WO2019102580A1 - Permanent magnet rotating electric machine - Google Patents

Permanent magnet rotating electric machine Download PDF

Info

Publication number
WO2019102580A1
WO2019102580A1 PCT/JP2017/042197 JP2017042197W WO2019102580A1 WO 2019102580 A1 WO2019102580 A1 WO 2019102580A1 JP 2017042197 W JP2017042197 W JP 2017042197W WO 2019102580 A1 WO2019102580 A1 WO 2019102580A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
dimension
magnetic
pair
Prior art date
Application number
PCT/JP2017/042197
Other languages
French (fr)
Japanese (ja)
Inventor
宇宙 満田
義浩 深山
中村 成志
井上 正哉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/042197 priority Critical patent/WO2019102580A1/en
Priority to CN201780096969.5A priority patent/CN111357171B/en
Priority to JP2019556046A priority patent/JP7050808B2/en
Publication of WO2019102580A1 publication Critical patent/WO2019102580A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a permanent magnet type rotating electric machine in which permanent magnets are embedded in a rotor core.
  • a permanent magnet type rotary electric machine including a stator and a rotor provided radially inward of the stator.
  • the rotor has a rotor core in which a pair of magnet insertion holes are formed in an outer peripheral portion, and a pair of permanent magnets inserted in each of the pair of magnet insertion holes.
  • the pair of permanent magnets are arranged in a V-shape so as to be apart from each other as it goes radially outward.
  • a magnetic slit is formed in a portion between the pair of permanent magnets in the stator core. This reduces the d-axis inductance (see, for example, Patent Document 1).
  • the present invention has been made to solve the problems as described above, and an object thereof is to provide a permanent magnet type rotating electrical machine capable of increasing q-axis inductance.
  • a permanent magnet type rotary electric machine includes a rotor and a stator provided outside with respect to the rotor in a radial direction of the rotor, and the rotor has a pair of magnet insertion holes formed therein.
  • the magnetic saturation at the exit portion of the q-axis magnetic path can be prevented.
  • the q-axis inductance can be increased.
  • FIG. 16 is a diagram showing a magnetic flux passing through teeth in a comparative example for comparison with the permanent magnet type rotary electric machine according to the third embodiment. It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 4 of this invention. It is an enlarged view which shows the D section of FIG.
  • FIG. 21 is a diagram showing a magnetic flux passing through teeth in a comparative example for comparison with the permanent magnet type rotary electric machine according to the fourth embodiment. It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 5 of this invention. It is a figure which shows the flow of the magnetic flux in the permanent-magnet-type rotary electric machine of FIG. FIG.
  • FIG. 21 is a diagram showing the flow of magnetic flux in a comparative example for comparison with the permanent magnet type rotary electric machine according to Embodiment 5. It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 6 of this invention.
  • FIG. 1 is a plan view showing a permanent magnet type rotary electric machine according to Embodiment 1 of the present invention
  • FIG. 2 is an enlarged view showing a portion A of FIG.
  • the permanent magnet type rotary electric machine according to the first embodiment includes a stator 1 formed in an annular shape, and a rotor 2 provided opposite to the stator 1.
  • the stator 1 is provided outside the rotor 2 in the radial direction of the rotor 2.
  • the radial direction is the radial direction of the rotor 2
  • the circumferential direction is the circumferential direction of the rotor 2
  • the axial direction is the axial direction of the rotor 2.
  • the stator 1 includes a stator core 11 and a plurality of coils 12 provided on the stator core 11.
  • the stator core 11 has a core back 111 formed in an annular shape, and a plurality of teeth 112 projecting inward in the radial direction from the core back 111.
  • the plurality of teeth 112 are arranged at equal intervals in the circumferential direction.
  • a plurality of slots 113 are formed one by one between the teeth 112 adjacent in the circumferential direction.
  • the coil 12 is provided in the slot 113.
  • the rotor 2 includes a cylindrical rotor core 21 and a plurality of permanent magnets 22 embedded in the rotor core 21.
  • a plurality of pairs of magnet insertion holes 211 are formed in the rotor core 21 at equal intervals in the circumferential direction.
  • the pair of magnet insertion holes 211 When viewed in the axial direction, the pair of magnet insertion holes 211 are formed in a V shape so as to be away from each other as it goes outward in the radial direction.
  • One permanent magnet 22 is inserted into each of the pair of magnet insertion holes 211.
  • the pair of permanent magnets 22 inserted into the pair of magnet insertion holes 211 are arranged in a V shape so as to be away from each other as it goes outward in the radial direction when viewed in the axial direction.
  • a plurality of outer circumferential side magnetic slits 212 are formed in a portion of the rotor core 21 which is the outer side in the radial direction and between the pair of permanent magnets 22.
  • two outer circumferential magnetic slits 212 are formed.
  • One of the two outer circumferential magnetic slits 212 is taken as a first outer circumferential magnetic slit 212a, and the other is taken as a second outer circumferential magnetic slit 212b.
  • Each of the first outer circumferential magnetic slit 212a and the second outer circumferential magnetic slit 212b is formed in a U-shape.
  • Both ends of the first outer circumferential magnetic slit 212a and the second outer circumferential magnetic slit 212b are disposed radially outward, and an intermediate portion is disposed radially inwardly.
  • the second outer circumferential magnetic slit 212 b is disposed inside the first outer circumferential magnetic slit 212 a. Therefore, the first outer circumferential magnetic slit 212a is disposed closer to the permanent magnet 22 than the second outer circumferential magnetic slit 212b.
  • An inner circumferential magnetic slit 213 is formed in a portion between the pair of magnet insertion holes 211 in the stator core 11 and in the radially inner portion.
  • FIG. 3 is an enlarged view showing a portion B of FIG.
  • a portion of the magnet insertion hole 211 which is the outer side in the radial direction and in which the permanent magnet 22 is not inserted is referred to as a radial outer magnetic slit 211 a.
  • a portion which is an inner side in the radial direction in the magnet insertion hole 211 and in which the permanent magnet 22 is not inserted is referred to as a radial inner magnetic slit 211b.
  • the inner circumferential magnetic slits 213 are disposed between the radially inner magnetic slits 211 b in the pair of magnet insertion holes 211.
  • a portion of the rotor core 21 located between the radially inner magnetic slit 211 b and the inner magnetic slit 213 in each of the pair of magnet insertion holes 211 is referred to as an inner inter-magnet magnetic path 214.
  • the inner inter-magnet magnetic path 214 is a portion between the pair of permanent magnets 22 in the rotor core 21 and serves as a magnetic path on the inner side in the radial direction.
  • FIG. 3 shows a portion of the inter-magnet magnetic path 214 between the radially inner magnetic slit 211 b of the one magnet insertion hole 211 and the inner circumferential magnetic slit 213.
  • a portion of the rotor core 21 passing between the pair of permanent magnets 22 and extending in the radial direction is taken as a d-axis.
  • the d-axis is a portion where the magnetic flux in the rotor core 21 is difficult to pass.
  • a q-axis magnetic path is formed in a portion of the rotor core 21 between the permanent magnet 22 and the first outer magnetic slit 212a.
  • a radially outer portion of the q-axis magnetic path is taken as a q-axis magnetic path outlet portion 215.
  • the q-axis magnetic path is a portion through which the q-axis magnetic flux in the rotor core 21 passes.
  • the dimension in the width direction of the q-axis magnetic path outlet portion 215 is d 1 .
  • the residual magnetic flux density of the permanent magnet 22 is B mag .
  • the magnetic flux density when the magnetization of the rotor core 21 is saturated is assumed to be B s .
  • the rotor 2 is formed to satisfy d 1 > W 2 ⁇ B mag / B s ⁇ W 4 .
  • the total amount of magnetic flux of the permanent magnet 22 is expressed as W 2 ⁇ B mag .
  • the leakage flux between one radially inner magnetic slit 211 b and the inner circumferential magnetic slit 213 in the pair of radially inner magnetic slits 211 b is expressed as W 4 ⁇ B s . Therefore, the magnetic flux passing through the q-axis magnetic path exit portion 215 is expressed as W 2 ⁇ B mag ⁇ W 4 ⁇ B 2 . Accordingly, the magnetic flux density of the q-axis magnetic path exit portion 215 is expressed as (W 2 ⁇ B mag ⁇ W 4 ⁇ B 2 ) / d 1 .
