JP2012217250A - Rotor and permanent magnet motor - Google Patents

Rotor and permanent magnet motor Download PDF

Info

Publication number
JP2012217250A
JP2012217250A JP2011080061A JP2011080061A JP2012217250A JP 2012217250 A JP2012217250 A JP 2012217250A JP 2011080061 A JP2011080061 A JP 2011080061A JP 2011080061 A JP2011080061 A JP 2011080061A JP 2012217250 A JP2012217250 A JP 2012217250A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
slit
outer peripheral
magnetic path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011080061A
Other languages
Japanese (ja)
Other versions
JP5811566B2 (en
Inventor
Takeaki Ashimori
丈明 芦森
Yoshihiro Taema
欣弘 妙摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2011080061A priority Critical patent/JP5811566B2/en
Publication of JP2012217250A publication Critical patent/JP2012217250A/en
Application granted granted Critical
Publication of JP5811566B2 publication Critical patent/JP5811566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor and a permanent magnet motor in which rotation control of the rotor can be carried out precisely, by detecting the zero-cross point of an induction voltage waveform accurately.SOLUTION: The rotor includes flux barriers 12 for preventing short circuit of magnetic flux formed at both ends of a magnet embedment hole in a circumferential direction, a peripheral core 15 formed on the outer peripheral side of the embedment hole, a radially elongated slit 20 formed from the flux barriers 12 at the both ends of the peripheral core 15 to the peripheral inside, in parallel therewith, via a magnetic path d consisting of a magnetic part having a width corresponding to the plate thickness of the peripheral core 15. On the peripheral inside of a slit 20 formed near both ends of the peripheral core 15, one or more radially elongated slit may be formed furthermore via a magnetic path with a predetermined width.

Description

本発明は、回転子およびその回転子を用いた永久磁石電動機に関する。   The present invention relates to a rotor and a permanent magnet electric motor using the rotor.

従来、回転子鉄心に永久磁石が所定間隔で埋め込まれて形成され、各永久磁石の両端部付近にフラックスバリアが設けられた磁石埋め込み型の回転子を用いた永久磁石電動機があった。例えば、永久磁石の固定子側の表面に接触させて複数の外周部鉄心が配設され、各外周部鉄心には、各永久磁石と固定子に挟まれた領域に、各外周部鉄心を回転子の軸方向に貫通する一対の貫通孔が開設されている。一対の貫通孔は、各永久磁石と固定子の間に発生する磁力線の磁気的中心線を挟んで両側に対称に開設され、夫々が細長いスリット形状を有すると共に、固定子に向かって互いの間隔が狭まってハの字状をしている永久磁石モータが開示されている(特許文献1参照)。   Conventionally, there has been a permanent magnet motor using a magnet-embedded rotor in which permanent magnets are embedded in a rotor core at predetermined intervals and a flux barrier is provided in the vicinity of both end portions of each permanent magnet. For example, a plurality of outer peripheral cores are arranged in contact with the stator side surface of the permanent magnet, and each outer peripheral core is rotated in a region sandwiched between each permanent magnet and the stator. A pair of through-holes penetrating in the axial direction of the child is opened. The pair of through holes are provided symmetrically on both sides with respect to the magnetic center line of the magnetic lines of force generated between each permanent magnet and the stator, and each has a long and narrow slit shape and is spaced from each other toward the stator. A permanent magnet motor is disclosed in which the shape of the taper is narrowed (see Patent Document 1).

また、上記以外にも、スリットの形状を周方向に細長い複数個のスリットを備えた永久磁石埋込型モータの回転子(特許文献2参照)、あるいは、永久磁石収容孔の外周部鉄心に形成され、径方向に細長く、かつ、永久磁石収容孔に沿って離隔配置された4個以上のスリット孔を備えた永久磁石電動機などが開示されている(特許文献3参照)。   In addition to the above, the slit shape is formed on the rotor of a permanent magnet embedded motor (see Patent Document 2) having a plurality of slits elongated in the circumferential direction, or on the outer peripheral core of the permanent magnet accommodation hole. In addition, a permanent magnet motor or the like that is elongated in the radial direction and includes four or more slit holes that are spaced apart from each other along the permanent magnet housing hole is disclosed (see Patent Document 3).

特開平11−46464号公報JP 11-46464 A 特開2008−187778号公報JP 2008-187778 A 特許第4248984号公報Japanese Patent No. 4248984

上記特許文献1〜3に記載された従来例において、電動機の回転制御を行う場合は、誘起電圧波形の誘起電圧が「0V」となるゼロクロス点を検出し、これを基準として固定子側に通電している電流の流れを切り替えることにより、ステータ側に回転磁界を発生させ、その回転磁界に追従するように回転子を回転させることができる。しかしながら、上記特許文献1〜3にあっては、電流の切換ポイントであるゼロクロス点において、誘起電圧波形が寝てしまうため、ゼロクロス点での誤検出が起こり易く、電動機を正確に回転制御することができなくなるという問題があった。   In the conventional examples described in Patent Documents 1 to 3, when the rotation control of the motor is performed, a zero cross point where the induced voltage of the induced voltage waveform becomes “0 V” is detected, and the stator side is energized based on this. By switching the current flow, the rotating magnetic field is generated on the stator side, and the rotor can be rotated to follow the rotating magnetic field. However, in Patent Documents 1 to 3, since the induced voltage waveform lies at the zero cross point that is the current switching point, erroneous detection at the zero cross point is likely to occur, and the motor is controlled to rotate accurately. There was a problem that could not be.

本発明は、上記に鑑みてなされたものであって、誘起電圧波形のゼロクロス点を正確に検出可能とし、検出されたゼロクロス点に基づいて固定子側に通電する電流の流れを切り替えて、回転子の回転制御を正確に行うことが可能な回転子および永久磁石電動機を得ることを目的とする。   The present invention has been made in view of the above, and it is possible to accurately detect the zero-cross point of the induced voltage waveform, and to switch the flow of current to be supplied to the stator side based on the detected zero-cross point to rotate the An object of the present invention is to obtain a rotor and a permanent magnet electric motor capable of accurately controlling the rotation of the rotor.

