WO2020213081A1 - Rotor, motor, compressor, and air conditioner - Google Patents

Rotor, motor, compressor, and air conditioner Download PDF

Info

Publication number
WO2020213081A1
WO2020213081A1 PCT/JP2019/016422 JP2019016422W WO2020213081A1 WO 2020213081 A1 WO2020213081 A1 WO 2020213081A1 JP 2019016422 W JP2019016422 W JP 2019016422W WO 2020213081 A1 WO2020213081 A1 WO 2020213081A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
end slit
flux barrier
barrier portion
boundary
Prior art date
Application number
PCT/JP2019/016422
Other languages
French (fr)
Japanese (ja)
Inventor
恵実 塚本
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021514709A priority Critical patent/JP7204897B2/en
Priority to PCT/JP2019/016422 priority patent/WO2020213081A1/en
Publication of WO2020213081A1 publication Critical patent/WO2020213081A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor of a motor.
  • a rotor having a rotor core provided with a flux barrier and a slit is generally known.
  • the flux barrier reduces the leakage flux and the slit regulates the amount of magnetic flux passing through the rotor (see, for example, Patent Document 1).
  • An object of the present invention is to solve the above-mentioned problems and reduce vibration and noise in the motor.
  • the rotor according to one aspect of the present invention A rotor with P magnetic poles (P is an integer of 2 or more).
  • P is an integer of 2 or more.
  • a magnet insertion hole having a magnet arrangement portion in which the permanent magnet is arranged, a first flux barrier portion communicating with the magnet arrangement portion, and a second flux barrier portion communicating with the magnet arrangement portion.
  • a first end slit located between the first flux barrier portion and the second flux barrier portion and facing the first flux barrier portion, the first flux barrier portion, and the first flux barrier portion.
  • a rotor core located between the two flux barrier portions and having a second end slit facing the second flux barrier portion is provided.
  • the rotor core The first inner side that defines the first flux barrier portion and faces the first end slit, and A first outer curvature that defines the first flux barrier, is adjacent to the first inner edge, and is located between the first inner edge and the outer peripheral surface of the rotor core. Department and A second inner side that defines the second flux barrier portion and faces the second end slit, and A second outer curvature that defines the second flux barrier, is adjacent to the second inner edge, and is located between the second inner edge and the outer peripheral surface of the rotor core.
  • a straight line passing through the first boundary between the first inner side and the first outer curved portion and the rotation center of the rotor is defined as L1
  • the second The straight line passing through the second boundary between the inner side and the second outer curved portion and the rotation center of the rotor is L2
  • the angle between the straight line L1 and the straight line L2 is ⁇ [degree].
  • a magnet insertion hole having a magnet arrangement portion in which the permanent magnet is arranged, a first flux barrier portion communicating with the magnet arrangement portion, and a second flux barrier portion communicating with the magnet arrangement portion.
  • a first end slit located between the first flux barrier portion and the second flux barrier portion and facing the first flux barrier portion, the first flux barrier portion, and the first flux barrier portion.
  • a rotor core located between the two flux barrier portions and having a second end slit facing the second flux barrier portion is provided.
  • the rotor core The first inner side that defines the first flux barrier portion and faces the first end slit, and A first outer curvature that defines the first flux barrier, is adjacent to the first inner edge, and is located between the first inner edge and the outer peripheral surface of the rotor core.
  • the motor according to another aspect of the present invention With the stator It includes a rotor according to one aspect of the present invention or a rotor according to another aspect of the present invention, which is arranged inside the stator.
  • the compressor according to another aspect of the present invention With a closed container With the compression device arranged in the closed container, It includes the motor that drives the compression device.
  • the air conditioner according to another aspect of the present invention is With the compressor Equipped with a heat exchanger.
  • vibration and noise in the motor can be reduced.
  • FIG. 1 It is sectional drawing which shows typically the structure of the motor which concerns on Embodiment 1 of this invention. It is a top view which shows the structure of a rotor. It is an enlarged view which shows the structure of a part of the rotor shown in FIG. It is an enlarged view which shows the structure of a part of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is a figure which shows the magnetic flux which flows from a stator to a rotor. It is a graph which shows the cogging torque generated in a motor.
  • FIG. 1 It is a figure which shows another example of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is a figure which shows the magnetic flux which flows from the stator to the rotor shown in FIG. It is a figure which shows another example of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is an enlarged view which shows the structure of a part of a rotor. It is a figure which shows the magnetic flux which flows from the stator to the rotor shown in FIG. It is a figure which shows another example of a rotor.
  • Embodiment 1 In the xyz Cartesian coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the motor 1, and the x-axis direction (x-axis) is orthogonal to the z-axis direction (z-axis).
  • the y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction.
  • the axis Ax is the center of rotation of the rotor 2.
  • the direction parallel to the axis Ax is also referred to as "axial direction of rotor 2" or simply "axial direction”.
  • the radial direction is the radial direction of the rotor 2 or the stator 3, and is the direction orthogonal to the axis Ax.
  • the xy plane is a plane orthogonal to the axial direction.
  • the arrow A1 indicates the circumferential direction centered on the axis Ax.
  • the circumferential direction of the rotor 2 or the stator 3 is also simply referred to as "circumferential direction”.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the motor 1 according to the first embodiment of the present invention.
  • the motor 1 has a rotor 2 having P (P is an integer of 2 or more) magnetic poles and a stator 3.
  • the motor 1 is, for example, a permanent magnet synchronous motor (also referred to as a brushless DC motor) such as a permanent magnet embedded motor.
  • the motor 1 may further include a motor frame 4 (also simply referred to as a "frame”) that covers the stator 3.
  • the motor 1 is driven by, for example, inverter control. This enables motor control in consideration of the cogging torque generated in the motor 1. As a result, fluctuations in torque ripple that occur while driving the motor 1 can be suppressed, and vibration and noise in the motor 1 can be reduced.
  • FIG. 2 is a plan view showing the structure of the rotor 2.
  • the rotor 2 is rotatably arranged inside the stator 3.
  • the rotor 2 has a rotor core 21, at least one permanent magnet 22, and a shaft 23.
  • the rotor 2 is a permanent magnet embedded rotor.
  • the air gap between the rotor 2 and the stator 3 is, for example, 0.3 mm to 1 mm.
  • the rotor core 21 is fixed to the shaft 23 by a fixing method such as shrink fitting or press fitting.
  • a fixing method such as shrink fitting or press fitting.
  • the stator 3 has a stator core 31, at least one winding 32, and at least one slot 33 in which the winding 32 is arranged.
  • the stator core 31 has an annular yoke 311 and a plurality of teeth 312. In the example shown in FIG. 1, the stator core 31 has nine teeth 312 and nine slots 33. Each slot 33 is a space between teeth 312 adjacent to each other.
  • the number of teeth 312 is not limited to nine.
  • the number of slots 33 is not limited to nine.
  • the plurality of teeth 312 are located radially. In other words, the plurality of teeth 312 are arranged at equal intervals in the circumferential direction of the stator core 31. Each tooth 312 extends from the yoke 311 toward the center of rotation of the rotor 2.
  • Each tooth 312 has, for example, a main body portion extending in the radial direction and a tooth tip portion located at the tip of the main body portion and extending in the circumferential direction.
  • the plurality of teeth 312 and the plurality of slots 33 are alternately arranged at equal intervals in the circumferential direction of the stator core 31.
  • the stator core 31 is an annular iron core.
  • the stator core 31 has a plurality of electromagnetic steel plates laminated in the axial direction. These electrical steel sheets are fixed to each other by caulking. Each of the plurality of electrical steel sheets is punched so as to have a predetermined shape.
  • the thickness of each of the plurality of electrical steel sheets is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each of the plurality of electromagnetic steel sheets is 0.35 mm.
  • a winding 32 is wound around each tooth 312, whereby the winding 32 is arranged in each slot 33.
  • the winding 32 is wound around each tooth 312 in a concentrated winding. It is desirable that an insulator is arranged between the winding 32 and each tooth 312.
  • the winding 32 forms a coil that generates a rotating magnetic field.
  • the coil is, for example, a three-phase coil.
  • the connection method is, for example, Y connection.
  • the winding 32 is, for example, a magnet wire having a diameter of 1 mm. When a current flows through the winding 32, a rotating magnetic field is generated.
  • the number of turns and the diameter of the winding 32 are set according to the voltage applied to the winding 32, the rotation speed of the motor 1, the cross-sectional area of the slot 33, and the like.
  • the number of turns of the winding 32 is, for example, 80.
  • FIG. 3 is an enlarged view showing a partial structure of the rotor 2 shown in FIG.
  • the rotor 2 has a plurality of magnetic pole centers and a plurality of interpole portions.
  • each magnetic pole center is indicated by a magnetic pole center line C1
  • each pole-to-pole portion is indicated by an interpole line C2. That is, each magnetic pole center line C1 passes through the magnetic pole center of the rotor 2, and each pole interpole line C2 passes through the interpole portion of the rotor 2.
  • each magnetic pole is located at the center of each magnetic pole of the rotor 2 (that is, the north pole or the south pole of the rotor 2).
  • Each magnetic pole of the rotor 2 (also simply referred to as “each magnetic pole” or “magnetic pole”) means a region that serves as the north pole or the south pole of the rotor 2.
  • the inter-pole portion is the boundary between two magnetic poles (that is, the north and south poles of the rotor 2) that are adjacent to each other in the circumferential direction.
  • the rotor core 21 has a plurality of electromagnetic steel plates laminated in the axial direction. These electrical steel sheets are fixed to each other by caulking. Each of the plurality of electrical steel sheets is punched so as to have a predetermined shape.
  • the thickness of each of the plurality of electrical steel sheets is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each of the plurality of electromagnetic steel sheets 210 is 0.35 mm.
  • the rotor core 21 has at least one magnet insertion hole 211, a shaft hole 212, and at least one end slit 213.
  • the rotor core 21 has a plurality of magnet insertion holes 211 (specifically, six magnet insertion holes 211). In the xy plane, the plurality of magnet insertion holes 211 are arranged in the circumferential direction.
  • the number of magnetic poles P of the rotor 2 is 2 or more. The range of the number of magnetic poles P is preferably an even number of 4 to 10, that is, 4, 6, 8 or 10.
  • Each magnet insertion hole 211 corresponds to each magnetic pole of the rotor 2. Therefore, in the present embodiment, the number of magnetic poles of the rotor 2 is 6 poles. At least one permanent magnet 22 is arranged in each magnet insertion hole 211.
  • each magnet insertion hole 211 In the xy plane, the central portion of the magnet insertion hole 211 protrudes toward the axis Ax. That is, in the xy plane, each magnet insertion hole 211 has a V shape.
  • the shape of each magnet insertion hole 211 is not limited to the V shape, and may be, for example, a straight shape.
  • two permanent magnets 22 are arranged in one magnet insertion hole 211. That is, two permanent magnets 22 in one magnet insertion hole 211 form one magnetic pole of the rotor 2.
  • a set of permanent magnets 22 are arranged in one magnet insertion hole 211 so as to have a V shape.
  • the rotor 2 has 12 permanent magnets 22.
  • the shaft 23 is fixed to the shaft hole 212 by a method such as shrink fitting or press fitting.
  • Each permanent magnet 22 is a flat plate-shaped magnet that is long in the axial direction. Each permanent magnet 22 is magnetized in a direction orthogonal to the longitudinal direction of the permanent magnet 22 in the xy plane. That is, in the xy plane, each permanent magnet 22 is magnetized in the lateral direction of each permanent magnet 22. Each permanent magnet 22 is a rare earth magnet containing, for example, neodymium (Nd), iron (Fe), and boron (B).
  • the north or south poles of the two permanent magnets 22 arranged in one magnet insertion hole 211 face the outside or the inside in the radial direction of the rotor 2.
  • the set of permanent magnets 22 (specifically, the two permanent magnets 22) arranged in one magnet insertion hole 211 serves as one magnetic pole of the rotor 2. That is, at one magnetic pole of the rotor 2, a set of permanent magnets 22 (specifically, two permanent magnets 22) functions as north poles or south poles with respect to the stator 3.
  • the rotor core 21 may further have a plurality of inner slits 214.
  • the plurality of inner slits 214 are located between the two end slits 213.
  • Each magnet insertion hole 211 communicates with a magnet arrangement portion 2110 in which at least one permanent magnet 22 is arranged, a first flux barrier portion 2111 communicating with the magnet arrangement portion 2110, and a magnet arrangement portion 2110. It has a second flux barrier portion 2112.
  • the first flux barrier portion 2111 and the second flux barrier portion 2112 are located on both sides of the magnet insertion hole 211, respectively. That is, the magnet arranging portion 2110 is located between the first flux barrier portion 2111 and the second flux barrier portion 2112.
  • the first flux barrier portion 2111 is a through hole penetrating the rotor 2 in the axial direction. As a result, the first flux barrier portion 2111 reduces the leakage flux.
  • the second flux barrier portion 2112 is a through hole penetrating the rotor 2 in the axial direction. As a result, the second flux barrier portion 2112 reduces the leakage flux.
  • the rotor core 21 has a plurality of end slits 213. Specifically, at each magnetic pole of the rotor 2, two end slits 213 are provided in the rotor core 21.
  • one of the two end slits 213 is provided on one end side of the magnet insertion hole 211, and the other end slit.
  • the 213 is provided on the other end side of the magnet insertion hole 211.
  • one of the two end slits 213 faces one end of the magnet insertion hole 211 and the other.
  • the end slit 213 faces the other end of the magnet insertion hole 211.
  • the plurality of end slits 213 include at least one first end slit 2131 and at least one second end slit 2132.
  • one first end slit 2131 and one second end slit 2132 are formed between the magnet insertion holes 211 and the outer peripheral surface 21a of the rotor core 21. It is provided in between.
  • two end slits 213 that is, the first end slit 2131 and the second end slit 2132 are formed on the magnet insertion hole 211 and the outer peripheral surface 21a of the rotor core 21 for one magnetic pole. It is provided between. Therefore, in this embodiment, the rotor core 21 has 12 end slits 213.
  • FIG. 4 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 4 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
  • the first end slit 2131 is located between the first flux barrier portion 2111 and the second flux barrier portion 2112, and the first flux barrier portion 2111. Facing.
  • the first end slit 2131 is the first of a plurality of slits (that is, the end slit 213 and the plurality of inner slits 214) provided between the first flux barrier portion 2111 and the second flux barrier portion 2112. This is the slit closest to the flux barrier portion 2111 of.
  • FIG. 5 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 5 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
  • the second end slit 2132 is located between the first flux barrier portion 2111 and the second flux barrier portion 2112, and the second flux barrier portion 2112. Facing.
  • the second end slit 2132 is a second of a plurality of slits (that is, an end slit 213 and a plurality of inner slits 214) provided between the first flux barrier portion 2111 and the second flux barrier portion 2112. This is the slit closest to the flux barrier portion 2112 of.
  • a part of the rotor core 21 existing outside the first flux barrier portion 2111 in the radial direction, that is, the region between the outer peripheral surface 21a of the rotor core 21 and the first flux barrier portion 2111 is thin-walled to reduce the leakage flux. It is a department.
  • the width of the thin portion in the radial direction is, for example, equal to or larger than the thickness of each electromagnetic steel plate of the rotor core 21. However, it is desirable that the width of the thin portion in the radial direction is the same as the thickness of each electromagnetic steel plate of the rotor core 21, for example. Thereby, the increase of the leakage flux can be effectively suppressed.
  • a part of the rotor core 21 existing outside the second flux barrier portion 2112 in the radial direction that is, the region between the outer peripheral surface 21a of the rotor core 21 and the second flux barrier portion 2112 causes leakage flux. It is a thin part to be reduced.
  • the width of the thin portion in the radial direction is, for example, equal to or larger than the thickness of each electromagnetic steel plate of the rotor core 21. However, it is desirable that the width of the thin portion in the radial direction is the same as the thickness of each electromagnetic steel plate of the rotor core 21, for example. Thereby, the increase of the leakage flux can be effectively suppressed.
  • the rotor core 21 has a first inner side 221a, a first outer curved portion 221b, and a first outer side 221c.
  • the first inner side 221a defines the first flux barrier portion 2111 and faces the first end slit 2131.