  • the magnetic flux density (W 2 ⁇ B) of the q-axis magnetic path outlet portion 215 is more than the magnetic flux density B s when the magnetization of the rotor core 21 is saturated. It is sufficient to reduce mag -W 4 ⁇ B 2 ) / d 1 .
  • B mag is 1.15 (T) to 1.30 (T)
  • B s is 1.7 (T) to 1.9 (T).
  • B mag / B s > 0.60. Therefore, the rotor 2 is formed to satisfy d 1 > 0.6 ⁇ W 2 -W 4 .
  • d 1 > 0.6 ⁇ W 2 -W 4 is satisfied. This prevents magnetic saturation at the q-axis magnetic path exit portion 215. As a result, the q-axis inductance can be increased. Therefore, the reluctance torque of the permanent magnet type rotary electric machine can be increased.
  • a plurality of outer circumferential magnetic slits 212 are formed in a portion between the pair of permanent magnets 22 in the rotor core 21. As a result, it is possible to suppress the increase in magnetic resistance due to the outer circumferential magnetic slit 212 interrupting the armature magnetic flux, and to reduce the d-axis inductance. As a result, the salient pole ratio of the permanent magnet type rotary electric machine can be increased. Therefore, the reluctance torque of the permanent magnet type rotating electrical machine can be increased.
  • FIG. 4 is a plan view showing the main part of a permanent magnet type rotary electric machine according to Embodiment 2 of the present invention.
  • d 1 > d 2 the width dimension of the portion most widthwise dimension as small as d 2.
  • d 1 > d 2 .
  • the innermost portion in the radial direction of the closest part 22a closest to the first outer peripheral magnetic slit 212a in the permanent magnet 22 and the permanent magnet 22 the dimension between the 22b to W 3.
  • the rotor 2 is formed to satisfy d 2 > W 3 ⁇ B mag / B s ⁇ W 4 .
  • the rotor 2 is formed to satisfy d 2 > 0.6 ⁇ W 3 -W 4 .
  • the other configuration is the same as that of the first embodiment.
  • d 2 > W 3 ⁇ B mag / B s -W 4 is satisfied.
  • magnetic saturation of a portion of the rotor core 21 between the permanent magnet 22 and the first outer circumferential magnetic slit 212a is prevented.
  • the first outer magnetic slit 212a can be enlarged without reducing the q-axis inductance. Therefore, the d-axis inductance can be reduced without reducing the q-axis inductance.
  • the salient pole ratio of the permanent magnet type rotary electric machine can be increased.
  • Third Embodiment 5 is a plan view showing the main part of a permanent magnet type rotary electric machine according to Embodiment 3 of the present invention
  • FIG. 6 is an enlarged view showing a portion C of FIG.
  • the widthwise dimension of the portion widest dimension is smaller in the teeth 112 and d 3.
  • a permanent magnet type rotary electric machine is formed to satisfy d 3 > W 5 .
  • the other configuration is the same as that of the first embodiment or the second embodiment.
  • FIG. 7 is a view showing a magnetic flux passing through the teeth 112 of FIG. 5, and FIG. 8 is a view showing a magnetic flux passing through the teeth 112 in a comparative example for comparison with the permanent magnet type rotating electric machine according to the third embodiment.
  • the first outer magnetic slit 212 a is formed to satisfy d 3 > W 5
  • a portion adjacent to the q-axis magnetic path outlet portion 215 in the first outer magnetic slit 212 a in the circumferential direction is the tooth 112
  • the magnetic flux ⁇ passing through the teeth 112 passes through the q-axis magnetic path even when facing the This prevents the magnetic flux ⁇ passing through the teeth 112 from being hindered by the first outer circumferential magnetic slit 212a.
  • the decrease in torque of the permanent magnet type rotary electric machine is reduced.
  • the first outer magnetic slit 212c is formed to satisfy d 3 ⁇ W 5 , a portion adjacent to the q-axis magnetic path outlet portion 215 in the first outer magnetic slit 212c in the circumferential direction is When facing the teeth 112, the magnetic flux ⁇ passing through the teeth 112 does not pass through the q-axis magnetic path. Thereby, the magnetic flux ⁇ ⁇ ⁇ passing through the teeth 112 is blocked by the first outer circumferential magnetic slit 212a. As a result, the reluctance of the q-axis magnetic path increases. Therefore, the torque of the permanent magnet type rotary electric machine is reduced.
  • Embodiment 9 is a plan view showing an essential part of a permanent magnet type rotary electric machine according to Embodiment 4 of the present invention
  • FIG. 10 is an enlarged view showing a portion D of FIG.
  • the dimension in the width direction of the q-axis magnetic path outlet portion 215 is d 1 .
  • the widthwise dimension of the portion widest dimension is smaller in the teeth 112 and d 3.
  • a permanent magnet type rotary electric machine is formed to satisfy d 3 ⁇ d 1 .
  • the other configuration is the same as any one of the first to third embodiments.
  • FIG. 11 is a diagram showing a magnetic flux passing through the teeth 112 in a comparative example for comparison with the permanent magnet type rotary electric machine according to the fourth embodiment.
  • the permanent magnet type rotary electric machine is formed to satisfy d 3 dd 2 , magnetic saturation occurs in the q-axis magnetic path exit portion 215 due to the armature magnetic flux ⁇ A and the magnet magnetic flux ⁇ M. Thereby, the magnetic resistance in the rotor core 21 is increased.
  • d 3 ⁇ d 1 is satisfied.
  • the magnetic saturation in the q-axis magnetic path exit portion 215 due to the armature magnetic flux ⁇ A and the magnet magnetic flux ⁇ M can be suppressed.
  • the increase in the magnetic reluctance of the rotor core 21 can be suppressed.
  • FIG. 12 is a plan view showing the main part of a permanent magnet type rotary electric machine according to Embodiment 5 of the present invention.
  • the widthwise dimension of the minimum width portion 114 is widest dimension is smaller in the teeth 112 and d 3.
  • a permanent magnet type rotary electric machine is formed so as to satisfy d 1 + W 5 ⁇ d 3 + W 6 .
  • the other configuration is the same as any one of the first to fourth embodiments.
  • FIG. 13 is a diagram showing the flow of magnetic flux in the permanent magnet type rotary electric machine of FIG.
  • a permanent magnet type rotary electric machine is formed to satisfy d 1 + W 5 ⁇ d 3 + W 6
  • the armature magnetic flux ⁇ A is applied to both of the first outer magnetic slits 212 a in the circumferential direction of the rotor core 21. It can pass through adjacent parts. Thereby, the fall of the magnetic resistance in rotor iron core 21 is controlled. As a result, the reduction in reluctance torque of the permanent magnet type rotary electric machine is suppressed.
  • FIG. 14 is a diagram showing the flow of magnetic flux in a comparative example for comparison with the permanent magnet type rotary electric machine according to the fifth embodiment.
  • a permanent magnet type rotary electric machine is formed so as to satisfy d 1 + W 5 > d 3 + W 6 .
  • the armature magnetic flux ⁇ A is generated by the first outer magnetic slit 212 a and the second outer magnetic magnet 212 in the rotor core 21. It can not pass between the slit 212b. Further, in this case, the armature magnetic flux ⁇ A passes between the first outer magnetic slit 212 a in the rotor core 21 and the permanent magnet 22.
  • the armature magnetic flux ⁇ A can pass only to a portion adjacent to one of the first outer magnetic slits 212 a in the circumferential direction of the rotor core 21.
  • the magnetic resistance in the rotor core 21 is reduced.
  • the reluctance of the rotor core 21 decreases according to the rotation angle of the rotor 2. Therefore, the reluctance torque of the permanent magnet type rotary electric machine is reduced.
  • d 1 + W 5 ⁇ d 3 + W 6 is satisfied.
  • the reduction of the magnetic resistance in the rotor core 21 can be suppressed.
  • FIG. 15 is a plan view showing an essential part of a permanent magnet type rotary electric machine according to Embodiment 6 of the present invention.
  • a groove 216 is formed on the outer peripheral surface of the rotor core 21 at a portion adjacent to the outer peripheral magnetic slit 212 in the radial direction. The formation of the grooves 216 in the rotor core 21 reduces the weight of the rotor core 21.
  • the widthwise dimension of the minimum width portion 114 is widest dimension is smaller in the teeth 112 and d 3.
  • the outer peripheral side magnetic slit 212 that are within the circumferential direction about ⁇ d 3/2 around the d-axis, d 3> W 5 need not meet.
  • the other configuration is the same as any one of the first to fifth embodiments.
  • a magnetic path outer peripheral side magnetic slit 212 is within the range of ⁇ d 3/2 in the circumferential direction about the d-axis is formed, it is small to contribute to the reluctance torque of the permanent magnet type rotating electrical machine. Therefore, even if larger than the width dimension d 3 of the smallest width portion 114 of the width dimension W 5 parts adjacent in the circumferential direction with respect to the q-axis magnetic path outlet portion 215 at the outer peripheral side magnetic slit 212 teeth 112 The influence on the reluctance torque of the permanent magnet type rotary electric machine is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