上述した課題を解決し、目的を達成するために、本発明は、磁性体により円柱状に形成され、板状の永久磁石が埋め込まれる磁石埋め込み孔が環状に所定間隔で形成された回転子であって、前記磁石埋め込み孔に埋め込まれた永久磁石と、前記磁石埋め込み孔の周方向両端部に形成された磁束短絡防止用の非磁性部と、前記磁石埋め込み孔の外周側に形成された外周部鉄心と、前記外周部鉄心の両端の前記非磁性部から周方向内側へ、前記外周部鉄心の板厚に相当する幅の磁性部からなる磁路を介して、径方向に細長い形状の貫通孔が前記非磁性部と平行に形成されたスリットと、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is a rotor in which magnet-embedded holes are formed in a circular shape at predetermined intervals, and are formed in a cylindrical shape with a magnetic material and in which plate-like permanent magnets are embedded. A permanent magnet embedded in the magnet embedding hole, a nonmagnetic portion for preventing magnetic flux short circuit formed at both circumferential ends of the magnet embedding hole, and an outer periphery formed on the outer peripheral side of the magnet embedding hole. Through a magnetic path consisting of a magnetic core having a width corresponding to the plate thickness of the outer peripheral core from the non-magnetic portion at both ends of the outer core to the inner side in the circumferential direction The hole includes a slit formed in parallel with the nonmagnetic portion.

また、本発明は、前記スリットから径方向外側の磁路の幅をd’とした場合に、d’が前記磁性部の板厚に相当する幅で形成されていることが好ましい。   In the present invention, it is preferable that d ′ is formed with a width corresponding to the plate thickness of the magnetic part, where d ′ is the width of the magnetic path radially outward from the slit.

また、本発明は、前記スリットの径方向の長さをLsとし、前記非磁性部の径方向外側端部までの径方向の長さをLfとした場合に、Ls>Lf/2の関係にあることが好ましい。   Further, in the present invention, when the length in the radial direction of the slit is Ls and the length in the radial direction to the radially outer end of the nonmagnetic portion is Lf, the relationship Ls> Lf / 2 is satisfied. Preferably there is.

また、本発明は、前記回転子と、前記回転子が内部に配置され、環状のヨーク部から内方に延びるティース部のティース先端面が、前記回転子の前記磁極部又は前記極間部の少なくとも1つと同一距離を隔てて対向する集中巻の固定子と、を備えていることを特徴とする。   In the present invention, the rotor, the rotor is disposed inside, and the tooth tip surface of the tooth portion extending inwardly from the annular yoke portion is formed between the magnetic pole portion and the interpolar portion of the rotor. And a concentrated winding stator facing at an interval of the same distance as at least one.

本発明によれば、誘起電圧波形のゼロクロス点を正確に検出することができ、検出されたゼロクロス点に基づいて固定子側に通電する電流の流れを切り替えることで、回転子の回転制御を正確に行うことが可能な回転子および永久磁石電動機を得られるという効果を奏する。   According to the present invention, the zero-cross point of the induced voltage waveform can be accurately detected, and the rotation control of the rotor can be accurately performed by switching the flow of current flowing to the stator side based on the detected zero-cross point. It is possible to obtain a rotor and a permanent magnet motor that can be performed in the same manner.

図1は、本発明の実施例1にかかる回転子の構成を示す平面図である。FIG. 1 is a plan view illustrating a configuration of a rotor according to a first embodiment of the present invention. 図2は、図1の回転子の外周部鉄心部分の拡大図である。FIG. 2 is an enlarged view of an outer peripheral core portion of the rotor of FIG. 図3は、図1の回転子の回転時における誘起電圧波形図である。FIG. 3 is an induced voltage waveform diagram when the rotor of FIG. 1 rotates. 図4は、実施例1の回転子が永久磁石電動機の固定子内で回転する際にゼロクロス点における誘起電圧波形の立ち上がりを正確に検出できる原理を説明する図である。FIG. 4 is a diagram for explaining the principle by which the rise of the induced voltage waveform at the zero cross point can be accurately detected when the rotor of the first embodiment rotates in the stator of the permanent magnet motor. 図5は、本発明の実施例2にかかる回転子の構成を示す平面図である。FIG. 5 is a plan view showing the configuration of the rotor according to the second embodiment of the present invention. 図6は、図5の回転子の外周部鉄心部分の拡大図である。6 is an enlarged view of the outer peripheral core portion of the rotor of FIG. 図7は、図5の回転子の回転時における誘起電圧波形図である。FIG. 7 is an induced voltage waveform diagram when the rotor of FIG. 5 rotates. 図8は、実施例2の回転子と比較する比較例の回転子の平面図である。FIG. 8 is a plan view of a rotor of a comparative example compared with the rotor of the second embodiment. 図9は、図8の回転子の外周部鉄心部分の拡大図である。FIG. 9 is an enlarged view of the outer core portion of the rotor of FIG. 図10は、図8の回転子の回転時における誘起電圧波形図である。FIG. 10 is an induced voltage waveform diagram when the rotor of FIG. 8 rotates.

以下に、本発明にかかる回転子および永久磁石電動機の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a rotor and a permanent magnet motor according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明の実施例1にかかる回転子の構成を示す平面図であり、図2は、図1の回転子の外周部鉄心部分の拡大図であり、図3は、図1の回転子の回転時における誘起電圧波形図であり、図4は、実施例1の回転子が永久磁石電動機の固定子内で回転する際にゼロクロス点における誘起電圧波形の立ち上がりを正確に検出できる原理を説明する図である。   FIG. 1 is a plan view showing a configuration of a rotor according to a first embodiment of the present invention, FIG. 2 is an enlarged view of an outer peripheral core portion of the rotor of FIG. 1, and FIG. FIG. 4 is a diagram illustrating an induced voltage waveform at the time of rotation of the rotor, and FIG. 4 is a principle that can accurately detect the rising of the induced voltage waveform at the zero cross point when the rotor of the first embodiment rotates in the stator of the permanent magnet motor. FIG.