  • the first outer curved portion 221b defines the first flux barrier portion 2111, is adjacent to the first inner side 221a, and is between the first inner side 221a and the first outer side 221c. It is provided and is located between the first inner side 221a and the outer peripheral surface 21a of the rotor core 21.
  • the first outer curved portion 221b is a curved side.
  • the first outer side 221c defines the first flux barrier portion 2111 and extends in the circumferential direction of the rotor core 21.
  • the distance D1 is the shortest distance from the first end slit 2131 to the magnet insertion hole 211.
  • the rotor core 21 has one or more sides or curved portions that define the first flux barrier portion 2111 in addition to the first inner side 221a, the first outer curved portion 221b, and the first outer side 221c. May be good.
  • the rotor core 21 has a second inner side 222a, a second outer curved portion 222b, and a second outer side 222c.
  • the second inner side 222a defines the second flux barrier portion 2112 and faces the second end slit 2132.
  • the second outer curved portion 222b defines the second flux barrier portion 2112, is adjacent to the second inner side 222a, and is between the second inner side 222a and the second outer side 222c. It is provided and is located between the second inner side 222a and the outer peripheral surface 21a of the rotor core 21.
  • the second outer curved portion 222b is a curved side.
  • the second outer side 222c defines the second flux barrier portion 2112 and extends in the circumferential direction of the rotor core 21.
  • the distance D2 is the shortest distance from the second end slit 2132 to the magnet insertion hole 211.
  • the rotor core 21 has one or more sides or curved portions that define the second flux barrier portion 2112. May be good.
  • the boundary B1 (also referred to as the first boundary) and the rotor 2 between the first inner side 221a and the first outer curved portion 221b.
  • L1 be the straight line passing through the center of rotation of the rotor 2
  • L2 be the straight line passing through the boundary B2 (also referred to as the second boundary) between the second inner side 222a and the second outer curved portion 222b and the center of rotation of the rotor 2.
  • the angle between the straight line L1 and the straight line L2 is ⁇ [degree]
  • the rotor 2 satisfies 251.7 / P ⁇ ⁇ ⁇ 255 / P.
  • Boundary B1 and boundary B2 are symmetrical with respect to the magnetic pole center line C1.
  • FIG. 6 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 6 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
  • the rotor core 21 has a first end slit side 231a, a first end slit curved portion 231b, a side 231c (also referred to as a third end slit side), and a side 211a.
  • the first end slit side 231a defines the first end slit 2131 and faces the first flux barrier portion 2111.
  • the first end slit curved portion 231b defines the first end slit 2131, is adjacent to the first end slit side 231a, and is provided between the first end slit side 231a and the side 231c. It is located between the first end slit side 231a and the magnet insertion hole 211.
  • the side 231c defines the first end slit 2131, is adjacent to the first end slit curved portion 231b, and faces the magnet insertion hole 211 (specifically, the side 211a).
  • the side 211a defines the magnet insertion hole 211 and faces the side 231c.
  • the rotor core 21 may have one or more sides or curved portions that define the first end slit 2131 in addition to the first end slit side 231a, the first end slit curved portion 231b, and the side 231c.
  • FIG. 7 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 7 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
  • the rotor core 21 has a second end slit side 232a, a second end slit curved portion 232b, a side 232c (also referred to as a fourth end slit side), and a side 211b.
  • the second end slit side 232a defines the second end slit 2132 and faces the second flux barrier portion 2112.
  • the second end slit curved portion 232b defines the second end slit 2132, is adjacent to the second end slit side 232a, and is provided between the second end slit side 232a and the side 232c. It is located between the second end slit side 232a and the magnet insertion hole 211.
  • the side 232c defines the second end slit 2132, is adjacent to the second end slit curved portion 232b, and faces the magnet insertion hole 211 (specifically, the side 211b).
  • the side 211b defines the magnet insertion hole 211 and faces the side 232c.
  • the rotor core 21 may have one or more sides or curved portions that define the second end slit 2132, in addition to the second end slit side 232a, the second end slit curved portion 232b, and the side 232c.
  • the distance d11 is the distance from the boundary B1 to the point F1 (also referred to as the first point) on the plane orthogonal to the axial direction of the rotor 2.
  • the point F1 is a point where the straight line L3 intersects the first end slit side 231a on a plane orthogonal to the axial direction of the rotor 2.
  • the straight line L3 is a straight line orthogonal to the magnetic pole center line C1 and a straight line passing through the boundary B1 in a plane orthogonal to the axial direction of the rotor 2.
  • the distance d12 is the distance from the boundary B3 (also referred to as the third boundary) to the point F2 (also referred to as the second point) on the plane orthogonal to the axial direction of the rotor 2.
  • the boundary B3 is a boundary between the first end slit side 231a and the first end slit curved portion 231b.
  • the point F2 is a point where the straight line L4 intersects the first inner side 221a in a plane orthogonal to the axial direction of the rotor 2.
  • the straight line L4 is a straight line orthogonal to the magnetic pole center line C1 and a straight line passing through the boundary B3 in a plane orthogonal to the axial direction of the rotor 2.
  • the distance d21 is a distance from the boundary B2 to the point F3 (also referred to as a third point) on a plane orthogonal to the axial direction of the rotor 2.
  • the point F3 is a point where the straight line L5 intersects the second end slit side 232a in a plane orthogonal to the axial direction of the rotor 2.
  • the straight line L5 is a straight line orthogonal to the magnetic pole center line C1 and a straight line passing through the boundary B2 in a plane orthogonal to the axial direction of the rotor 2.
  • the distance d22 is the distance from the boundary B4 (also referred to as the fourth boundary) to the point F4 (also referred to as the fourth point) on the plane orthogonal to the axial direction of the rotor 2.
  • the boundary B4 is a boundary between the second end slit side 232a and the second end slit curved portion 232b.
  • the point F4 is a point where the straight line L6 intersects the second inner side 222a in a plane orthogonal to the axial direction of the rotor 2.
  • the straight line L6 is a straight line orthogonal to the magnetic pole center line C1 in a plane orthogonal to the axial direction of the rotor 2 and a straight line passing through the boundary B4.
  • FIG. 8 is a diagram showing the magnetic flux flowing from the stator 3 to the rotor 2.
  • the motor 1 satisfies 251.7 ⁇ P ⁇ ⁇ ⁇ 255, that is, 251.7 / P ⁇ ⁇ ⁇ 255 / P
  • the magnetic flux from the stator 3 is transferred to the first end slit 2131 and the first flux barrier portion. Easy to pass between 2111. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be reduced. As a result, the cogging torque can be reduced.
  • the magnetic flux from the stator 3 passes between the first end slit 2131 and the first flux barrier portion 2111.
  • Cheap Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be effectively reduced. As a result, the cogging torque can be effectively reduced.
  • FIG. 9 is a graph showing the relationship between the number of magnetic poles P ⁇ the angle ⁇ of the motor 1 and the cogging torque generated in the motor 1.
  • the motor 1 satisfies 251.7 ⁇ P ⁇ ⁇ ⁇ 255, that is, 251.7 / P ⁇ ⁇ ⁇ 255 / P
  • the magnetic attraction generated in the motor 1 is suppressed and cogging.
  • the torque can be reduced.
  • vibration and noise in the motor 1 can be reduced.
  • the cogging torque can be reduced to 0.1 [Nm] or less. ..
  • the magnetic attraction force generated in the motor 1 is further suppressed, and the cogging torque can be further reduced.
  • vibration and noise in the motor 1 can be further reduced.
  • FIG. 10 is a diagram showing another example of the rotor 2.
  • FIG. 10 a part of the structure of the rotor 2 is shown.
  • FIG. 11 is an enlarged view showing a part of the structure of the rotor 2.
  • FIG. 11 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
  • FIG. 12 is an enlarged view showing a part of the structure of the rotor 2.
  • FIG. 12 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
  • the shape of the first end slit 2131 shown in FIG. 10 is different from the shape of each first end slit 2131 shown in FIG. 2, and the shape of the second end slit 2132 shown in FIG. 10 is shown in FIG. It is different from the shape of each second end slit 2132 shown in 2.
  • the first end slit side 231a is parallel to the magnetic pole center line C1 and the first inner side 221a.
  • the rotor 2 shown in FIGS. 10 to 12 satisfies 251.7 / P ⁇ ⁇ ⁇ 255 / P.
  • the rotor 2 shown in FIGS. 10 to 12 has the characteristics of the cogging torque shown in FIG.
  • the rotor 2 shown in FIGS. 10 to 12 has the characteristics of the cogging torque shown in FIG. 9, the rotor 2 shown in FIGS. 10 to 12 has the same advantages as the rotor 2 shown in FIG.
  • FIG. 13 is a diagram showing the magnetic flux flowing from the stator 3 to the rotor 2 shown in FIG.
  • the motor 1 satisfies 251.7 ⁇ P ⁇ ⁇ ⁇ 255, that is, 251.7 / P ⁇ ⁇ ⁇ 255 / P
  • the magnetic flux from the stator 3 is transferred to the first end slit 2131 and the first flux barrier portion. Easy to pass between 2111.
  • the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be reduced.
  • the cogging torque can be reduced.
  • Cheap the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be effectively reduced.
  • the cogging torque can be effectively reduced.
  • FIG. 14 is a diagram showing another example of the rotor 2.
  • FIG. 14 shows a partial structure of the rotor 2.
  • FIG. 15 is an enlarged view showing a part of the structure of the rotor 2.
  • FIG. 15 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
  • FIG. 16 is an enlarged view showing a part of the structure of the rotor 2.
  • FIG. 16 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
  • the shape of the first end slit 2131 shown in FIG. 14 is different from the shape of each of the first end slits 2131 shown in FIG. 2, and the shape of the second end slit 2132 shown in FIG. 14 is shown in FIG. It is different from the shape of each second end slit 2132 shown in 2.
  • the first end slit side 231a is parallel to the first inner side 221a.
  • the first end slit side 231a and the first inner side 221a are inclined toward the magnetic pole center line C1.
  • the first end slit side 231a and the first inner side 221a are parallel to the lateral direction of the permanent magnet 22 facing the first end slit 2131. is there.
  • the first end slit side 231a and the first inner side 221a are relative to the longitudinal direction of the permanent magnet 22 facing the first end slit 2131. It is orthogonal.
  • the second end slit side 232a is parallel to the second inner side 222a.
  • the second end slit side 232a and the second inner side 222a are inclined toward the magnetic pole center line C1.
  • the second end slit side 232a and the second inner side 222a are parallel to the lateral direction of the permanent magnet 22 facing the second end slit 2132. is there.
  • the second end slit side 232a and the second inner side 222a are relative to the longitudinal direction of the permanent magnet 22 facing the second end slit 2132. It is orthogonal.
  • the rotor 2 shown in FIGS. 14 to 16 satisfies 251.7 / P ⁇ ⁇ ⁇ 255 / P.
  • the rotor 2 shown in FIGS. 14 to 16 has the characteristics of the cogging torque shown in FIG. 9, the rotor 2 shown in FIGS. 14 to 16 has the same advantages as the rotor 2 shown in FIG.
  • FIG. 17 is a diagram showing the magnetic flux flowing from the stator 3 to the rotor 2 shown in FIG.
  • the motor 1 satisfies 251.7 ⁇ P ⁇ ⁇ ⁇ 255, that is, 251.7 / P ⁇ ⁇ ⁇ 255 / P
  • the magnetic flux from the stator 3 is transferred to the first end slit 2131 and the first flux barrier portion. Easy to pass between 2111.
  • the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be reduced.
  • the cogging torque can be reduced.
  • the magnetic flux from the stator 3 When the first end slit side 231a is tilted toward the magnetic pole center line C1, the magnetic flux from the stator 3 easily passes between the first end slit 2131 and the first flux barrier portion 2111. Further, when both the first end slit side 231a and the first inner side 221a are tilted toward the magnetic pole center line C1, the magnetic flux from the stator 3 is the first end slit 2131 and the first flux. It easily passes between the barrier portion 2111.
  • the angle between the direction of the magnetic flux from the stator 3 and the longitudinal direction of the permanent magnet 22 is a right angle or close to a right angle.
  • the angle between the direction of the magnetic flux from the stator 3 and the longitudinal direction of the permanent magnet 22 is closer to a right angle.
  • FIG. 18 is a diagram showing another example of the rotor 2.
  • FIG. 18 shows a partial structure of the rotor 2.
  • FIG. 19 is an enlarged view showing a part of the structure of the rotor 2.
  • FIG. 19 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
  • FIG. 20 is an enlarged view showing a part of the structure of the rotor 2.
  • FIG. 20 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
  • the shape of the first end slit 2131 shown in FIG. 18 is different from the shape of each of the first end slits 2131 shown in FIG. 2, and the shape of the second end slit 2132 shown in FIG. 18 is shown in FIG. It is different from the shape of each second end slit 2132 shown in 2.
  • the distance d13 is the shortest distance from the first end slit 2131 to the first flux barrier portion 2111. In the example shown in FIG. 19, the distance d13 is the shortest distance from the first end slit side 231a to the first inner side 221a.
  • the first end slit side 231a is parallel to the first inner side 221a.
  • the first end slit side 231a and the first inner side 221a are inclined toward the magnetic pole center line C1.
  • the first end slit side 231a and the first inner side 221a are parallel to the lateral direction of the permanent magnet 22 facing the first end slit 2131. is there.
  • the distance d23 is the shortest distance from the second end slit 2132 to the second flux barrier portion 2112. In the example shown in FIG. 20, the distance d23 is the shortest distance from the second end slit side 232a to the second inner side 222a.
  • the second end slit side 232a is parallel to the second inner side 222a.
  • the second end slit side 232a and the second inner side 222a are inclined toward the magnetic pole center line C1.
  • the second end slit side 232a and the second inner side 222a are parallel to the lateral direction of the permanent magnet 22 facing the second end slit 2132. is there.
  • the rotor 2 shown in FIGS. 18 to 20 satisfies 251.7 / P ⁇ ⁇ ⁇ 255 / P.
  • the rotor 2 shown in FIGS. 18 to 20 has the characteristics of the cogging torque shown in FIG.
  • the rotor 2 shown in FIGS. 18 to 20 has the characteristics of the cogging torque shown in FIG. 9, the rotor 2 shown in FIGS. 18 to 20 has the same advantages as the rotor 2 shown in FIG.
  • the minimum value of the distance d13 is equal to or greater than the thickness of each electromagnetic steel plate forming the rotor core 21.
  • the first flux barrier portion 2111 and the first end slit 2131 can be easily formed by press working such as punching.
  • the thickness of each electromagnetic steel plate forming the rotor core 21 is 0.365 [mm]. Therefore, the distance d13 is 0.365 [mm] or more.
  • the distance d13 is 0.55 [mm] or less.
  • the distance d13 exceeds 0.55 [mm] the magnetic flux passing between the first end slit 2131 and the first flux barrier portion 2111 spreads in multiple directions, and the first end slit 2131 and the first flux The bending of the magnetic flux with the barrier portion 2111 increases. As a result, the cogging torque increases.
  • FIG. 21 is a diagram showing the relationship between the distance d13 from the first end slit 2131 to the first flux barrier portion 2111 and the cogging torque generated in the motor 1.
  • the motor 1 satisfies 0.365 [mm] ⁇ d13 ⁇ 0.55 [mm]
  • the first flux barrier portion 2111 and the first end slit 2131 are easily formed. It is possible to reduce the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111. As a result, the cogging torque can be reduced, and the vibration and noise in the motor 1 can be reduced.
  • the cogging torque can be reduced to 0.1 [Nm] or less.
  • the magnetic attraction force generated in the motor 1 is suppressed, and the cogging torque can be further reduced.
  • vibration and noise in the motor 1 can be further reduced.
  • the minimum value of the distance D1 is equal to or greater than the thickness of each electromagnetic steel plate forming the rotor core 21.
  • the first flux barrier portion 2111 and the magnet insertion hole 211 can be easily formed by press working such as punching.
  • the thickness of each electromagnetic steel plate forming the rotor core 21 is 0.365 [mm]. Therefore, the distance D1 is 0.365 [mm] or more.
  • the distance D1 is 0.865 [mm] or less.
  • the distance D1 exceeds 0.865 [mm] the magnetic flux passing between the first end slit 2131 and the magnet insertion hole 211 spreads in multiple directions, and between the first end slit 2131 and the magnet insertion hole 211.