The present invention obtains a permanent magnet rotating electric machine in which the q-axis inductance can be increased. When the width direction dimension of a q-axis magnetic path exit portion that is the outside portion of a q-axis magnetic path in the radial direction is denoted by d1, the dimension of a permanent magnet in a direction vertical to the magnetization direction of the permanent magnet when viewed in a shaft direction is denoted by W2, and a half of the width direction dimension of an inside inter-magnet magnetic path that is a part of the rotor core between a pair of permanent magnets and the magnetic path of an inside portion in the radial direction is denoted by W4, the permanent magnet rotating electric machine satisfies the relationship of d1 > 0.6 × W2 − W4.

Description

永久磁石式回転電機Permanent magnet type rotating electric machine
 この発明は、永久磁石が回転子鉄心に埋め込まれた永久磁石式回転電機に関する。 The present invention relates to a permanent magnet type rotating electric machine in which permanent magnets are embedded in a rotor core.
 従来、固定子と、径方向について固定子よりも内側に設けられた回転子とを備えた永久磁石式回転電機が知られている。回転子は、外周部に一対の磁石挿入孔が形成された回転子鉄心と、一対の磁石挿入孔のそれぞれに挿入された一対の永久磁石とを有している。一対の永久磁石は、径方向について外側に向かうにつれて互いに離れるようにV字形状に配置されている。固定子鉄心における一対の永久磁石の間の部分には、磁気スリットが形成されている。これにより、d軸インダクタンスが減少する(例えば、特許文献1参照)。 BACKGROUND Conventionally, there is known a permanent magnet type rotary electric machine including a stator and a rotor provided radially inward of the stator. The rotor has a rotor core in which a pair of magnet insertion holes are formed in an outer peripheral portion, and a pair of permanent magnets inserted in each of the pair of magnet insertion holes. The pair of permanent magnets are arranged in a V-shape so as to be apart from each other as it goes radially outward. A magnetic slit is formed in a portion between the pair of permanent magnets in the stator core. This reduces the d-axis inductance (see, for example, Patent Document 1).
特開2004-104962号公報Japanese Patent Laid-Open No. 2004-104962
 しかしながら、回転子鉄心における永久磁石と磁気スリットとの間の部分に磁気飽和が生じることによって、q軸インダクタンスが減少する。その結果、永久磁石式回転電機のトルクが減少するという課題があった。 However, q-axis inductance is reduced by magnetic saturation occurring in the portion between the permanent magnet and the magnetic slit in the rotor core. As a result, there is a problem that the torque of the permanent magnet type rotary electric machine decreases.
 この発明は、上述のような課題を解決するためになされたものであり、その目的は、q軸インダクタンスを増加させることができる永久磁石式回転電機を提供するものである。 The present invention has been made to solve the problems as described above, and an object thereof is to provide a permanent magnet type rotating electrical machine capable of increasing q-axis inductance.
 この発明に係る永久磁石式回転電機は、回転子と、回転子の径方向について回転子に対して外側に設けられた固定子とを備え、回転子は、一対の磁石挿入孔が形成された回転子鉄心と、一対の磁石挿入孔のそれぞれに挿入された一対の永久磁石とを有し、一対の永久磁石は、回転子の軸方向に視た場合に径方向について外側に向かうにつれて互いに離れるV字形状に配置され、回転子鉄心における径方向について外側の部分であって一対の永久磁石の間の部分には、外周側磁気スリットが形成され、回転子鉄心における永久磁石と外周側磁気スリットとの間の部分には、q軸磁路が形成され、q軸磁路における径方向について外側の部分であるq軸磁路出口部分の幅方向寸法をd1とし、軸方向に視た場合の永久磁石の磁化方向に対する垂直方向についての永久磁石の寸法をW2とし、回転子鉄心における一対の永久磁石の間の部分であって径方向について内側の部分の磁路である内側磁石間磁路の幅方向寸法の半分の寸法をW4とした場合に、d1>0.6×W2-W4を満たす。 A permanent magnet type rotary electric machine according to the present invention includes a rotor and a stator provided outside with respect to the rotor in a radial direction of the rotor, and the rotor has a pair of magnet insertion holes formed therein. It has a rotor core and a pair of permanent magnets inserted in each of a pair of magnet insertion holes, and a pair of permanent magnets separate from each other as it goes radially outward when viewed in the axial direction of the rotor An outer circumferential magnetic slit is formed in a V-shaped portion, which is a radially outer portion of the rotor core and between the pair of permanent magnets, and the permanent magnet and the outer circumferential magnetic slit in the rotor core Q axis magnetic path is formed in the part between and the width direction dimension of the q axis magnetic path outlet part which is an outer part about the radial direction in the q axis magnetic path is d 1 when viewed in the axial direction Perpendicular to the magnetization direction of the permanent magnet The dimensions of the permanent magnets for the countercurrent and W 2, a half of the width dimension between the inner magnet flux path is a magnetic path portions at a the radially inner of the portion between the pair of permanent magnets in the rotor core If the size was W 4, satisfy the d 1> 0.6 × W 2 -W 4.
 この発明に係る永久磁石式回転電機によれば、q軸磁路出口部分における磁気飽和が防がれる。その結果、q軸インダクタンスを増加させることができる。 According to the permanent magnet type rotating electrical machine according to the present invention, the magnetic saturation at the exit portion of the q-axis magnetic path can be prevented. As a result, the q-axis inductance can be increased.
この発明の実施の形態1に係る永久磁石式回転電機を示す平面図である。It is a top view which shows the permanent-magnet-type rotary electric machine which concerns on Embodiment 1 of this invention. 図1のA部を示す拡大図である。It is an enlarged view which shows the A section of FIG. 図2のB部を示す拡大図である。It is an enlarged view which shows the B section of FIG. この発明の実施の形態2に係る永久磁石式回転電機の要部を示す平面図である。It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る永久磁石式回転電機の要部を示す平面図である。It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 3 of this invention. 図5のC部を示す拡大図である。It is an enlarged view which shows the C section of FIG. 図5のティースを通る磁束を示す図である。It is a figure which shows the magnetic flux which passes through the teeth of FIG. 実施の形態3に係る永久磁石式回転電機と比較するための比較例におけるティースを通る磁束を示す図である。FIG. 16 is a diagram showing a magnetic flux passing through teeth in a comparative example for comparison with the permanent magnet type rotary electric machine according to the third embodiment. この発明の実施の形態4に係る永久磁石式回転電機の要部を示す平面図である。It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 4 of this invention. 図9のD部を示す拡大図である。It is an enlarged view which shows the D section of FIG. 実施の形態4に係る永久磁石式回転電機と比較するための比較例におけるティースを通る磁束を示す図である。FIG. 21 is a diagram showing a magnetic flux passing through teeth in a comparative example for comparison with the permanent magnet type rotary electric machine according to the fourth embodiment. この発明の実施の形態5に係る永久磁石式回転電機の要部を示す平面図である。It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 5 of this invention. 図12の永久磁石式回転電機における磁束の流れを示す図である。It is a figure which shows the flow of the magnetic flux in the permanent-magnet-type rotary electric machine of FIG. 実施の形態5に係る永久磁石式回転電機と比較するための比較例における磁束の流れを示す図である。FIG. 21 is a diagram showing the flow of magnetic flux in a comparative example for comparison with the permanent magnet type rotary electric machine according to Embodiment 5. この発明の実施の形態6に係る永久磁石式回転電機の要部を示す平面図である。It is a top view which shows the principal part of the permanent-magnet-type rotary electric machine which concerns on Embodiment 6 of this invention.
 実施の形態1.
 図1は、この発明の実施の形態1に係る永久磁石式回転電機を示す平面図、図2は、図1のA部を示す拡大図である。実施の形態1に係る永久磁石式回転電機は、円環形状に形成された固定子1と、固定子1に対向して設けられた回転子2とを備えている。固定子1は、回転子2の径方向について回転子2に対して外側に設けられている。以下、径方向とは、回転子2についての径方向とし、周方向とは、回転子2についての周方向とし、軸方向とは、回転子2についての軸方向とする。
Embodiment 1
FIG. 1 is a plan view showing a permanent magnet type rotary electric machine according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged view showing a portion A of FIG. The permanent magnet type rotary electric machine according to the first embodiment includes a stator 1 formed in an annular shape, and a rotor 2 provided opposite to the stator 1. The stator 1 is provided outside the rotor 2 in the radial direction of the rotor 2. Hereinafter, the radial direction is the radial direction of the rotor 2, the circumferential direction is the circumferential direction of the rotor 2, and the axial direction is the axial direction of the rotor 2.
 固定子1は、固定子鉄心11と、固定子鉄心11に設けられた複数のコイル12とを備えている。固定子鉄心11は、円環形状に形成されたコアバック111と、コアバック111から径方向について内側に突出する複数のティース112とを有している。複数のティース112は、周方向に等間隔に並べて配置されている。周方向に隣り合うそれぞれのティース112の間には、複数のスロット113が1個ずつ形成されている。コイル12は、スロット113に設けられている。 The stator 1 includes a stator core 11 and a plurality of coils 12 provided on the stator core 11. The stator core 11 has a core back 111 formed in an annular shape, and a plurality of teeth 112 projecting inward in the radial direction from the core back 111. The plurality of teeth 112 are arranged at equal intervals in the circumferential direction. A plurality of slots 113 are formed one by one between the teeth 112 adjacent in the circumferential direction. The coil 12 is provided in the slot 113.
