JP7461967B2 - Rotating electric machines, rotors and electromagnetic steel sheets - Google Patents

Rotating electric machines, rotors and electromagnetic steel sheets Download PDF

Info

Publication number
JP7461967B2
JP7461967B2 JP2021561205A JP2021561205A JP7461967B2 JP 7461967 B2 JP7461967 B2 JP 7461967B2 JP 2021561205 A JP2021561205 A JP 2021561205A JP 2021561205 A JP2021561205 A JP 2021561205A JP 7461967 B2 JP7461967 B2 JP 7461967B2
Authority
JP
Japan
Prior art keywords
hole
slit
rotor core
permanent magnets
perpendicular bisector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021561205A
Other languages
Japanese (ja)
Other versions
JPWO2021106395A1 (en
Inventor
元基 浦辺
基道 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Publication of JPWO2021106395A1 publication Critical patent/JPWO2021106395A1/ja
Application granted granted Critical
Publication of JP7461967B2 publication Critical patent/JP7461967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Description

開示の実施形態は、回転電機、回転子及び電磁鋼板に関する。 The disclosed embodiments relate to a rotating electric machine, a rotor, and an electromagnetic steel sheet.

特許文献1には、ロータコアの永久磁石の長手方向端部の外周側に空隙群を設けた、回転電機のロータコアが開示されている。Patent document 1 discloses a rotor core for a rotating electric machine in which a group of gaps is provided on the outer periphery of the longitudinal ends of the permanent magnets of the rotor core.

国際公開WO2013/153917International Publication WO2013/153917

例えばエンコーダを用いることなく回転子の回転方向位置を検出する場合、検出精度を向上し良好な制御性を得るためには、突極比(=q軸方向のインダクタンス/d軸方向のインダクタンス)をなるべく大きくする必要がある。上記従来技術では、上記空隙群における各空隙の配置に工夫することで、q軸方向のインダクタンスをある程度大きくすることができるが、さらなる突極比の向上が望まれている。For example, when detecting the rotational position of a rotor without using an encoder, it is necessary to increase the saliency ratio (= inductance in the q-axis direction/inductance in the d-axis direction) as much as possible to improve detection accuracy and obtain good controllability. In the above-mentioned conventional technology, the inductance in the q-axis direction can be increased to a certain extent by devising an arrangement of each gap in the above-mentioned gap group, but further improvement of the saliency ratio is desired.

本発明はこのような問題点に鑑みてなされたものであり、突極比を向上することができる回転電機、回転子及び電磁鋼板を提供することを目的とする。 The present invention has been made in consideration of these problems, and aims to provide a rotating electric machine, rotor, and electromagnetic steel sheet that can improve the salient pole ratio.

上記課題を解決するため、本発明の一の観点によれば、回転子鉄心と、前記回転子鉄心に埋め込まれた複数の永久磁石と、を有し、前記回転子鉄心は、前記複数の永久磁石の配置に応じて周方向の複数個所に形成された複数の磁極部を備え、前記複数の永久磁石は、前記回転子鉄心の軸方向に垂直な横断面において略V字状に配置された一対の前記永久磁石を複数対含み、前記磁極部は、前記一対の永久磁石の間に形成されている、回転電機であって、前記回転子鉄心のうち前記一対の永久磁石のうち一方の永久磁石と他方の永久磁石との間に設けられ、前記回転子鉄心を前記軸方向に貫通し、前記横断面における断面形状が前記周方向に略平行となるスリットを有し、前記回転子鉄心の軸心から前記磁極部の中心方向に延びる軸をd軸、前記中心方向と電気角において90°ずれた方向に延びる軸をq軸とした場合に、前記一対の永久磁石及び前記スリットは、前記横断面における前記一方の永久磁石と前記他方の永久磁石との間の領域に前記回転電機のトルク電流によるq軸磁束が通過するように構成されている回転電機が適用される。In order to solve the above problems, according to one aspect of the present invention, there is provided a rotating electric machine having a rotor core and a plurality of permanent magnets embedded in the rotor core, the rotor core having a plurality of magnetic pole portions formed at a plurality of locations in the circumferential direction according to the arrangement of the plurality of permanent magnets, the plurality of permanent magnets including a plurality of pairs of the permanent magnets arranged in a substantially V-shape in a cross section perpendicular to the axial direction of the rotor core, the magnetic pole portions being formed between the pair of permanent magnets, and The rotor core has a slit disposed between one of the permanent magnets, the slit penetrating the rotor core in the axial direction and having a cross-sectional shape in the cross section that is approximately parallel to the circumferential direction, and when an axis extending from the axis of the rotor core toward the center of the magnetic pole portion is defined as a d-axis and an axis extending in a direction shifted by 90° in electrical angle from the central direction is defined as a q-axis, the pair of permanent magnets and the slit are configured such that a q-axis magnetic flux due to the torque current of the rotating electric machine passes through the region between the one permanent magnet and the other permanent magnet in the cross section.

また、上記課題を解決するため、本発明の別の観点によれば、回転子鉄心と、前記回転子鉄心に埋め込まれた複数の永久磁石と、を有し、前記回転子鉄心は、前記複数の永久磁石の配置に応じて周方向の複数個所に形成された複数の磁極部を備え、前記複数の永久磁石は、前記回転子鉄心の軸方向に垂直な横断面において略V字状に配置された一対の前記永久磁石を複数対含み、前記磁極部は、前記一対の永久磁石の間に形成されている、回転電機であって、前記横断面における、前記一対の永久磁石のうち一方の永久磁石の第1垂直二等分線と、前記一対の永久磁石のうち他方の永久磁石の第2垂直二等分線と、の交点が、前記回転子鉄心の内部又は外周部に位置し、前記一方の永久磁石と前記他方の永久磁石との間に、前記回転子鉄心を前記軸方向に貫通するとともに前記横断面における断面形状が前記周方向に略平行となるスリットを設けた回転電機が適用される。In addition, in order to solve the above problem, according to another aspect of the present invention, a rotating electric machine is provided that has a rotor core and a plurality of permanent magnets embedded in the rotor core, the rotor core having a plurality of magnetic pole portions formed at a plurality of locations in the circumferential direction according to the arrangement of the plurality of permanent magnets, the plurality of permanent magnets including a pair of the permanent magnets arranged in a substantially V-shape in a cross section perpendicular to the axial direction of the rotor core, the magnetic pole portions being formed between the pair of permanent magnets, the intersection of a first perpendicular bisector of one of the pair of permanent magnets and a second perpendicular bisector of the other of the pair of permanent magnets in the cross section being located inside or on the outer periphery of the rotor core, and a slit is provided between the one permanent magnet and the other permanent magnet that penetrates the rotor core in the axial direction and has a cross-sectional shape in the cross section that is substantially parallel to the circumferential direction.