  • the minimum value of the distance D2 is equal to or greater than the thickness of each electrical steel sheet forming the rotor core 21.
  • the second flux barrier portion 2112 and the magnet insertion hole 211 can be easily formed by press working such as punching.
  • the thickness of each electromagnetic steel plate forming the rotor core 21 is 0.365 [mm]. Therefore, the distance D2 is 0.365 [mm] or more.
  • the distance D2 is 0.865 [mm] or less.
  • the distance D2 exceeds 0.865 [mm] the magnetic flux passing between the second end slit 2132 and the magnet insertion hole 211 spreads in multiple directions, and between the second end slit 2132 and the magnet insertion hole 211.
  • FIG. 22 is a graph showing the relationship between the distance D1 from the first end slit 2131 to the magnet insertion hole 211 and the cogging torque generated in the motor 1.
  • the motor 1 satisfies 0.365 [mm] ⁇ D1 ⁇ 0.865 [mm]
  • the first flux barrier portion 2111 and the magnet insertion hole 211 can be easily formed.
  • the cogging torque can be reduced, and the vibration and noise in the motor 1 can be reduced.
  • the cogging torque can be reduced to 0.1 [Nm] or less.
  • the magnetic attraction force generated in the motor 1 is suppressed, and the cogging torque can be further reduced.
  • vibration and noise in the motor 1 can be further reduced.
  • the first flux barrier portion 2111 and the magnet insertion hole 211 can be easily formed, and the first end can be easily formed. It is possible to reduce the bending of the magnetic flux between the slit 2131 and the magnet insertion hole 211. As a result, the cogging torque can be reduced, and the vibration and noise in the motor 1 can be reduced.
  • the motor 1 When the motor 1 satisfies 0.365 [mm] ⁇ D2 ⁇ 0.765 [mm], the cogging torque generated in the motor 1 can be further reduced. As a result, vibration and noise in the motor 1 can be further reduced.
  • FIG. 23 is a cross-sectional view schematically showing the structure of the compressor 6 according to the second embodiment.
  • the compressor 6 has a motor 1 as an electric element, a closed container 61 as a housing, and a compression mechanism 62 as a compression element (also referred to as a compression device).
  • the compressor 6 is a rotary compressor.
  • the compressor 6 is not limited to the rotary compressor.
  • the motor 1 in the compressor 6 is the motor 1 described in the first embodiment.
  • the motor 1 drives the compression mechanism 62.
  • the closed container 61 covers the motor 1 and the compression mechanism 62.
  • the closed container 61 is a cylindrical container. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored in the bottom of the closed container 61.
  • the compressor 6 further has a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65, and a discharge pipe 66.
  • the compression mechanism 62 is attached to the cylinder 62a, the piston 62b, the upper frame 62c (also referred to as the first frame), the lower frame 62d (also referred to as the second frame), and the upper frame 62c and the lower frame 62d. It has a plurality of mufflers 62e.
  • the compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side.
  • the compression mechanism 62 is arranged in the closed container 61.
  • the compression mechanism 62 is driven by the motor 1.
  • the motor 1 is fixed in the closed container 61 by press fitting or shrink fitting.
  • the motor 1 may be directly attached to the closed container 61 by welding instead of press fitting and shrink fitting.
  • Electric power is supplied to the coil of the motor 1 (for example, the winding 32 described in the first embodiment) through the glass terminal 63.
  • the rotor 2 of the motor 1 (specifically, one side of the shaft 23) is rotatably supported by bearings provided on each of the upper frame 62c and the lower frame 62d.
  • a shaft 23 is inserted through the piston 62b.
  • a shaft 23 is rotatably inserted into the upper frame 62c and the lower frame 62d.
  • the upper frame 62c and the lower frame 62d close the end faces of the cylinder 62a.
  • the accumulator 64 supplies a refrigerant (for example, a refrigerant gas) to the cylinder 62a through the suction pipe 65.
  • the refrigerant supplied from the accumulator 64 is sucked into the cylinder 62a from the suction pipe 65 fixed to the closed container 61.
  • the piston 62b fitted to the shaft 23 rotates in the cylinder 62a.
  • the refrigerant is compressed in the cylinder 62a.
  • the compressed refrigerant passes through the muffler 62e and rises in the closed container 61. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
  • R410A, R407C, R22, or the like can be used as the refrigerant of the compressor 6.
  • the refrigerant of the compressor 6 is not limited to these types.
  • a refrigerant having a small GWP (global warming potential) for example, the following refrigerant can be used.
  • the GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene) may be used.
  • the GWP of R1270 is 3, which is lower than HFO-1234yf but higher in flammability than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition for example, a mixture of HFO-1234yf and R32. May be good. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, the pressure loss tends to be large, which may lead to deterioration of the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically desirable to use a mixture with R32 or R41, which is a higher pressure refrigerant than HFO-1234yf.
  • the compressor 6 according to the second embodiment has the advantages described in the first embodiment.
  • the compressor 6 according to the second embodiment has the motor 1 according to the first embodiment, vibration and noise in the compressor 6 can be reduced.
  • FIG. 24 is a diagram schematically showing the configuration of the refrigeration and air conditioner 7 according to the third embodiment of the present invention.
  • the refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example.
  • the refrigerant circuit diagram shown in FIG. 24 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
  • the refrigerating and air-conditioning device 7 has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
  • the outdoor unit 71 includes a compressor 6, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower).
  • the condenser 74 condenses the refrigerant compressed by the compressor 6.
  • the throttle device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant.
  • the diaphragm device 75 is also called a decompression device.
  • the indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower).
  • the evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
  • the refrigerant is compressed by the compressor 6 and flows into the condenser 74.
  • the refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the drawing device 75.
  • the refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77.
  • the refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 6 of the outdoor unit 71 again.
  • the configuration and operation of the refrigerating air conditioner 7 described above is an example, and is not limited to the above-mentioned example.
  • the refrigerating air conditioner 7 according to the third embodiment, it has the advantages described in the first and second embodiments.
  • the refrigerating and air-conditioning device 7 according to the third embodiment has the compressor 6 according to the second embodiment, vibration and noise in the refrigerating and air-conditioning device 7 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This rotor (2) has P (P is an integer of 2 or more) magnetic poles. When a line passing through the boundary (B1) between a first inside (221a) and a first outside curved portion (221b) and the rotational center of the rotor (2) is denoted by L1, a line passing through the boundary (B2) between a second inside (222a) and a second outside curved portion (222b) and the rotational center of the rotor (2) is denoted by L2, and an angle between the line L1 and the line L2 is denoted by θ [degree], the rotor (2) satisfies a relationship of 251.7/P ≦ θ ≦ 255/P.

Description

ロータ、モータ、圧縮機、及び空気調和機Rotors, motors, compressors, and air conditioners
 本発明は、モータのロータに関する。 The present invention relates to a rotor of a motor.
 フラックスバリア及びスリットが設けられたロータコアを持つロータが一般に知られている。このロータにおいて、フラックスバリアは、漏れ磁束を低減させ、スリットは、ロータを通る磁束の量を調整する(例えば、特許文献1参照)。 A rotor having a rotor core provided with a flux barrier and a slit is generally known. In this rotor, the flux barrier reduces the leakage flux and the slit regulates the amount of magnetic flux passing through the rotor (see, for example, Patent Document 1).
特開2012-217250号公報Japanese Unexamined Patent Publication No. 2012-217250
 しかしながら、従来の技術では、フラックスバリアとスリットとの間においてステータからの磁束が通りにくい。例えば、ステータからの磁束がフラックスバリア又はスリットに当たると、磁束の屈曲が生じる。磁束の屈曲の増加は、コギングトルクの増加につながる。コギングトルクが増加すると、モータの駆動中におけるトルクリップルが増加し、その結果としてモータにおける振動及び騒音が増加する。 However, with the conventional technology, it is difficult for the magnetic flux from the stator to pass between the flux barrier and the slit. For example, when the magnetic flux from the stator hits the flux barrier or slit, the magnetic flux bends. An increase in the bending of the magnetic flux leads to an increase in the cogging torque. As the cogging torque increases, the torque ripple during driving of the motor increases, resulting in increased vibration and noise in the motor.
 本発明は、以上に述べた課題を解決し、モータにおける振動及び騒音を低減することを目的とする。 An object of the present invention is to solve the above-mentioned problems and reduce vibration and noise in the motor.
 本発明の一態様に係るロータは、
 P個(Pは2以上の整数)の磁極を持つロータであって、
 永久磁石と、
 前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
 を備え、
 前記ロータコアは、
 前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
 前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
 前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
 前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
 を有し、
 前記ロータの軸方向と直交する平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
 251.7/P≦θ≦255/P
 を満たす。
 本発明の他の態様に係るロータは、
 P個(Pは2以上の整数)の磁極を持つロータであって、
 永久磁石と、
 前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
 を備え、
 前記ロータコアは、
 前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
 前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
 前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
 前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
 を有し、
 前記第1の端スリットから前記磁石挿入孔までの最短距離をD1[mm]としたとき、
 0.365≦D1≦0.865
 を満たす。
 本発明の他の態様に係るモータは、
 ステータと、
 前記ステータの内側に配置された、前記本発明の一態様に係るロータ又は前記本発明の他の態様に係るロータと
 を備える。
 本発明の他の態様に係る圧縮機は、
 密閉容器と、
 前記密閉容器内に配置された圧縮装置と、
 前記圧縮装置を駆動する前記モータと
 を備える。
 本発明の他の態様に係る空気調和機は、
 前記圧縮機と、
 熱交換器と
 を備える。
The rotor according to one aspect of the present invention
A rotor with P magnetic poles (P is an integer of 2 or more).
With permanent magnets
A magnet insertion hole having a magnet arrangement portion in which the permanent magnet is arranged, a first flux barrier portion communicating with the magnet arrangement portion, and a second flux barrier portion communicating with the magnet arrangement portion. A first end slit located between the first flux barrier portion and the second flux barrier portion and facing the first flux barrier portion, the first flux barrier portion, and the first flux barrier portion. A rotor core located between the two flux barrier portions and having a second end slit facing the second flux barrier portion is provided.
The rotor core
The first inner side that defines the first flux barrier portion and faces the first end slit, and
A first outer curvature that defines the first flux barrier, is adjacent to the first inner edge, and is located between the first inner edge and the outer peripheral surface of the rotor core. Department and
A second inner side that defines the second flux barrier portion and faces the second end slit, and
A second outer curvature that defines the second flux barrier, is adjacent to the second inner edge, and is located between the second inner edge and the outer peripheral surface of the rotor core. Has a part and
In a plane orthogonal to the axial direction of the rotor, a straight line passing through the first boundary between the first inner side and the first outer curved portion and the rotation center of the rotor is defined as L1, and the second The straight line passing through the second boundary between the inner side and the second outer curved portion and the rotation center of the rotor is L2, and the angle between the straight line L1 and the straight line L2 is θ [degree]. When you do
251.7 / P ≤ θ ≤ 255 / P
Meet.
The rotor according to another aspect of the present invention
A rotor with P magnetic poles (P is an integer of 2 or more).
With permanent magnets
A magnet insertion hole having a magnet arrangement portion in which the permanent magnet is arranged, a first flux barrier portion communicating with the magnet arrangement portion, and a second flux barrier portion communicating with the magnet arrangement portion. A first end slit located between the first flux barrier portion and the second flux barrier portion and facing the first flux barrier portion, the first flux barrier portion, and the first flux barrier portion. A rotor core located between the two flux barrier portions and having a second end slit facing the second flux barrier portion is provided.
The rotor core
The first inner side that defines the first flux barrier portion and faces the first end slit, and
A first outer curvature that defines the first flux barrier, is adjacent to the first inner edge, and is located between the first inner edge and the outer peripheral surface of the rotor core. Department and
A second inner side that defines the second flux barrier portion and faces the second end slit, and
A second outer curvature that defines the second flux barrier, is adjacent to the second inner edge, and is located between the second inner edge and the outer peripheral surface of the rotor core. Has a part and
When the shortest distance from the first end slit to the magnet insertion hole is D1 [mm],
0.365 ≤ D1 ≤ 0.865
Meet.
The motor according to another aspect of the present invention
With the stator
It includes a rotor according to one aspect of the present invention or a rotor according to another aspect of the present invention, which is arranged inside the stator.
The compressor according to another aspect of the present invention
With a closed container
With the compression device arranged in the closed container,
It includes the motor that drives the compression device.
The air conditioner according to another aspect of the present invention is
With the compressor
Equipped with a heat exchanger.
 本発明によれば、モータにおける振動及び騒音を低減することができる。 According to the present invention, vibration and noise in the motor can be reduced.
本発明の実施の形態1に係るモータの構造を概略的に示す断面図である。It is sectional drawing which shows typically the structure of the motor which concerns on Embodiment 1 of this invention. ロータの構造を示す平面図である。It is a top view which shows the structure of a rotor. 図2に示されるロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of the rotor shown in FIG. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ステータからロータに流れ込む磁束を示す図である。It is a figure which shows the magnetic flux which flows from a stator to a rotor. モータに生じるコギングトルクを示すグラフである。It is a graph which shows the cogging torque generated in a motor. ロータの他の例を示す図である。It is a figure which shows another example of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ステータから、図11に示されるロータに流れ込む磁束を示す図である。It is a figure which shows the magnetic flux which flows from the stator to the rotor shown in FIG. ロータの他の例を示す図である。It is a figure which shows another example of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ステータから、図15に示されるロータに流れ込む磁束を示す図である。It is a figure which shows the magnetic flux which flows from the stator to the rotor shown in FIG. ロータの他の例を示す図である。It is a figure which shows another example of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. ロータの一部の構造を示す拡大図である。It is an enlarged view which shows the structure of a part of a rotor. 第1の端スリットから第1のフラックスバリア部までの距離とモータに生じるコギングトルクとの関係を示すグラフである。6 is a graph showing the relationship between the distance from the first end slit to the first flux barrier portion and the cogging torque generated in the motor. 第1の端スリットから磁石挿入孔までの距離とモータに生じるコギングトルクとの関係を示すグラフである。It is a graph which shows the relationship between the distance from a 1st end slit to a magnet insertion hole, and the cogging torque generated in a motor. 本発明の実施の形態2に係る圧縮機の構造を概略的に示す断面図である。It is sectional drawing which shows schematic structure of the compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の構成を概略的に示す図である。It is a figure which shows roughly the structure of the refrigerating air conditioner which concerns on Embodiment 3 of this invention.
実施の形態1.
 各図に示されるxyz直交座標系において、z軸方向(z軸)は、モータ1の軸線Axと平行な方向を示し、x軸方向(x軸)は、z軸方向(z軸)に直交する方向を示し、y軸方向(y軸)は、z軸方向及びx軸方向の両方に直交する方向を示す。軸線Axは、ロータ2の回転中心である。軸線Axと平行な方向は、「ロータ2の軸方向」又は単に「軸方向」とも称する。径方向は、ロータ2又はステータ3の半径方向であり、軸線Axと直交する方向である。xy平面は、軸方向と直交する平面である。矢印A1は、軸線Axを中心とする周方向を示す。ロータ2又はステータ3の周方向を、単に「周方向」とも称する。
Embodiment 1.
In the xyz Cartesian coordinate system shown in each figure, the z-axis direction (z-axis) indicates a direction parallel to the axis Ax of the motor 1, and the x-axis direction (x-axis) is orthogonal to the z-axis direction (z-axis). The y-axis direction (y-axis) indicates a direction orthogonal to both the z-axis direction and the x-axis direction. The axis Ax is the center of rotation of the rotor 2. The direction parallel to the axis Ax is also referred to as "axial direction of rotor 2" or simply "axial direction". The radial direction is the radial direction of the rotor 2 or the stator 3, and is the direction orthogonal to the axis Ax. The xy plane is a plane orthogonal to the axial direction. The arrow A1 indicates the circumferential direction centered on the axis Ax. The circumferential direction of the rotor 2 or the stator 3 is also simply referred to as "circumferential direction".
 図1は、本発明の実施の形態1に係るモータ1の構造を概略的に示す断面図である。
 モータ1は、P個(Pは2以上の整数)の磁極を持つロータ2と、ステータ3とを有する。モータ1は、例えば、永久磁石埋込型電動機などの永久磁石同期電動機(ブラシレスDCモータとも称する)である。モータ1は、さらに、ステータ3を覆うモータフレーム4(単に「フレーム」とも称する)を有してもよい。
FIG. 1 is a cross-sectional view schematically showing the structure of the motor 1 according to the first embodiment of the present invention.
