while maintaining the gist of the invention, which are naturally included in the scope of the present invention. Further, in order to clarify the explanation, the drawings may schematically represent the width, thickness, shape, etc. of each part as compared with the actual embodiment, but this is merely an example, and the present invention is used. It does not limit the interpretation. Further, in the present specification and each figure, the same reference reference numerals may be given to the components exhibiting the same or similar functions as those described above with respect to the above-mentioned figures, and the overlapping detailed description may be omitted as appropriate. ..
 図1は、本実施形態の回転電機1の断面図である。
 本実施形態の回転電機1は、埋め込み永久磁石型(IPM:Interior Permanent Magnet)回転電機として構成され、例えば、ハイブリッド自動車(HEV)や電気自動車(EV)において、駆動モータあるいは発電機に好適に適用される。回転電機1は、略円筒状のステータ2と、永久磁石が埋設された略円筒状のロータ3と、ステータ2及びロータ3を収容するハウジング10と、ハウジング10に固定されるカバー11と、を備えている。
FIG. 1 is a cross-sectional view of the rotary electric machine 1 of the present embodiment.
The rotary electric machine 1 of the present embodiment is configured as an embedded permanent magnet type (IPM: Interior Permanent Magnet) rotary electric machine, and is suitably applied to a drive motor or a generator in, for example, a hybrid electric vehicle (HEV) or an electric vehicle (EV). Will be done. The rotary electric machine 1 includes a substantially cylindrical stator 2, a substantially cylindrical rotor 3 in which a permanent magnet is embedded, a housing 10 for accommodating the stator 2 and the rotor 3, and a cover 11 fixed to the housing 10. I have.
 ステータ2は、円筒形状のステータコア21と、ステータコア21に装着された巻線22と、を備えている。ステータコア21は、磁性材、例えば、円環状の電磁鋼板を多数枚、同芯状に積層した積層体として構成されている。ハウジング10は、略円筒状の内周面10Aを有している。ステータコア21は、内周面10Aに固定されている。なお、ステータ2の構造は、特に制限されるものではなく、一般的な構造を広く採用することができる。 The stator 2 includes a cylindrical stator core 21 and a winding 22 mounted on the stator core 21. The stator core 21 is configured as a laminated body in which a large number of magnetic materials, for example, annular electromagnetic steel sheets, are laminated concentrically. The housing 10 has a substantially cylindrical inner peripheral surface 10A. The stator core 21 is fixed to the inner peripheral surface 10A. The structure of the stator 2 is not particularly limited, and a general structure can be widely adopted.
 ロータ3は、ステータ2の内側に位置し、ステータ2との間に僅かな隙間(エアギャップ)をおいて配置されている。ロータ3は、シャフト31と、略円筒状のロータコア32と、図1に図示されていない永久磁石と、を備えている。シャフト31及びロータコア32は、中心軸Cを中心として回転可能に構成されている。 The rotor 3 is located inside the stator 2 and is arranged with a slight gap (air gap) between the rotor 3 and the stator 2. The rotor 3 includes a shaft 31, a substantially cylindrical rotor core 32, and a permanent magnet (not shown in FIG. 1). The shaft 31 and the rotor core 32 are configured to be rotatable about the central axis C.
 シャフト31には、ベアリング41及び42が取り付けられている。ベアリング41及び42は、ハウジング10及びカバー11によって固定されている。シャフト31は、ベアリング41及び42を介して、中心軸Cの周りで回転自在にハウジング10及びカバー11に支持されている。なお、図示した例は、シャフト31を支持する軸受構造の一例を簡略的に示すものであり、詳細な構造についての説明は省略する。 Bearings 41 and 42 are attached to the shaft 31. The bearings 41 and 42 are fixed by the housing 10 and the cover 11. The shaft 31 is rotatably supported by the housing 10 and the cover 11 around the central axis C via bearings 41 and 42. The illustrated example simply shows an example of a bearing structure that supports the shaft 31, and a detailed description of the structure will be omitted.
 ロータコア32は、磁性材、例えば、ケイ素鋼などの円環状の電磁鋼板を多数枚、同芯状に積層した積層体として構成されている。ロータコア32の外周面32Sは、僅かな隙間をおいて、ステータ2の内周面2Sに対向している。ロータコア32は、その中心部に、中心軸Cと同軸的に形成された孔32Hを有している。孔32Hは、ロータコア32を軸方向に貫通している。シャフト31は、孔32Hに圧入され、ロータコア32と同軸的に延在している。 The rotor core 32 is configured as a laminated body in which a large number of magnetic materials, for example, a large number of annular electromagnetic steel plates such as silicon steel are laminated concentrically. The outer peripheral surface 32S of the rotor core 32 faces the inner peripheral surface 2S of the stator 2 with a slight gap. The rotor core 32 has a hole 32H formed coaxially with the central axis C at the center thereof. The hole 32H penetrates the rotor core 32 in the axial direction. The shaft 31 is press-fitted into the hole 32H and extends coaxially with the rotor core 32.