また、上記課題を解決するため、本発明のさらに別の観点によれば、複数の永久磁石がそれぞれ埋め込まれる複数の埋め込み孔を備えるとともにそれら複数の埋め込み孔の配置に応じて周方向の複数個所に形成された複数の磁極部を備え、かつ、前記複数の埋め込み孔が、略V字状に配置される一対の埋め込み孔を複数対含む、回転鉄心を形成するために用いられる薄肉円盤状の電磁鋼板であって、前記一対の埋め込み孔のうち一方の埋め込み孔と他方の埋め込み孔との間に設けられ、前記周方向に略平行となるスリット孔を有し、前記電磁鋼板の軸心から前記磁極部の中心方向に延びる軸をd軸、前記中心方向と電気角において90°ずれた方向に延びる軸をq軸とした場合に、前記一対の埋め込み孔及び前記スリット孔は、前記一方の埋め込み孔と前記他方の埋め込み孔との間の領域に前記回転鉄心を備えた回転電機のトルク電流によるq軸磁束が通過するように構成されている電磁鋼板が適用される。In addition, in order to solve the above-mentioned problems, according to yet another aspect of the present invention, there is provided a thin-walled, disk-shaped electromagnetic steel sheet used to form a rotating core, the thin-walled, disk-shaped electromagnetic steel sheet having a plurality of embedded holes into which a plurality of permanent magnets are respectively embedded, and a plurality of magnetic pole portions formed at a plurality of locations in the circumferential direction according to the arrangement of the plurality of embedded holes, the plurality of embedded holes including a plurality of pairs of embedded holes arranged in a substantially V-shape, the plurality of embedded holes having a slit hole provided between one embedded hole and the other embedded hole of the pair of embedded holes and substantially parallel to the circumferential direction, the d-axis being an axis extending from the axis of the electromagnetic steel sheet toward the center of the magnetic pole portions, and the q-axis being an axis extending in a direction shifted by 90° in electrical angle from the central direction, the pair of embedded holes and the slit hole are configured such that a q-axis magnetic flux due to the torque current of a rotating electric machine having the rotating core passes through the region between the one embedded hole and the other embedded hole.

また、上記課題を解決するため、本発明のさらに別の観点によれば、複数の永久磁石がそれぞれ埋め込まれる複数の埋め込み孔を備えるとともにそれら複数の埋め込み孔の配置に応じて周方向の複数個所に形成された複数の磁極部を備え、かつ、前記複数の埋め込み孔が、略V字状に配置される一対の埋め込み孔を複数対含む、回転鉄心を形成するために用いられる薄肉円盤状の電磁鋼板であって、前記一対の埋め込み孔のうち一方の埋め込み孔の第1垂直二等分線と、前記一対の埋め込み孔のうち他方の埋め込み孔の第2垂直二等分線と、の交点が、前記電磁鋼板の内部又は外周部に位置し、前記一方の埋め込み孔と前記他方の埋め込み孔との間に、前記周方向に略平行となるスリット孔を設けた電磁鋼板が適用される。In addition, in order to solve the above-mentioned problems, according to yet another aspect of the present invention, a thin-walled, disk-shaped electromagnetic steel sheet used to form a rotating core is provided with a plurality of embedded holes into which a plurality of permanent magnets are respectively embedded, and a plurality of magnetic pole portions formed at a plurality of locations in the circumferential direction according to the arrangement of the plurality of embedded holes, and the plurality of embedded holes include a plurality of pairs of embedded holes arranged in a substantially V-shape, in which the intersection of a first perpendicular bisector of one of the pair of embedded holes and a second perpendicular bisector of the other of the pair of embedded holes is located inside or on the outer periphery of the electromagnetic steel sheet, and a slit hole that is substantially parallel to the circumferential direction is provided between the one embedded hole and the other embedded hole.

本発明によれば、突極比を向上することができる。 According to the present invention, the salient pole ratio can be improved.

一実施形態の回転電機の外観の一例を表す側面図である。1 is a side view illustrating an example of an appearance of a rotating electric machine according to an embodiment; 図1中のA方向から見た矢視図である。2 is a view taken along the arrow A in FIG. 1 . 回転電機の内部構造の一例を表す一部破断側面図である。1 is a partially cutaway side view illustrating an example of an internal structure of a rotating electric machine. 回転電機の磁極部分の構造の一例を表す、図3中のIV-IV断面による横断面図である。4 is a cross-sectional view taken along line IV-IV in FIG. 3, showing an example of the structure of a magnetic pole portion of a rotating electric machine. 回転子の全体構造の一例を表す側面図である。FIG. 2 is a side view illustrating an example of the overall structure of a rotor. 回転子鉄心の構造の一例を表す横断面図である。FIG. 2 is a cross-sectional view showing an example of a structure of a rotor core. 回転子鉄心の要部構造を表す、図6の部分拡大図である。7 is a partially enlarged view of FIG. 6 showing the structure of a main part of a rotor core. スリットを設けない比較例における、永久磁石及びその周辺におけるq軸磁束の磁束密度の分布を表す説明図である。FIG. 11 is an explanatory diagram showing the distribution of magnetic flux density of the q-axis magnetic flux in and around a permanent magnet in a comparative example in which no slits are provided. スリットを設けない比較例における、永久磁石及びその周辺における代表的な磁束線の流れを模式化した説明図である。FIG. 11 is an explanatory diagram illustrating a typical flow of magnetic flux lines in and around a permanent magnet in a comparative example in which no slits are provided. 一実施形態における、永久磁石及びその周辺におけるq軸磁束の磁束密度の分布を表す説明図である。FIG. 4 is an explanatory diagram illustrating the distribution of magnetic flux density of q-axis magnetic flux in and around a permanent magnet in one embodiment. 一実施形態における、永久磁石及びその周辺における代表的な磁束線の流れを模式化した説明図である。FIG. 2 is a schematic explanatory diagram illustrating typical magnetic flux lines in and around a permanent magnet according to one embodiment. 別の形状のスリットを設けた変形例における、回転子鉄心の要部構造を表す横断面図である。13 is a cross-sectional view showing a main structure of a rotor core in a modified example in which slits of a different shape are provided. FIG. さらに別の形状のスリットを設けた変形例における、回転子鉄心の要部構造を表す横断面図である。13 is a cross-sectional view showing a main structure of a rotor core in a modified example in which slits of yet another shape are provided. FIG.

以下、一実施形態について図面を参照しつつ説明する。 One embodiment will be described below with reference to the drawings.

<回転電機の全体構成>
まず、図1、図2、図3、図4、及び図5を用いて、実施形態に係る回転電機1の構成について説明する。図1~図3に示すように、回転電機1は、いわゆるインバータ一体型の回転電機として構成されており、本体部100と、インバータ部300と、を有している。なお、このようなインバータ一体型のものではなく、インバータとは分離独立した回転電機としてもよい。また回転電機1は、モータとして使用されてもよいし、発電機として使用されてもよい。
<Overall configuration of rotating electric machine>
First, the configuration of a rotating electric machine 1 according to an embodiment will be described with reference to Figures 1, 2, 3, 4, and 5. As shown in Figures 1 to 3, the rotating electric machine 1 is configured as a so-called inverter-integrated rotating electric machine, and has a main body section 100 and an inverter section 300. Note that instead of such an inverter-integrated type, the rotating electric machine may be a rotating electric machine that is separate and independent from the inverter. The rotating electric machine 1 may be used as a motor or a generator.

<本体部>
図3に示すように、本体部100は、固定子2と回転子3とを備え、この例では、回転子3を固定子2の内側に備えたインナーロータ型のモータである。また当該回転電機1は、エンコーダなどの機械的なセンサを用いずに、電気的な処理によってその磁極位置を検出、制御するいわゆるセンサレス制御用の例えば3相交流モータである。
<Main body>
3, the main body 100 includes a stator 2 and a rotor 3, and in this example, is an inner rotor type motor with the rotor 3 inside the stator 2. The rotating electric machine 1 is, for example, a three-phase AC motor for so-called sensorless control, which detects and controls the magnetic pole position by electrical processing without using a mechanical sensor such as an encoder.