The motor 1 has a rotor 2 having P (P is an integer of 2 or more) magnetic poles and a stator 3. The motor 1 is, for example, a permanent magnet synchronous motor (also referred to as a brushless DC motor) such as a permanent magnet embedded motor. The motor 1 may further include a motor frame 4 (also simply referred to as a "frame") that covers the stator 3.
 モータ1は、例えば、インバータ制御で駆動する。これにより、モータ1に生じるコギングトルクを考慮したモータ制御が可能になる。その結果、モータ1の駆動中に生じるトルクリップルの変動を抑えることができ、モータ1における振動及び騒音を低減することができる。 The motor 1 is driven by, for example, inverter control. This enables motor control in consideration of the cogging torque generated in the motor 1. As a result, fluctuations in torque ripple that occur while driving the motor 1 can be suppressed, and vibration and noise in the motor 1 can be reduced.
 図2は、ロータ2の構造を示す平面図である。
 ロータ2は、ステータ3の内側に回転可能に配置されている。ロータ2は、ロータコア21と、少なくとも1つの永久磁石22と、シャフト23とを有する。本実施の形態では、ロータ2は、永久磁石埋込型ロータである。
FIG. 2 is a plan view showing the structure of the rotor 2.
The rotor 2 is rotatably arranged inside the stator 3. The rotor 2 has a rotor core 21, at least one permanent magnet 22, and a shaft 23. In the present embodiment, the rotor 2 is a permanent magnet embedded rotor.
 ロータ2(具体的には、ロータコア21の外周面21a)とステータ3との間には、エアギャップが存在する。ロータ2とステータ3との間のエアギャップは、例えば、0.3mmから1mmである。指令回転数に同期した周波数の電流がステータ3の巻線32に供給されると、ステータ3に回転磁界が発生し、ロータ2が回転する。 There is an air gap between the rotor 2 (specifically, the outer peripheral surface 21a of the rotor core 21) and the stator 3. The air gap between the rotor 2 and the stator 3 is, for example, 0.3 mm to 1 mm. When a current having a frequency synchronized with the command rotation speed is supplied to the winding 32 of the stator 3, a rotating magnetic field is generated in the stator 3, and the rotor 2 rotates.
 ロータコア21は、焼き嵌め、圧入などの固定方法でシャフト23に固定されている。ロータ2が回転すると、回転エネルギーがロータコア21からシャフト23に伝達される。 The rotor core 21 is fixed to the shaft 23 by a fixing method such as shrink fitting or press fitting. When the rotor 2 rotates, rotational energy is transmitted from the rotor core 21 to the shaft 23.
 ステータ3は、ステータコア31と、少なくとも1つの巻線32と、巻線32が配置される少なくとも1つのスロット33とを有する。ステータコア31は、円環状のヨーク311と、複数のティース312とを有する。図1に示される例では、ステータコア31は、9個のティース312と、9個のスロット33とを有する。各スロット33は、互いに隣接するティース312間の空間である。 The stator 3 has a stator core 31, at least one winding 32, and at least one slot 33 in which the winding 32 is arranged. The stator core 31 has an annular yoke 311 and a plurality of teeth 312. In the example shown in FIG. 1, the stator core 31 has nine teeth 312 and nine slots 33. Each slot 33 is a space between teeth 312 adjacent to each other.
 ただし、ティース312の数は9個に限定されない。同様に、スロット33の数は、9個に限定されない。 However, the number of teeth 312 is not limited to nine. Similarly, the number of slots 33 is not limited to nine.
 複数のティース312は、放射状に位置している。言い換えると、複数のティース312は、ステータコア31の周方向に等間隔に配列されている。各ティース312は、ヨーク311からロータ2の回転中心に向けて延びている。 The plurality of teeth 312 are located radially. In other words, the plurality of teeth 312 are arranged at equal intervals in the circumferential direction of the stator core 31. Each tooth 312 extends from the yoke 311 toward the center of rotation of the rotor 2.
 各ティース312は、例えば、径方向に延在する本体部と、本体部の先端に位置しており周方向に延在するティース先端部とを有する。 Each tooth 312 has, for example, a main body portion extending in the radial direction and a tooth tip portion located at the tip of the main body portion and extending in the circumferential direction.
 複数のティース312及び複数のスロット33は、ステータコア31の周方向に交互に等間隔で配列されている。 The plurality of teeth 312 and the plurality of slots 33 are alternately arranged at equal intervals in the circumferential direction of the stator core 31.
 ステータコア31は、環状の鉄心である。ステータコア31は、軸方向に積層された複数の電磁鋼板を持つ。これらの電磁鋼板はカシメで互いに固定される。複数の電磁鋼板の各々は、予め定められた形状を持つように打ち抜かれている。複数の電磁鋼板の各々の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、複数の電磁鋼板の各々の厚さは、0.35mmである。 The stator core 31 is an annular iron core. The stator core 31 has a plurality of electromagnetic steel plates laminated in the axial direction. These electrical steel sheets are fixed to each other by caulking. Each of the plurality of electrical steel sheets is punched so as to have a predetermined shape. The thickness of each of the plurality of electrical steel sheets is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each of the plurality of electromagnetic steel sheets is 0.35 mm.
 各ティース312には、巻線32が巻かれており、これにより、各スロット33には、巻線32が配置されている。例えば、集中巻で巻線32が各ティース312に巻かれている。巻線32と各ティース312との間に、インシュレータが配置されていることが望ましい。 A winding 32 is wound around each tooth 312, whereby the winding 32 is arranged in each slot 33. For example, the winding 32 is wound around each tooth 312 in a concentrated winding. It is desirable that an insulator is arranged between the winding 32 and each tooth 312.
 巻線32は、回転磁界を発生させるコイルを形成する。コイルは、例えば、3相コイルである。この場合、結線方式は、例えば、Y結線である。巻線32は、例えば、直径1mmのマグネットワイヤーである。巻線32に電流が流れると、回転磁界が発生する。巻線32の巻回数及び直径は、巻線32に印加される電圧、モータ1の回転数又はスロット33の断面積などに応じて設定される。巻線32の巻回数は、例えば、80である。 The winding 32 forms a coil that generates a rotating magnetic field. The coil is, for example, a three-phase coil. In this case, the connection method is, for example, Y connection. The winding 32 is, for example, a magnet wire having a diameter of 1 mm. When a current flows through the winding 32, a rotating magnetic field is generated. The number of turns and the diameter of the winding 32 are set according to the voltage applied to the winding 32, the rotation speed of the motor 1, the cross-sectional area of the slot 33, and the like. The number of turns of the winding 32 is, for example, 80.
 ロータ2の構造を具体的に説明する。
 図3は、図2に示されるロータ2の一部の構造を示す拡大図である。
The structure of the rotor 2 will be specifically described.
FIG. 3 is an enlarged view showing a partial structure of the rotor 2 shown in FIG.
 ロータ2は、複数の磁極中心及び複数の極間部を持つ。図2に示される例では、各磁極中心は磁極中心線C1で示されており、各極間部は、極間線C2で示されている。すなわち、各磁極中心線C1は、ロータ2の磁極中心を通っており、各極間線C2は、ロータ2の極間部を通っている。 The rotor 2 has a plurality of magnetic pole centers and a plurality of interpole portions. In the example shown in FIG. 2, each magnetic pole center is indicated by a magnetic pole center line C1, and each pole-to-pole portion is indicated by an interpole line C2. That is, each magnetic pole center line C1 passes through the magnetic pole center of the rotor 2, and each pole interpole line C2 passes through the interpole portion of the rotor 2.
 各磁極中心部は、ロータ2の各磁極(すなわち、ロータ2のN極又はS極)の中心に位置する。ロータ2の各磁極(単に「各磁極」又は「磁極」とも称する)とは、ロータ2のN極又はS極の役目をする領域を意味する。 The center of each magnetic pole is located at the center of each magnetic pole of the rotor 2 (that is, the north pole or the south pole of the rotor 2). Each magnetic pole of the rotor 2 (also simply referred to as "each magnetic pole" or "magnetic pole") means a region that serves as the north pole or the south pole of the rotor 2.
 各極間部は、周方向において隣接する2つの磁極(すなわち、ロータ2のN極及びS極)の境界である。 The inter-pole portion is the boundary between two magnetic poles (that is, the north and south poles of the rotor 2) that are adjacent to each other in the circumferential direction.
 ロータコア21は、軸方向に積層された複数の電磁鋼板を持つ。これらの電磁鋼板はカシメで互いに固定されている。複数の電磁鋼板の各々は、予め定められた形状を持つように打ち抜かれている。複数の電磁鋼板の各々の厚さは、例えば、0.1mmから0.7mmである。本実施の形態では、複数の電磁鋼板210の各々の厚さは、0.35mmである。 The rotor core 21 has a plurality of electromagnetic steel plates laminated in the axial direction. These electrical steel sheets are fixed to each other by caulking. Each of the plurality of electrical steel sheets is punched so as to have a predetermined shape. The thickness of each of the plurality of electrical steel sheets is, for example, 0.1 mm to 0.7 mm. In the present embodiment, the thickness of each of the plurality of electromagnetic steel sheets 210 is 0.35 mm.
 ロータコア21は、少なくとも1つの磁石挿入孔211と、シャフト孔212と、少なくとも1つの端スリット213とを持っている。 The rotor core 21 has at least one magnet insertion hole 211, a shaft hole 212, and at least one end slit 213.
 本実施の形態では、ロータコア21は、複数の磁石挿入孔211(具体的には、6個の磁石挿入孔211)を有する。xy平面において、複数の磁石挿入孔211は、周方向に配列されている。ロータ2の磁極数Pは、2以上である。磁極数Pの範囲は、望ましくは、4から10の偶数、すなわち、4,6,8,又は10である。 In the present embodiment, the rotor core 21 has a plurality of magnet insertion holes 211 (specifically, six magnet insertion holes 211). In the xy plane, the plurality of magnet insertion holes 211 are arranged in the circumferential direction. The number of magnetic poles P of the rotor 2 is 2 or more. The range of the number of magnetic poles P is preferably an even number of 4 to 10, that is, 4, 6, 8 or 10.
 各磁石挿入孔211は、ロータ2の各磁極に対応する。したがって、本実施の形態では、ロータ2の磁極数は、6極である。各磁石挿入孔211には、少なくとも1つの永久磁石22が配置されている。 Each magnet insertion hole 211 corresponds to each magnetic pole of the rotor 2. Therefore, in the present embodiment, the number of magnetic poles of the rotor 2 is 6 poles. At least one permanent magnet 22 is arranged in each magnet insertion hole 211.
 xy平面において、磁石挿入孔211の中央部は、軸線Axに向けて突出している。すなわち、xy平面において、各磁石挿入孔211はV字形状を持っている。各磁石挿入孔211の形状は、V字形状に限定されるものではなく、例えばストレート形状であってもよい。 In the xy plane, the central portion of the magnet insertion hole 211 protrudes toward the axis Ax. That is, in the xy plane, each magnet insertion hole 211 has a V shape. The shape of each magnet insertion hole 211 is not limited to the V shape, and may be, for example, a straight shape.
 本実施の形態では、1つの磁石挿入孔211内には、2つの永久磁石22が配置されている。すなわち、1つの磁石挿入孔211内の2つの永久磁石22がロータ2の1磁極を形成する。xy平面において、1組の永久磁石22は、V字形状を持つように1つの磁石挿入孔211内に配置されている。本実施の形態では、ロータ2は、12個の永久磁石22を有する。 In the present embodiment, two permanent magnets 22 are arranged in one magnet insertion hole 211. That is, two permanent magnets 22 in one magnet insertion hole 211 form one magnetic pole of the rotor 2. In the xy plane, a set of permanent magnets 22 are arranged in one magnet insertion hole 211 so as to have a V shape. In this embodiment, the rotor 2 has 12 permanent magnets 22.
 シャフト23は、焼き嵌め、圧入などの方法で、シャフト孔212に固定されている。 The shaft 23 is fixed to the shaft hole 212 by a method such as shrink fitting or press fitting.
 各永久磁石22は、軸方向に長い平板状の磁石である。各永久磁石22は、xy平面において永久磁石22の長手方向と直交する方向に磁化されている。すなわち、xy平面において、各永久磁石22は、各永久磁石22の短手方向に磁化されている。各永久磁石22は、例えば、ネオジウム(Nd)、鉄(Fe)、及びボロン(B)を含む希土類磁石である。 Each permanent magnet 22 is a flat plate-shaped magnet that is long in the axial direction. Each permanent magnet 22 is magnetized in a direction orthogonal to the longitudinal direction of the permanent magnet 22 in the xy plane. That is, in the xy plane, each permanent magnet 22 is magnetized in the lateral direction of each permanent magnet 22. Each permanent magnet 22 is a rare earth magnet containing, for example, neodymium (Nd), iron (Fe), and boron (B).
 1つの磁石挿入孔211内に配置された、2つの永久磁石22のN極又はS極は、ロータ2の径方向における外側又は内側に面している。これにより、1つの磁石挿入孔211内に配置された、1組の永久磁石22(具体的には、2つの永久磁石22)は、ロータ2の1つの磁極の役目をする。すなわち、ロータ2の1つの磁極において、1組の永久磁石22(具体的には、2つの永久磁石22)は、ステータ3に対してN極又はS極として機能する。 The north or south poles of the two permanent magnets 22 arranged in one magnet insertion hole 211 face the outside or the inside in the radial direction of the rotor 2. As a result, the set of permanent magnets 22 (specifically, the two permanent magnets 22) arranged in one magnet insertion hole 211 serves as one magnetic pole of the rotor 2. That is, at one magnetic pole of the rotor 2, a set of permanent magnets 22 (specifically, two permanent magnets 22) functions as north poles or south poles with respect to the stator 3.
 図2に示されるように、ロータコア21は、複数の内側スリット214をさらに有してもよい。複数の内側スリット214は、2つの端スリット213の間に位置する。 As shown in FIG. 2, the rotor core 21 may further have a plurality of inner slits 214. The plurality of inner slits 214 are located between the two end slits 213.
 各磁石挿入孔211は、少なくとも1つの永久磁石22が配置された磁石配置部2110と、磁石配置部2110に連通している第1のフラックスバリア部2111と、磁石配置部2110に連通している第2のフラックスバリア部2112とを有する。 Each magnet insertion hole 211 communicates with a magnet arrangement portion 2110 in which at least one permanent magnet 22 is arranged, a first flux barrier portion 2111 communicating with the magnet arrangement portion 2110, and a magnet arrangement portion 2110. It has a second flux barrier portion 2112.
 xy平面において、磁石挿入孔211の両側に第1のフラックスバリア部2111及び第2のフラックスバリア部2112がそれぞれ位置している。すなわち、磁石配置部2110は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に位置する。 In the xy plane, the first flux barrier portion 2111 and the second flux barrier portion 2112 are located on both sides of the magnet insertion hole 211, respectively. That is, the magnet arranging portion 2110 is located between the first flux barrier portion 2111 and the second flux barrier portion 2112.
 第1のフラックスバリア部2111は、ロータ2の軸方向に貫通している貫通孔である。これにより、第1のフラックスバリア部2111は、漏れ磁束を低減する。同様に、第2のフラックスバリア部2112は、ロータ2の軸方向に貫通している貫通孔である。これにより、第2のフラックスバリア部2112は、漏れ磁束を低減する。 The first flux barrier portion 2111 is a through hole penetrating the rotor 2 in the axial direction. As a result, the first flux barrier portion 2111 reduces the leakage flux. Similarly, the second flux barrier portion 2112 is a through hole penetrating the rotor 2 in the axial direction. As a result, the second flux barrier portion 2112 reduces the leakage flux.
 本実施の形態では、ロータコア21は、複数の端スリット213を持っている。具体的には、ロータ2の各磁極において、2つの端スリット213がロータコア21に設けられている。 In the present embodiment, the rotor core 21 has a plurality of end slits 213. Specifically, at each magnetic pole of the rotor 2, two end slits 213 are provided in the rotor core 21.