 なお、本明細書において、軸方向とは、図1に示したシャフト31あるいは中心軸Cが延びる方向に相当する。また、後述する径方向とは、中心軸Cと直交する横断面において、中心軸Cとロータコア32の外周面32Sとを結ぶ直線が延びる方向に相当し、周方向とは、横断面において、ロータ3の円周に沿った方向に相当する。 In the present specification, the axial direction corresponds to the direction in which the shaft 31 or the central axis C shown in FIG. 1 extends. Further, the radial direction described later corresponds to a direction in which a straight line connecting the central axis C and the outer peripheral surface 32S of the rotor core 32 extends in a cross section orthogonal to the central axis C, and the circumferential direction corresponds to a rotor in the cross section. It corresponds to the direction along the circumference of 3.
 図2は、図1に示した回転電機1のうちロータ3のA-B線に沿った横断面図である。 
 本実施形態において、ロータ3は、複数の磁極、例えば、8磁極を有している。ロータコア32において、周方向に隣合う磁極間の境界と中心軸Cとを通りロータコア32の径方向に延びる軸をq軸と称し、q軸に対して周方向に電気的に90°離間した軸、つまり、1磁極の周方向の中心と中心軸Cと通る軸をd軸と称する。ここでは、ステータによって形成される鎖交磁束の流れ易い方向をq軸と称する。d軸及びq軸は、ロータコア32の周方向に交互に、かつ、所定の位相で設けられている。ロータコア32の1磁極分とは、周方向に隣合う2本のq軸間の領域(1/8周の周角度領域)をいう。
FIG. 2 is a cross-sectional view of the rotary electric machine 1 shown in FIG. 1 along the line AB of the rotor 3.
In this embodiment, the rotor 3 has a plurality of magnetic poles, for example, eight magnetic poles. In the rotor core 32, the axis extending in the radial direction of the rotor core 32 through the boundary between the magnetic poles adjacent to each other in the circumferential direction and the central axis C is called the q-axis, and the axis electrically separated by 90 ° in the circumferential direction from the q-axis. That is, the axis passing through the center of one magnetic pole in the circumferential direction and the central axis C is referred to as the d-axis. Here, the direction in which the interlinkage magnetic flux formed by the stator is likely to flow is referred to as the q-axis. The d-axis and the q-axis are provided alternately in the circumferential direction of the rotor core 32 and in a predetermined phase. One magnetic pole portion of the rotor core 32 means a region between two q-axis adjacent to each other in the circumferential direction (a circumferential angle region of 1/8 circumference).
 ロータ3は、シャフト31と、ロータコア32と、複数の永久磁石Mと、を備えている。ロータコア32には、1磁極ごとに、複数の永久磁石M、例えば、2つの永久磁石Mが挿入されている。各磁極において、2つの永久磁石Mは、d軸に対して線対称に配置されている。これらの永久磁石Mは、例えば、接着剤などでロータコア32に固定されている。 The rotor 3 includes a shaft 31, a rotor core 32, and a plurality of permanent magnets M. A plurality of permanent magnets M, for example, two permanent magnets M, are inserted in the rotor core 32 for each magnetic pole. At each magnetic pole, the two permanent magnets M are arranged line-symmetrically with respect to the d-axis. These permanent magnets M are fixed to the rotor core 32 with, for example, an adhesive.
 永久磁石Mは、例えば、横断面が矩形状の細長い平板状に形成され、ロータコア32の軸方向長さとほぼ等しい長さを有している。つまり、各永久磁石Mは、ロータコア32のほぼ全長に亘って埋め込まれている。なお、永久磁石Mは、軸方向に複数に分割された磁石を組み合わせて構成されてもよい。各永久磁石Mは、横断面において、一対の長辺及び一対の短辺を有している。なお、永久磁石Mの横断面の形状は、矩形状(長方形)に限らず、平行四辺形であってもよい。各永久磁石Mは、長辺に垂直な方向に磁化されている。d軸を挟んで周方向の両側に位置する2つの永久磁石M、すなわち、1磁極を構成する2つの永久磁石Mは、磁化方向が同一となるように配置されている。また、q軸を挟んで周方向の両側に位置する2つの永久磁石Mは、磁化方向が逆向きとなるように配置されている。 The permanent magnet M is formed, for example, in the shape of an elongated flat plate having a rectangular cross section, and has a length substantially equal to the axial length of the rotor core 32. That is, each permanent magnet M is embedded over almost the entire length of the rotor core 32. The permanent magnet M may be configured by combining magnets divided into a plurality of magnets in the axial direction. Each permanent magnet M has a pair of long sides and a pair of short sides in the cross section. The shape of the cross section of the permanent magnet M is not limited to a rectangular shape (rectangular shape), and may be a parallelogram. Each permanent magnet M is magnetized in a direction perpendicular to the long side. The two permanent magnets M located on both sides of the d-axis in the circumferential direction, that is, the two permanent magnets M constituting one magnetic pole are arranged so that the magnetization directions are the same. Further, the two permanent magnets M located on both sides of the q-axis in the circumferential direction are arranged so that the magnetization directions are opposite to each other.