図1に示すように、実施例1の回転子10は、薄い珪素鋼板(磁性体)を多数積層して円柱状に形成され、この回転子10の中心には、回転子軸26が挿通されて固定される。回転子10に対して複数の貫通孔を打ち抜いてスリットを形成する場合には、スリットの周りに少なくとも磁性体(珪素鋼板)の板厚程度の幅の磁路を残して打ち抜き加工するのが加工限界である。それ以上細い磁路を残して打ち抜くと磁路が傾いてしまうので、鋼板の積層が困難となる。   As shown in FIG. 1, the rotor 10 according to the first embodiment is formed in a cylindrical shape by laminating a large number of thin silicon steel plates (magnetic bodies), and a rotor shaft 26 is inserted into the center of the rotor 10. Fixed. When a plurality of through holes are punched into the rotor 10 to form a slit, the punching process is performed by leaving at least a magnetic path having a width about the thickness of the magnetic body (silicon steel plate) around the slit. It is a limit. If the punching is performed while leaving a narrower magnetic path than that, the magnetic path will be inclined, making it difficult to laminate the steel plates.

6枚の板状の永久磁石14は、回転子軸26を中心とする6角形の各辺を成すように、回転子10の外周寄りに、環状に所定間隔で形成された磁石埋め込み孔に埋め込まれて形成されている。そして、回転子10の磁石埋め込み孔の周方向両端部には、磁束の短絡を防止するための非磁性部としてのフラックスバリア12が、回転子10の外周に向かって形成されている。磁石埋め込み孔の永久磁石14とフラックスバリア12とで囲まれた回転子10の外周側は、外周部鉄心15であり、その中央が磁極部22で、両端のフラックスバリア12同士が隣接する部分が極間部24となる。実施例1の回転子10の特徴的な構成は、この外周部鉄心15の両端のフラックスバリア12の周方向内側近傍に、径方向に細長い形状の貫通孔を打ち抜いて、スリット20を形成した点にある。   The six plate-like permanent magnets 14 are embedded in magnet embedding holes formed annularly at predetermined intervals near the outer periphery of the rotor 10 so as to form hexagonal sides with the rotor shaft 26 as the center. Is formed. And the flux barrier 12 as a nonmagnetic part for preventing the short circuit of magnetic flux is formed toward the outer periphery of the rotor 10 in the circumferential direction both ends of the magnet embedding hole of the rotor 10. The outer peripheral side of the rotor 10 surrounded by the permanent magnet 14 and the flux barrier 12 in the magnet embedded hole is the outer peripheral core 15, the center of which is the magnetic pole portion 22, and the portion where the flux barriers 12 at both ends are adjacent to each other. This is the inter-electrode portion 24. A characteristic configuration of the rotor 10 according to the first embodiment is that a slit 20 is formed by punching a radially elongated through hole in the vicinity of the inner side in the circumferential direction of the flux barrier 12 at both ends of the outer peripheral core 15. It is in.

図2に示すように、実施例1の回転子10の外周部鉄心15の構造は、外周部鉄心15の両端に設けられたフラックスバリア12から周方向内側へ、外周部鉄心15の板厚に相当する幅の磁性部からなる磁路幅dを介して、径方向に細長い形状の貫通孔を打ち抜いてフラックスバリア12と平行となるようにスリット20が形成されている。   As shown in FIG. 2, the structure of the outer peripheral core 15 of the rotor 10 of the first embodiment has a thickness of the outer peripheral core 15 from the flux barriers 12 provided at both ends of the outer peripheral core 15 to the inner side in the circumferential direction. A slit 20 is formed so as to be parallel to the flux barrier 12 by punching a through hole having a shape elongated in the radial direction through a magnetic path width d formed of a magnetic part having a corresponding width.

実施例1の回転子10は、外周部鉄心15の両端のフラックスバリア12の周方向内側に、通常の打ち抜き加工の限界である外周部鉄心15の板厚に相当する細い磁路幅dを残し、打ち抜き加工によりフラックスバリア12の内側近傍にスリット20を形成したため、磁路幅dの磁性部が磁気飽和を起こしやすくなり、磁路幅dを通り抜ける磁束の量を少なくすることができる。   The rotor 10 of the first embodiment leaves a narrow magnetic path width d corresponding to the plate thickness of the outer peripheral core 15, which is the limit of normal punching, on the inner side in the circumferential direction of the flux barrier 12 at both ends of the outer peripheral core 15. Since the slit 20 is formed in the vicinity of the inside of the flux barrier 12 by punching, the magnetic part having the magnetic path width d is likely to cause magnetic saturation, and the amount of magnetic flux passing through the magnetic path width d can be reduced.

このように構成された回転子10を回転させた場合の誘起電圧波形は、図3に示すように、ゼロクロス点B近傍における波形が正弦波状になり、誘起電圧波形と電気角を表す横軸とが一点で交差するため、ゼロクロス点を誤検出することがなくなり、ゼロクロス点を正確に検出できることが実験により確かめられている。   As shown in FIG. 3, the induced voltage waveform when the thus configured rotor 10 is rotated has a sine wave shape in the vicinity of the zero cross point B, and the induced voltage waveform and the horizontal axis representing the electrical angle Has crossed at a single point, it has been confirmed by experiments that the zero-cross point is not erroneously detected and the zero-cross point can be accurately detected.