 第1のフラックスバリア部2111と第2のフラックスバリア部2112との間において、2つの端スリット213のうちの1つは、磁石挿入孔211の一端側に設けられており、もう1つの端スリット213は、磁石挿入孔211の他端側に設けられている。言い換えると、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間において、2つの端スリット213のうちの1つは、磁石挿入孔211の一端に対向しており、もう1つの端スリット213は、磁石挿入孔211の他端に対向している。これにより、各端スリット213は、ロータ2における磁束の向きを調整する。 Between the first flux barrier portion 2111 and the second flux barrier portion 2112, one of the two end slits 213 is provided on one end side of the magnet insertion hole 211, and the other end slit. The 213 is provided on the other end side of the magnet insertion hole 211. In other words, between the first flux barrier portion 2111 and the second flux barrier portion 2112, one of the two end slits 213 faces one end of the magnet insertion hole 211 and the other. The end slit 213 faces the other end of the magnet insertion hole 211. As a result, each end slit 213 adjusts the direction of the magnetic flux in the rotor 2.
 複数の端スリット213は、少なくとも1つの第1の端スリット2131及び少なくとも1つの第2の端スリット2132を含む。図2及び図3に示される例では、ロータ2の各磁極において、1つの第1の端スリット2131及び1つの第2の端スリット2132が各磁石挿入孔211とロータコア21の外周面21aとの間に設けられている。 The plurality of end slits 213 include at least one first end slit 2131 and at least one second end slit 2132. In the example shown in FIGS. 2 and 3, at each magnetic pole of the rotor 2, one first end slit 2131 and one second end slit 2132 are formed between the magnet insertion holes 211 and the outer peripheral surface 21a of the rotor core 21. It is provided in between.
 図2及び図3に示されるように、1つの磁極について2つの端スリット213(すなわち、第1の端スリット2131及び第2の端スリット2132)が磁石挿入孔211とロータコア21の外周面21aとの間に設けられている。したがって、本実施の形態では、ロータコア21は、12個の端スリット213を持っている。 As shown in FIGS. 2 and 3, two end slits 213 (that is, the first end slit 2131 and the second end slit 2132) are formed on the magnet insertion hole 211 and the outer peripheral surface 21a of the rotor core 21 for one magnetic pole. It is provided between. Therefore, in this embodiment, the rotor core 21 has 12 end slits 213.
 図4は、ロータ2の一部の構造を示す拡大図である。具体的には、図4は、図3において破線で囲まれた領域E1の構造を示す拡大図である。
 図3及び図4に示されるように、第1の端スリット2131は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に位置しており、第1のフラックスバリア部2111に対向している。第1の端スリット2131は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に設けられた複数のスリット(すなわち、端スリット213及び複数の内側スリット214)のうち第1のフラックスバリア部2111に最も近いスリットである。
FIG. 4 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 4 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
As shown in FIGS. 3 and 4, the first end slit 2131 is located between the first flux barrier portion 2111 and the second flux barrier portion 2112, and the first flux barrier portion 2111. Facing. The first end slit 2131 is the first of a plurality of slits (that is, the end slit 213 and the plurality of inner slits 214) provided between the first flux barrier portion 2111 and the second flux barrier portion 2112. This is the slit closest to the flux barrier portion 2111 of.
 図5は、ロータ2の一部の構造を示す拡大図である。具体的には、図5は、図3において破線で囲まれた領域E2の構造を示す拡大図である。
 図3及び図5に示されるように、第2の端スリット2132は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に位置しており、第2のフラックスバリア部2112に対向している。第2の端スリット2132は、第1のフラックスバリア部2111と第2のフラックスバリア部2112との間に設けられた複数のスリット(すなわち、端スリット213及び複数の内側スリット214)のうち第2のフラックスバリア部2112に最も近いスリットである。
FIG. 5 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 5 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
As shown in FIGS. 3 and 5, the second end slit 2132 is located between the first flux barrier portion 2111 and the second flux barrier portion 2112, and the second flux barrier portion 2112. Facing. The second end slit 2132 is a second of a plurality of slits (that is, an end slit 213 and a plurality of inner slits 214) provided between the first flux barrier portion 2111 and the second flux barrier portion 2112. This is the slit closest to the flux barrier portion 2112 of.
 径方向における第1のフラックスバリア部2111の外側に存在するロータコア21の一部、すなわち、ロータコア21の外周面21aと第1のフラックスバリア部2111との間の領域は、漏れ磁束を低減する薄肉部である。この薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚み以上である。ただし、薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚みと同様の幅を持つことが望ましい。これにより、漏れ磁束の増加を効果的に抑えることができる。 A part of the rotor core 21 existing outside the first flux barrier portion 2111 in the radial direction, that is, the region between the outer peripheral surface 21a of the rotor core 21 and the first flux barrier portion 2111 is thin-walled to reduce the leakage flux. It is a department. The width of the thin portion in the radial direction is, for example, equal to or larger than the thickness of each electromagnetic steel plate of the rotor core 21. However, it is desirable that the width of the thin portion in the radial direction is the same as the thickness of each electromagnetic steel plate of the rotor core 21, for example. Thereby, the increase of the leakage flux can be effectively suppressed.
 同様に、径方向における第2のフラックスバリア部2112の外側に存在するロータコア21の一部、すなわち、ロータコア21の外周面21aと第2のフラックスバリア部2112との間の領域は、漏れ磁束を低減する薄肉部である。この薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚み以上である。ただし、薄肉部の径方向における幅は、例えば、ロータコア21の各電磁鋼板の厚みと同様の幅を持つことが望ましい。これにより、漏れ磁束の増加を効果的に抑えることができる。 Similarly, a part of the rotor core 21 existing outside the second flux barrier portion 2112 in the radial direction, that is, the region between the outer peripheral surface 21a of the rotor core 21 and the second flux barrier portion 2112 causes leakage flux. It is a thin part to be reduced. The width of the thin portion in the radial direction is, for example, equal to or larger than the thickness of each electromagnetic steel plate of the rotor core 21. However, it is desirable that the width of the thin portion in the radial direction is the same as the thickness of each electromagnetic steel plate of the rotor core 21, for example. Thereby, the increase of the leakage flux can be effectively suppressed.
 ロータコア21は、第1の内辺221aと、第1の外側湾曲部221bと、第1の外辺221cとを有する。 The rotor core 21 has a first inner side 221a, a first outer curved portion 221b, and a first outer side 221c.
 第1の内辺221aは、第1のフラックスバリア部2111を定めており第1の端スリット2131に対向する。 The first inner side 221a defines the first flux barrier portion 2111 and faces the first end slit 2131.
 第1の外側湾曲部221bは、第1のフラックスバリア部2111を定めており、第1の内辺221aに隣接しており、第1の内辺221aと第1の外辺221cとの間に設けられており、且つ第1の内辺221aとロータコア21の外周面21aとの間に位置している。第1の外側湾曲部221bは、湾曲した辺である。 The first outer curved portion 221b defines the first flux barrier portion 2111, is adjacent to the first inner side 221a, and is between the first inner side 221a and the first outer side 221c. It is provided and is located between the first inner side 221a and the outer peripheral surface 21a of the rotor core 21. The first outer curved portion 221b is a curved side.
 第1の外辺221cは、第1のフラックスバリア部2111を定めておりロータコア21の周方向に延びている。 The first outer side 221c defines the first flux barrier portion 2111 and extends in the circumferential direction of the rotor core 21.
 距離D1は、第1の端スリット2131から磁石挿入孔211までの最短距離である。 The distance D1 is the shortest distance from the first end slit 2131 to the magnet insertion hole 211.
 ロータコア21は、第1の内辺221a、第1の外側湾曲部221b、及び第1の外辺221cに加えて、第1のフラックスバリア部2111を定める1以上の辺又は湾曲部を有してもよい。 The rotor core 21 has one or more sides or curved portions that define the first flux barrier portion 2111 in addition to the first inner side 221a, the first outer curved portion 221b, and the first outer side 221c. May be good.
 ロータコア21は、第2の内辺222aと、第2の外側湾曲部222bと、第2の外辺222cとを有する。 The rotor core 21 has a second inner side 222a, a second outer curved portion 222b, and a second outer side 222c.
 第2の内辺222aは、第2のフラックスバリア部2112を定めており第2の端スリット2132に対向する。 The second inner side 222a defines the second flux barrier portion 2112 and faces the second end slit 2132.
 第2の外側湾曲部222bは、第2のフラックスバリア部2112を定めており、第2の内辺222aに隣接しており、第2の内辺222aと第2の外辺222cとの間に設けられており、且つ第2の内辺222aとロータコア21の外周面21aとの間に位置している。第2の外側湾曲部222bは、湾曲した辺である。 The second outer curved portion 222b defines the second flux barrier portion 2112, is adjacent to the second inner side 222a, and is between the second inner side 222a and the second outer side 222c. It is provided and is located between the second inner side 222a and the outer peripheral surface 21a of the rotor core 21. The second outer curved portion 222b is a curved side.
 第2の外辺222cは、第2のフラックスバリア部2112を定めておりロータコア21の周方向に延びている。 The second outer side 222c defines the second flux barrier portion 2112 and extends in the circumferential direction of the rotor core 21.
 距離D2は、第2の端スリット2132から磁石挿入孔211までの最短距離である。 The distance D2 is the shortest distance from the second end slit 2132 to the magnet insertion hole 211.
 ロータコア21は、第2の内辺222a、第2の外側湾曲部222b、及び第2の外辺222cに加えて、第2のフラックスバリア部2112を定める1以上の辺又は湾曲部を有してもよい。 In addition to the second inner side 222a, the second outer curved portion 222b, and the second outer side 222c, the rotor core 21 has one or more sides or curved portions that define the second flux barrier portion 2112. May be good.
 図3に示されるように、ロータ2の軸方向と直交する平面において、第1の内辺221aと第1の外側湾曲部221bとの間の境界B1(第1の境界とも称する)及びロータ2の回転中心を通る直線をL1とし、第2の内辺222aと第2の外側湾曲部222bとの間の境界B2(第2の境界とも称する)及びロータ2の回転中心を通る直線をL2とし、直線L1と直線L2との間の角度をθ[度]としたとき、ロータ2は、251.7/P≦θ≦255/Pを満たす。 As shown in FIG. 3, in a plane orthogonal to the axial direction of the rotor 2, the boundary B1 (also referred to as the first boundary) and the rotor 2 between the first inner side 221a and the first outer curved portion 221b. Let L1 be the straight line passing through the center of rotation of the rotor 2, and let L2 be the straight line passing through the boundary B2 (also referred to as the second boundary) between the second inner side 222a and the second outer curved portion 222b and the center of rotation of the rotor 2. , When the angle between the straight line L1 and the straight line L2 is θ [degree], the rotor 2 satisfies 251.7 / P ≦ θ ≦ 255 / P.
 境界B1及び境界B2は、磁極中心線C1に関して対称的である。 Boundary B1 and boundary B2 are symmetrical with respect to the magnetic pole center line C1.
 図6は、ロータ2の一部の構造を示す拡大図である。具体的には、図6は、図3において破線で囲まれた領域E1の構造を示す拡大図である。
 ロータコア21は、第1の端スリット辺231aと、第1の端スリット湾曲部231bと、辺231c(第3の端スリット辺とも称する)と、辺211aとを有する。
FIG. 6 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 6 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
The rotor core 21 has a first end slit side 231a, a first end slit curved portion 231b, a side 231c (also referred to as a third end slit side), and a side 211a.
 第1の端スリット辺231aは、第1の端スリット2131を定めており第1のフラックスバリア部2111に対向する。 The first end slit side 231a defines the first end slit 2131 and faces the first flux barrier portion 2111.
 第1の端スリット湾曲部231bは、第1の端スリット2131を定めており、第1の端スリット辺231aに隣接しており、第1の端スリット辺231aと辺231cとの間に設けられており、且つ第1の端スリット辺231aと磁石挿入孔211との間に位置している。 The first end slit curved portion 231b defines the first end slit 2131, is adjacent to the first end slit side 231a, and is provided between the first end slit side 231a and the side 231c. It is located between the first end slit side 231a and the magnet insertion hole 211.
 辺231cは、第1の端スリット2131を定めており、第1の端スリット湾曲部231bに隣接しており、磁石挿入孔211(具体的には、辺211a)に対向している。 The side 231c defines the first end slit 2131, is adjacent to the first end slit curved portion 231b, and faces the magnet insertion hole 211 (specifically, the side 211a).
 辺211aは、磁石挿入孔211を定めており、辺231cに対向している。 The side 211a defines the magnet insertion hole 211 and faces the side 231c.
 ロータコア21は、第1の端スリット辺231a、第1の端スリット湾曲部231b、及び辺231cに加えて、第1の端スリット2131を定める1以上の辺又は湾曲部を有してもよい。 The rotor core 21 may have one or more sides or curved portions that define the first end slit 2131 in addition to the first end slit side 231a, the first end slit curved portion 231b, and the side 231c.
 図7は、ロータ2の一部の構造を示す拡大図である。具体的には、図7は、図3において破線で囲まれた領域E2の構造を示す拡大図である。
 ロータコア21は、第2の端スリット辺232aと、第2の端スリット湾曲部232bと、辺232c(第4の端スリット辺とも称する)と、辺211bとを有する。
FIG. 7 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 7 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
The rotor core 21 has a second end slit side 232a, a second end slit curved portion 232b, a side 232c (also referred to as a fourth end slit side), and a side 211b.
 第2の端スリット辺232aは、第2の端スリット2132を定めており第2のフラックスバリア部2112に対向する。 The second end slit side 232a defines the second end slit 2132 and faces the second flux barrier portion 2112.
 第2の端スリット湾曲部232bは、第2の端スリット2132を定めており、第2の端スリット辺232aに隣接しており、第2の端スリット辺232aと辺232cとの間に設けられており、且つ第2の端スリット辺232aと磁石挿入孔211との間に位置している。 The second end slit curved portion 232b defines the second end slit 2132, is adjacent to the second end slit side 232a, and is provided between the second end slit side 232a and the side 232c. It is located between the second end slit side 232a and the magnet insertion hole 211.
 辺232cは、第2の端スリット2132を定めており、第2の端スリット湾曲部232bに隣接しており、磁石挿入孔211(具体的には、辺211b)に対向している。 The side 232c defines the second end slit 2132, is adjacent to the second end slit curved portion 232b, and faces the magnet insertion hole 211 (specifically, the side 211b).
 辺211bは、磁石挿入孔211を定めており、辺232cに対向している。 The side 211b defines the magnet insertion hole 211 and faces the side 232c.
 ロータコア21は、第2の端スリット辺232a、第2の端スリット湾曲部232b、及び辺232cに加えて、第2の端スリット2132を定める1以上の辺又は湾曲部を有してもよい。 The rotor core 21 may have one or more sides or curved portions that define the second end slit 2132, in addition to the second end slit side 232a, the second end slit curved portion 232b, and the side 232c.
 図6において、ロータ2において、距離d11と距離d12との関係は、d11≧d12を満たす。図6に示される例では、距離d11と距離d12との関係は、d11>d12を満たす。 In FIG. 6, in the rotor 2, the relationship between the distance d11 and the distance d12 satisfies d11 ≧ d12. In the example shown in FIG. 6, the relationship between the distance d11 and the distance d12 satisfies d11> d12.
 距離d11は、ロータ2の軸方向と直交する平面において、境界B1から点F1(第1の点とも称する)までの距離である。点F1は、ロータ2の軸方向と直交する平面において、直線L3が第1の端スリット辺231aと交わる点である。直線L3は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B1を通る直線である。 The distance d11 is the distance from the boundary B1 to the point F1 (also referred to as the first point) on the plane orthogonal to the axial direction of the rotor 2. The point F1 is a point where the straight line L3 intersects the first end slit side 231a on a plane orthogonal to the axial direction of the rotor 2. The straight line L3 is a straight line orthogonal to the magnetic pole center line C1 and a straight line passing through the boundary B1 in a plane orthogonal to the axial direction of the rotor 2.