 ロータコア32は、シャフト31を囲む内周部321と、空隙32Cを挟んで内周部321を囲む外周部322と、内周部321と外周部322とを接続する複数の第1リブR1と、を有している。空隙32Cは、ロータコア32を軸方向に貫通している。空隙32Cは、第1リブR1によって区画されている。図2に示す例では、1磁極当たり1本の第1リブR1が設けられている。つまり、ロータコア32は、8本の第1リブR1を有している。 The rotor core 32 includes an inner peripheral portion 321 that surrounds the shaft 31, an outer peripheral portion 322 that surrounds the inner peripheral portion 321 with the gap 32C interposed therebetween, and a plurality of first ribs R1 that connect the inner peripheral portion 321 and the outer peripheral portion 322. have. The gap 32C penetrates the rotor core 32 in the axial direction. The void 32C is partitioned by the first rib R1. In the example shown in FIG. 2, one first rib R1 is provided for each magnetic pole. That is, the rotor core 32 has eight first ribs R1.
 内周部321は、ロータコア32のうち、シャフト31と空隙32Cとの間の部分に相当し、シャフト31を囲む円環状に形成されている。外周部322は、ロータコア32のうち、空隙32Cと外周面32Sとの間の部分に相当し、内周部321を囲む円環状に形成されている。つまり、外周部322は、内周部321よりも径方向の外側に位置し、内周部321から離間している。内周部321の外縁E1は、空隙32Cを挟んで、外周部322の内縁E2に対向している。 The inner peripheral portion 321 corresponds to the portion of the rotor core 32 between the shaft 31 and the gap 32C, and is formed in an annular shape surrounding the shaft 31. The outer peripheral portion 322 corresponds to a portion of the rotor core 32 between the gap 32C and the outer peripheral surface 32S, and is formed in an annular shape surrounding the inner peripheral portion 321. That is, the outer peripheral portion 322 is located outside the inner peripheral portion 321 in the radial direction and is separated from the inner peripheral portion 321. The outer edge E1 of the inner peripheral portion 321 faces the inner edge E2 of the outer peripheral portion 322 with the gap 32C interposed therebetween.
 第1リブR1の各々は、内周部321の外縁E1、及び、外周部322の内縁E2にそれぞれ接続されている。第1リブR1は、ロータコア32のうち、周方向に隣接する空隙32Cの間に部分に相当する。第1リブR1は、径方向に対して傾斜した直線状に形成されている。また、第1リブR1は、d軸及びq軸に対して傾斜している。第1リブR1の延出方向は、例えば、外縁E1の接線方向に概ね平行である。すべての第1リブR1に関して、第1リブR1と外周部322との接続位置から第1リブR1と内周部321との接続位置に向かう方向は、横断面において、中心軸Cを中心として右回りであり、ロータ3の回転方向Aと一致する。 Each of the first ribs R1 is connected to the outer edge E1 of the inner peripheral portion 321 and the inner edge E2 of the outer peripheral portion 322, respectively. The first rib R1 corresponds to a portion of the rotor core 32 between the gaps 32C adjacent in the circumferential direction. The first rib R1 is formed in a linear shape inclined with respect to the radial direction. Further, the first rib R1 is inclined with respect to the d-axis and the q-axis. The extending direction of the first rib R1 is, for example, substantially parallel to the tangential direction of the outer edge E1. For all the first ribs R1, the direction from the connection position between the first rib R1 and the outer peripheral portion 322 to the connection position between the first rib R1 and the inner peripheral portion 321 is right with respect to the central axis C in the cross section. It is a rotation and coincides with the rotation direction A of the rotor 3.
 外周部322は、複数の孔Hを有している。複数の孔Hは、それぞれロータコア32を軸方向に貫通している。永久磁石Mは、孔Hに挿入されている。このような孔Hは、磁石保持孔、磁石挿入孔などと称される場合がある。1磁極に着目すると、孔Hは、d軸を挟んで周方向の両側にそれぞれ形成されている。これらの2つの孔Hは、横断面において、中心軸Cからロータコア32の外周面32Sに向かうにしたがって、周方向の間隔が徐々に広がるよう配置されている。 The outer peripheral portion 322 has a plurality of holes H. The plurality of holes H each penetrate the rotor core 32 in the axial direction. The permanent magnet M is inserted in the hole H. Such a hole H may be referred to as a magnet holding hole, a magnet insertion hole, or the like. Focusing on one magnetic pole, the holes H are formed on both sides in the circumferential direction with the d-axis in between. These two holes H are arranged so that the distance in the circumferential direction gradually increases from the central axis C toward the outer peripheral surface 32S of the rotor core 32 in the cross section.
 また、外周部322は、複数の孔323を有している。複数の孔323は、それぞれロータコア32を軸方向に貫通している。複数の孔323は、等間隔で周方向に並んでいる。孔323の各々は、q軸上に形成されている。つまり、孔323は、周方向に隣接する各磁極に設けられた孔Hの間に形成されている。 Further, the outer peripheral portion 322 has a plurality of holes 323. The plurality of holes 323 each penetrate the rotor core 32 in the axial direction. The plurality of holes 323 are arranged in the circumferential direction at equal intervals. Each of the holes 323 is formed on the q-axis. That is, the holes 323 are formed between the holes H provided in the magnetic poles adjacent to each other in the circumferential direction.