その原理としては、図4に示すように、実施例1の回転子10が永久磁石電動機の固定子36内で矢印C方向に回転する際に、回転子10が図4の位置から矢印C方向に回転していくと、外周部鉄心15の磁極部22と固定子36のティース部32とが対向する位置まではティース部32に流れ込む磁束量が増加していく。磁極部22とティース部32とが対向する位置でティース部32に流れ込む磁束量が最大となり、その後、回転子がさらに矢印C方向に回転していくと、外周部鉄心15の磁極部22と、固定子36のティース部32のティース先端面40とが重なる面積が少なくなるに従ってティース部32に流れ込む磁束量が減少する。   As shown in FIG. 4, when the rotor 10 of the first embodiment rotates in the direction of arrow C in the stator 36 of the permanent magnet motor, the rotor 10 moves from the position of FIG. As the rotation speed increases, the amount of magnetic flux flowing into the tooth portion 32 increases until the magnetic pole portion 22 of the outer peripheral core 15 and the tooth portion 32 of the stator 36 face each other. When the amount of magnetic flux flowing into the tooth portion 32 is maximized at the position where the magnetic pole portion 22 and the tooth portion 32 face each other, and then the rotor further rotates in the direction of arrow C, the magnetic pole portion 22 of the outer peripheral core 15, The amount of magnetic flux flowing into the teeth portion 32 decreases as the area where the teeth tip surface 40 of the teeth portion 32 of the stator 36 overlaps decreases.

これをティース部32に流れ込む磁束の変化量(すなわち、誘起電圧)として考えると、ティース部32に流れ込む磁束量が最大となる点が誘起電圧がプラスからマイナスに転じる点(ゼロクロス点)に相当する。具体的には、回転子10が回転するのに伴って、極間部24のフラックスバリア12の近傍に形成されたスリット20がスロット38を境に次のティース部322へ移動していくとき、磁極部22からティース部321に向かっていた磁束のうち、ティース部322へ最初に移動する磁束は、フラックスバリア12とスリット20との間の磁路幅dを通る磁束となる。この磁路幅dは、加工限界まで細くしたため、通り抜ける磁束量が少なくなる。スリット20の磁路幅dを通る磁束は、磁束量が少ないことから、磁極部22からティース部321に向かっていた磁束が徐々にティース部322へ向かうようになる。その結果、ティース部321に流れ込む磁束量が増加から減少へ転じる際の磁束の変化量(ゼロクロス点B近傍の起動電圧波形)が正弦波状となり、正確にゼロクロス点の検出が行えるようになるものと考えられる。   Considering this as the amount of change in magnetic flux flowing into the tooth portion 32 (that is, induced voltage), the point at which the amount of magnetic flux flowing into the tooth portion 32 is maximum corresponds to the point at which the induced voltage turns from plus to minus (zero cross point). . Specifically, as the rotor 10 rotates, when the slit 20 formed in the vicinity of the flux barrier 12 in the inter-electrode portion 24 moves to the next tooth portion 322 with the slot 38 as a boundary, Of the magnetic fluxes that have traveled from the magnetic pole part 22 toward the tooth part 321, the magnetic flux that first moves to the tooth part 322 becomes a magnetic flux that passes through the magnetic path width d between the flux barrier 12 and the slit 20. Since the magnetic path width d is narrowed to the processing limit, the amount of magnetic flux passing therethrough is reduced. Since the magnetic flux passing through the magnetic path width d of the slit 20 has a small amount of magnetic flux, the magnetic flux from the magnetic pole portion 22 toward the teeth portion 321 gradually moves toward the teeth portion 322. As a result, the amount of change in magnetic flux (starting voltage waveform near the zero cross point B) when the amount of magnetic flux flowing into the teeth portion 321 changes from increase to decrease becomes a sine wave, and the zero cross point can be detected accurately. Conceivable.

なお、スリット20の外周側には、磁路幅d’の磁路が設けられており、この磁路幅d’は、スリット20を外周側に近づけることのできる限界値、すなわち、打ち抜きの限界である板厚程度とすることが好ましい。この磁路幅d’を大きくしてしまうと、外周部鉄心15を流れる磁束の一部が磁路幅d’を介して磁路幅d側へ流れ込んでしまい、磁路幅dを流れる磁束の量が増えるのと同様となってしまうためである。さらに、スリット20の径方向長さLsは、少なくとも隣接するフラックスバリア12の径方向長さLfの半分以上であことが好ましい。Lsが径方向に短くなると、スリット20を径方向にまたいで固定子へ流れ込む磁束が発生するおそれがあり、スリット20により磁束の流れを規制する効果が得られなくなるおそれがあるためである。   Note that a magnetic path having a magnetic path width d ′ is provided on the outer peripheral side of the slit 20, and this magnetic path width d ′ is a limit value that allows the slit 20 to approach the outer peripheral side, that is, a punching limit. It is preferable that the thickness be approximately the same. If the magnetic path width d ′ is increased, a part of the magnetic flux flowing through the outer peripheral core 15 flows into the magnetic path width d via the magnetic path width d ′, and the magnetic flux flowing through the magnetic path width d is increased. This is because the amount increases. Furthermore, the radial length Ls of the slit 20 is preferably at least half or more than the radial length Lf of the adjacent flux barrier 12. This is because if Ls is shortened in the radial direction, a magnetic flux that flows into the stator across the slit 20 may be generated, and the effect of regulating the flow of magnetic flux by the slit 20 may not be obtained.