 回転子2は、円柱形状の回転子鉄心21と、回転子鉄心21に埋め込められた複数の永久磁石22とを備えている。回転子鉄心21には、一対の磁石挿入孔211が周方向に等間隔に複数形成されている。 The rotor 2 includes a cylindrical rotor core 21 and a plurality of permanent magnets 22 embedded in the rotor core 21. A plurality of pairs of magnet insertion holes 211 are formed in the rotor core 21 at equal intervals in the circumferential direction.
 一対の磁石挿入孔211は、軸方向に視た場合に径方向について外側に向かうにつれて互いに離れるV字形状に形成されている。一対の磁石挿入孔211のそれぞれには、永久磁石22が1個ずつ挿入されている。一対の磁石挿入孔211に挿入された一対の永久磁石22は、軸方向に視た場合に径方向について外側に向かうにつれて互いに離れるV字形状に配置されている。 When viewed in the axial direction, the pair of magnet insertion holes 211 are formed in a V shape so as to be away from each other as it goes outward in the radial direction. One permanent magnet 22 is inserted into each of the pair of magnet insertion holes 211. The pair of permanent magnets 22 inserted into the pair of magnet insertion holes 211 are arranged in a V shape so as to be away from each other as it goes outward in the radial direction when viewed in the axial direction.
 回転子鉄心21における径方向について外側の部分であって一対の永久磁石22の間の部分には、複数の外周側磁気スリット212が形成されている。この例では、2本の外周側磁気スリット212が形成されている。2本の外周側磁気スリット212の中の一方を第1外周側磁気スリット212aとし、他方を第2外周側磁気スリット212bとする。第1外周側磁気スリット212aおよび第2外周側磁気スリット212bのそれぞれは、U字形状に形成されている。第1外周側磁気スリット212aおよび第2外周側磁気スリット212bのそれぞれは、両端部が径方向について外側に配置され、中間部が径方向について内側に配置されている。第2外周側磁気スリット212bは、第1外周側磁気スリット212aの内側に配置されている。したがって、第1外周側磁気スリット212aは、第2外周側磁気スリット212bよりも永久磁石22に対して近くに配置されている。 A plurality of outer circumferential side magnetic slits 212 are formed in a portion of the rotor core 21 which is the outer side in the radial direction and between the pair of permanent magnets 22. In this example, two outer circumferential magnetic slits 212 are formed. One of the two outer circumferential magnetic slits 212 is taken as a first outer circumferential magnetic slit 212a, and the other is taken as a second outer circumferential magnetic slit 212b. Each of the first outer circumferential magnetic slit 212a and the second outer circumferential magnetic slit 212b is formed in a U-shape. Both ends of the first outer circumferential magnetic slit 212a and the second outer circumferential magnetic slit 212b are disposed radially outward, and an intermediate portion is disposed radially inwardly. The second outer circumferential magnetic slit 212 b is disposed inside the first outer circumferential magnetic slit 212 a. Therefore, the first outer circumferential magnetic slit 212a is disposed closer to the permanent magnet 22 than the second outer circumferential magnetic slit 212b.
 固定子鉄心11における一対の磁石挿入孔211の間の部分であって径方向について内側の部分には、内周側磁気スリット213が形成されている。 An inner circumferential magnetic slit 213 is formed in a portion between the pair of magnet insertion holes 211 in the stator core 11 and in the radially inner portion.
 図3は、図2のB部を示す拡大図である。磁石挿入孔211における径方向について外側の部分であって永久磁石22が挿入されていない部分を径方向外側磁気スリット211aとする。また、磁石挿入孔211における径方向について内側の部分であって永久磁石22が挿入されていない部分を径方向内側磁気スリット211bとする。 FIG. 3 is an enlarged view showing a portion B of FIG. A portion of the magnet insertion hole 211 which is the outer side in the radial direction and in which the permanent magnet 22 is not inserted is referred to as a radial outer magnetic slit 211 a. In addition, a portion which is an inner side in the radial direction in the magnet insertion hole 211 and in which the permanent magnet 22 is not inserted is referred to as a radial inner magnetic slit 211b.
 内周側磁気スリット213は、一対の磁石挿入孔211におけるそれぞれの径方向内側磁気スリット211bの間に配置されている。一対の磁石挿入孔211におけるそれぞれの径方向内側磁気スリット211bと内周側磁気スリット213との間にある回転子鉄心21の部分を内側磁石間磁路214とする。内側磁石間磁路214は、回転子鉄心21における一対の永久磁石22の間の部分であって径方向について内側の部分の磁路となる。図3では、一方の磁石挿入孔211の径方向内側磁気スリット211bと内周側磁気スリット213との間の内側磁石間磁路214の部分を示している。 The inner circumferential magnetic slits 213 are disposed between the radially inner magnetic slits 211 b in the pair of magnet insertion holes 211. A portion of the rotor core 21 located between the radially inner magnetic slit 211 b and the inner magnetic slit 213 in each of the pair of magnet insertion holes 211 is referred to as an inner inter-magnet magnetic path 214. The inner inter-magnet magnetic path 214 is a portion between the pair of permanent magnets 22 in the rotor core 21 and serves as a magnetic path on the inner side in the radial direction. FIG. 3 shows a portion of the inter-magnet magnetic path 214 between the radially inner magnetic slit 211 b of the one magnet insertion hole 211 and the inner circumferential magnetic slit 213.
 回転子鉄心21における一対の永久磁石22の間を通るとともに径方向に延びる部分をd軸とする。d軸は、回転子鉄心21における磁束の通り難い部分である。回転子鉄心21における永久磁石22と第1外周側磁気スリット212aとの間の部分には、q軸磁路が形成されている。q軸磁路における径方向について外側の部分をq軸磁路出口部分215とする。q軸磁路は、回転子鉄心21におけるq軸の磁束が通る部分である。 A portion of the rotor core 21 passing between the pair of permanent magnets 22 and extending in the radial direction is taken as a d-axis. The d-axis is a portion where the magnetic flux in the rotor core 21 is difficult to pass. A q-axis magnetic path is formed in a portion of the rotor core 21 between the permanent magnet 22 and the first outer magnetic slit 212a. A radially outer portion of the q-axis magnetic path is taken as a q-axis magnetic path outlet portion 215. The q-axis magnetic path is a portion through which the q-axis magnetic flux in the rotor core 21 passes.
 q軸磁路出口部分215の幅方向寸法をd1とする。軸方向に視た場合の永久磁石22の磁化方向に対する垂直方向についての永久磁石22の寸法をW2とする。内側磁石間磁路214の幅方向寸法の半分の寸法をW4とする。永久磁石22の残留磁束密度をBmagとする。回転子鉄心21の磁化が飽和した際の磁束密度をBsとする。この場合に、d1>W2×Bmag/Bs-W4を満たすように回転子2が形成されている。 The dimension in the width direction of the q-axis magnetic path outlet portion 215 is d 1 . The dimensions of the permanent magnet 22 in the vertical direction with respect to the magnetization direction of the permanent magnet 22 when viewed in the axial direction and W 2. Half of dimensions in the width direction dimension of the inner magnet between the magnetic path 214 and W 4. The residual magnetic flux density of the permanent magnet 22 is B mag . The magnetic flux density when the magnetization of the rotor core 21 is saturated is assumed to be B s . In this case, the rotor 2 is formed to satisfy d 1 > W 2 × B mag / B s −W 4 .
 永久磁石22の総磁束量は、W2×Bmagと表される。一対の径方向内側磁気スリット211bにおける一方の径方向内側磁気スリット211bと内周側磁気スリット213との間の漏れ磁束は、W4×Bsと表される。したがって、q軸磁路出口部分215を通る磁束は、W2×Bmag-W4×B2と表される。これにより、q軸磁路出口部分215の磁束密度は、(W2×Bmag-W4×B2)/d1と表される。その結果、q軸磁路出口部分215の磁気飽和を防ぐためには、回転子鉄心21の磁化が飽和した際の磁束密度Bsよりもq軸磁路出口部分215の磁束密度(W2×Bmag-W4×B2)/d1が低くなるようにすればよい。 The total amount of magnetic flux of the permanent magnet 22 is expressed as W 2 × B mag . The leakage flux between one radially inner magnetic slit 211 b and the inner circumferential magnetic slit 213 in the pair of radially inner magnetic slits 211 b is expressed as W 4 × B s . Therefore, the magnetic flux passing through the q-axis magnetic path exit portion 215 is expressed as W 2 × B mag −W 4 × B 2 . Accordingly, the magnetic flux density of the q-axis magnetic path exit portion 215 is expressed as (W 2 × B mag −W 4 × B 2 ) / d 1 . As a result, in order to prevent the magnetic saturation of the q-axis magnetic path outlet portion 215, the magnetic flux density (W 2 × B) of the q-axis magnetic path outlet portion 215 is more than the magnetic flux density B s when the magnetization of the rotor core 21 is saturated. It is sufficient to reduce mag -W 4 × B 2 ) / d 1 .
 現実的な設計を行った場合に、Bmagは、1.15(T)~1.30(T)となり、Bsは、1.7(T)~1.9(T)となる。これにより、Bmag/Bs>0.60となる。したがって、d1>0.6×W2-W4を満たすように回転子2が形成されている。 In a realistic design, B mag is 1.15 (T) to 1.30 (T), and B s is 1.7 (T) to 1.9 (T). As a result, B mag / B s > 0.60. Therefore, the rotor 2 is formed to satisfy d 1 > 0.6 × W 2 -W 4 .
 以上説明したように、この発明の実施の形態1に係る永久磁石式回転電機によれば、d1>0.6×W2-W4が満たされる。これにより、q軸磁路出口部分215における磁気飽和が防がれる。その結果、q軸インダクタンスを大きくすることができる。したがって、永久磁石式回転電機のリラクタンストルクを大きくすることができる。 As described above, according to the permanent magnet type rotary electric machine according to the first embodiment of the present invention, d 1 > 0.6 × W 2 -W 4 is satisfied. This prevents magnetic saturation at the q-axis magnetic path exit portion 215. As a result, the q-axis inductance can be increased. Therefore, the reluctance torque of the permanent magnet type rotary electric machine can be increased.