 図3は、図2に示したロータ3のうち、1磁極分のロータコア32を拡大して示す横断面図である。 
 図3に示す例において、d軸を挟んで左側に位置する永久磁石を第1永久磁石M1とし、孔を第1孔H1として示し、また、d軸を挟んで右側に位置する永久磁石を第2永久磁石M2とし、孔を第2孔H2として示している。第1永久磁石M1は、第1孔H1に挿入されている。第2永久磁石M2は、第2孔H2に挿入されている。第1永久磁石M1及び第2永久磁石M2の各々は、d軸に対向する短辺を有し、ロータコア32の外周から内周に向かうにしたがって、d軸と短辺との間隔が徐々に広がるように配置されている。
FIG. 3 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG. 2.
In the example shown in FIG. 3, the permanent magnet located on the left side across the d-axis is shown as the first permanent magnet M1, the hole is shown as the first hole H1, and the permanent magnet located on the right side across the d-axis is the first. The two permanent magnets M2 are used, and the holes are shown as the second holes H2. The first permanent magnet M1 is inserted into the first hole H1. The second permanent magnet M2 is inserted into the second hole H2. Each of the first permanent magnet M1 and the second permanent magnet M2 has a short side facing the d-axis, and the distance between the d-axis and the short side gradually increases from the outer circumference to the inner circumference of the rotor core 32. It is arranged like this.
 ロータコア32において、外周部322は、第1孔H1及び第2孔H2に加えて、ロータコア32の外周面32Sと第1孔H1及び第2孔H2とで囲まれた扇状の第1コア部C1と、第1孔H1及び第2孔H2と空隙32Cとの間に位置する第2コア部C2と、第1孔H1と第2孔H2との間において第1コア部C1と第2コア部C2とを接続するブリッジBRと、を有している。 In the rotor core 32, the outer peripheral portion 322 is a fan-shaped first core portion C1 surrounded by the outer peripheral surface 32S of the rotor core 32 and the first hole H1 and the second hole H2 in addition to the first hole H1 and the second hole H2. A second core portion C2 located between the first hole H1 and the second hole H2 and the gap 32C, and a first core portion C1 and a second core portion between the first hole H1 and the second hole H2. It has a bridge BR that connects to C2.
 第1孔H1は、第1永久磁石M1の断面形状に対応した矩形状の磁石保持領域H11と、磁石保持領域H11からブリッジBRに向かって延出した空隙領域H12と、磁石保持領域H11から外周面32Sに向かって延出した空隙領域H13と、を有している。第2コア部C2は、磁石保持領域H11の長手方向両端において第1永久磁石M1の長辺と接する縁C21から第1コア部C1に向かって突出した一対の保持突起C22及びC23を有している。保持突起C22は空隙領域H12に面し、保持突起C23は空隙領域H13に面している。第1コア部C1は、第1永久磁石M1の長辺と接する縁C11から第2コア部C2に向かって突出した保持突起C13を有している。保持突起C13は、保持突起C23と対向している。磁石保持領域H11は、縁C11と縁C21との間に形成されている。縁C11及び縁C21は、互いにほぼ平行であり、それぞれd軸に対して傾斜している。第1孔H1における空隙領域H12及びH13は、第1永久磁石M1の長手方向両端部からロータコア32への磁束漏れを抑制するフラックスバリアとして機能するとともに、ロータコア32の軽量化にも寄与する。 The first hole H1 has a rectangular magnet holding region H11 corresponding to the cross-sectional shape of the first permanent magnet M1, a void region H12 extending from the magnet holding region H11 toward the bridge BR, and an outer periphery from the magnet holding region H11. It has a void region H13 extending toward the surface 32S. The second core portion C2 has a pair of holding protrusions C22 and C23 protruding from the edge C21 in contact with the long side of the first permanent magnet M1 at both ends in the longitudinal direction of the magnet holding region H11 toward the first core portion C1. There is. The holding protrusion C22 faces the gap region H12, and the holding protrusion C23 faces the gap region H13. The first core portion C1 has a holding projection C13 protruding from the edge C11 in contact with the long side of the first permanent magnet M1 toward the second core portion C2. The holding protrusion C13 faces the holding protrusion C23. The magnet holding region H11 is formed between the edge C11 and the edge C21. The edges C11 and C21 are substantially parallel to each other and are inclined with respect to the d-axis, respectively. The void regions H12 and H13 in the first hole H1 function as a flux barrier that suppresses magnetic flux leakage from both ends of the first permanent magnet M1 in the longitudinal direction to the rotor core 32, and also contributes to weight reduction of the rotor core 32.