これに対し、フラックスバリア12とスリット20との間の磁路幅eを磁路幅dの2倍とした図8〜図10に示す比較例の詳細については、後述するが、図10のゼロクロス点Gを見るとわかるように、磁路幅eを磁路幅dよりも広くして磁路幅eを通る磁束量が増えている。磁路幅eを通る磁束は、磁束量が多いことから、磁極部22からティース部321に向かっていた磁束を徐々にティース部322へ向かうようにすることができない。その結果、ティース部321に流れ込む磁束の量が増加から減少へ転じる際の磁束の変化量(ゼロクロス点G近傍の誘起電圧波形)が正弦波状とならず、正確にゼロクロス点の検出が行えない。実施例1の回転子10と比較例の回転子13とは、スリットの数や配置が異なるため、類似した回転子構造を持つ実施例2の回転子との中で詳細に比較検討することにする。   On the other hand, the details of the comparative example shown in FIGS. 8 to 10 in which the magnetic path width e between the flux barrier 12 and the slit 20 is twice the magnetic path width d will be described later. As can be seen from the point G, the magnetic path width e is made wider than the magnetic path width d, and the amount of magnetic flux passing through the magnetic path width e is increased. Since the magnetic flux passing through the magnetic path width e has a large amount of magnetic flux, the magnetic flux from the magnetic pole portion 22 toward the teeth portion 321 cannot be gradually moved toward the teeth portion 322. As a result, the amount of change in magnetic flux (induced voltage waveform in the vicinity of the zero cross point G) when the amount of magnetic flux flowing into the tooth portion 321 changes from increasing to decreasing does not become a sine wave, and the zero cross point cannot be detected accurately. The rotor 10 of the first embodiment and the rotor 13 of the comparative example are different in the number and arrangement of slits, and therefore will be compared in detail with the rotor of the second embodiment having a similar rotor structure. To do.

図5は、本発明の実施例2にかかる回転子の構成を示す平面図であり、図6は、図5の回転子の外周部鉄心部分の拡大図であり、図7は、図5の回転子の回転時における誘起電圧波形図である。   5 is a plan view showing a configuration of a rotor according to a second embodiment of the present invention, FIG. 6 is an enlarged view of an outer peripheral core portion of the rotor of FIG. 5, and FIG. 7 is a plan view of FIG. It is an induced voltage waveform figure at the time of rotation of a rotor.

実施例2にかかる回転子11は、図5に示すように、実施例1のスリット20に加えて、その周方向内側に所定の磁路を介して、新たに2つのスリット18および16を両側に形成したものである。スリット20の構成については、実施例1で説明したため、重複説明を省略する。   As shown in FIG. 5, in the rotor 11 according to the second embodiment, two slits 18 and 16 are newly provided on both sides via a predetermined magnetic path in addition to the slit 20 according to the first embodiment. Is formed. Since the configuration of the slit 20 has been described in the first embodiment, a duplicate description is omitted.

スリット18は、図6に示すように、スリット20の周方向内側から磁路幅cだけ離れて、径方向に長く形成されている。また、スリット16は、スリット18の周方向内側から磁路幅bだけ離れて、径方向に長く形成されている。スリット20の作用は、実施例1で説明したように、ゼロクロス点を正確に検出できるようにするため、ゼロクロス点近傍における誘起電圧波形を正弦波状にするものである。そして、実施例2では、スリット20に加えてスリット18および16を追加することにより、ゼロクロス点近傍だけでなく、全電気角で誘起電圧波形をより滑らかな正弦波に近づけるため、外周部鉄心15の磁極部22中央に磁束を集中させ、両端の極間部24に行くに従って磁束を通り難くして、磁束の量を少なくするように配置する。   As shown in FIG. 6, the slit 18 is formed long in the radial direction, away from the inner side in the circumferential direction of the slit 20 by the magnetic path width c. Further, the slit 16 is formed long in the radial direction, away from the inner side in the circumferential direction of the slit 18 by the magnetic path width b. As described in the first embodiment, the action of the slit 20 is to make the induced voltage waveform in the vicinity of the zero cross point sinusoidal so that the zero cross point can be accurately detected. In the second embodiment, by adding the slits 18 and 16 in addition to the slit 20, the induced voltage waveform is brought closer to a smoother sine wave not only in the vicinity of the zero cross point but also at all electrical angles. The magnetic flux is concentrated at the center of the magnetic pole portion 22 and arranged so as to make it difficult to pass the magnetic flux as it goes to the interpolar portion 24 at both ends, thereby reducing the amount of magnetic flux.

例えば、図6に示すように、磁路の幅でスリットの位置を規定する場合は、外周部鉄心15の磁極部22中央の一定領域は、スリットの無い磁性部のみで形成され、外周部鉄心15の磁極部22寄りの第1スリットとしてのスリット16の間を磁路幅aとし、スリット16と第2スリットとしてのスリット18の間を磁路幅bとし、第3スリットとしてのスリット20とフラックスバリア12の間を磁路幅dとした場合に、a>b+c>dの関係にあるように規定する。また、スリット16の磁路幅a側を通過する磁束の一部が磁路幅b’を通って、磁路幅bの磁束と合流することを考慮した場合は、a>b+b’+c>dの関係にあるように規定することもできる。   For example, as shown in FIG. 6, when the position of the slit is defined by the width of the magnetic path, the constant region at the center of the magnetic pole portion 22 of the outer peripheral core 15 is formed only by the magnetic portion without the slit, and the outer peripheral core. 15 is a magnetic path width a between the slits 16 as the first slits near the magnetic pole portion 22, a magnetic path width b is between the slits 16 and the slits 18 as the second slits, and the slit 20 as the third slit. When the magnetic path width d is defined between the flux barriers 12, the relationship is defined as a> b + c> d. Further, when it is considered that a part of the magnetic flux passing through the magnetic path width a of the slit 16 passes through the magnetic path width b ′ and merges with the magnetic flux of the magnetic path width b, a> b + b ′ + c> d It can also be specified that the relationship is

さらに、各スリットの位置については、磁路を通過する磁束によって規定することも可能である。例えば、磁路幅aを通る磁束量を第1磁束量とし、スリット16とスリット18との間の磁路幅b,b’,cを通る磁束量を第2磁束量とし、スリット20とフラックスバリア12との間の磁路幅dを通る磁束量を第3磁束量とした場合に、第1磁束量>第2磁束量>第3磁束量の関係にあるように磁路幅を規定しても良い。   Further, the position of each slit can be defined by the magnetic flux passing through the magnetic path. For example, the amount of magnetic flux passing through the magnetic path width a is defined as the first magnetic flux amount, the amount of magnetic flux passing through the magnetic path widths b, b ′, c between the slit 16 and the slit 18 is defined as the second magnetic flux amount, and the slit 20 and the flux When the amount of magnetic flux passing through the magnetic path width d with the barrier 12 is the third magnetic flux amount, the magnetic path width is defined so that the relationship of first magnetic flux amount> second magnetic flux amount> third magnetic flux amount is satisfied. May be.