図3及び図4に示すように、固定子2は、回転子3と径方向に対向するように、フレーム4の内周面に円筒状のヨーク(図示省略)を介して設けられている。この固定子2は、固定子鉄心5と、固定子鉄心5に装着されたボビン6と、ボビン6に巻回されたコイル7とを有している。ボビン6は、固定子鉄心5とコイル7とを電気的に絶縁するために、絶縁性材料で構成されている。なお、フレーム4は、冷却のための冷却孔(図示省略)を設けてもよい。 As shown in Figures 3 and 4, the stator 2 is provided on the inner peripheral surface of the frame 4 via a cylindrical yoke (not shown) so as to face the rotor 3 in the radial direction. The stator 2 has a stator core 5, a bobbin 6 attached to the stator core 5, and a coil 7 wound around the bobbin 6. The bobbin 6 is made of an insulating material to electrically insulate the stator core 5 from the coil 7. The frame 4 may be provided with cooling holes (not shown) for cooling.

回転子3は、シャフト10の外周面に設けられている。シャフト10は、フレーム4の負荷側(図1中右側)に設けられた負荷側ブラケット11に外輪が嵌合された負荷側軸受12と、フレーム4の反負荷側(負荷側の反対側。図1中左側)に設けられた反負荷側ブラケット13に外輪が嵌合された反負荷側軸受14とにより回転自在に支持されている。また、図4に示すように回転子3は、回転子鉄心20と、回転子鉄心20に複数設けられた永久磁石21と、を備えている。The rotor 3 is provided on the outer circumferential surface of the shaft 10. The shaft 10 is rotatably supported by a load side bearing 12 having an outer ring fitted to a load side bracket 11 provided on the load side (right side in FIG. 1) of the frame 4, and a counter-load side bearing 14 having an outer ring fitted to a counter-load side bracket 13 provided on the counter-load side (opposite the load side; left side in FIG. 1) of the frame 4. As shown in FIG. 4, the rotor 3 includes a rotor core 20 and a plurality of permanent magnets 21 provided on the rotor core 20.

<インバータ部>
図3に示すように、インバータ部300は、ケーシング301と、ケーシング301内に設けられ、インバータ回路を備えるインバータ本体302と、カバー304と、を有している。上記インバータ回路は、適宜の交流電源から三相交流電流を生成し、本体部100へと供給する。
<Inverter section>
3, the inverter unit 300 includes a casing 301, an inverter main body 302 provided in the casing 301 and including an inverter circuit, and a cover 304. The inverter circuit generates a three-phase AC current from an appropriate AC power source and supplies the three-phase AC current to the main body 100.

なお、インバータ部300と本体部100との間には、冷却用のファン150が設けられている。ファン150が回転すると、カバー304から空気が取り込まれてインバータ部300を冷却し、固定子2の外周側を冷却して負荷側ブラケット11から排出される。A cooling fan 150 is provided between the inverter unit 300 and the main body unit 100. When the fan 150 rotates, air is taken in through the cover 304 to cool the inverter unit 300, cool the outer periphery of the stator 2, and is discharged from the load side bracket 11.

<固定子鉄心>
固定子鉄心5は、この例では、略円環状の電磁鋼板を厚さ方向(シャフト10の軸方向)に複数枚積層した積層体により構成されている。図4に示すように、固定子鉄心5は、円筒状の上記ヨークと、このヨークの内周側に等間隔に配置された複数(図示する例では12個)のティース18と、を備えている。各ティース18は、円筒状のヨークより内周側に突出するように設けられた本体部18aと、その本体部18aの内周側基部に位置し周方向の寸法が本体部18aよりも拡大された拡幅部18bと、を有する。
<Stator core>
In this example, the stator core 5 is formed of a laminated body in which a plurality of substantially annular electromagnetic steel sheets are stacked in the thickness direction (axial direction of the shaft 10). As shown in Fig. 4, the stator core 5 includes the cylindrical yoke and a plurality of teeth 18 (12 in the illustrated example) equally spaced on the inner periphery side of the yoke. Each tooth 18 has a main body portion 18a provided so as to protrude from the cylindrical yoke to the inner periphery side, and an expanded portion 18b located at the base of the inner periphery side of the main body portion 18a and having a circumferential dimension larger than that of the main body portion 18a.

拡幅部18bは、隣り合うティース18,18同士で相互に連結されている。つまり、固定子鉄心5は、円筒状の上記ヨークと、拡幅部18bが連結されることにより円筒状に連結された複数のティース18とが、分離するように構成される。固定子2は、コイル7が集中巻きで巻回されたボビン6を各ティース18に装着し、円筒状に連結された複数のティース18をヨークの内周に固定することで、組立てられる。上記の円筒状の複数のティース18をヨークに固定することにより組み立てられた固定子2は、フレーム4の内周面に取り付けられる。その後、樹脂が圧入され、ボビン6やコイル7等が樹脂でモールドされる。The widened portions 18b connect adjacent teeth 18, 18 to each other. In other words, the stator core 5 is configured such that the cylindrical yoke and the multiple teeth 18 connected in a cylindrical shape by connecting the widened portions 18b are separated. The stator 2 is assembled by attaching the bobbins 6 around which the coils 7 are wound in a concentrated manner to each tooth 18 and fixing the multiple teeth 18 connected in a cylindrical shape to the inner circumference of the yoke. The stator 2 assembled by fixing the multiple cylindrical teeth 18 to the yoke is attached to the inner circumference of the frame 4. Resin is then pressed in, and the bobbins 6, coils 7, etc. are molded with resin.

<回転子鉄心>
図5に示すように、回転子鉄心20は、この例では、薄肉円盤状(略円環状)の電磁鋼板20Aを厚さ方向(シャフト10の軸方向)に複数枚積層した積層体により構成されている。回転子鉄心20は、図4に示すように、複数の永久磁石21の配置に応じて周方向(回転方向)の複数箇所に形成された複数の磁極部55(この例では8箇所)を外周部に有している。これにより、本実施形態の回転電機1は、いわゆる8P12S(8極12スロット)のスロットコンビネーション構成となっている。但し、回転電機1のスロットコンビネーション構成は上記以外でもよい。
<Rotor core>
As shown in Fig. 5, in this example, the rotor core 20 is formed of a laminated body in which a plurality of thin disk-shaped (approximately annular) electromagnetic steel sheets 20A are laminated in the thickness direction (axial direction of the shaft 10). As shown in Fig. 4, the rotor core 20 has a plurality of magnetic pole portions 55 (eight in this example) formed at a plurality of locations in the circumferential direction (rotation direction) according to the arrangement of the plurality of permanent magnets 21 on the outer periphery. As a result, the rotating electric machine 1 of this embodiment has a so-called 8P12S (8 poles, 12 slots) slot combination configuration. However, the slot combination configuration of the rotating electric machine 1 may be other than the above.