 距離d12は、ロータ2の軸方向と直交する平面において、境界B3(第3の境界とも称する)から点F2(第2の点とも称する)までの距離である。境界B3は、第1の端スリット辺231aと第1の端スリット湾曲部231bとの間の境界である。点F2は、ロータ2の軸方向と直交する平面において、直線L4が第1の内辺221aと交わる点である。直線L4は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B3を通る直線である。 The distance d12 is the distance from the boundary B3 (also referred to as the third boundary) to the point F2 (also referred to as the second point) on the plane orthogonal to the axial direction of the rotor 2. The boundary B3 is a boundary between the first end slit side 231a and the first end slit curved portion 231b. The point F2 is a point where the straight line L4 intersects the first inner side 221a in a plane orthogonal to the axial direction of the rotor 2. The straight line L4 is a straight line orthogonal to the magnetic pole center line C1 and a straight line passing through the boundary B3 in a plane orthogonal to the axial direction of the rotor 2.
 図7において、ロータ2において、距離d21と距離d22との関係は、d21≧d22を満たすことが望ましい。図7に示される例では、距離d21と距離d22との関係は、d21>d22を満たす。 In FIG. 7, in the rotor 2, it is desirable that the relationship between the distance d21 and the distance d22 satisfies d21 ≧ d22. In the example shown in FIG. 7, the relationship between the distance d21 and the distance d22 satisfies d21> d22.
 距離d21は、ロータ2の軸方向と直交する平面において、境界B2から点F3(第3の点とも称する)までの距離である。点F3は、ロータ2の軸方向と直交する平面において、直線L5が第2の端スリット辺232aと交わる点である。直線L5は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B2を通る直線である。 The distance d21 is a distance from the boundary B2 to the point F3 (also referred to as a third point) on a plane orthogonal to the axial direction of the rotor 2. The point F3 is a point where the straight line L5 intersects the second end slit side 232a in a plane orthogonal to the axial direction of the rotor 2. The straight line L5 is a straight line orthogonal to the magnetic pole center line C1 and a straight line passing through the boundary B2 in a plane orthogonal to the axial direction of the rotor 2.
 距離d22は、ロータ2の軸方向と直交する平面において、境界B4(第4の境界とも称する)から点F4(第4の点とも称する)までの距離である。境界B4は、第2の端スリット辺232aと第2の端スリット湾曲部232bとの間の境界である。点F4は、ロータ2の軸方向と直交する平面において、直線L6が第2の内辺222aと交わる点である。直線L6は、ロータ2の軸方向と直交する平面において、磁極中心線C1と直交する直線であり、且つ境界B4を通る直線である。 The distance d22 is the distance from the boundary B4 (also referred to as the fourth boundary) to the point F4 (also referred to as the fourth point) on the plane orthogonal to the axial direction of the rotor 2. The boundary B4 is a boundary between the second end slit side 232a and the second end slit curved portion 232b. The point F4 is a point where the straight line L6 intersects the second inner side 222a in a plane orthogonal to the axial direction of the rotor 2. The straight line L6 is a straight line orthogonal to the magnetic pole center line C1 in a plane orthogonal to the axial direction of the rotor 2 and a straight line passing through the boundary B4.
 図8は、ステータ3からロータ2に流れ込む磁束を示す図である。
 モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができる。
FIG. 8 is a diagram showing the magnetic flux flowing from the stator 3 to the rotor 2.
When the motor 1 satisfies 251.7 ≦ P × θ ≦ 255, that is, 251.7 / P ≦ θ ≦ 255 / P, the magnetic flux from the stator 3 is transferred to the first end slit 2131 and the first flux barrier portion. Easy to pass between 2111. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be reduced. As a result, the cogging torque can be reduced.
 さらに、ロータ2において、距離d11と距離d12との関係が、d11>d12を満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を効果的に低減することができる。その結果、コギングトルクを効果的に低減することができる。 Further, in the rotor 2, when the relationship between the distance d11 and the distance d12 satisfies d11> d12, the magnetic flux from the stator 3 passes between the first end slit 2131 and the first flux barrier portion 2111. Cheap. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be effectively reduced. As a result, the cogging torque can be effectively reduced.
 図9は、モータ1の磁極数P×角度θとモータ1に生じるコギングトルクとの関係を示すグラフである。
 図9に示されるように、モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、モータ1に生じる磁気吸引力が抑制され、コギングトルクを低減することができる。その結果、モータ1における振動及び騒音を低減することができる。
FIG. 9 is a graph showing the relationship between the number of magnetic poles P × the angle θ of the motor 1 and the cogging torque generated in the motor 1.
As shown in FIG. 9, when the motor 1 satisfies 251.7 ≦ P × θ ≦ 255, that is, 251.7 / P ≦ θ ≦ 255 / P, the magnetic attraction generated in the motor 1 is suppressed and cogging. The torque can be reduced. As a result, vibration and noise in the motor 1 can be reduced.
 モータ1が251.7≦P×θ≦254.1、すなわち、251.7/P≦θ≦254.1/Pを満たすとき、コギングトルクを0.1[Nm]以下に低減することができる。これにより、モータ1に生じる磁気吸引力がさらに抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。 When the motor 1 satisfies 251.7 ≦ P × θ ≦ 254.1, that is, 251.7 / P ≦ θ ≦ 254.1 / P, the cogging torque can be reduced to 0.1 [Nm] or less. .. As a result, the magnetic attraction force generated in the motor 1 is further suppressed, and the cogging torque can be further reduced. As a result, vibration and noise in the motor 1 can be further reduced.
 モータ1が253.3=P×θ、すなわち、253.3/P=θを満たすとき、コギングトルクが最小になる。これにより、モータ1に生じる磁気吸引力がさらに抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。 When the motor 1 satisfies 253.3 = P × θ, that is, 253.3 / P = θ, the cogging torque is minimized. As a result, the magnetic attraction force generated in the motor 1 is further suppressed, and the cogging torque can be further reduced. As a result, vibration and noise in the motor 1 can be further reduced.
変形例1.
 図10は、ロータ2の他の例を示す図である。図10では、ロータ2の一部の構造が示されている。
 図11は、ロータ2の一部の構造を示す拡大図である。具体的には、図11は、図10において破線で囲まれた領域E1の構造を示す拡大図である。
 図12は、ロータ2の一部の構造を示す拡大図である。具体的には、図12は、図10において破線で囲まれた領域E2の構造を示す拡大図である。
Modification example 1.
FIG. 10 is a diagram showing another example of the rotor 2. In FIG. 10, a part of the structure of the rotor 2 is shown.
FIG. 11 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 11 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
FIG. 12 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 12 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
 図10に示される第1の端スリット2131の形状は、図2に示される各第1の端スリット2131の形状と異なっており、図10に示される第2の端スリット2132の形状は、図2に示される各第2の端スリット2132の形状と異なっている。 The shape of the first end slit 2131 shown in FIG. 10 is different from the shape of each first end slit 2131 shown in FIG. 2, and the shape of the second end slit 2132 shown in FIG. 10 is shown in FIG. It is different from the shape of each second end slit 2132 shown in 2.
 図11に示されるように、ロータ2において、距離d11と距離d12との関係は、d11=d12を満たす。すなわち、距離d11は距離d12に等しい。図11に示される例では、第1の端スリット辺231aは、磁極中心線C1及び第1の内辺221aに平行である。 As shown in FIG. 11, in the rotor 2, the relationship between the distance d11 and the distance d12 satisfies d11 = d12. That is, the distance d11 is equal to the distance d12. In the example shown in FIG. 11, the first end slit side 231a is parallel to the magnetic pole center line C1 and the first inner side 221a.
 図12に示される例では、ロータ2において、距離d21と距離d22との関係は、d21=d22を満たす。すなわち、図12に示される例では、距離d21は距離d22に等しい。図12に示される例では、第2の端スリット辺232aは、磁極中心線C1及び第2の内辺222aに平行である。 In the example shown in FIG. 12, in the rotor 2, the relationship between the distance d21 and the distance d22 satisfies d21 = d22. That is, in the example shown in FIG. 12, the distance d21 is equal to the distance d22. In the example shown in FIG. 12, the second end slit side 232a is parallel to the magnetic pole center line C1 and the second inner side 222a.
 図2に示されるロータ2と同様に、図10から図12に示されるロータ2は、251.7/P≦θ≦255/Pを満たす。図10から図12に示されるロータ2は、図9に示されるコギングトルクの特性を持つ。 Similar to the rotor 2 shown in FIG. 2, the rotor 2 shown in FIGS. 10 to 12 satisfies 251.7 / P ≦ θ ≦ 255 / P. The rotor 2 shown in FIGS. 10 to 12 has the characteristics of the cogging torque shown in FIG.
 図10から図12に示されるロータ2は、図9に示されるコギングトルクの特性を持つので、図10から図12に示されるロータ2は、図2に示されるロータ2と同じ利点を持つ。 Since the rotor 2 shown in FIGS. 10 to 12 has the characteristics of the cogging torque shown in FIG. 9, the rotor 2 shown in FIGS. 10 to 12 has the same advantages as the rotor 2 shown in FIG.
 図13は、ステータ3から、図11に示されるロータ2に流れ込む磁束を示す図である。
 モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができる。
FIG. 13 is a diagram showing the magnetic flux flowing from the stator 3 to the rotor 2 shown in FIG.
When the motor 1 satisfies 251.7 ≦ P × θ ≦ 255, that is, 251.7 / P ≦ θ ≦ 255 / P, the magnetic flux from the stator 3 is transferred to the first end slit 2131 and the first flux barrier portion. Easy to pass between 2111. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be reduced. As a result, the cogging torque can be reduced.
 さらに、ロータ2において、距離d11と距離d12との関係は、d11=d12を満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を効果的に低減することができる。その結果、コギングトルクを効果的に低減することができる。 Further, in the rotor 2, the relationship between the distance d11 and the distance d12 is that when d11 = d12 is satisfied, the magnetic flux from the stator 3 passes between the first end slit 2131 and the first flux barrier portion 2111. Cheap. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be effectively reduced. As a result, the cogging torque can be effectively reduced.
変形例2.
 図14は、ロータ2の他の例を示す図である。図14では、ロータ2の一部の構造が示されている。
 図15は、ロータ2の一部の構造を示す拡大図である。具体的には、図15は、図14において破線で囲まれた領域E1の構造を示す拡大図である。
 図16は、ロータ2の一部の構造を示す拡大図である。具体的には、図16は、図14において破線で囲まれた領域E2の構造を示す拡大図である。
Modification example 2.
FIG. 14 is a diagram showing another example of the rotor 2. FIG. 14 shows a partial structure of the rotor 2.
FIG. 15 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 15 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
FIG. 16 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 16 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
 図14に示される第1の端スリット2131の形状は、図2に示される各第1の端スリット2131の形状と異なっており、図14に示される第2の端スリット2132の形状は、図2に示される各第2の端スリット2132の形状と異なっている。 The shape of the first end slit 2131 shown in FIG. 14 is different from the shape of each of the first end slits 2131 shown in FIG. 2, and the shape of the second end slit 2132 shown in FIG. 14 is shown in FIG. It is different from the shape of each second end slit 2132 shown in 2.
 図15に示されるように、ロータ2において、距離d11と距離d12との関係は、d11=d12を満たす。すなわち、距離d11は距離d12に等しい。図15に示される例では、第1の端スリット辺231aは、第1の内辺221aに平行である。 As shown in FIG. 15, in the rotor 2, the relationship between the distance d11 and the distance d12 satisfies d11 = d12. That is, the distance d11 is equal to the distance d12. In the example shown in FIG. 15, the first end slit side 231a is parallel to the first inner side 221a.
 第1の端スリット辺231a及び第1の内辺221aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第1の端スリット辺231a及び第1の内辺221aは、第1の端スリット2131と対向している永久磁石22の短手方向と平行である。言い換えると、ロータ2の軸方向と直交する平面において、第1の端スリット辺231a及び第1の内辺221aは、第1の端スリット2131と対向している永久磁石22の長手方向に対して直交している。 The first end slit side 231a and the first inner side 221a are inclined toward the magnetic pole center line C1. For example, in a plane orthogonal to the axial direction of the rotor 2, the first end slit side 231a and the first inner side 221a are parallel to the lateral direction of the permanent magnet 22 facing the first end slit 2131. is there. In other words, in a plane orthogonal to the axial direction of the rotor 2, the first end slit side 231a and the first inner side 221a are relative to the longitudinal direction of the permanent magnet 22 facing the first end slit 2131. It is orthogonal.
 図16に示される例では、ロータ2において、距離d21と距離d22との関係は、d21=d22を満たす。すなわち、図16に示される例では、距離d21は距離d22に等しい。図16に示される例では、第2の端スリット辺232aは、第2の内辺222aに平行である。第2の端スリット辺232a及び第2の内辺222aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第2の端スリット辺232a及び第2の内辺222aは、第2の端スリット2132と対向している永久磁石22の短手方向と平行である。言い換えると、ロータ2の軸方向と直交する平面において、第2の端スリット辺232a及び第2の内辺222aは、第2の端スリット2132と対向している永久磁石22の長手方向に対して直交している。 In the example shown in FIG. 16, in the rotor 2, the relationship between the distance d21 and the distance d22 satisfies d21 = d22. That is, in the example shown in FIG. 16, the distance d21 is equal to the distance d22. In the example shown in FIG. 16, the second end slit side 232a is parallel to the second inner side 222a. The second end slit side 232a and the second inner side 222a are inclined toward the magnetic pole center line C1. For example, in a plane orthogonal to the axial direction of the rotor 2, the second end slit side 232a and the second inner side 222a are parallel to the lateral direction of the permanent magnet 22 facing the second end slit 2132. is there. In other words, in a plane orthogonal to the axial direction of the rotor 2, the second end slit side 232a and the second inner side 222a are relative to the longitudinal direction of the permanent magnet 22 facing the second end slit 2132. It is orthogonal.
 図2に示されるロータ2と同様に、図14から図16に示されるロータ2は、251.7/P≦θ≦255/Pを満たす。図14から図16に示されるロータ2は、図9に示されるコギングトルクの特性を持つ。具体的に、図14から図16に示される例では、ロータ2は、θ=253.3/Pを満たす。 Similar to the rotor 2 shown in FIG. 2, the rotor 2 shown in FIGS. 14 to 16 satisfies 251.7 / P ≦ θ ≦ 255 / P. The rotor 2 shown in FIGS. 14 to 16 has the characteristics of the cogging torque shown in FIG. Specifically, in the example shown in FIGS. 14 to 16, the rotor 2 satisfies θ = 253.3 / P.
 図14から図16に示されるロータ2は、図9に示されるコギングトルクの特性を持つので、図14から図16に示されるロータ2は、図2に示されるロータ2と同じ利点を持つ。 Since the rotor 2 shown in FIGS. 14 to 16 has the characteristics of the cogging torque shown in FIG. 9, the rotor 2 shown in FIGS. 14 to 16 has the same advantages as the rotor 2 shown in FIG.
 図17は、ステータ3から、図15に示されるロータ2に流れ込む磁束を示す図である。
 モータ1が251.7≦P×θ≦255、すなわち、251.7/P≦θ≦255/Pを満たすとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができる。
FIG. 17 is a diagram showing the magnetic flux flowing from the stator 3 to the rotor 2 shown in FIG.
When the motor 1 satisfies 251.7 ≦ P × θ ≦ 255, that is, 251.7 / P ≦ θ ≦ 255 / P, the magnetic flux from the stator 3 is transferred to the first end slit 2131 and the first flux barrier portion. Easy to pass between 2111. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be reduced. As a result, the cogging torque can be reduced.
 第1の端スリット辺231aが、磁極中心線C1の方に傾いているとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。さらに、第1の端スリット辺231a及び第1の内辺221aの両方が、磁極中心線C1の方に傾いているとき、ステータ3からの磁束が、第1の端スリット2131と第1のフラックスバリア部2111との間を通過しやすい。 When the first end slit side 231a is tilted toward the magnetic pole center line C1, the magnetic flux from the stator 3 easily passes between the first end slit 2131 and the first flux barrier portion 2111. Further, when both the first end slit side 231a and the first inner side 221a are tilted toward the magnetic pole center line C1, the magnetic flux from the stator 3 is the first end slit 2131 and the first flux. It easily passes between the barrier portion 2111.