このように、実施例2における回転子2は、外周部鉄心15の磁極部22中央に磁束を集中させ、両端の極間部24に行くに従って磁束を通り難くし、磁束の量を少なくするように磁路幅を調整することにより、図7に示すように、図3よりも正弦波に近づけることが可能となったため、高調波成分とコギングトルクを低減できることから、回転子11の回転時における振動や騒音を低減することができると共に、鉄損による効率低下を改善することができる。   As described above, the rotor 2 according to the second embodiment concentrates the magnetic flux at the center of the magnetic pole portion 22 of the outer peripheral core 15, makes it difficult for the magnetic flux to pass as it goes to the interpolar portion 24 at both ends, and reduces the amount of magnetic flux. By adjusting the magnetic path width, as shown in FIG. 7, it becomes possible to make it closer to a sine wave than in FIG. 3, so that harmonic components and cogging torque can be reduced. Vibration and noise can be reduced, and efficiency reduction due to iron loss can be improved.

また、実施例2における回転子2は、実施例1と同様のスリット20が形成されているため、図7に示すように、ゼロクロス点Eにおける誘起電圧波形を立たせることができるようになり、誤検出することなくゼロクロス点を正確に検出することができるので、永久磁石電動機の回転制御を正確に行うことができる。   Further, since the rotor 2 in the second embodiment is formed with the slit 20 similar to that in the first embodiment, as shown in FIG. 7, the induced voltage waveform at the zero cross point E can be raised. Since the zero cross point can be accurately detected without erroneous detection, the rotation control of the permanent magnet motor can be accurately performed.

[実施例2と比較例との比較]
以下では、本実施例2における回転子の効果を検証するため、実施例2のスリット16およびスリット18の位置を変えずにスリット20とフラックスバリア12との間の磁路幅dを2倍の磁路幅eに変更した比較例を作成し、その効果を比較することにする。
[Comparison between Example 2 and Comparative Example]
In the following, in order to verify the effect of the rotor in the second embodiment, the magnetic path width d between the slit 20 and the flux barrier 12 is doubled without changing the positions of the slit 16 and the slit 18 in the second embodiment. A comparative example in which the magnetic path width e is changed is created and the effects are compared.

実施例2の回転子と比較する比較例の回転子の平面図であり、図9は、図8の回転子の外周部鉄心部分の拡大図であり、図10は、図8の回転子の回転時における誘起電圧波形図である。   FIG. 9 is a plan view of a rotor of a comparative example compared with the rotor of Example 2, FIG. 9 is an enlarged view of an outer peripheral core portion of the rotor of FIG. 8, and FIG. 10 is a view of the rotor of FIG. It is an induced voltage waveform figure at the time of rotation.

実施例2の比較例として作成した回転子13は、図8に示すように、フラックスバリア12に隣接したスリット21との磁路幅dを2倍の磁路幅eに変更したものであり、それ以外の構成については、実施例2の回転子11と同じであるため、重複説明を省略する。   The rotor 13 created as a comparative example of Example 2 is obtained by changing the magnetic path width d with the slit 21 adjacent to the flux barrier 12 to a double magnetic path width e as shown in FIG. Since it is the same as that of the rotor 11 of Example 2 about the structure other than that, duplication description is abbreviate | omitted.

スリット21の形状は、図9の拡大図に示すように、図6のスリット20と同じであるが、比較例の磁路幅eは実施例2の磁路幅dの2倍の幅になっている。このため、比較例の回転子13を永久磁石電動機の固定子に組み込んで回転させると、実施例2の磁路幅dを通り抜ける磁束量よりも磁路幅eを通り抜ける磁束量の方が多くなる。これにより、例えば図4に示すように、固定子に対する回転子の位置関係において、実施例2のスリット20の磁路幅dを通り抜けた磁束が流れ込むティース部32が、スロット38を境にしてティース部321から次のティース部322へ切り替わる場合と、比較例のスリット21の磁路幅eを通り抜けた磁束が流れ込むティース部32が、スロット38を境にしてティース部321から次のティース部322へ切り替わる場合とを比べると、磁路幅eを通る磁束は、磁束量が多いことから、磁極部22からティース部321に向かっていた磁束を徐々にティース部322へ向かうようにすることができない。その結果、実施例2の場合よりも比較例の方がゼロクロス点近傍における誘起電圧波形が正弦波状にならない。具体的には、図10に示すゼロクロス点G近傍における誘起電圧波形が正弦波状とならないのに対して、図7に示すゼロクロス点E近傍における誘起電圧波形の方が正弦波状になり、正確なゼロクロス点を検出できることがわかる。   The shape of the slit 21 is the same as the slit 20 of FIG. 6 as shown in the enlarged view of FIG. 9, but the magnetic path width e of the comparative example is twice the width of the magnetic path width d of the second embodiment. ing. For this reason, when the rotor 13 of the comparative example is incorporated and rotated in the stator of the permanent magnet motor, the amount of magnetic flux passing through the magnetic path width e is larger than the amount of magnetic flux passing through the magnetic path width d of the second embodiment. . As a result, for example, as shown in FIG. 4, in the positional relationship of the rotor with respect to the stator, the tooth portion 32 into which the magnetic flux that has passed through the magnetic path width d of the slit 20 of the second embodiment flows flows with the slot 38 as a boundary. When switching from the part 321 to the next tooth part 322, the tooth part 32 into which the magnetic flux that has passed through the magnetic path width e of the slit 21 of the comparative example flows flows from the tooth part 321 to the next tooth part 322 with the slot 38 as a boundary. Compared with the case of switching, the magnetic flux passing through the magnetic path width e has a large amount of magnetic flux, so that the magnetic flux that has been directed from the magnetic pole part 22 toward the tooth part 321 cannot be gradually directed toward the tooth part 322. As a result, the induced voltage waveform in the vicinity of the zero cross point is not a sine wave in the comparative example than in the second embodiment. Specifically, the induced voltage waveform in the vicinity of the zero cross point G shown in FIG. 10 does not have a sine wave shape, whereas the induced voltage waveform in the vicinity of the zero cross point E shown in FIG. It can be seen that the points can be detected.