 第2孔H2は、第2永久磁石M2の断面形状に対応した矩形状の磁石保持領域H21と、磁石保持領域H21からブリッジBRに向かって延出した空隙領域H22と、磁石保持領域H21から外周面32Sに向かって延出した空隙領域H23と、を有している。第2コア部C2は、磁石保持領域H21の長手方向両端において第2永久磁石M2の長辺と接する縁C24から第1コア部C1に向かって突出した一対の保持突起C25及びC26を有している。保持突起C25は空隙領域H22に面し、保持突起C26は空隙領域H23に面している。第1コア部C1は、第2永久磁石M2の長辺と接する縁C14から第2コア部C2に向かって突出した保持突起C16を有している。保持突起C16は、保持突起C26と対向している。磁石保持領域H21は、縁C14と縁C24との間に形成されている。縁C14及び縁C24は、互いにほぼ平行であり、それぞれd軸に対して傾斜している。第2孔H2における空隙領域H22及びH23は、第2永久磁石M2の長手方向両端部からロータコア32への磁束漏れを抑制するフラックスバリアとして機能するとともに、ロータコア32の軽量化にも寄与する。 The second hole H2 has a rectangular magnet holding region H21 corresponding to the cross-sectional shape of the second permanent magnet M2, a void region H22 extending from the magnet holding region H21 toward the bridge BR, and an outer periphery from the magnet holding region H21. It has a void region H23 extending toward the surface 32S. The second core portion C2 has a pair of holding protrusions C25 and C26 protruding from the edge C24 in contact with the long side of the second permanent magnet M2 at both ends in the longitudinal direction of the magnet holding region H21 toward the first core portion C1. There is. The holding protrusion C25 faces the gap region H22, and the holding protrusion C26 faces the gap region H23. The first core portion C1 has a holding projection C16 protruding from the edge C14 in contact with the long side of the second permanent magnet M2 toward the second core portion C2. The holding protrusion C16 faces the holding protrusion C26. The magnet holding region H21 is formed between the edge C14 and the edge C24. The edges C14 and C24 are substantially parallel to each other and are inclined with respect to the d-axis, respectively. The void regions H22 and H23 in the second hole H2 function as a flux barrier that suppresses magnetic flux leakage from both ends of the second permanent magnet M2 in the longitudinal direction to the rotor core 32, and also contributes to weight reduction of the rotor core 32.
 ブリッジBRは、第1孔H1の空隙領域H12と第2孔H2の空隙領域H22との間に位置している。ブリッジBRは、径方向に延出しており、d軸と重なる位置でd軸とほぼ平行に延出している。図3に示す例では、ブリッジBRは、1本である。 The bridge BR is located between the void region H12 of the first hole H1 and the void region H22 of the second hole H2. The bridge BR extends in the radial direction, and extends substantially parallel to the d-axis at a position overlapping the d-axis. In the example shown in FIG. 3, there is only one bridge BR.
 外周面32Sは、第1孔H1に連通する第1切欠N1と、第2孔H2に連通する第2切欠N2と、を有している。つまり、第1孔H1及び第2孔H2の各々は、外周面32Sに向かって延出し、ロータコア32の外周に開放あるいは開口している。要するに、ロータコア32において、外周面32Sと第1孔H1との間、及び、外周面32Sと第2孔H2との間にはブリッジが形成されていない。これらの第1切欠N1及び第2切欠N2は、それぞれロータコア32を軸方向に貫通している。このような第1切欠N1及び第2切欠N2が形成されているため、磁束漏れが抑制される。一方で、第1切欠N1及び第2切欠N2が形成されことにより、第1コア部C1は、1本のブリッジBRで第2コア部C2に接続されている。このため、外周面32Sと第1孔H1との間及び外周面32Sと第2孔H2との間にそれぞれブリッジが設けられている構成(第1切欠及び第2切欠が形成されていない構成)と比較して、本実施形態の構成は、第1コア部C1の支持強度が低く、ブリッジBRに応力が集中しやすい。 The outer peripheral surface 32S has a first notch N1 communicating with the first hole H1 and a second notch N2 communicating with the second hole H2. That is, each of the first hole H1 and the second hole H2 extends toward the outer peripheral surface 32S and is open or open to the outer periphery of the rotor core 32. In short, in the rotor core 32, no bridge is formed between the outer peripheral surface 32S and the first hole H1 and between the outer peripheral surface 32S and the second hole H2. These first notch N1 and second notch N2 each penetrate the rotor core 32 in the axial direction. Since such a first notch N1 and a second notch N2 are formed, magnetic flux leakage is suppressed. On the other hand, by forming the first notch N1 and the second notch N2, the first core portion C1 is connected to the second core portion C2 by one bridge BR. Therefore, a bridge is provided between the outer peripheral surface 32S and the first hole H1 and between the outer peripheral surface 32S and the second hole H2 (a configuration in which the first notch and the second notch are not formed). In the configuration of the present embodiment, the support strength of the first core portion C1 is low, and stress tends to concentrate on the bridge BR.