 また、回転子鉄心21における一対の永久磁石22の間の部分には、複数の外周側磁気スリット212が形成されている。これにより、外周側磁気スリット212が電機子磁束を遮ることによる磁気抵抗の増加を抑制するとともに、d軸インダクタンスを低下させることができる。その結果、永久磁石式回転電機の突極比を増加させることができる。したがって、永久磁石式回転電機のリラクタンストルクを増加させることができる。 A plurality of outer circumferential magnetic slits 212 are formed in a portion between the pair of permanent magnets 22 in the rotor core 21. As a result, it is possible to suppress the increase in magnetic resistance due to the outer circumferential magnetic slit 212 interrupting the armature magnetic flux, and to reduce the d-axis inductance. As a result, the salient pole ratio of the permanent magnet type rotary electric machine can be increased. Therefore, the reluctance torque of the permanent magnet type rotating electrical machine can be increased.
 実施の形態2.
 図4は、この発明の実施の形態2に係る永久磁石式回転電機の要部を示す平面図である。回転子鉄心21における永久磁石22と第1外周側磁気スリット212aとの間の部分であって、最も幅方向寸法が小さい部分の幅方向寸法をd2とする。この例では、d1>d2とする。軸方向に視た場合の永久磁石22の磁化方向に対する垂直方向について、永久磁石22における第1外周側磁気スリット212aと最も近い部分である最接近部分22aと永久磁石22における径方向について内側の部分22bとの間の寸法をW3とする。この場合に、d2>W3×Bmag/Bs-W4を満たすように回転子2が形成されている。言い換えれば、d2>0.6×W3-W4を満たすように回転子2が形成されている。その他の構成は、実施の形態1と同様である。
Second Embodiment
FIG. 4 is a plan view showing the main part of a permanent magnet type rotary electric machine according to Embodiment 2 of the present invention. A portion between the permanent magnets 22 in the rotor core 21 and the first outer peripheral side magnetic slit 212a, the width dimension of the portion most widthwise dimension as small as d 2. In this example, d 1 > d 2 . With respect to the direction perpendicular to the magnetization direction of the permanent magnet 22 when viewed in the axial direction, the innermost portion in the radial direction of the closest part 22a closest to the first outer peripheral magnetic slit 212a in the permanent magnet 22 and the permanent magnet 22 the dimension between the 22b to W 3. In this case, the rotor 2 is formed to satisfy d 2 > W 3 × B mag / B s −W 4 . In other words, the rotor 2 is formed to satisfy d 2 > 0.6 × W 3 -W 4 . The other configuration is the same as that of the first embodiment.
 以上説明したように、この発明の実施の形態2に係る永久磁石式回転電機によれば、d2>W3×Bmag/Bs-W4が満たされる。これにより、回転子鉄心21における永久磁石22と第1外周側磁気スリット212aとの間の部分の磁気飽和が防がれる。その結果、q軸インダクタンスを低下させることなく、第1外周側磁気スリット212aを大きくすることができる。したがって、q軸インダクタンスを低下させることなく、d軸インダクタンスを低下させることができる。その結果、永久磁石式回転電機の突極比を増加させることができる。 As described above, according to the permanent magnet type rotary electric machine according to the second embodiment of the present invention, d 2 > W 3 × B mag / B s -W 4 is satisfied. Thereby, magnetic saturation of a portion of the rotor core 21 between the permanent magnet 22 and the first outer circumferential magnetic slit 212a is prevented. As a result, the first outer magnetic slit 212a can be enlarged without reducing the q-axis inductance. Therefore, the d-axis inductance can be reduced without reducing the q-axis inductance. As a result, the salient pole ratio of the permanent magnet type rotary electric machine can be increased.
 実施の形態3.
 図5は、この発明の実施の形態3に係る永久磁石式回転電機の要部を示す平面図、図6は、図5のC部を示す拡大図である。ティース112における最も幅方向寸法が小さい部分における幅方向寸法をd3とする。第1外周側磁気スリット212aにおけるq軸磁路出口部分215に対して周方向に隣り合う部分の幅方向寸法をW5とする。この場合に、d3>W5を満たすように永久磁石式回転電機が形成されている。その他の構成は、実施の形態1または実施の形態2と同様である。
Third Embodiment
5 is a plan view showing the main part of a permanent magnet type rotary electric machine according to Embodiment 3 of the present invention, and FIG. 6 is an enlarged view showing a portion C of FIG. The widthwise dimension of the portion widest dimension is smaller in the teeth 112 and d 3. The widthwise dimension of the adjacent portion in the circumferential direction with respect to the q-axis magnetic path outlet portion 215 of the first outer peripheral side magnetic slit 212a and W 5. In this case, a permanent magnet type rotary electric machine is formed to satisfy d 3 > W 5 . The other configuration is the same as that of the first embodiment or the second embodiment.
 図7は、図5のティース112を通る磁束を示す図、図8は、実施の形態3に係る永久磁石式回転電機と比較するための比較例におけるティース112を通る磁束を示す図である。d3>W5を満たすように第1外周側磁気スリット212aを形成した場合には、第1外周側磁気スリット212aにおけるq軸磁路出口部分215に対して周方向に隣り合う部分がティース112と対向する場合であっても、ティース112を通る磁束φがq軸磁路を通る。これにより、ティース112を通る磁束φが第1外周側磁気スリット212aによって妨げられることが抑制される。その結果、永久磁石式回転電機のトルクの減少が低減される。 FIG. 7 is a view showing a magnetic flux passing through the teeth 112 of FIG. 5, and FIG. 8 is a view showing a magnetic flux passing through the teeth 112 in a comparative example for comparison with the permanent magnet type rotating electric machine according to the third embodiment. When the first outer magnetic slit 212 a is formed to satisfy d 3 > W 5 , a portion adjacent to the q-axis magnetic path outlet portion 215 in the first outer magnetic slit 212 a in the circumferential direction is the tooth 112 The magnetic flux φ passing through the teeth 112 passes through the q-axis magnetic path even when facing the This prevents the magnetic flux φ passing through the teeth 112 from being hindered by the first outer circumferential magnetic slit 212a. As a result, the decrease in torque of the permanent magnet type rotary electric machine is reduced.
 一方、d3≦W5を満たすように第1外周側磁気スリット212cを形成した場合には、第1外周側磁気スリット212cにおけるq軸磁路出口部分215に対して周方向に隣り合う部分がティース112と対向する場合に、ティース112を通る磁束φがq軸磁路を通らない。これにより、ティース112を通る磁束φが第1外周側磁気スリット212aによって妨げられる。その結果、q軸磁路の磁気抵抗が増加する。したがって、永久磁石式回転電機のトルクが減少する。 On the other hand, when the first outer magnetic slit 212c is formed to satisfy d 3 ≦ W 5 , a portion adjacent to the q-axis magnetic path outlet portion 215 in the first outer magnetic slit 212c in the circumferential direction is When facing the teeth 112, the magnetic flux φ passing through the teeth 112 does not pass through the q-axis magnetic path. Thereby, the magnetic flux テ ィ ー passing through the teeth 112 is blocked by the first outer circumferential magnetic slit 212a. As a result, the reluctance of the q-axis magnetic path increases. Therefore, the torque of the permanent magnet type rotary electric machine is reduced.
 以上説明したように、この発明の実施の形態3に係る永久磁石式回転電機によれば、d3>W5を満たす。これにより、永久磁石式回転電機のトルクの減少を低減させることができる。 As described above, according to the permanent magnet type rotary electric machine according to the third embodiment of the present invention, d 3 > W 5 is satisfied. Thereby, the decrease in torque of the permanent magnet type rotary electric machine can be reduced.
 実施の形態4.
 図9は、この発明の実施の形態4に係る永久磁石式回転電機の要部を示す平面図、図10は、図9のD部を示す拡大図である。q軸磁路出口部分215の幅方向寸法をd1とする。ティース112における最も幅方向寸法が小さい部分の幅方向寸法をd3とする。この場合に、d3<d1を満たすように永久磁石式回転電機が形成されている。その他の構成は、実施の形態1から実施の形態3までの何れかと同様である。
Fourth Embodiment
9 is a plan view showing an essential part of a permanent magnet type rotary electric machine according to Embodiment 4 of the present invention, and FIG. 10 is an enlarged view showing a portion D of FIG. The dimension in the width direction of the q-axis magnetic path outlet portion 215 is d 1 . The widthwise dimension of the portion widest dimension is smaller in the teeth 112 and d 3. In this case, a permanent magnet type rotary electric machine is formed to satisfy d 3 <d 1 . The other configuration is the same as any one of the first to third embodiments.
 d3<d1を満たすように永久磁石式回転電機を形成した場合には、電機子磁束φAおよびマグネット磁束φMによるq軸磁路出口部分215における磁気飽和が抑制される。図11は、実施の形態4に係る永久磁石式回転電機と比較するための比較例におけるティース112を通る磁束を示す図である。d3≧d2を満たすように永久磁石式回転電機を形成した場合には、電機子磁束φAおよびマグネット磁束φMによるq軸磁路出口部分215における磁気飽和が生じる。これにより、回転子鉄心21における磁気抵抗が増加する。 When the permanent magnet type rotary electric machine is formed to satisfy d 3 <d 1 , magnetic saturation in the q-axis magnetic path exit portion 215 due to the armature magnetic flux φ A and the magnet magnetic flux φ M is suppressed. FIG. 11 is a diagram showing a magnetic flux passing through the teeth 112 in a comparative example for comparison with the permanent magnet type rotary electric machine according to the fourth embodiment. When the permanent magnet type rotary electric machine is formed to satisfy d 3 dd 2 , magnetic saturation occurs in the q-axis magnetic path exit portion 215 due to the armature magnetic flux φ A and the magnet magnetic flux φ M. Thereby, the magnetic resistance in the rotor core 21 is increased.
 以上説明したように、この発明の実施の形態4に係る永久磁石式回転電機によれば、d3<d1を満たす。これにより、電機子磁束φAおよびマグネット磁束φMによるq軸磁路出口部分215における磁気飽和を抑制することができる。その結果、回転子鉄心21の磁気抵抗の増加を抑制することができる。 As described above, according to the permanent magnet type rotary electric machine according to the fourth embodiment of the present invention, d 3 <d 1 is satisfied. Thereby, the magnetic saturation in the q-axis magnetic path exit portion 215 due to the armature magnetic flux φ A and the magnet magnetic flux φ M can be suppressed. As a result, the increase in the magnetic reluctance of the rotor core 21 can be suppressed.