このように、実施例2と比較例との回転子の構成の違いは、スリット20あるいは21とフラックスバリア12との磁路幅の違いだけであるため、このスリット20あるいは21とフラックスバリア12との磁路幅がゼロクロス点における誘起電圧波形の傾きに影響していることは明らかである。   Thus, since the difference in the configuration of the rotor between Example 2 and the comparative example is only the difference in the magnetic path width between the slit 20 or 21 and the flux barrier 12, the slit 20 or 21 and the flux barrier 12 It is clear that the magnetic path width of A has an effect on the slope of the induced voltage waveform at the zero cross point.

以上のように構成された実施例1および実施例2にかかる回転子は、永久磁石電動機の固定子内に組み込まれ、180度正弦波通電で駆動する場合に、誘起電圧の高調波成分を低減することで、トルクリップルが低減され、回転時における振動や騒音を低減すると共に、鉄損の低減効果により高い効率の永久磁石電動機とすることができる。また、120度矩形波通電で駆動する場合は、誘起電圧の高調波成分を低減することで、ゼロクロスポイントの検知が容易になり、誤検知を抑制することができる永久磁石電動機とすることができる。   The rotors according to the first and second embodiments configured as described above are incorporated in the stator of a permanent magnet motor, and reduce the harmonic components of the induced voltage when driven by 180-degree sine wave energization. As a result, torque ripple is reduced, vibration and noise during rotation are reduced, and a highly efficient permanent magnet motor can be obtained due to the effect of reducing iron loss. Moreover, when driving with 120-degree rectangular wave energization, by reducing the harmonic component of the induced voltage, detection of the zero cross point is facilitated, and a permanent magnet motor that can suppress false detection can be obtained. .

以上のように、本発明にかかる電動機は、正確な回転制御を行うことが可能なコンプレッサー用のモータ等に用いる回転子および永久磁石電動機として有用である。   As described above, the electric motor according to the present invention is useful as a rotor and a permanent magnet electric motor used for a compressor motor or the like capable of performing accurate rotation control.

10、11、13 回転子
12 フラックスバリア(非磁性部)
14 永久磁石
15 外周部鉄心
16、18、20、21 スリット
22 磁極部
24 極間部
26 回転子軸
32 ティース部
34 ヨーク部
36 固定子
38 スロット
40 ティース先端面
a、b、b‘、c、d、e 磁路幅





















10, 11, 13 Rotor 12 Flux barrier (non-magnetic part)
14 Permanent magnet 15 Outer peripheral iron core 16, 18, 20, 21 Slit
22 Magnetic pole part 24 Inter-polar part 26 Rotor shaft 32 Teeth part 34 Yoke part 36 Stator 38 Slot 40 Teeth tip surface a, b, b ', c, d, e Magnetic path width





















Claims (4)

磁性体により円柱状に形成され、板状の永久磁石が埋め込まれる磁石埋め込み孔が環状に所定間隔で形成された回転子であって、
前記磁石埋め込み孔に埋め込まれた永久磁石と、
前記磁石埋め込み孔の周方向両端部に形成された磁束短絡防止用の非磁性部と、
前記磁石埋め込み孔の外周側に形成された外周部鉄心と、
前記外周部鉄心の両端の前記非磁性部から周方向内側へ、前記外周部鉄心の板厚に相当する幅の磁性部からなる磁路を介して、径方向に細長い形状の貫通孔が前記非磁性部と平行に形成されたスリットと、
を備えたことを特徴とする回転子。
A rotor in which magnet-embedding holes, which are formed in a cylindrical shape by a magnetic body and in which plate-like permanent magnets are embedded, are annularly formed at predetermined intervals,
A permanent magnet embedded in the magnet embedding hole;
A nonmagnetic portion for preventing magnetic flux short circuit formed at both circumferential ends of the magnet embedding hole;
An outer peripheral core formed on the outer peripheral side of the magnet embedding hole;
Through holes that are elongated in the radial direction from the non-magnetic portions at both ends of the outer peripheral portion iron core to the inner side in the circumferential direction through magnetic paths having magnetic portions having a width corresponding to the plate thickness of the outer peripheral iron core. A slit formed in parallel with the magnetic part;
A rotor characterized by comprising:
前記スリットから径方向外側の磁路の幅をd’とした場合に、d’が前記磁性部の板厚に相当する幅で形成されていることを特徴とする請求項1に記載の回転子。   2. The rotor according to claim 1, wherein d ′ is formed with a width corresponding to a plate thickness of the magnetic part, where d ′ is a width of a magnetic path radially outward from the slit. . 前記スリットの径方向の長さをLsとし、前記非磁性部の径方向外側端部までの径方向の長さをLfとした場合に、次式(1)の関係にあることを特徴とする請求項1または2に記載の回転子。
Ls>Lf/2 ……(1)
When the length in the radial direction of the slit is Ls and the length in the radial direction to the radially outer end of the nonmagnetic portion is Lf, the relationship is expressed by the following formula (1). The rotor according to claim 1 or 2.
Ls> Lf / 2 (1)
請求項1〜3のいずれか一項に記載の回転子と、
前記回転子が内部に配置され、環状のヨーク部から内方に延びるティース部のティース先端面が、前記回転子の前記磁極部又は前記極間部の少なくとも1つと同一距離を隔てて対向する集中巻の固定子と、
を備えていることを特徴とする永久磁石電動機。
