 1つの第1リブR1は、第1永久磁石M1のd軸に対向する角MC1及びMC2のうちd軸から遠い角MC1を通り且つd軸に平行な第1直線LN1と、第2永久磁石M2のd軸に対向する角MC3及びMC4のうちd軸から遠い角MC3を通り且つd軸に平行な第2直線LN2との間の領域で、外周部322に接続されている。また、第1リブR1は、ブリッジBRの延長線上において、外周部322に接続されている。図3に示す例では、第1リブR1と外周部322との接続位置は、d軸上に位置している。なお、第1直線LN1が角MC2を通り、第2直線LN2が角MC4を通ってもよい。また、第1直線LN1が保持突起C22を通り、第2直線LN2が保持突起C25を通ってもよい。 One first rib R1 is a first straight line LN1 passing through an angle MC1 far from the d-axis and parallel to the d-axis among the angles MC1 and MC2 facing the d-axis of the first permanent magnet M1, and the second permanent magnet M2. A region of the angle MC3 and MC4 facing the d-axis, which passes through the angle MC3 far from the d-axis and is parallel to the d-axis, and is connected to the outer peripheral portion 322. Further, the first rib R1 is connected to the outer peripheral portion 322 on the extension line of the bridge BR. In the example shown in FIG. 3, the connection position between the first rib R1 and the outer peripheral portion 322 is located on the d-axis. The first straight line LN1 may pass through the angle MC2, and the second straight line LN2 may pass through the angle MC4. Further, the first straight line LN1 may pass through the holding protrusion C22, and the second straight line LN2 may pass through the holding protrusion C25.
 ロータコア32にシャフト31が圧入される際に、外周部322には、第1リブR1から径方向に沿って外周に向かう力が作用する。第1リブR1と外周部322との接続位置が上記の範囲の領域に位置しているため、第1リブR1からブリッジBRに沿って外周に向かう力が作用し、第1コア部C1の傾きを抑制することができる。したがって、ロータコア32の変形が抑制される。 When the shaft 31 is press-fitted into the rotor core 32, a force acting from the first rib R1 toward the outer circumference along the radial direction acts on the outer peripheral portion 322. Since the connection position between the first rib R1 and the outer peripheral portion 322 is located in the above range region, a force acts from the first rib R1 toward the outer circumference along the bridge BR, and the inclination of the first core portion C1 Can be suppressed. Therefore, the deformation of the rotor core 32 is suppressed.
 また、q軸上には、ロータコア32を貫通した孔323が形成されている。ロータコア32が軽量化される。なお、孔323の形状及び大きさは、リラクタンストルクを出すための磁束の通路を妨げないように設定されることが望ましい。 Further, a hole 323 penetrating the rotor core 32 is formed on the q-axis. The weight of the rotor core 32 is reduced. It is desirable that the shape and size of the hole 323 are set so as not to obstruct the passage of the magnetic flux for producing the reluctance torque.
 次に、変形例について説明する。 Next, a modified example will be described.
 図4は、図1に示した回転電機1のうち変形例のロータ3のA-B線に沿った横断面図である。
 図4に示す変形例では、図2に示した例と比較して、ロータコア32が第1リブR1の他に、内周部321と外周部322とを接続する複数の第2リブR2を有する点で相違している。第1リブR1及び第2リブR2は、内周部321と外周部322との間において、周方向に交互に配置されている。第1リブR1及び第2リブR2は、互いに異なる方向に延出している。第1リブR1の延出方向については、図3を参照して説明した通りである。すべての第2リブR2に関して、第2リブR2と外周部322との接続位置から第2リブR2と内周部321との接続位置に向かう方向は、横断面において、中心軸Cを中心として左回りであり、ロータ3の回転方向Aとは逆方向である。
FIG. 4 is a cross-sectional view taken along the line AB of the rotor 3 of the modified example of the rotary electric machine 1 shown in FIG.
In the modified example shown in FIG. 4, the rotor core 32 has a plurality of second ribs R2 connecting the inner peripheral portion 321 and the outer peripheral portion 322 in addition to the first rib R1 as compared with the example shown in FIG. It differs in that. The first rib R1 and the second rib R2 are alternately arranged in the circumferential direction between the inner peripheral portion 321 and the outer peripheral portion 322. The first rib R1 and the second rib R2 extend in different directions from each other. The extension direction of the first rib R1 is as described with reference to FIG. For all the second ribs R2, the direction from the connection position between the second rib R2 and the outer peripheral portion 322 to the connection position between the second rib R2 and the inner peripheral portion 321 is left with respect to the central axis C in the cross section. It is a rotation and is in the direction opposite to the rotation direction A of the rotor 3.
 第1リブR1と外周部322との接続位置は、第2リブR2と外周部322との接続位置とほぼ一致している。第1リブR1と内周部321との接続位置は、第2リブR2と内周部321との接続位置から、周方向に離間している。第1リブR1、第2リブR2、及び、内周部321で囲まれる空隙32Cは、d軸と交差し、横断面において、内周側を底辺とし外周側を頂点とする略三角形状に形成されている。第1リブR1、第2リブR2、及び、外周部322で囲まれる空隙32Cは、q軸と交差し、横断面において、内周側から外周側に向かうにしたがって周方向に広がった略扇状に形成されている。 The connection position between the first rib R1 and the outer peripheral portion 322 is almost the same as the connection position between the second rib R2 and the outer peripheral portion 322. The connection position between the first rib R1 and the inner peripheral portion 321 is separated from the connection position between the second rib R2 and the inner peripheral portion 321 in the circumferential direction. The gap 32C surrounded by the first rib R1, the second rib R2, and the inner peripheral portion 321 intersects the d-axis and is formed in a substantially triangular shape with the inner peripheral side as the base and the outer peripheral side as the apex in the cross section. Has been done. The gap 32C surrounded by the first rib R1, the second rib R2, and the outer peripheral portion 322 intersects the q-axis and has a substantially fan shape that spreads in the circumferential direction from the inner peripheral side to the outer peripheral side in the cross section. It is formed.