 図17に示される例では、ステータ3からの磁束の向きと永久磁石22の長手方向との間の角度が、直角又は直角に近い。例えば、図13に示される例に比べて、ステータ3からの磁束の向きと永久磁石22の長手方向との間の角度が直角に近づく。これにより、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を効果的に低減することができる。その結果、コギングトルクを効果的に低減することができる。 In the example shown in FIG. 17, the angle between the direction of the magnetic flux from the stator 3 and the longitudinal direction of the permanent magnet 22 is a right angle or close to a right angle. For example, as compared with the example shown in FIG. 13, the angle between the direction of the magnetic flux from the stator 3 and the longitudinal direction of the permanent magnet 22 is closer to a right angle. Thereby, the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111 can be effectively reduced. As a result, the cogging torque can be effectively reduced.
変形例3.
 図18は、ロータ2の他の例を示す図である。図18では、ロータ2の一部の構造が示されている。
 図19は、ロータ2の一部の構造を示す拡大図である。具体的には、図19は、図18において破線で囲まれた領域E1の構造を示す拡大図である。
 図20は、ロータ2の一部の構造を示す拡大図である。具体的には、図20は、図18において破線で囲まれた領域E2の構造を示す拡大図である。
Modification example 3.
FIG. 18 is a diagram showing another example of the rotor 2. FIG. 18 shows a partial structure of the rotor 2.
FIG. 19 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 19 is an enlarged view showing the structure of the region E1 surrounded by the broken line in FIG.
FIG. 20 is an enlarged view showing a part of the structure of the rotor 2. Specifically, FIG. 20 is an enlarged view showing the structure of the region E2 surrounded by the broken line in FIG.
 図18に示される第1の端スリット2131の形状は、図2に示される各第1の端スリット2131の形状と異なっており、図18に示される第2の端スリット2132の形状は、図2に示される各第2の端スリット2132の形状と異なっている。 The shape of the first end slit 2131 shown in FIG. 18 is different from the shape of each of the first end slits 2131 shown in FIG. 2, and the shape of the second end slit 2132 shown in FIG. 18 is shown in FIG. It is different from the shape of each second end slit 2132 shown in 2.
 図19において、距離d13は、第1の端スリット2131から第1のフラックスバリア部2111までの最短距離である。図19に示される例では、距離d13は、第1の端スリット辺231aから第1の内辺221aまでの最短距離である。 In FIG. 19, the distance d13 is the shortest distance from the first end slit 2131 to the first flux barrier portion 2111. In the example shown in FIG. 19, the distance d13 is the shortest distance from the first end slit side 231a to the first inner side 221a.
 図19に示される例では、第1の端スリット辺231aは、第1の内辺221aに平行である。第1の端スリット辺231a及び第1の内辺221aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第1の端スリット辺231a及び第1の内辺221aは、第1の端スリット2131と対向している永久磁石22の短手方向と平行である。 In the example shown in FIG. 19, the first end slit side 231a is parallel to the first inner side 221a. The first end slit side 231a and the first inner side 221a are inclined toward the magnetic pole center line C1. For example, in a plane orthogonal to the axial direction of the rotor 2, the first end slit side 231a and the first inner side 221a are parallel to the lateral direction of the permanent magnet 22 facing the first end slit 2131. is there.
 図20において、距離d23は、第2の端スリット2132から第2のフラックスバリア部2112までの最短距離である。図20に示される例では、距離d23は、第2の端スリット辺232aから第2の内辺222aまでの最短距離である。 In FIG. 20, the distance d23 is the shortest distance from the second end slit 2132 to the second flux barrier portion 2112. In the example shown in FIG. 20, the distance d23 is the shortest distance from the second end slit side 232a to the second inner side 222a.
 図20に示される例では、第2の端スリット辺232aは、第2の内辺222aに平行である。第2の端スリット辺232a及び第2の内辺222aは、磁極中心線C1の方に傾いている。例えば、ロータ2の軸方向と直交する平面において、第2の端スリット辺232a及び第2の内辺222aは、第2の端スリット2132と対向している永久磁石22の短手方向と平行である。 In the example shown in FIG. 20, the second end slit side 232a is parallel to the second inner side 222a. The second end slit side 232a and the second inner side 222a are inclined toward the magnetic pole center line C1. For example, in a plane orthogonal to the axial direction of the rotor 2, the second end slit side 232a and the second inner side 222a are parallel to the lateral direction of the permanent magnet 22 facing the second end slit 2132. is there.
 図2に示されるロータ2と同様に、図18から図20に示されるロータ2は、251.7/P≦θ≦255/Pを満たす。図18から図20に示されるロータ2は、図9に示されるコギングトルクの特性を持つ。 Similar to the rotor 2 shown in FIG. 2, the rotor 2 shown in FIGS. 18 to 20 satisfies 251.7 / P ≦ θ ≦ 255 / P. The rotor 2 shown in FIGS. 18 to 20 has the characteristics of the cogging torque shown in FIG.
 図18から図20に示されるロータ2は、図9に示されるコギングトルクの特性を持つので、図18から図20に示されるロータ2は、図2に示されるロータ2と同じ利点を持つ。 Since the rotor 2 shown in FIGS. 18 to 20 has the characteristics of the cogging torque shown in FIG. 9, the rotor 2 shown in FIGS. 18 to 20 has the same advantages as the rotor 2 shown in FIG.
 距離d13の最小値は、ロータコア21を形成する各電磁鋼板の厚み以上であることが望ましい。これにより、第1のフラックスバリア部2111及び第1の端スリット2131を、打ち抜き処理などのプレス加工で容易に形成することができる。本実施の形態では、ロータコア21を形成する各電磁鋼板の厚みは、0.365[mm]である。したがって、距離d13は、0.365[mm]以上である。 It is desirable that the minimum value of the distance d13 is equal to or greater than the thickness of each electromagnetic steel plate forming the rotor core 21. As a result, the first flux barrier portion 2111 and the first end slit 2131 can be easily formed by press working such as punching. In the present embodiment, the thickness of each electromagnetic steel plate forming the rotor core 21 is 0.365 [mm]. Therefore, the distance d13 is 0.365 [mm] or more.
 距離d13は、0.55[mm]以下であることが望ましい。距離d13が0.55[mm]を超えると、第1の端スリット2131と第1のフラックスバリア部2111との間を通る磁束が多方向に広がり、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲が増加する。その結果、コギングトルクが大きくなる。 It is desirable that the distance d13 is 0.55 [mm] or less. When the distance d13 exceeds 0.55 [mm], the magnetic flux passing between the first end slit 2131 and the first flux barrier portion 2111 spreads in multiple directions, and the first end slit 2131 and the first flux The bending of the magnetic flux with the barrier portion 2111 increases. As a result, the cogging torque increases.
 図21は、第1の端スリット2131から第1のフラックスバリア部2111までの距離d13とモータ1に生じるコギングトルクとの関係を示す図である。
 図21に示されるように、モータ1が0.365[mm]≦d13≦0.55[mm]を満たすとき、第1のフラックスバリア部2111及び第1の端スリット2131を容易に形成することができ、第1の端スリット2131と第1のフラックスバリア部2111との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができ、モータ1における振動及び騒音を低減することができる。
FIG. 21 is a diagram showing the relationship between the distance d13 from the first end slit 2131 to the first flux barrier portion 2111 and the cogging torque generated in the motor 1.
As shown in FIG. 21, when the motor 1 satisfies 0.365 [mm] ≤ d13 ≤ 0.55 [mm], the first flux barrier portion 2111 and the first end slit 2131 are easily formed. It is possible to reduce the bending of the magnetic flux between the first end slit 2131 and the first flux barrier portion 2111. As a result, the cogging torque can be reduced, and the vibration and noise in the motor 1 can be reduced.
 モータ1が0.365[mm]≦d13≦0.4[mm]を満たすとき、コギングトルクを0.1[Nm]以下に低減することができる。これにより、モータ1に生じる磁気吸引力が抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。 When the motor 1 satisfies 0.365 [mm] ≤ d13 ≤ 0.4 [mm], the cogging torque can be reduced to 0.1 [Nm] or less. As a result, the magnetic attraction force generated in the motor 1 is suppressed, and the cogging torque can be further reduced. As a result, vibration and noise in the motor 1 can be further reduced.
 距離D1の最小値は、ロータコア21を形成する各電磁鋼板の厚み以上であることが望ましい。これにより、第1のフラックスバリア部2111及び磁石挿入孔211を、打ち抜き処理などのプレス加工で容易に形成することができる。本実施の形態では、ロータコア21を形成する各電磁鋼板の厚みは、0.365[mm]である。したがって、距離D1は、0.365[mm]以上である。 It is desirable that the minimum value of the distance D1 is equal to or greater than the thickness of each electromagnetic steel plate forming the rotor core 21. As a result, the first flux barrier portion 2111 and the magnet insertion hole 211 can be easily formed by press working such as punching. In the present embodiment, the thickness of each electromagnetic steel plate forming the rotor core 21 is 0.365 [mm]. Therefore, the distance D1 is 0.365 [mm] or more.
 距離D1は、0.865[mm]以下であることが望ましい。距離D1が0.865[mm]を超えると、第1の端スリット2131と磁石挿入孔211との間を通る磁束が多方向に広がり、第1の端スリット2131と磁石挿入孔211との間における磁束の屈曲が増加する。その結果、コギングトルクが大きくなる。 It is desirable that the distance D1 is 0.865 [mm] or less. When the distance D1 exceeds 0.865 [mm], the magnetic flux passing between the first end slit 2131 and the magnet insertion hole 211 spreads in multiple directions, and between the first end slit 2131 and the magnet insertion hole 211. The bending of the magnetic flux in As a result, the cogging torque increases.
 同様に、距離D2の最小値は、ロータコア21を形成する各電磁鋼板の厚み以上であることが望ましい。これにより、第2のフラックスバリア部2112及び磁石挿入孔211を、打ち抜き処理などのプレス加工で容易に形成することができる。本実施の形態では、ロータコア21を形成する各電磁鋼板の厚みは、0.365[mm]である。したがって、距離D2は、0.365[mm]以上である。 Similarly, it is desirable that the minimum value of the distance D2 is equal to or greater than the thickness of each electrical steel sheet forming the rotor core 21. As a result, the second flux barrier portion 2112 and the magnet insertion hole 211 can be easily formed by press working such as punching. In the present embodiment, the thickness of each electromagnetic steel plate forming the rotor core 21 is 0.365 [mm]. Therefore, the distance D2 is 0.365 [mm] or more.
 距離D2は、0.865[mm]以下であることが望ましい。距離D2が0.865[mm]を超えると、第2の端スリット2132と磁石挿入孔211との間を通る磁束が多方向に広がり、第2の端スリット2132と磁石挿入孔211との間における磁束の屈曲が増加する。その結果、コギングトルクが大きくなる。 It is desirable that the distance D2 is 0.865 [mm] or less. When the distance D2 exceeds 0.865 [mm], the magnetic flux passing between the second end slit 2132 and the magnet insertion hole 211 spreads in multiple directions, and between the second end slit 2132 and the magnet insertion hole 211. The bending of the magnetic flux in As a result, the cogging torque increases.
 図22は、第1の端スリット2131から磁石挿入孔211までの距離D1とモータ1に生じるコギングトルクとの関係を示すグラフである。
 図22に示されるように、モータ1が0.365[mm]≦D1≦0.865[mm]を満たすとき、第1のフラックスバリア部2111及び磁石挿入孔211を容易に形成することができ、第1の端スリット2131と磁石挿入孔211との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができ、モータ1における振動及び騒音を低減することができる。
FIG. 22 is a graph showing the relationship between the distance D1 from the first end slit 2131 to the magnet insertion hole 211 and the cogging torque generated in the motor 1.
As shown in FIG. 22, when the motor 1 satisfies 0.365 [mm] ≤ D1 ≤ 0.865 [mm], the first flux barrier portion 2111 and the magnet insertion hole 211 can be easily formed. , It is possible to reduce the bending of the magnetic flux between the first end slit 2131 and the magnet insertion hole 211. As a result, the cogging torque can be reduced, and the vibration and noise in the motor 1 can be reduced.
 モータ1が0.365[mm]≦D1≦0.765[mm]を満たすとき、コギングトルクを0.1[Nm]以下に低減することができる。これにより、モータ1に生じる磁気吸引力が抑制され、コギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。 When the motor 1 satisfies 0.365 [mm] ≤ D1 ≤ 0.765 [mm], the cogging torque can be reduced to 0.1 [Nm] or less. As a result, the magnetic attraction force generated in the motor 1 is suppressed, and the cogging torque can be further reduced. As a result, vibration and noise in the motor 1 can be further reduced.
 同様に、モータ1が0.365[mm]≦D2≦0.865[mm]を満たすとき、第1のフラックスバリア部2111及び磁石挿入孔211を容易に形成することができ、第1の端スリット2131と磁石挿入孔211との間における磁束の屈曲を低減することができる。その結果、コギングトルクを低減することができ、モータ1における振動及び騒音を低減することができる。 Similarly, when the motor 1 satisfies 0.365 [mm] ≤ D2 ≤ 0.865 [mm], the first flux barrier portion 2111 and the magnet insertion hole 211 can be easily formed, and the first end can be easily formed. It is possible to reduce the bending of the magnetic flux between the slit 2131 and the magnet insertion hole 211. As a result, the cogging torque can be reduced, and the vibration and noise in the motor 1 can be reduced.
 モータ1が0.365[mm]≦D2≦0.765[mm]を満たすとき、モータ1に生じるコギングトルクをさらに低減することができる。その結果、モータ1における振動及び騒音をさらに低減することができる。 When the motor 1 satisfies 0.365 [mm] ≤ D2 ≤ 0.765 [mm], the cogging torque generated in the motor 1 can be further reduced. As a result, vibration and noise in the motor 1 can be further reduced.
実施の形態2.
 本発明の実施の形態2に係る圧縮機6について説明する。
 図23は、実施の形態2に係る圧縮機6の構造を概略的に示す断面図である。
Embodiment 2.
The compressor 6 according to the second embodiment of the present invention will be described.
FIG. 23 is a cross-sectional view schematically showing the structure of the compressor 6 according to the second embodiment.
 圧縮機6は、電動要素としてのモータ1と、ハウジングとしての密閉容器61と、圧縮要素(圧縮装置とも称する)としての圧縮機構62とを有する。本実施の形態では、圧縮機6は、ロータリー圧縮機である。ただし、圧縮機6は、ロータリー圧縮機に限定されない。 The compressor 6 has a motor 1 as an electric element, a closed container 61 as a housing, and a compression mechanism 62 as a compression element (also referred to as a compression device). In the present embodiment, the compressor 6 is a rotary compressor. However, the compressor 6 is not limited to the rotary compressor.
 圧縮機6内のモータ1は、実施の形態1で説明したモータ1である。モータ1は、圧縮機構62を駆動する。 The motor 1 in the compressor 6 is the motor 1 described in the first embodiment. The motor 1 drives the compression mechanism 62.
 密閉容器61は、モータ1及び圧縮機構62を覆う。密閉容器61は、円筒状の容器である。密閉容器61の底部には、圧縮機構62の摺動部分を潤滑する冷凍機油が貯留されている。 The closed container 61 covers the motor 1 and the compression mechanism 62. The closed container 61 is a cylindrical container. Refrigerating machine oil that lubricates the sliding portion of the compression mechanism 62 is stored in the bottom of the closed container 61.
 圧縮機6は、さらに、密閉容器61に固定されたガラス端子63と、アキュムレータ64と、吸入パイプ65と、吐出パイプ66とを有する。 The compressor 6 further has a glass terminal 63 fixed to the closed container 61, an accumulator 64, a suction pipe 65, and a discharge pipe 66.
 圧縮機構62は、シリンダ62aと、ピストン62bと、上部フレーム62c(第1のフレームとも称する)と、下部フレーム62d(第2のフレームとも称する)と、上部フレーム62c及び下部フレーム62dに取り付けられた複数のマフラ62eとを有する。圧縮機構62は、さらに、シリンダ62a内を吸入側と圧縮側とに分けるベーンを有する。圧縮機構62は、密閉容器61内に配置されている。圧縮機構62は、モータ1によって駆動される。 The compression mechanism 62 is attached to the cylinder 62a, the piston 62b, the upper frame 62c (also referred to as the first frame), the lower frame 62d (also referred to as the second frame), and the upper frame 62c and the lower frame 62d. It has a plurality of mufflers 62e. The compression mechanism 62 further has a vane that divides the inside of the cylinder 62a into a suction side and a compression side. The compression mechanism 62 is arranged in the closed container 61. The compression mechanism 62 is driven by the motor 1.