 実施の形態5.
 図12は、この発明の実施の形態5に係る永久磁石式回転電機の要部を示す平面図である。ティース112における最も幅方向寸法が小さいである最小幅部分114の幅方向寸法をd3とする。ティース112における最小幅部分114に対して周方向に隣り合うスロット113の部分の幅方向寸法をW6とする。第1外周側磁気スリット212aにおけるq軸磁路出口部分215に対して周方向に隣り合う部分の幅方向寸法をW5とする。この場合に、d1+W5<d3+W6を満たすように、永久磁石式回転電機が形成されている。その他の構成は、実施の形態1から実施の形態4までの何れかと同様である。
Embodiment 5
FIG. 12 is a plan view showing the main part of a permanent magnet type rotary electric machine according to Embodiment 5 of the present invention. The widthwise dimension of the minimum width portion 114 is widest dimension is smaller in the teeth 112 and d 3. The widthwise dimension of the portion of the slot 113 adjacent to the least width portion 114 in the circumferential direction of the teeth 112 and W 6. The widthwise dimension of the adjacent portion in the circumferential direction with respect to the q-axis magnetic path outlet portion 215 of the first outer peripheral side magnetic slit 212a and W 5. In this case, a permanent magnet type rotary electric machine is formed so as to satisfy d 1 + W 5 <d 3 + W 6 . The other configuration is the same as any one of the first to fourth embodiments.
 図13は、図12の永久磁石式回転電機における磁束の流れを示す図である。d1+W5<d3+W6を満たすように永久磁石式回転電機を形成した場合には、電機子磁束φAは、回転子鉄心21における周方向について第1外周側磁気スリット212aの両方に隣り合う部分を通ることができる。これにより、回転子鉄心21における磁気抵抗の低下が抑制される。その結果、永久磁石式回転電機のリラクタンストルクの低下が抑制される。 FIG. 13 is a diagram showing the flow of magnetic flux in the permanent magnet type rotary electric machine of FIG. When a permanent magnet type rotary electric machine is formed to satisfy d 1 + W 5 <d 3 + W 6 , the armature magnetic flux φ A is applied to both of the first outer magnetic slits 212 a in the circumferential direction of the rotor core 21. It can pass through adjacent parts. Thereby, the fall of the magnetic resistance in rotor iron core 21 is controlled. As a result, the reduction in reluctance torque of the permanent magnet type rotary electric machine is suppressed.
 図14は、実施の形態5に係る永久磁石式回転電機と比較するための比較例における磁束の流れを示す図である。図14では、d1+W5>d3+W6を満たすように永久磁石式回転電機が形成されている。d1+W5>d3+W6を満たすように永久磁石式回転電機を形成した場合には、電機子磁束φAは、回転子鉄心21における第1外周側磁気スリット212aと第2外周側磁気スリット212bとの間を通ることができない。また、この場合には、電機子磁束φAは、回転子鉄心21における第1外周側磁気スリット212aと永久磁石22との間を通る。言い換えれば、電機子磁束φAは、回転子鉄心21における周方向について第1外周側磁気スリット212aの一方に隣り合う部分にのみ通ることができる。これにより、回転子鉄心21における磁気抵抗が低下する。その結果、回転子2の回転角に応じて回転子鉄心21における磁気抵抗が低下する。したがって、永久磁石式回転電機のリラクタンストルクが低下する。 FIG. 14 is a diagram showing the flow of magnetic flux in a comparative example for comparison with the permanent magnet type rotary electric machine according to the fifth embodiment. In FIG. 14, a permanent magnet type rotary electric machine is formed so as to satisfy d 1 + W 5 > d 3 + W 6 . When the permanent magnet type rotary electric machine is formed to satisfy d 1 + W 5 > d 3 + W 6 , the armature magnetic flux φ A is generated by the first outer magnetic slit 212 a and the second outer magnetic magnet 212 in the rotor core 21. It can not pass between the slit 212b. Further, in this case, the armature magnetic flux φ A passes between the first outer magnetic slit 212 a in the rotor core 21 and the permanent magnet 22. In other words, the armature magnetic flux φ A can pass only to a portion adjacent to one of the first outer magnetic slits 212 a in the circumferential direction of the rotor core 21. Thereby, the magnetic resistance in the rotor core 21 is reduced. As a result, the reluctance of the rotor core 21 decreases according to the rotation angle of the rotor 2. Therefore, the reluctance torque of the permanent magnet type rotary electric machine is reduced.
 以上説明したように、この発明の実施の形態5に係る永久磁石式回転電機によれば、d1+W5<d3+W6を満たす。これにより、回転子鉄心21における磁気抵抗の低下を抑抑制することができる。その結果、永久磁石式回転電機のリラクタンストルクの低下を抑制することができる。 As described above, according to the permanent magnet type rotary electric machine according to the fifth embodiment of the present invention, d 1 + W 5 <d 3 + W 6 is satisfied. Thereby, the reduction of the magnetic resistance in the rotor core 21 can be suppressed. As a result, it is possible to suppress a decrease in reluctance torque of the permanent magnet type rotary electric machine.
 実施の形態6.
 図15は、この発明の実施の形態6に係る永久磁石式回転電機の要部を示す平面図である。回転子鉄心21の外周面であって外周側磁気スリット212に対して径方向に隣り合う部分には、溝216が形成されている。回転子鉄心21に溝216が形成されることによって、回転子鉄心21が軽量化される。
Sixth Embodiment
FIG. 15 is a plan view showing an essential part of a permanent magnet type rotary electric machine according to Embodiment 6 of the present invention. A groove 216 is formed on the outer peripheral surface of the rotor core 21 at a portion adjacent to the outer peripheral magnetic slit 212 in the radial direction. The formation of the grooves 216 in the rotor core 21 reduces the weight of the rotor core 21.
 ティース112における最も幅方向寸法が小さいである最小幅部分114の幅方向寸法をd3とする。第1外周側磁気スリット212aにおけるq軸磁路出口部分215に対して周方向に隣り合う部分の幅方向寸法をW5とする。この場合に、d軸を中心として周方向について±d3/2の範囲内にある外周側磁気スリット212は、d3>W5を満たす必要はない。その他の構成は、実施の形態1から実施の形態5までの何れかと同様である。 The widthwise dimension of the minimum width portion 114 is widest dimension is smaller in the teeth 112 and d 3. The widthwise dimension of the adjacent portion in the circumferential direction with respect to the q-axis magnetic path outlet portion 215 of the first outer peripheral side magnetic slit 212a and W 5. In this case, the outer peripheral side magnetic slit 212 that are within the circumferential direction about ± d 3/2 around the d-axis, d 3> W 5 need not meet. The other configuration is the same as any one of the first to fifth embodiments.
 以上説明したように、この発明の実施の形態6に係る永久磁石式回転電機によれば、回転子鉄心21の外周面であって外周側磁気スリット212に対して径方向に隣り合う部分には、溝216が形成されている。これにより、回転子2が高回転する場合に、遠心力によって回転子鉄心21に作用する応力を低減させることができる。 As described above, according to the permanent magnet type rotary electric machine according to the sixth embodiment of the present invention, in the portion which is the outer peripheral surface of the rotor core 21 and radially adjacent to the outer peripheral magnetic slit 212 , Grooves 216 are formed. Thereby, when the rotor 2 rotates at high speed, the stress acting on the rotor core 21 by the centrifugal force can be reduced.
 また、d軸を中心として周方向について±d3/2の範囲内にある外周側磁気スリット212が形成される磁路は、永久磁石式回転電機のリラクタンストルクに寄与することが小さい。したがって、外周側磁気スリット212におけるq軸磁路出口部分215に対して周方向に隣り合う部分の幅方向寸法W5をティース112の最小幅部分114の幅方向寸法d3よりも大きくしても、永久磁石式回転電機のリラクタンストルクに与える影響が小さい。 Moreover, a magnetic path outer peripheral side magnetic slit 212 is within the range of ± d 3/2 in the circumferential direction about the d-axis is formed, it is small to contribute to the reluctance torque of the permanent magnet type rotating electrical machine. Therefore, even if larger than the width dimension d 3 of the smallest width portion 114 of the width dimension W 5 parts adjacent in the circumferential direction with respect to the q-axis magnetic path outlet portion 215 at the outer peripheral side magnetic slit 212 teeth 112 The influence on the reluctance torque of the permanent magnet type rotary electric machine is small.
 なお、各上記実施の形態では、固定子鉄心11における径方向について外側の部分であって一対の永久磁石22の間の部分に2本の外周側磁気スリット212が形成された構成について説明した。これに対して、固定子鉄心11における径方向について外側の部分であって一対の永久磁石22の間の部分に1本の外周側磁気スリット212が形成された構成、または、3本以上の外周側磁気スリット212が形成された構成であってもよい。 In each of the above-described embodiments, the configuration has been described in which two outer circumferential magnetic slits 212 are formed in a portion outside the radial direction of the stator core 11 and between the pair of permanent magnets 22. On the other hand, a configuration in which one outer peripheral magnetic slit 212 is formed at a portion between the pair of permanent magnets 22 which is an outer portion in the radial direction of the stator core 11, or three or more outer peripherals. The side magnetic slit 212 may be formed.
 1 固定子、2 回転子、11 固定子鉄心、12 コイル、21 回転子鉄心、22 永久磁石、22a 最接近部分、111 コアバック、112 ティース、113 スロット、114 最小幅部分、21 回転子鉄心、22 永久磁石、211 磁石挿入孔、211a 径方向外側磁気スリット、211b 径方向内側磁気スリット、212 外周側磁気スリット、212a 第1外周側磁気スリット、212b 第2外周側磁気スリット、213 内周側磁気スリット、214 内側磁石間磁路、215 q軸磁路出口部分、216 溝。 Reference Signs List 1 stator, 2 rotors, 11 stator cores, 12 coils, 21 rotor cores, 22 permanent magnets, 22a closest portion, 111 core backs, 112 teeth, 113 slots, 114 minimum width portions, 21 rotor cores, 22 permanent magnet, 211 magnet insertion hole, 211a radial outer magnetic slit, 211b radial inner magnetic slit, 212 outer peripheral magnetic slit, 212a first outer magnetic slit, 212b second outer magnetic slit, 213 inner magnetic Slit, 214 magnetic path between inner magnets, 215 q axis magnetic path exit, 216 grooves.