<磁極部>
次に、図6及び図7を用いて、各磁極部55の構成の一例について説明する。図6において、回転子鉄心20は、いわゆるIPM型(Internal Permanent Magnet)である。すなわち、回転子鉄心20(言い替えれば電磁鋼板20A、以下同様)には、各永久磁石21を埋め込み配置するための複数の埋め込み孔71が形成されている。詳細には、回転子鉄心20の軸方向に垂直な方向の断面(以下、軸直交断面という)において、外周側に向けて開いた態様の略V字状に配置された一対の埋め込み孔71,71(それぞれ第1穴の一例、第2穴の一例に相当)が、回転子鉄心20の外周部に複数対、形成されている。このとき、各対の埋め込み孔71,71は、上記略V字状の下端部に位置する連通孔72(空隙の一例)を介し互いに連通している。すなわち、それら埋め込み孔71,71及び連通孔72が後述のスリット200とともに打ち抜き加工等によって形成された電磁鋼板20Aが積層されることにより、回転子鉄心20が形成されている。
<Magnetic pole part>
Next, an example of the configuration of each magnetic pole portion 55 will be described with reference to Fig. 6 and Fig. 7. In Fig. 6, the rotor core 20 is a so-called IPM type (Internal Permanent Magnet). That is, the rotor core 20 (in other words, the electromagnetic steel sheet 20A, the same applies below) is formed with a plurality of embedding holes 71 for embedding and arranging each permanent magnet 21. In detail, in a cross section perpendicular to the axial direction of the rotor core 20 (hereinafter referred to as an axial cross section), a pair of embedding holes 71, 71 (corresponding to an example of a first hole and an example of a second hole, respectively) arranged in a substantially V-shape that opens toward the outer periphery are formed in a plurality of pairs on the outer periphery of the rotor core 20. At this time, each pair of embedding holes 71, 71 communicates with each other via a communication hole 72 (an example of an air gap) located at the lower end of the substantially V-shape. That is, the rotor core 20 is formed by stacking electromagnetic steel sheets 20A in which the embedding holes 71, 71 and the communication holes 72 are formed by punching or the like together with the slits 200 described below.

永久磁石21は、例えば略矩形形状に形成されており、その大きさ(軸直交断面での断面積)は、埋め込み孔71の大きさ(軸直交断面での断面積)とほぼ同じである。永久磁石21は、上記埋め込み孔71にそれぞれ軸方向に挿入され、接着剤により固定されて埋め込み配置される。この結果、回転子鉄心20において、外周側に向けて開いた態様の略V字状に配置された一対の永久磁石21,21が、回転子鉄心20の外周部に複数対埋め込まれて配置される。そして、回転子鉄心20のうち略V字状に配置された一対の永久磁石21,21の間に挟まれた領域(V字の内周角領域)が磁極部55となる。この例では、上記略V字状の配置において、V字を構成する2辺のなす角度が比較的小さい、深いV字形状となっている。その結果、上記軸直交断面において、例えば図7中の左側に示す永久磁石21L(一方の永久磁石の一例)の垂直二等分線H1(第1垂直二等分線の一例)と、図7中の右側に示す永久磁石21R(他方の永久磁石の一例)の垂直二等分線H2(第2垂直二等分線の一例)との交点Cが、回転子鉄心20の内部(円弧面55aよりも径方向内側)に位置している。なお、交点Cは、回転子鉄心20の外周部(円弧面55a上)に位置していてもよい。The permanent magnet 21 is formed, for example, in a substantially rectangular shape, and its size (cross-sectional area in a cross section perpendicular to the axis) is substantially the same as the size (cross-sectional area in a cross section perpendicular to the axis) of the embedding hole 71. The permanent magnet 21 is inserted axially into each of the embedding holes 71, fixed with adhesive, and embedded. As a result, in the rotor core 20, a pair of permanent magnets 21, 21 arranged in a substantially V-shape that opens toward the outer periphery is embedded in multiple pairs on the outer periphery of the rotor core 20. The region (the inner circumferential angle region of the V-shape) between the pair of permanent magnets 21, 21 arranged in a substantially V-shape of the rotor core 20 becomes the magnetic pole portion 55. In this example, in the substantially V-shape arrangement, the angle between the two sides constituting the V-shape is relatively small, resulting in a deep V-shape. As a result, in the above-mentioned axially orthogonal cross section, for example, an intersection C between a perpendicular bisector H1 (an example of a first perpendicular bisector) of the permanent magnet 21L (an example of one permanent magnet) shown on the left side of Fig. 7 and a perpendicular bisector H2 (an example of a second perpendicular bisector) of the permanent magnet 21R (an example of the other permanent magnet) shown on the right side of Fig. 7 is located inside the rotor core 20 (radially inward from the arc surface 55a). Note that the intersection C may be located on the outer periphery of the rotor core 20 (on the arc surface 55a).

なお、回転子鉄心20の固定子鉄心5と対向する外周側面のうち、一対の永久磁石21,21の間に挟まれた領域の面(円弧面55a)を磁極部という場合もあるが、本実施形態では円弧面55aの径方向内側の領域である一対の永久磁石21,21の間に挟まれた内部領域も含めて磁極部という。In addition, the surface (arcuate surface 55a) of the area of the outer peripheral side of the rotor core 20 facing the stator core 5, which is sandwiched between a pair of permanent magnets 21, 21, is sometimes referred to as the magnetic pole portion, but in this embodiment, the magnetic pole portion also includes the internal area sandwiched between a pair of permanent magnets 21, 21, which is the area radially inward of the arcuate surface 55a.

各磁極部55における一対の永久磁石21,21は、N極の磁極部55では磁束が互いに向かい合うように、S極の磁極部55では磁束が互いに離れ合うような磁化方向に着磁されている。すなわち、一対の永久磁石21,21が互いに磁束が向かい合うようにそれぞれ着磁されている磁極部55がN極の磁極部となり、一対の永久磁石21,21が互いに磁束が離間するようにそれぞれ着磁されている磁極部55がS極の磁極部となる。そして、複数の磁極部55は、周方向に隣接する磁極部55どうしが互いに逆の極性となるように周方向に等間隔に配置されている。なお、上記「等間隔」は厳密な意味ではなく、設計上、製造上の公差、誤差等が許容される。すなわち、「実質的に等間隔」という意味である。 The pair of permanent magnets 21, 21 in each magnetic pole portion 55 are magnetized in such a way that the magnetic flux faces each other in the magnetic pole portion 55 of the N pole, and the magnetic flux moves away from each other in the magnetic pole portion 55 of the S pole. That is, the magnetic pole portion 55 in which the pair of permanent magnets 21, 21 are magnetized so that the magnetic flux faces each other becomes the magnetic pole portion of the N pole, and the magnetic pole portion 55 in which the pair of permanent magnets 21, 21 are magnetized so that the magnetic flux moves away from each other becomes the magnetic pole portion of the S pole. The multiple magnetic pole portions 55 are arranged at equal intervals in the circumferential direction so that adjacent magnetic pole portions 55 in the circumferential direction have opposite polarities. Note that the above "equally spaced" does not have a strict meaning, and design and manufacturing tolerances, errors, etc. are allowed. In other words, it means "substantially equally spaced."