The rotor according to any one of claims 1 to 3,
The rotor is disposed inside, and a tooth tip surface of a tooth portion extending inwardly from an annular yoke portion is concentrated opposite to at least one of the magnetic pole portion or the inter-pole portion of the rotor at the same distance. A winding stator,
A permanent magnet electric motor comprising:
























JP2011080061A 2011-03-31 2011-03-31 Rotor and permanent magnet motor Active JP5811566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011080061A JP5811566B2 (en) 2011-03-31 2011-03-31 Rotor and permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080061A JP5811566B2 (en) 2011-03-31 2011-03-31 Rotor and permanent magnet motor

Publications (2)

Publication Number Publication Date
JP2012217250A true JP2012217250A (en) 2012-11-08
JP5811566B2 JP5811566B2 (en) 2015-11-11

Family

ID=47269515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080061A Active JP5811566B2 (en) 2011-03-31 2011-03-31 Rotor and permanent magnet motor

Country Status (1)

Country Link
JP (1) JP5811566B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986259A (en) * 2013-02-07 2014-08-13 本田技研工业株式会社 Rotor for rotary electric machine
WO2019142776A1 (en) * 2018-01-18 2019-07-25 ミネベアミツミ株式会社 Stator structure and resolver
JP2019126241A (en) * 2018-01-18 2019-07-25 ミネベアミツミ株式会社 Stator structure and resolver
WO2020213081A1 (en) * 2019-04-17 2020-10-22 三菱電機株式会社 Rotor, motor, compressor, and air conditioner
WO2022044090A1 (en) * 2020-08-24 2022-03-03 株式会社 東芝 Rotor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004307A1 (en) * 2003-07-04 2005-01-13 Daikin Industries, Ltd. Motor
WO2008102439A1 (en) * 2007-02-21 2008-08-28 Mitsubishi Electric Corporation Permanent magnet synchronous motor and enclosed compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005004307A1 (en) * 2003-07-04 2005-01-13 Daikin Industries, Ltd. Motor
WO2008102439A1 (en) * 2007-02-21 2008-08-28 Mitsubishi Electric Corporation Permanent magnet synchronous motor and enclosed compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103986259A (en) * 2013-02-07 2014-08-13 本田技研工业株式会社 Rotor for rotary electric machine
CN103986259B (en) * 2013-02-07 2016-08-31 本田技研工业株式会社 The rotor of electric rotating machine
WO2019142776A1 (en) * 2018-01-18 2019-07-25 ミネベアミツミ株式会社 Stator structure and resolver
JP2019126241A (en) * 2018-01-18 2019-07-25 ミネベアミツミ株式会社 Stator structure and resolver
JP7026529B2 (en) 2018-01-18 2022-02-28 ミネベアミツミ株式会社 Stator structure and resolver
US11626784B2 (en) 2018-01-18 2023-04-11 Minebea Mitsumi Inc. Stator structure and resolver
US11811281B2 (en) 2018-01-18 2023-11-07 Minebea Mitsumi Inc. Stator structure and resolver
WO2020213081A1 (en) * 2019-04-17 2020-10-22 三菱電機株式会社 Rotor, motor, compressor, and air conditioner
JPWO2020213081A1 (en) * 2019-04-17 2021-10-14 三菱電機株式会社 Rotors, motors, compressors, and air conditioners
JP7204897B2 (en) 2019-04-17 2023-01-16 三菱電機株式会社 Rotors, motors, compressors, and air conditioners
WO2022044090A1 (en) * 2020-08-24 2022-03-03 株式会社 東芝 Rotor
JPWO2022044090A1 (en) * 2020-08-24 2022-03-03

Also Published As

Publication number Publication date
JP5811566B2 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP5811565B2 (en) Rotor and permanent magnet motor
JP5774081B2 (en) Rotating electric machine
JP5811567B2 (en) Rotor and permanent magnet motor
CN108352744B (en) Permanent magnet motor
JP2008206308A (en) Permanent-magnet rotating electric machine
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP5811566B2 (en) Rotor and permanent magnet motor
US9564780B2 (en) Rotary electric machine and rotor
JP2017079530A (en) Synchronous reluctance motor
JP2018011466A (en) Permanent-magnet embedded synchronous machine
JP7461967B2 (en) Rotating electric machines, rotors and electromagnetic steel sheets
JPWO2020194390A1 (en) Rotating machine
WO2013065275A1 (en) Rotor for motor and motor provided with same
JP5621372B2 (en) Permanent magnet embedded rotor and rotating electric machine
JP5621373B2 (en) Permanent magnet embedded rotor and rotating electric machine
JP2015195650A (en) Rotor structure of magnet embedded rotary electric machine
JP2010233308A (en) Synchronous motor
JPWO2017168751A1 (en) Sensor magnet, rotor, electric motor, and air conditioner
JP2012023855A (en) Permanent magnet embedded rotor and rotary electric machine
JP2005039909A (en) Permanent magnet embedded type motor
JP6294720B2 (en) Permanent magnet motor
JP6001428B2 (en) Rotor and brushless motor
JP2014161206A (en) Interior magnet type rotating electrical machine
JP2015231253A (en) Magnet and dynamo-electric machine including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R151 Written notification of patent or utility model registration

Ref document number: 5811566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151