Claims (8)

  1.  回転子と、
     前記回転子の径方向について前記回転子に対して外側に設けられた固定子と
     を備え、
     前記回転子は、一対の磁石挿入孔が形成された回転子鉄心と、一対の前記磁石挿入孔のそれぞれに挿入された一対の永久磁石とを有し、
     一対の前記永久磁石は、前記回転子の軸方向に視た場合に前記径方向について外側に向かうにつれて互いに離れるV字形状に配置され、
     前記回転子鉄心における前記径方向について外側の部分であって一対の前記永久磁石の間の部分には、外周側磁気スリットが形成され、
     前記回転子鉄心における前記永久磁石と前記外周側磁気スリットとの間の部分には、q軸磁路が形成され、
     前記q軸磁路における前記径方向について外側の部分であるq軸磁路出口部分の幅方向寸法をd1とし、前記軸方向に視た場合の前記永久磁石の磁化方向に対する垂直方向についての前記永久磁石の寸法をW2とし、前記回転子鉄心における一対の前記永久磁石の間の部分であって前記径方向について内側の部分の磁路である内側磁石間磁路の幅方向寸法の半分の寸法をW4とした場合に、
     d1>0.6×W2-W4
     を満たす永久磁石式回転電機。
    With the rotor,
    A stator provided outside the rotor with respect to the radial direction of the rotor;
    The rotor has a rotor core in which a pair of magnet insertion holes are formed, and a pair of permanent magnets inserted in each of the pair of magnet insertion holes.
    When viewed in the axial direction of the rotor, the pair of permanent magnets are arranged in a V shape so as to be away from each other in the radial direction.
    An outer circumferential side magnetic slit is formed in a portion of the rotor core which is the outer side in the radial direction and between the pair of permanent magnets,
    A q-axis magnetic path is formed in a portion of the rotor core between the permanent magnet and the outer magnetic slit.
    The dimension in the width direction of the q-axis magnetic path outlet portion which is the outer portion in the radial direction in the q-axis magnetic path is d 1 , and the above in the direction perpendicular to the magnetization direction of the permanent magnet when viewed in the axial direction The dimension of the permanent magnet is W 2 , which is a half of the width direction dimension of the magnetic path between the inner magnets which is a portion between the pair of permanent magnets in the rotor core and is a magnetic path in an inner portion in the radial direction. in the case where the size was W 4,
    d 1 > 0.6 × W 2 -W 4
    A permanent magnet type rotary electric machine that meets
  2.  回転子と、
     前記回転子の径方向について前記回転子に対して外側に設けられた固定子と
     を備え、
     前記回転子は、一対の磁石挿入孔が形成された回転子鉄心と、一対の前記磁石挿入孔のそれぞれに挿入された一対の永久磁石とを有し、
     一対の前記永久磁石は、前記回転子の軸方向に視た場合に前記径方向について外側に向かうにつれて互いに離れるV字形状に配置され、
     前記回転子鉄心における前記径方向について外側の部分であって一対の前記永久磁石の間の部分には、外周側磁気スリットが形成され、
     前記回転子鉄心における前記永久磁石と前記外周側磁気スリットとの間の部分には、q軸磁路が形成され、
     前記q軸磁路における前記径方向について外側の部分であるq軸磁路出口部分の幅方向寸法をd1とし、前記軸方向に視た場合の前記永久磁石の磁化方向に対する垂直方向についての前記永久磁石の寸法をW2とし、前記回転子鉄心における一対の前記永久磁石の間の部分であって前記径方向について内側の部分の磁路である内側磁石間磁路の幅方向寸法の半分の寸法をW4とし、前記永久磁石の残留磁束密度をBmagとし、前記回転子鉄心の磁化が飽和した際の磁束密度をBsとした場合に、
     d1>W2×Bmag/Bs-W4
     を満たす永久磁石式回転電機。
    With the rotor,
    A stator provided outside the rotor with respect to the radial direction of the rotor;
    The rotor has a rotor core in which a pair of magnet insertion holes are formed, and a pair of permanent magnets inserted in each of the pair of magnet insertion holes.
    When viewed in the axial direction of the rotor, the pair of permanent magnets are arranged in a V shape so as to be away from each other in the radial direction.
    An outer circumferential side magnetic slit is formed in a portion of the rotor core which is the outer side in the radial direction and between the pair of permanent magnets,
    A q-axis magnetic path is formed in a portion of the rotor core between the permanent magnet and the outer magnetic slit.
    The dimension in the width direction of the q-axis magnetic path outlet portion which is the outer portion in the radial direction in the q-axis magnetic path is d 1 , and the above in the direction perpendicular to the magnetization direction of the permanent magnet when viewed in the axial direction The dimension of the permanent magnet is W 2 , which is a half of the width direction dimension of the magnetic path between the inner magnets which is a portion between the pair of permanent magnets in the rotor core and is a magnetic path in an inner portion in the radial direction. Assuming that the dimension is W 4 , the residual magnetic flux density of the permanent magnet is B mag, and the magnetic flux density when the magnetization of the rotor core is saturated is B s ,
    d 1 > W 2 × B mag / B s -W 4
    A permanent magnet type rotary electric machine that meets
  3.  前記回転子鉄心における前記永久磁石と前記外周側磁気スリットとの間の部分であって最も幅方向寸法が小さい部分の幅方向寸法をd2とし、前記軸方向に視た場合の前記永久磁石の磁化方向に対する垂直方向について、前記永久磁石における前記外周側磁気スリットと最も近い部分である最接近部分と前記永久磁石における前記径方向について内側の部分との間の寸法をW3とした場合に、
     d2>W3×Bmag/Bs-W4
     を満たす請求項2に記載の永久磁石式回転電機。
    A dimension of a portion between the permanent magnet and the outer circumferential magnetic slit in the rotor core and having a smallest dimension in the width direction is d 2, and the permanent magnet is viewed in the axial direction When the dimension between the closest portion, which is the portion closest to the outer circumferential magnetic slit in the permanent magnet, and the inner portion in the radial direction of the permanent magnet is W 3 in the direction perpendicular to the magnetization direction,
    d 2 > W 3 × B mag / B s -W 4
    The permanent magnet type rotary electric machine according to claim 2, wherein
  4.  前記固定子は、先端部が前記回転子に対向し前記回転子の周方向について並べられた複数のティースを有する固定子鉄心を有し、
     前記ティースにおける最も幅方向寸法が小さい部分の幅方向寸法をd3とし、前記外周側磁気スリットにおける前記q軸磁路出口部分に対して前記周方向に隣り合う部分の幅方向寸法をW5とした場合に、
     d3>W5
     を満たす請求項1から請求項3までの何れか一項に記載の永久磁石式回転電機。
    The stator has a stator core having a plurality of teeth whose tips are opposed to the rotor and arranged in the circumferential direction of the rotor,
    Let d 3 be the widthwise dimension of the smallest portion in the widthwise direction of the teeth, and W 5 be the widthwise dimension of the portion adjacent to the circumferential direction with respect to the q-axis magnetic path outlet portion of the outer circumferential side magnetic slit If you
    d 3 > W 5
    The permanent magnet type rotary electric machine according to any one of claims 1 to 3, wherein
  5.  前記固定子は、先端部が前記回転子に対向し前記回転子の周方向について並べられた複数のティースを有する固定子鉄心を有し、
     前記ティースにおける最も幅方向寸法が小さい部分の幅方向寸法をd3とした場合に、
     d3<d1
     を満たす請求項1から請求項4までの何れか一項に記載の永久磁石式回転電機。
    The stator has a stator core having a plurality of teeth whose tips are opposed to the rotor and arranged in the circumferential direction of the rotor,
    When the widthwise dimension of the portion with the smallest widthwise dimension in the teeth is d 3 ,
    d 3 <d 1
    The permanent magnet type rotary electric machine according to any one of claims 1 to 4, wherein
  6.  前記固定子は、先端部が前記回転子に対向し前記回転子の周方向について並べられた複数のティースを有する固定子鉄心を有し、
     前記固定子鉄心における前記周方向に隣り合う一対の前記ティースの間の部分には、スロットが形成され、
     前記ティースにおける最も幅方向寸法が小さい部分の最小幅寸法をd3とし、前記ティースにおける最も幅方向寸法が小さい部分に対して前記周方向に隣り合う前記スロットの部分の幅方向寸法をW6とし、前記外周側磁気スリットにおける前記q軸磁路出口部分に対して前記周方向に隣り合う部分の幅方向寸法をW5とした場合に、
     d1+W5<d3+W6
     を満たす請求項1から請求項5までの何れか一項に記載の永久磁石式回転電機。
    The stator has a stator core having a plurality of teeth whose tips are opposed to the rotor and arranged in the circumferential direction of the rotor,
    A slot is formed in a portion between the pair of teeth adjacent in the circumferential direction in the stator core,
    The minimum width dimension of the portion with the smallest width dimension in the teeth is d 3, and the width direction dimension of the portion of the slot adjacent in the circumferential direction with respect to the portion with the smallest width dimension in the teeth is W 6 the widthwise dimension of the portion adjacent to the circumferential direction when the W 5 to the q-axis magnetic path outlet portion in the outer peripheral side magnetic slit,
    d 1 + W 5 <d 3 + W 6
    The permanent magnet type rotary electric machine according to any one of claims 1 to 5, wherein
  7.  前記回転子鉄心の外周面であって前記外周側磁気スリットに対して前記径方向に隣り合う部分には、溝が形成されている請求項1から請求項6までの何れか一項に記載の永久磁石式回転電機。 The groove is formed in the outer peripheral surface of the said rotor core, and the part adjacent to the said radial direction with respect to the said outer peripheral side magnetic slit is formed in any one of Claim 1 to 6 Permanent magnet type rotating electric machine.
  8.  前記回転子鉄心における一対の前記永久磁石の間の部分には、複数の前記外周側磁気スリットが形成されている請求項1から請求項7までの何れか一項に記載の永久磁石式回転電機。 The permanent magnet type rotary electric machine according to any one of claims 1 to 7, wherein a plurality of outer circumferential magnetic slits are formed in a portion between the pair of permanent magnets in the rotor core. .
PCT/JP2017/042197 2017-11-24 2017-11-24 Permanent magnet rotating electric machine WO2019102580A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/042197 WO2019102580A1 (en) 2017-11-24 2017-11-24 Permanent magnet rotating electric machine
CN201780096969.5A CN111357171B (en) 2017-11-24 2017-11-24 Permanent magnet type rotating electrical machine
JP2019556046A JP7050808B2 (en) 2017-11-24 2017-11-24 Permanent magnet type rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042197 WO2019102580A1 (en) 2017-11-24 2017-11-24 Permanent magnet rotating electric machine