 図5は、図4に示したロータ3のうち、1磁極分のロータコア32を拡大して示す横断面図である。 
 第1リブR1及び第2リブR2は、第1直線LN1と第2直線LN2との間の領域で、外周部322に接続されている。なお、第1直線LN1とは第1永久磁石M1の角MC1を通りd軸に平行な線であり、第2直線LN2とは第2永久磁石M2の角MC3を通りd軸に平行な線である。また、第1リブR1及び第2リブR2は、d軸(あるいはブリッジBRの延長線)に対して線対称に配置されている。このような変形例でも、上記したのと同様の効果が得られる。
FIG. 5 is an enlarged cross-sectional view showing the rotor core 32 for one magnetic pole of the rotor 3 shown in FIG.
The first rib R1 and the second rib R2 are connected to the outer peripheral portion 322 in the region between the first straight line LN1 and the second straight line LN2. The first straight line LN1 is a line that passes through the angle MC1 of the first permanent magnet M1 and is parallel to the d-axis, and the second straight line LN2 is a line that passes through the angle MC3 of the second permanent magnet M2 and is parallel to the d-axis. be. Further, the first rib R1 and the second rib R2 are arranged line-symmetrically with respect to the d-axis (or an extension of the bridge BR). Even in such a modified example, the same effect as described above can be obtained.
 以上説明したように、本実施形態によれば、ロータコアの変形を抑止することが可能なロータを提供することができる。 As described above, according to the present embodiment, it is possible to provide a rotor capable of suppressing deformation of the rotor core.
 なお、この発明は上述した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 
 例えば、ロータ3の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。ロータ3の各磁極における永久磁石Mの設置数は、2つに限らず、必要に応じて、増加可能である。
It should be noted that the present invention is not limited to the above-described embodiment as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.
For example, the number of magnetic poles, dimensions, shape, etc. of the rotor 3 are not limited to the above-described embodiment, and can be variously changed according to the design. The number of permanent magnets M installed at each magnetic pole of the rotor 3 is not limited to two, and can be increased as needed.
 1…回転電機 2…ステータ 3…ロータ C…中心軸
 31…シャフト 32…ロータコア 32C…空隙 32S…外周面
 R1…第1リブ R2…第2リブ BR…ブリッジ
 321…内周部 322…外周部 323…貫通孔
 C1…第1コア部 C2…第2コア部
 H1…第1孔 H2…第2孔
 M1…第1永久磁石 M2…第2永久磁石
 N1…第1切欠 N2…第2切欠
1 ... Rotating electric machine 2 ... Stator 3 ... Rotor C ... Central shaft 31 ... Shaft 32 ... Rotor core 32C ... Air gap 32S ... Outer peripheral surface R1 ... First rib R2 ... Second rib BR ... Bridge 321 ... Inner peripheral part 322 ... Outer peripheral part 323 ... Through hole C1 ... 1st core part C2 ... 2nd core part H1 ... 1st hole H2 ... 2nd hole M1 ... 1st permanent magnet M2 ... 2nd permanent magnet N1 ... 1st notch N2 ... 2nd notch

Claims (4)

  1.  略円筒状のロータコアと、前記ロータコアにおいて磁極を構成する第1永久磁石及び第2永久磁石と、前記ロータコアに圧入されたシャフトと、を備え、
     前記ロータコアは、前記シャフトを囲む内周部と、空隙を挟んで前記内周部を囲む外周部と、径方向に対して傾斜し且つ前記内周部と前記外周部とを接続する複数の第1リブと、を有し、
     前記外周部は、前記第1永久磁石が挿入される第1孔と、前記第2永久磁石が挿入される第2孔と、前記ロータコアの外周面と前記第1孔及び前記第2孔とで囲まれた第1コア部と、前記第1孔及び前記第2孔と前記空隙との間に位置する第2コア部と、前記第1孔と前記第2孔との間において前記第1コア部と前記第2コア部とを接続するブリッジと、を有し、
     前記外周面は、前記第1孔に連通する第1切欠と、前記第2孔に連通する第2切欠と、を有し、
     前記複数の第1リブのうちの1つは、前記シャフトの中心軸と前記磁極の周方向の中心とを通る軸をd軸とすると、前記第1永久磁石の前記d軸に対向する角のうち前記d軸から遠い角を通り且つ前記d軸に平行な第1直線と、前記第2永久磁石の前記d軸に対向する角のうち前記d軸から遠い角を通り且つ前記d軸に平行な第2直線との間の領域で、前記外周部に接続されている、ロータ。
    A substantially cylindrical rotor core, a first permanent magnet and a second permanent magnet forming magnetic poles in the rotor core, and a shaft press-fitted into the rotor core are provided.
    The rotor core has an inner peripheral portion that surrounds the shaft, an outer peripheral portion that surrounds the inner peripheral portion with a gap in between, and a plurality of positions that are inclined in the radial direction and connect the inner peripheral portion and the outer peripheral portion. With 1 rib,
    The outer peripheral portion includes a first hole into which the first permanent magnet is inserted, a second hole into which the second permanent magnet is inserted, an outer peripheral surface of the rotor core, the first hole, and the second hole. The first core portion surrounded by the first core portion, the second core portion located between the first hole and the second hole and the void, and the first core portion between the first hole and the second hole. It has a bridge that connects the portion and the second core portion, and has.