<スリット>
回転子鉄心20のうち、略V字状に配置された上記一対の永久磁石21,21の間には、回転子鉄心20を軸方向に貫通するとともに、上記軸直交断面における横断面形状が回転子鉄心20の周方向と略平行な形状となる、スリット200が設けられている。言い替えれば、前述の電磁鋼板20Aに上記スリット200に対応したスリット孔が設けられており、そのスリット孔を備えた電磁鋼板20Aが複数枚積層されることで、回転子鉄心20においてスリット200が形成される。この例では、スリット200の横断面形状は略矩形(略長方形)となっており、その略矩形(略長方形)の短辺が径方向に沿うともに、長辺が周方向に略平行となっている。またこの例では、上記軸直交断面において、スリット200は、上記垂直二等分線H1と垂直二等分線H2よりも回転子鉄心20の径方向内側に位置しており、また当該スリット200の垂直二等分線H3(第3二等分線の一例)が上記連通孔72を通るように、配置されている。さらに、上記略矩形(略長方形)の長辺が、上記連通孔72に対し回転子鉄心20の径方向(図7中の上下方向)に対向している。
<Slit>
Between the pair of permanent magnets 21, 21 arranged in a substantially V-shape in the rotor core 20, a slit 200 is provided that penetrates the rotor core 20 in the axial direction and has a cross-sectional shape that is substantially parallel to the circumferential direction of the rotor core 20 in the cross-sectional plane perpendicular to the axis. In other words, the electromagnetic steel sheet 20A described above has a slit hole corresponding to the slit 200, and a plurality of electromagnetic steel sheets 20A having the slit hole are laminated to form the slit 200 in the rotor core 20. In this example, the cross-sectional shape of the slit 200 is substantially rectangular (approximately oblong), and the short side of the substantially rectangular (approximately oblong) is aligned along the radial direction and the long side is substantially parallel to the circumferential direction. In this example, in the cross-sectional plane perpendicular to the axis, the slit 200 is located radially inward of the rotor core 20 relative to the perpendicular bisector H1 and the perpendicular bisector H2, and is arranged so that the perpendicular bisector H3 (an example of a third bisector) of the slit 200 passes through the communication hole 72. Furthermore, the long side of the substantial rectangle (approximately rectangular) faces the communication hole 72 in the radial direction of the rotor core 20 (the up-down direction in FIG. 7).

<実施形態の作用効果>
以上のように構成した本実施形態の回転子鉄心20において、スリット200を設けることにより得られる作用効果を以下に説明する。
<Effects of the embodiment>
In the rotor core 20 of this embodiment configured as above, the effects obtained by providing the slits 200 will be described below.

上述したように、本実施形態の回転電機1においては、回転子鉄心20に複数の永久磁石21が埋め込まれて配置されている。この場合、回転電機1の運転時においては、例えば固定子2に備えられたコイル7に通電される電流の大きさ・進み角、回転子3の回転角度、回転子3の磁気回路構造等に応じて、永久磁石21の端部に対し様々な方向から反磁界が作用することとなる。As described above, in the rotating electric machine 1 of this embodiment, a plurality of permanent magnets 21 are embedded and arranged in the rotor core 20. In this case, when the rotating electric machine 1 is in operation, demagnetizing fields act on the ends of the permanent magnets 21 from various directions depending on, for example, the magnitude and lead angle of the current flowing through the coil 7 provided in the stator 2, the rotation angle of the rotor 3, the magnetic circuit structure of the rotor 3, etc.

このとき、本実施形態においては、上記軸直交断面における回転子鉄心20の横断面において、一対の上記永久磁石21,21が略V字状に配置されるとともに、それら一対の永久磁石21,21どうしの間に、周方向に平行なスリット200が設けられている。In this embodiment, in the cross section of the rotor core 20 in the cross section perpendicular to the axis, the pair of permanent magnets 21, 21 are arranged in an approximately V-shape, and circumferentially parallel slits 200 are provided between the pair of permanent magnets 21, 21.

そして、本実施形態においては、上記軸直交断面において、上記一対の永久磁石21,21の垂直二等分線H1,H2どうしの交点Cが、回転子鉄心20の内部(又は外周部でもよい)に位置している。言い換えれば、上記V字状のV字の深さが比較的深く、当該V字状の一対の永久磁石21,21により挟まれる略扇形の領域(=磁極部55)の面積が広くなっている。そして、その広い面積の扇形領域に、上記周方向に平行なスリット200が設けられている。これにより、回転子鉄心20の軸心から磁極部55の中心方向に延びる軸をd軸、上記中心方向と電気角において90°ずれた方向に延びる軸をq軸とした場合に、回転子鉄心20の外周側から到来するトルク電流によるq軸磁束は、上記スリット200のある上記扇形領域(磁極部55)を通過しやすくなる。すなわち、当該扇形領域(磁極部55)が、q軸方向の磁路として機能する。このことを、図8A及び図8B並びに図9A及び図9Bにより説明する。In this embodiment, in the cross section perpendicular to the axis, the intersection C of the perpendicular bisectors H1, H2 of the pair of permanent magnets 21, 21 is located inside the rotor core 20 (or may be on the outer periphery). In other words, the depth of the V-shape is relatively deep, and the area of the approximately sector-shaped area (= magnetic pole portion 55) sandwiched by the pair of V-shaped permanent magnets 21, 21 is wide. Then, in the sector-shaped area with a wide area, a slit 200 is provided parallel to the circumferential direction. As a result, when the axis extending from the axis of the rotor core 20 toward the center of the magnetic pole portion 55 is the d-axis, and the axis extending in a direction shifted by 90° in electrical angle from the center direction is the q-axis, the q-axis magnetic flux due to the torque current coming from the outer periphery of the rotor core 20 easily passes through the sector-shaped area (magnetic pole portion 55) where the slit 200 is located. In other words, the sector-shaped area (magnetic pole portion 55) functions as a magnetic path in the q-axis direction. This will be explained with reference to FIGS. 8A and 8B and FIGS. 9A and 9B.

図8A及び図9Aは、本願発明者等が解析により得た、前述の軸直交断面においてV字状に配置された永久磁石21及びその周辺における上記q軸磁束の磁束密度の分布を表す説明図であり、図8B及び図9Bは、図8A及び図9Aにそれぞれ対応し、代表的な磁束線の流れを模式した説明図である。図8A及び図9Aの右側に示すように、磁束密度を低密度から高密度に向かって「A」「B」「C」「D」「E」「F」「G」の7つの磁束密度帯に区分したときの、上記軸直交断面における各磁束密度帯の分布を表している。図8Aは、比較例として、上記スリット200を設けない場合の上記磁束密度帯の分布を示しており、図9Aは、上記スリット200を設けた上記実施形態における上記磁束密度帯の分布を示している。8A and 9A are explanatory diagrams showing the distribution of the magnetic flux density of the q-axis magnetic flux in the permanent magnet 21 arranged in a V-shape in the above-mentioned axial cross section and its periphery, which were obtained by the inventors of the present application through analysis, and Figs. 8B and 9B correspond to Figs. 8A and 9A, respectively, and are explanatory diagrams showing the flow of typical magnetic flux lines. As shown on the right side of Figs. 8A and 9A, the magnetic flux density is divided into seven magnetic flux density zones, "A", "B", "C", "D", "E", "F", and "G", from low density to high density, and the distribution of each magnetic flux density zone in the above-mentioned axial cross section is shown. Fig. 8A shows the distribution of the magnetic flux density zone in the case where the slit 200 is not provided as a comparative example, and Fig. 9A shows the distribution of the magnetic flux density zone in the above-mentioned embodiment in which the slit 200 is provided.