Publications (1)

Publication Number Publication Date
WO2019102580A1 true WO2019102580A1 (en) 2019-05-31

Family

ID=66631834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042197 WO2019102580A1 (en) 2017-11-24 2017-11-24 Permanent magnet rotating electric machine

Country Status (3)

Country Link
JP (1) JP7050808B2 (en)
CN (1) CN111357171B (en)
WO (1) WO2019102580A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785522B1 (en) * 2019-11-13 2020-11-18 三菱電機株式会社 Rotating machine
WO2021106395A1 (en) * 2019-11-26 2021-06-03 株式会社安川電機 Rotary electric machine, rotor, and electromagnetic steel plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119027A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Motor
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine
JP2005341655A (en) * 2004-05-24 2005-12-08 Denso Corp Rotor of magnet embedded dynamo-electric machine
JP2006187189A (en) * 2004-11-30 2006-07-13 Hitachi Ltd Permanent magnet type rotary electric machine and apparatus
JP2014093914A (en) * 2012-11-06 2014-05-19 Mitsuba Corp Brushless motor
JP2016201960A (en) * 2015-04-14 2016-12-01 株式会社デンソー Embedded magnet type motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119027A (en) * 2000-10-12 2002-04-19 Matsushita Electric Ind Co Ltd Motor
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine
JP2005341655A (en) * 2004-05-24 2005-12-08 Denso Corp Rotor of magnet embedded dynamo-electric machine
JP2006187189A (en) * 2004-11-30 2006-07-13 Hitachi Ltd Permanent magnet type rotary electric machine and apparatus
JP2014093914A (en) * 2012-11-06 2014-05-19 Mitsuba Corp Brushless motor
JP2016201960A (en) * 2015-04-14 2016-12-01 株式会社デンソー Embedded magnet type motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785522B1 (en) * 2019-11-13 2020-11-18 三菱電機株式会社 Rotating machine
WO2021095167A1 (en) * 2019-11-13 2021-05-20 三菱電機株式会社 Dynamo-electric machine
CN114651383A (en) * 2019-11-13 2022-06-21 三菱电机株式会社 Rotating electrical machine
CN114651383B (en) * 2019-11-13 2023-08-11 三菱电机株式会社 Rotary electric machine
US11967863B2 (en) 2019-11-13 2024-04-23 Mitsubishi Electric Corporation Rotating electric machine
WO2021106395A1 (en) * 2019-11-26 2021-06-03 株式会社安川電機 Rotary electric machine, rotor, and electromagnetic steel plate
JPWO2021106395A1 (en) * 2019-11-26 2021-06-03
JP7461967B2 (en) 2019-11-26 2024-04-04 株式会社安川電機 Rotating electric machines, rotors and electromagnetic steel sheets

Also Published As

Publication number Publication date
CN111357171A (en) 2020-06-30
JP7050808B2 (en) 2022-04-08
JPWO2019102580A1 (en) 2020-05-28
CN111357171B (en) 2022-04-08

Similar Documents

Publication Publication Date Title
US9013082B2 (en) Rotating machine and rotor thereof
CN102570659B (en) Rotor of rotary electric machine
US8487495B2 (en) Rotor for motor
WO2018043081A1 (en) Rotor and reluctance motor
JP5418467B2 (en) Rotating electric machine
JP2007068357A (en) Rotor of rotary electric machine and rotary electric machine using the same
US9337692B2 (en) Permanent magnet rotor with flux barrier for reduced demagnetization
WO2016047078A1 (en) Permanent magnet type rotor and permanent magnet type synchronous rotary electric machine
JP2009017669A (en) Permanent magnet type rotating machine
JP2009131070A (en) Magnet type synchronous machine
US20210344241A1 (en) Rotating electric machine
WO2019215853A1 (en) Rotor structure of rotating electric machine
JP2014155373A (en) Multi-gap rotary electric machine
JP6212117B2 (en) Synchronous motor
WO2018135382A1 (en) Rotor and motor using same
WO2019102580A1 (en) Permanent magnet rotating electric machine
CN115336139A (en) Rotating electrical machine
KR200462693Y1 (en) Spoke type motor
JP6440349B2 (en) Rotating electric machine
JP6685634B1 (en) Rotating electric machine
JP4491211B2 (en) Permanent magnet rotating electric machine
JP2005210828A (en) Rotating electric machine and rotor therefor
JP2016021820A (en) Embedded permanent magnet rotary machine
JP7270806B1 (en) Rotating electric machine
JP2001218400A (en) Permanent magnet-type high-speed rotary machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932884

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932884

Country of ref document: EP

Kind code of ref document: A1