    The outer peripheral surface has a first notch communicating with the first hole and a second notch communicating with the second hole.
    One of the plurality of first ribs has an angle of an angle facing the d-axis of the first permanent magnet, where the axis passing through the central axis of the shaft and the center in the circumferential direction of the magnetic pole is the d-axis. Of the first straight line passing through the angle far from the d-axis and parallel to the d-axis, and the angle of the second permanent magnet facing the d-axis, passing through the angle far from the d-axis and parallel to the d-axis. A rotor connected to the outer peripheral portion in the region between the second straight line and the outer peripheral portion.
  2.  前記第1リブは、前記ブリッジの延長線上において、前記外周部に接続されている、請求項1に記載のロータ。 The rotor according to claim 1, wherein the first rib is connected to the outer peripheral portion on an extension line of the bridge.
  3.  前記ロータコアは、さらに、前記内周部と前記外周部とを接続する複数の第2リブを有し、
     前記複数の第2リブのうちの1つは、前記第1直線と前記第2直線との間の領域で、前記外周部に接続され、
     前記第1リブ及び前記第2リブは、互いに異なる方向に延出し、且つ、前記d軸に対して線対称に配置されている、請求項1または2に記載のロータ。
    The rotor core further has a plurality of second ribs connecting the inner peripheral portion and the outer peripheral portion.
    One of the plurality of second ribs is connected to the outer peripheral portion in the region between the first straight line and the second straight line.
    The rotor according to claim 1 or 2, wherein the first rib and the second rib extend in different directions from each other and are arranged line-symmetrically with respect to the d-axis.
  4.  前記外周部は、さらに、周方向において前記第2孔に隣接する第3孔と、前記第2孔と前記第3孔との間に形成された貫通孔と、を有している、請求項1乃至3のいずれか1項に記載のロータ。 The outer peripheral portion further has a third hole adjacent to the second hole in the circumferential direction, and a through hole formed between the second hole and the third hole. The rotor according to any one of 1 to 3.
PCT/JP2020/031898 2020-08-24 2020-08-24 Rotor WO2022044090A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020569917A JPWO2022044090A1 (en) 2020-08-24 2020-08-24
PCT/JP2020/031898 WO2022044090A1 (en) 2020-08-24 2020-08-24 Rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031898 WO2022044090A1 (en) 2020-08-24 2020-08-24 Rotor

Publications (1)

Publication Number Publication Date
WO2022044090A1 true WO2022044090A1 (en) 2022-03-03

Family

ID=80352793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031898 WO2022044090A1 (en) 2020-08-24 2020-08-24 Rotor

Country Status (2)

Country Link
JP (1) JPWO2022044090A1 (en)
WO (1) WO2022044090A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine
JP2012217250A (en) * 2011-03-31 2012-11-08 Fujitsu General Ltd Rotor and permanent magnet motor
JP2016032340A (en) * 2014-07-28 2016-03-07 トヨタ自動車株式会社 Rotor of dynamo-electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990475B2 (en) * 2013-02-14 2016-09-14 本田技研工業株式会社 Rotating electrical machine rotor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine
JP2012217250A (en) * 2011-03-31 2012-11-08 Fujitsu General Ltd Rotor and permanent magnet motor
JP2016032340A (en) * 2014-07-28 2016-03-07 トヨタ自動車株式会社 Rotor of dynamo-electric machine

Also Published As

Publication number Publication date
JPWO2022044090A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP6848135B1 (en) Rotor
JP4349089B2 (en) Axial gap rotating electric machine
JP4071510B2 (en) Electric motor
JP5716377B2 (en) Rotating electric machine
CN112055931A (en) Rotor of rotating electric machine
JP7293371B2 (en) Rotor of rotary electric machine
US20140210293A1 (en) Permanent magnet embedded type rotor for rotating electrical machine and rotating electrical machine having permanent magnet embedded type rotor
CN109983676B (en) Synchronous reluctance type rotating electric machine
JP7166066B2 (en) Rotating electric machine
JP2007202363A (en) Rotary-electric machine
WO2022044090A1 (en) Rotor
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP7124247B1 (en) Rotor of rotary electric machine
JP2020182358A (en) Rotor of rotating electric machine
JP2020156199A (en) Rotary electric machine
JP2619572B2 (en) Radial type rotor structure
JP2006014565A (en) Disc type rotary electric machine
WO2023105701A1 (en) Rotor of rotary electric machine
US11784524B2 (en) Rotor and rotary electric machine
JP7455994B2 (en) rotating electric machine
US11784521B2 (en) Rotor and rotary electric machine
JP7396311B2 (en) Rotor for rotating electric machines
WO2023132011A1 (en) Rotor
WO2022044359A1 (en) Rotary electric machine
WO2021210249A1 (en) Rotor and electric motor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020569917

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951346

Country of ref document: EP

Kind code of ref document: A1