図9Aに示す実施形態においては、図中左上から右下に斜めに伸びる「C」の磁束密度帯が、スリット200の作用により、図8Aの比較例に比べて左下側に引き込まれ(図9A中の矢印a,b,c,d参照)、結果としてその左下側に隣接する、低密度領域である「B」の磁束密度帯の大きさが縮小している。またそれに伴い、上記「C」の磁束密度帯の図中右上に隣接する、高密度領域である「D」の磁束密度帯等も上記の左下側に引き込まれ(図9A中の矢印e,f参照)、当該「D」の磁束密度帯の大きさが拡大している。すなわち言い換えれば、上記スリット200により上記扇形領域(磁極部55)がq軸方向の磁路として機能しq軸磁束の磁路が磁極部55を通りやすくなり、上記磁束が少なくとも各永久磁石21の外周側端部をつないだ包絡線LLよりも径方向内側まで進入して通過している。また、磁束線の流れをみると、図9Bは、図8Bと比較して、コイル7の外側を通るq軸磁束の磁束線MLが、スリット200に引き寄せられていて、それらの結果、磁極部55における高磁束密度領域が拡大され、q軸方向のインダクタンスを十分に大きくすることができる。この結果、突極比を向上することができる。In the embodiment shown in FIG. 9A, the magnetic flux density band of "C" extending diagonally from the upper left to the lower right in the figure is pulled to the lower left side compared to the comparative example of FIG. 8A by the action of the slit 200 (see arrows a, b, c, and d in FIG. 9A), and as a result, the size of the magnetic flux density band of "B" which is a low density area adjacent to the lower left side is reduced. In addition, the magnetic flux density band of "D" which is a high density area adjacent to the upper right of the magnetic flux density band of "C" is also pulled to the lower left side (see arrows e and f in FIG. 9A), and the size of the magnetic flux density band of "D" is expanded. In other words, the slit 200 causes the sector area (magnetic pole part 55) to function as a magnetic path in the q-axis direction, making it easier for the magnetic path of the q-axis magnetic flux to pass through the magnetic pole part 55, and the magnetic flux penetrates and passes at least radially inward of the envelope line LL connecting the outer circumferential ends of each permanent magnet 21. 9B, compared to FIG. 8B, the magnetic flux lines ML of the q-axis magnetic flux passing outside the coil 7 are attracted to the slits 200, and as a result, the high magnetic flux density region in the magnetic pole portion 55 is expanded, and the inductance in the q-axis direction can be made sufficiently large. As a result, the salient pole ratio can be improved.

また、本実施形態では特に、上記軸直交断面において、スリット200は、互いに交わる垂直二等分線H1及び垂直二等分線H2よりも、回転子鉄心20の径方向内側に位置している。これにより、スリット200は、上記V字状の奥深くに存在することとなるため、上記反磁界の分岐効果が向上する。In this embodiment, in particular, in the cross section perpendicular to the axis, the slits 200 are located radially inward of the rotor core 20 from the mutually intersecting perpendicular bisectors H1 and H2. As a result, the slits 200 are located deep inside the V-shape, improving the branching effect of the demagnetizing field.

また、本実施形態では特に、上記軸直交断面において、スリット200の断面形状は略矩形である。 In this embodiment in particular, the cross-sectional shape of the slit 200 is approximately rectangular in the cross section perpendicular to the axis.

また、本実施形態では特に、スリット200は、上記軸直交断面における上記略矩形の長辺が、連通孔72に対し回転子鉄心203の径方向に対向して配置されている。これにより、上記連通孔72によって、q軸磁束が、上記V字状に配置された永久磁石21,21同士の間の領域(磁極部55)のスリット200より外側の部分を通過しやすくなり、当該部分をq軸方向の磁路として確実に機能させることができる。In this embodiment, the slit 200 is arranged such that the long side of the approximately rectangular shape in the axially orthogonal cross section faces the communication hole 72 in the radial direction of the rotor core 203. This allows the communication hole 72 to facilitate the passage of the q-axis magnetic flux through the portion of the region (magnetic pole portion 55) between the permanent magnets 21, 21 arranged in the V-shape that is outside the slit 200, thereby ensuring that this portion functions as a magnetic path in the q-axis direction.

また、本実施形態では特に、連通孔72は、V字状に配置された一対の埋め込み孔71,71それぞれに連通している。これにより、回転子鉄心20の製造時に、2つの埋め込み孔71,71及び連通孔72を、1つの連続体として比較的容易に穿孔加工することができる。In this embodiment, the communication hole 72 is connected to each of a pair of embedded holes 71, 71 arranged in a V-shape. This allows the two embedded holes 71, 71 and the communication hole 72 to be drilled relatively easily as a single continuous body when manufacturing the rotor core 20.

また、本実施形態では特に、上記軸直交断面におけるスリット200の垂直二等分線H3が連通孔72を通る。これにより、上記スリット200の周方向中心位置と、上記埋め込み孔71,71及び永久磁石21,21を配置するときのV字状形状の周方向中心位置とを、略一致させることができる。In this embodiment, the perpendicular bisector H3 of the slit 200 in the cross section perpendicular to the axis passes through the communication hole 72. This allows the circumferential center position of the slit 200 to approximately coincide with the circumferential center position of the V-shape when the embedded holes 71, 71 and the permanent magnets 21, 21 are arranged.

<その他変形例>
なお、以上では図7を用いて説明したように、回転子鉄心20において、永久磁石21Lの垂直二等分線H1と永久磁石21Rの垂直二等分線H2との交点Cが回転子鉄心20の内部又は外周部に位置している場合を例にとって説明したが、これに限られない。すなわち、交点Cは、上記回転子鉄心20の外周部(円弧面55a)よりも若干径方向外側に離間していてもよい。そのときの交点Cから円弧面55aまでの距離(離間量)は、例えば上記軸直交断面におけるスリット200の厚さ方向(径方向寸法)寸法t以下、としてもよいし、永久磁石21の厚さ方向寸法T以下、としてもよい。これらの場合も、前述したように、永久磁石21L,21Rの間の領域に、トルク電流によるq軸磁束が通過するように構成することができ、前述と同様の効果を得る。
<Other Modifications>
As described above with reference to FIG. 7, the intersection C between the perpendicular bisector H1 of the permanent magnet 21L and the perpendicular bisector H2 of the permanent magnet 21R is located inside or on the outer periphery of the rotor core 20, but the present invention is not limited to this. That is, the intersection C may be slightly spaced radially outward from the outer periphery (arcuate surface 55a) of the rotor core 20. In this case, the distance (amount of space) from the intersection C to the arcuate surface 55a may be, for example, equal to or less than the thickness direction (radial dimension) t of the slit 200 in the cross section perpendicular to the axis, or equal to or less than the thickness direction dimension T of the permanent magnet 21. In these cases, the q-axis magnetic flux due to the torque current can be configured to pass through the region between the permanent magnets 21L and 21R, as described above, and the same effect as described above can be obtained.

また、上記の例では、図7に示したように、軸直交断面において、スリット200が周方向に略平行である場合の一例として、スリット200の横断面形状が略長方形である場合を例にとって説明したが、これに限られない。すなわち、図10に示すように、略円弧状のスリット200としてもよい。この場合、図示のように下に凸の形状ではなく、上下反転させた態様の上に凸の形状も考えられる。あるいは、図11に示すように、略V字形状のスリット200としてもよい。この場合、図示の態様を上下反転させた態様の逆V字形状とすることも考えられる。本願明細書でいう上記「周方向に略平行」という定義は、これらのようにスリット200が(略長方形でない)横断面形状である場合も含むものである。いずれにしても、前述と同様、永久磁石21L,21Rの間の領域にトルク電流によるq軸磁束が通過する構成であれば足り、この構成によって前述と同様の効果を得る。 In the above example, as shown in FIG. 7, the cross-sectional shape of the slit 200 is approximately rectangular as an example of the case where the slit 200 is approximately parallel to the circumferential direction in the axial cross section, but this is not limited to this. That is, as shown in FIG. 10, the slit 200 may be approximately arc-shaped. In this case, instead of the downward convex shape as shown in the figure, an upward convex shape in a state in which the shape is inverted upside down may be considered. Alternatively, as shown in FIG. 11, the slit 200 may be approximately V-shaped. In this case, it is also possible to have an inverted V-shape in a state in which the shape shown in the figure is inverted upside down. The definition of "approximately parallel to the circumferential direction" in this specification includes cases where the slit 200 has a cross-sectional shape (not approximately rectangular) as described above. In any case, as described above, it is sufficient that the q-axis magnetic flux due to the torque current passes through the area between the permanent magnets 21L and 21R, and this configuration provides the same effect as described above.

また、以上既に述べた以外にも、上記実施形態及び変形例による手法を適宜組み合わせて利用してもよい。In addition to what has already been described above, the methods according to the above embodiments and variations may be used in appropriate combination.

その他、一々例示はしないが、上記実施形態等は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。In addition, although we will not provide examples, the above embodiments can be implemented with various modifications without departing from the spirit of the invention.

1 回転電機
3 回転子
20 回転子鉄心
20A 電磁鋼板
21 永久磁石
55 磁極部
55 円弧部(回転子鉄心の外周部の一例)
71 埋め込み孔(第1穴の一例、第2穴の一例)
72 連通孔(空隙の一例)
200 スリット
C 交点
H1 垂直二等分線(第1垂直二等分線の一例)
H2 垂直二等分線(第2垂直二等分線の一例)
H3 垂直二等分線(第3垂直二等分線の一例)
REFERENCE SIGNS LIST 1 rotating electric machine 3 rotor 20 rotor core 20A electromagnetic steel sheet 21 permanent magnet 55 magnetic pole portion 55 arc portion (an example of the outer periphery of a rotor core)
71 Burying hole (an example of a first hole, an example of a second hole)
72 Communication hole (an example of a gap)
200 Slit C Intersection H1 Perpendicular bisector (an example of the first perpendicular bisector)
H2 perpendicular bisector (an example of a second perpendicular bisector)
H3 Perpendicular bisector (an example of the third perpendicular bisector)

Claims (4)

回転子鉄心と、
前記回転子鉄心に埋め込まれた複数の永久磁石と、
を有し、
前記回転子鉄心は、前記複数の永久磁石の配置に応じて周方向の複数個所に形成された複数の磁極部を備え、
前記複数の永久磁石は、前記回転子鉄心の軸方向に垂直な横断面において略V字状に配置された一対の前記永久磁石を複数対含み、
前記磁極部は、前記一対の永久磁石の間に形成されている、
回転電機であって、
前記横断面における、前記一対の永久磁石のうち一方の永久磁石の第1垂直二等分線と、前記一対の永久磁石のうち他方の永久磁石の第2垂直二等分線と、の交点が、前記回転子鉄心の内部又は外周部に位置し、
前記一方の永久磁石と前記他方の永久磁石との間に、前記回転子鉄心を前記軸方向に貫通するとともに前記横断面における断面形状が前記周方向に略平行となるスリットを設け、
前記スリットは、
前記横断面において、互いに交わる前記第1垂直二等分線及び前記第2垂直二等分線と、前記一方の永久磁石及び前記他方の永久磁石とで囲まれた領域に位置しており、
前記横断面における前記スリットの形状は、短辺が前記回転子鉄心の径方向に沿うと共に長辺が前記周方向に略平行な前記周方向に細長い略長方形であり、
前記回転子鉄心は、
前記一方の永久磁石が挿入配置される第1穴と、前記他方の永久磁石が挿入配置される第2穴と、前記第1穴と前記第2穴との間に位置する空隙と、を有し、
前記スリットは、
前記横断面における前記略長方形の長辺が、前記空隙に対し前記径方向に対向して配置されており、
前記空隙は、
前記第1穴及び前記第2穴にそれぞれ連通しており、
前記横断面における前記スリットの第3垂直二等分線が、前記空隙を通る
ことを特徴とする回転電機。
A rotor core;
A plurality of permanent magnets embedded in the rotor core;
having
the rotor core includes a plurality of magnetic pole portions formed at a plurality of locations in a circumferential direction in accordance with an arrangement of the plurality of permanent magnets,
the plurality of permanent magnets include a plurality of pairs of the permanent magnets arranged in a substantially V-shape in a cross section perpendicular to an axial direction of the rotor core,
The magnetic pole portion is formed between the pair of permanent magnets.
A rotating electric machine,
an intersection of a first perpendicular bisector of one of the pair of permanent magnets and a second perpendicular bisector of the other of the pair of permanent magnets in the transverse cross section is located inside or on an outer periphery of the rotor core;
a slit is provided between the one permanent magnet and the other permanent magnet, the slit penetrating the rotor core in the axial direction and having a cross-sectional shape in the transverse cross section that is substantially parallel to the circumferential direction;
The slit is
In the transverse cross section, the magnet is located in a region surrounded by the first perpendicular bisector and the second perpendicular bisector which intersect with each other, and the one permanent magnet and the other permanent magnet,
a shape of the slit in the cross section is a substantially rectangular shape that is elongated in the circumferential direction, the short side of the slit being aligned along a radial direction of the rotor core and the long side of the slit being substantially parallel to the circumferential direction ,
The rotor core is
a first hole into which the one permanent magnet is inserted and disposed, a second hole into which the other permanent magnet is inserted and disposed, and a gap located between the first hole and the second hole,
The slit is
A long side of the substantially rectangular shape in the cross section is disposed opposite to the gap in the radial direction,
The void is
each of the first hole and the second hole is in communication with the
A third perpendicular bisector of the slit in the cross section passes through the gap.
A rotating electric machine characterized by:
複数の永久磁石がそれぞれ埋め込まれる複数の埋め込み孔を備えるとともにそれら複数の埋め込み孔の配置に応じて周方向の複数個所に形成された複数の磁極部を備え、かつ、前記複数の埋め込み孔が、略V字状に配置される一対の埋め込み孔を複数対含む、回転子鉄心を形成するために用いられる薄肉円盤状の電磁鋼板であって、
前記一対の埋め込み孔のうち一方の埋め込み孔の第1垂直二等分線と、前記一対の埋め込み孔のうち他方の埋め込み孔の第2垂直二等分線と、の交点が、前記電磁鋼板の内部又は外周部に位置し、
前記一方の埋め込み孔と前記他方の埋め込み孔との間に、前記周方向に略平行となるスリット孔を設け、
前記スリット孔は、
互いに交わる前記第1垂直二等分線及び前記第2垂直二等分線と、前記一方の埋め込み孔及び前記他方の埋め込み孔とで囲まれた領域に位置しており、
前記スリット孔の形状は、短辺が前記電磁鋼板の径方向に沿うと共に長辺が前記周方向に略平行な前記周方向に細長い略長方形であり、
前記電磁鋼板は、
前記一方の埋め込み孔と前記他方の埋め込み孔との間に位置する空隙を有し、
前記スリット孔は、
前記略長方形の長辺が、前記空隙に対し前記径方向に対向して配置されており、
前記空隙は、
前記一方の埋め込み孔及び前記他方の埋め込み孔にそれぞれ連通しており、
前記スリット孔の第3垂直二等分線が、前記空隙を通る
ことを特徴とする電磁鋼板。
A thin, disk-shaped electromagnetic steel sheet used for forming a rotor core, the thin, disk-shaped electromagnetic steel sheet having a plurality of embedding holes into which a plurality of permanent magnets are respectively embedded, and a plurality of magnetic pole portions formed at a plurality of locations in a circumferential direction according to an arrangement of the plurality of embedding holes, the plurality of embedding holes including a plurality of pairs of embedding holes arranged in a substantially V-shape,
an intersection of a first perpendicular bisector of one of the pair of embedment holes and a second perpendicular bisector of the other of the pair of embedment holes is located inside or on an outer periphery of the electromagnetic steel sheet,
a slit hole is provided between the one embedding hole and the other embedding hole, the slit hole being substantially parallel to the circumferential direction;
The slit hole is
the first perpendicular bisector and the second perpendicular bisector intersecting with each other, and the one embedment hole and the other embedment hole are located in a region surrounded by the first perpendicular bisector and the second perpendicular bisector which intersect with each other,
The shape of the slit hole is a substantially rectangular shape that is elongated in the circumferential direction, with a short side aligned along a radial direction of the electromagnetic steel sheet and a long side substantially parallel to the circumferential direction ,
The electromagnetic steel sheet is
a gap is provided between the one embedment hole and the other embedment hole;
The slit hole is
The long side of the substantially rectangular shape is disposed opposite to the gap in the radial direction,
The void is
the one embedding hole and the other embedding hole are respectively connected to each other,
A third perpendicular bisector of the slit passes through the gap.
1. An electrical steel sheet comprising:
請求項に記載の電磁鋼板を軸方向に複数枚積層し、前記埋め込み孔に埋め込まれた複数の永久磁石を備えた回転子。 A rotor comprising a plurality of magnetic steel sheets according to claim 2 laminated in the axial direction and a plurality of permanent magnets embedded in the embedding holes. 請求項に記載の回転子を備えた回転電機。 A rotating electric machine comprising the rotor according to claim 3 .
JP2021561205A 2019-11-26 2020-10-13 Rotating electric machines, rotors and electromagnetic steel sheets Active JP7461967B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019213697 2019-11-26
JP2019213697 2019-11-26
PCT/JP2020/038616 WO2021106395A1 (en) 2019-11-26 2020-10-13 Rotary electric machine, rotor, and electromagnetic steel plate

Publications (2)

Publication Number Publication Date
JPWO2021106395A1 JPWO2021106395A1 (en) 2021-06-03
JP7461967B2 true JP7461967B2 (en) 2024-04-04

Family

ID=76128647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021561205A Active JP7461967B2 (en) 2019-11-26 2020-10-13 Rotating electric machines, rotors and electromagnetic steel sheets

Country Status (2)

Country Link
JP (1) JP7461967B2 (en)
WO (1) WO2021106395A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022107335A (en) * 2021-01-08 2022-07-21 トヨタ自動車株式会社 Motor magnet oil-cooled structure and motor
WO2023026499A1 (en) * 2021-08-27 2023-03-02 日立Astemo株式会社 Rotating electric machine rotor and rotating electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074898A (en) 2006-12-15 2007-03-22 Hitachi Ltd Permanent magnet type rotary electric machine and compressor using same
JP2011035997A (en) 2009-07-30 2011-02-17 Toyota Motor Corp Rotor for ipm motors, and ipm motor
JP2012244649A (en) 2011-05-16 2012-12-10 Daikin Ind Ltd Rotor and rotary electric machine
WO2017221521A1 (en) 2016-06-24 2017-12-28 株式会社日立製作所 Dynamo-electric machine
US20170373573A1 (en) 2016-06-23 2017-12-28 Volvo Car Corporation Electric machine
JP2019068620A (en) 2017-09-29 2019-04-25 日立オートモティブシステムズ株式会社 Rotor core, rotor, dynamoelectric machine, electric auxiliary system for motor car
WO2019102580A1 (en) 2017-11-24 2019-05-31 三菱電機株式会社 Permanent magnet rotating electric machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007074898A (en) 2006-12-15 2007-03-22 Hitachi Ltd Permanent magnet type rotary electric machine and compressor using same
JP2011035997A (en) 2009-07-30 2011-02-17 Toyota Motor Corp Rotor for ipm motors, and ipm motor
JP2012244649A (en) 2011-05-16 2012-12-10 Daikin Ind Ltd Rotor and rotary electric machine
US20170373573A1 (en) 2016-06-23 2017-12-28 Volvo Car Corporation Electric machine
WO2017221521A1 (en) 2016-06-24 2017-12-28 株式会社日立製作所 Dynamo-electric machine
JP2019068620A (en) 2017-09-29 2019-04-25 日立オートモティブシステムズ株式会社 Rotor core, rotor, dynamoelectric machine, electric auxiliary system for motor car
WO2019102580A1 (en) 2017-11-24 2019-05-31 三菱電機株式会社 Permanent magnet rotating electric machine

Also Published As

Publication number Publication date
JPWO2021106395A1 (en) 2021-06-03
WO2021106395A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US10110076B2 (en) Single-phase brushless motor
CN112838693B (en) Rotary electric machine
US9124157B2 (en) Rotor of rotary electric machine
JP5774081B2 (en) Rotating electric machine
JP5240592B2 (en) Rotating electric machine
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
US10637310B2 (en) Synchronous reluctance type rotary electric machine
JP7461967B2 (en) Rotating electric machines, rotors and electromagnetic steel sheets
JP2017079530A (en) Synchronous reluctance motor
CN113853724B (en) Quadrupole synchronous reluctance motor
KR101897635B1 (en) Permanent magnet-embedded motor and rotor thereof
EP3142224A1 (en) Single phase permanent magnet motor
JP6673707B2 (en) Interior magnet type motor
JP2013132124A (en) Core for field element
JP5811566B2 (en) Rotor and permanent magnet motor
JP2001057753A (en) Axial gap motor
JP2018198534A (en) Rotary electric machine
JP4080273B2 (en) Permanent magnet embedded motor
US10666097B2 (en) Switched reluctance electric machine including pole flux barriers
JPWO2020194390A1 (en) Rotating machine
JP6003028B2 (en) Rotating electric machine
JP2014212599A (en) Synchronous induction motor
JP2006254598A (en) Embedded magnet type motor
JP7116667B2 (en) Rotating electric machine
JP6201405B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240325

R150 Certificate of patent or registration of utility model

Ref document number: 7461967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150