 モータ1は、圧入又は焼き嵌めで密閉容器61内に固定されている。圧入及び焼き嵌めの代わりに溶接でモータ1を密閉容器61に直接取り付けてもよい。 The motor 1 is fixed in the closed container 61 by press fitting or shrink fitting. The motor 1 may be directly attached to the closed container 61 by welding instead of press fitting and shrink fitting.
 モータ1のコイル(例えば、実施の形態1で説明した巻線32)には、ガラス端子63を通して電力が供給される。 Electric power is supplied to the coil of the motor 1 (for example, the winding 32 described in the first embodiment) through the glass terminal 63.
 モータ1のロータ2(具体的には、シャフト23の片側)は、上部フレーム62c及び下部フレーム62dの各々に備えられた軸受けによって回転自在に支持されている。 The rotor 2 of the motor 1 (specifically, one side of the shaft 23) is rotatably supported by bearings provided on each of the upper frame 62c and the lower frame 62d.
 ピストン62bには、シャフト23が挿通されている。上部フレーム62c及び下部フレーム62dには、シャフト23が回転自在に挿通されている。上部フレーム62c及び下部フレーム62dは、シリンダ62aの端面を閉塞する。アキュムレータ64は、吸入パイプ65を通して冷媒(例えば、冷媒ガス)をシリンダ62aに供給する。 A shaft 23 is inserted through the piston 62b. A shaft 23 is rotatably inserted into the upper frame 62c and the lower frame 62d. The upper frame 62c and the lower frame 62d close the end faces of the cylinder 62a. The accumulator 64 supplies a refrigerant (for example, a refrigerant gas) to the cylinder 62a through the suction pipe 65.
 次に、圧縮機6の動作について説明する。アキュムレータ64から供給された冷媒は、密閉容器61に固定された吸入パイプ65からシリンダ62a内へ吸入される。モータ1が回転することにより、シャフト23に嵌合されたピストン62bがシリンダ62a内で回転する。これにより、シリンダ62a内で冷媒が圧縮される。 Next, the operation of the compressor 6 will be described. The refrigerant supplied from the accumulator 64 is sucked into the cylinder 62a from the suction pipe 65 fixed to the closed container 61. As the motor 1 rotates, the piston 62b fitted to the shaft 23 rotates in the cylinder 62a. As a result, the refrigerant is compressed in the cylinder 62a.
 圧縮された冷媒は、マフラ62eを通り、密閉容器61内を上昇する。このようにして、圧縮された冷媒が、吐出パイプ66を通って冷凍サイクルの高圧側へ供給される。 The compressed refrigerant passes through the muffler 62e and rises in the closed container 61. In this way, the compressed refrigerant is supplied to the high pressure side of the refrigeration cycle through the discharge pipe 66.
 圧縮機6の冷媒として、R410A、R407C、又はR22等を用いることができる。ただし、圧縮機6の冷媒は、これらの種類に限られない。圧縮機6の冷媒として、GWP(地球温暖化係数)が小さい冷媒、例えば、下記の冷媒を用いることができる。 R410A, R407C, R22, or the like can be used as the refrigerant of the compressor 6. However, the refrigerant of the compressor 6 is not limited to these types. As the refrigerant of the compressor 6, a refrigerant having a small GWP (global warming potential), for example, the following refrigerant can be used.
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CF3CF=CH2)を用いることができる。HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素又は組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32又はR41との混合物を用いることが実用上は望ましい。
(1) Halogenated hydrocarbons having a carbon double bond in the composition, for example, HFO (Hydro-Fluoro-Orefin) -1234yf (CF3CF = CH2) can be used. The GWP of HFO-1234yf is 4.
(2) A hydrocarbon having a carbon double bond in the composition, for example, R1270 (propylene) may be used. The GWP of R1270 is 3, which is lower than HFO-1234yf but higher in flammability than HFO-1234yf.
(3) Using a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, for example, a mixture of HFO-1234yf and R32. May be good. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, the pressure loss tends to be large, which may lead to deterioration of the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically desirable to use a mixture with R32 or R41, which is a higher pressure refrigerant than HFO-1234yf.
 実施の形態2に係る圧縮機6は、実施の形態1で説明した利点を持つ。 The compressor 6 according to the second embodiment has the advantages described in the first embodiment.
 さらに、実施の形態2に係る圧縮機6は、実施の形態1に係るモータ1を有するので、圧縮機6における振動及び騒音を低減することができる。 Further, since the compressor 6 according to the second embodiment has the motor 1 according to the first embodiment, vibration and noise in the compressor 6 can be reduced.
実施の形態3.
 実施の形態2に係る圧縮機6を有する、空気調和機としての冷凍空調装置7について説明する。
 図24は、本発明の実施の形態3に係る冷凍空調装置7の構成を概略的に示す図である。
Embodiment 3.
The refrigerating and air-conditioning apparatus 7 as an air conditioner having the compressor 6 according to the second embodiment will be described.
FIG. 24 is a diagram schematically showing the configuration of the refrigeration and air conditioner 7 according to the third embodiment of the present invention.
 冷凍空調装置7は、例えば、冷暖房運転が可能である。図24に示される冷媒回路図は、冷房運転が可能な空気調和機の冷媒回路図の一例である。 The refrigerating and air-conditioning device 7 can be operated for heating and cooling, for example. The refrigerant circuit diagram shown in FIG. 24 is an example of a refrigerant circuit diagram of an air conditioner capable of cooling operation.
 実施の形態3に係る冷凍空調装置7は、室外機71と、室内機72と、室外機71及び室内機72を接続する冷媒配管73とを有する。 The refrigerating and air-conditioning device 7 according to the third embodiment has an outdoor unit 71, an indoor unit 72, and a refrigerant pipe 73 connecting the outdoor unit 71 and the indoor unit 72.
 室外機71は、圧縮機6と、熱交換器としての凝縮器74と、絞り装置75と、室外送風機76(第1の送風機)とを有する。凝縮器74は、圧縮機6によって圧縮された冷媒を凝縮する。絞り装置75は、凝縮器74によって凝縮された冷媒を減圧し、冷媒の流量を調節する。絞り装置75は、減圧装置とも言う。 The outdoor unit 71 includes a compressor 6, a condenser 74 as a heat exchanger, a throttle device 75, and an outdoor blower 76 (first blower). The condenser 74 condenses the refrigerant compressed by the compressor 6. The throttle device 75 decompresses the refrigerant condensed by the condenser 74 and adjusts the flow rate of the refrigerant. The diaphragm device 75 is also called a decompression device.
 室内機72は、熱交換器としての蒸発器77と、室内送風機78(第2の送風機)とを有する。蒸発器77は、絞り装置75によって減圧された冷媒を蒸発させ、室内空気を冷却する。 The indoor unit 72 has an evaporator 77 as a heat exchanger and an indoor blower 78 (second blower). The evaporator 77 evaporates the refrigerant decompressed by the throttle device 75 to cool the indoor air.
 冷凍空調装置7における冷房運転の基本的な動作について以下に説明する。冷房運転では、冷媒は、圧縮機6によって圧縮され、凝縮器74に流入する。凝縮器74によって冷媒が凝縮され、凝縮された冷媒が絞り装置75に流入する。絞り装置75によって冷媒が減圧され、減圧された冷媒が蒸発器77に流入する。蒸発器77において冷媒は蒸発し、冷媒(具体的には、冷媒ガス)が再び室外機71の圧縮機6へ流入する。室外送風機76によって空気が凝縮器74に送られると冷媒と空気との間で熱が移動し、同様に、室内送風機78によって空気が蒸発器77に送られると冷媒と空気との間で熱が移動する。 The basic operation of the cooling operation in the refrigerating air conditioner 7 will be described below. In the cooling operation, the refrigerant is compressed by the compressor 6 and flows into the condenser 74. The refrigerant is condensed by the condenser 74, and the condensed refrigerant flows into the drawing device 75. The refrigerant is decompressed by the throttle device 75, and the decompressed refrigerant flows into the evaporator 77. The refrigerant evaporates in the evaporator 77, and the refrigerant (specifically, the refrigerant gas) flows into the compressor 6 of the outdoor unit 71 again. Similarly, when air is sent to the condenser 74 by the outdoor blower 76, heat is transferred between the refrigerant and air, and similarly, when air is sent to the evaporator 77 by the indoor blower 78, heat is transferred between the refrigerant and air. Moving.
 以上に説明した冷凍空調装置7の構成及び動作は、一例であり、上述した例に限定されない。 The configuration and operation of the refrigerating air conditioner 7 described above is an example, and is not limited to the above-mentioned example.
 実施の形態3に係る冷凍空調装置7によれば、実施の形態1から2で説明した利点を持つ。 According to the refrigerating air conditioner 7 according to the third embodiment, it has the advantages described in the first and second embodiments.
 さらに、実施の形態3に係る冷凍空調装置7は、実施の形態2に係る圧縮機6を有するので、冷凍空調装置7における振動及び騒音を低減することができる。 Further, since the refrigerating and air-conditioning device 7 according to the third embodiment has the compressor 6 according to the second embodiment, vibration and noise in the refrigerating and air-conditioning device 7 can be reduced.
 以上に説明したように、好ましい実施の形態を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 As described above, the preferred embodiments have been specifically described, but it is obvious that those skilled in the art can adopt various modifications based on the basic technical idea and teaching of the present invention. ..
 以上に説明した各実施の形態における特徴及び各変形例における特徴は、互いに適宜組み合わせることができる。 The features in each embodiment and the features in each modification described above can be appropriately combined with each other.
 1 モータ、 2 ロータ、 3 ステータ、 4 モータフレーム、 6 圧縮機、 7 冷凍空調装置、 21 ロータコア、 22 永久磁石、 23 シャフト、 32 巻線、 33 スロット、 61 密閉容器、 211 磁石挿入孔、 212 シャフト孔、 213 端スリット、 214 内側スリット、 221a 第1の内辺、 221b 第1の外側湾曲部、 221c 第1の外辺、 222a 第2の内辺、 222b 第2の外側湾曲部、 222c 第2の外辺、 2110 磁石配置部、 2111 第1のフラックスバリア部、 2112 第2のフラックスバリア部、 2131 第1の端スリット、 2132 第2の端スリット。 1 motor, 2 rotor, 3 stator, 4 motor frame, 6 compressor, 7 refrigeration and air conditioning device, 21 rotor core, 22 permanent magnets, 23 shafts, 32 windings, 33 slots, 61 sealed containers, 211 magnet insertion holes, 212 shafts Hole, 213 end slit, 214 inner slit, 221a first inner side, 221b first outer curved part, 221c first outer side, 222a second inner side, 222b second outer curved part, 222c second Outer side, 2110 magnet arrangement part, 2111 first flux barrier part, 2112 second flux barrier part, 2131 first end slit, 2132 second end slit.

Claims (16)

  1.  P個(Pは2以上の整数)の磁極を持つロータであって、
     永久磁石と、
     前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
     を備え、
     前記ロータコアは、
     前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
     前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
     前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
     前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
     を有し、
     前記ロータの軸方向と直交する平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
     251.7/P≦θ≦255/P
     を満たすロータ。
    A rotor with P magnetic poles (P is an integer of 2 or more).
    With permanent magnets
    A magnet insertion hole having a magnet arrangement portion in which the permanent magnet is arranged, a first flux barrier portion communicating with the magnet arrangement portion, and a second flux barrier portion communicating with the magnet arrangement portion. A first end slit located between the first flux barrier portion and the second flux barrier portion and facing the first flux barrier portion, the first flux barrier portion, and the first flux barrier portion. A rotor core located between the two flux barrier portions and having a second end slit facing the second flux barrier portion is provided.
    The rotor core
    The first inner side that defines the first flux barrier portion and faces the first end slit, and
    A first outer curvature that defines the first flux barrier, is adjacent to the first inner edge, and is located between the first inner edge and the outer peripheral surface of the rotor core. Department and
    A second inner side that defines the second flux barrier portion and faces the second end slit, and
    A second outer curvature that defines the second flux barrier, is adjacent to the second inner edge, and is located between the second inner edge and the outer peripheral surface of the rotor core. Has a part and
    In a plane orthogonal to the axial direction of the rotor, a straight line passing through the first boundary between the first inner side and the first outer curved portion and the rotation center of the rotor is defined as L1, and the second The straight line passing through the second boundary between the inner side and the second outer curved portion and the rotation center of the rotor is L2, and the angle between the straight line L1 and the straight line L2 is θ [degree]. When you do
    251.7 / P ≤ θ ≤ 255 / P
    Rotor that meets.
  2.  P個(Pは2以上の整数)の磁極を持つロータであって、
     永久磁石と、
     前記永久磁石が配置された磁石配置部、前記磁石配置部に連通している第1のフラックスバリア部、及び前記磁石配置部に連通している第2のフラックスバリア部を持つ磁石挿入孔と、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第1のフラックスバリア部に対向する第1の端スリットと、前記第1のフラックスバリア部と前記第2のフラックスバリア部との間に位置しており前記第2のフラックスバリア部に対向する第2の端スリットとを有するロータコアと
     を備え、
     前記ロータコアは、
     前記第1のフラックスバリア部を定めており前記第1の端スリットに対向する第1の内辺と、
     前記第1のフラックスバリア部を定めており、前記第1の内辺に隣接しており、且つ前記第1の内辺と前記ロータコアの外周面との間に位置している第1の外側湾曲部と、
     前記第2のフラックスバリア部を定めており前記第2の端スリットに対向する第2の内辺と、
     前記第2のフラックスバリア部を定めており、前記第2の内辺に隣接しており、且つ前記第2の内辺と前記ロータコアの外周面との間に位置している第2の外側湾曲部と
     を有し、
     前記第1の端スリットから前記磁石挿入孔までの最短距離をD1[mm]としたとき、
     0.365≦D1≦0.865
     を満たすロータ。
    A rotor with P magnetic poles (P is an integer of 2 or more).
    With permanent magnets
    A magnet insertion hole having a magnet arrangement portion in which the permanent magnet is arranged, a first flux barrier portion communicating with the magnet arrangement portion, and a second flux barrier portion communicating with the magnet arrangement portion. A first end slit located between the first flux barrier portion and the second flux barrier portion and facing the first flux barrier portion, the first flux barrier portion, and the first flux barrier portion. A rotor core located between the two flux barrier portions and having a second end slit facing the second flux barrier portion is provided.
    The rotor core
    The first inner side that defines the first flux barrier portion and faces the first end slit, and
    A first outer curvature that defines the first flux barrier, is adjacent to the first inner edge, and is located between the first inner edge and the outer peripheral surface of the rotor core. Department and
    A second inner side that defines the second flux barrier portion and faces the second end slit, and
    A second outer curvature that defines the second flux barrier, is adjacent to the second inner edge, and is located between the second inner edge and the outer peripheral surface of the rotor core. Has a part and
    When the shortest distance from the first end slit to the magnet insertion hole is D1 [mm],
    0.365 ≤ D1 ≤ 0.865
    Rotor that meets.
  3.  前記ロータの軸方向と直交する平面において、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界及び前記ロータの回転中心を通る直線をL1とし、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界及び前記ロータの前記回転中心を通る直線をL2とし、前記直線L1と前記直線L2との間の角度をθ[度]としたとき、
     251.7/P≦θ≦255/P
     を満たす請求項2に記載のロータ。
    In a plane orthogonal to the axial direction of the rotor, a straight line passing through the first boundary between the first inner side and the first outer curved portion and the rotation center of the rotor is defined as L1, and the second The straight line passing through the second boundary between the inner side and the second outer curved portion and the rotation center of the rotor is L2, and the angle between the straight line L1 and the straight line L2 is θ [degree]. When you do
    251.7 / P ≤ θ ≤ 255 / P
    The rotor according to claim 2.
  4.  0.365≦D1≦0.765を満たす請求項2又は3に記載のロータ。 The rotor according to claim 2 or 3, which satisfies 0.365 ≤ D1 ≤ 0.765.
  5.  前記第2の端スリットから前記磁石挿入孔までの最短距離をD2[mm]としたとき、
     0.365≦D2≦0.865
     を満たす請求項2から4のいずれか1項に記載のロータ。
    When the shortest distance from the second end slit to the magnet insertion hole is D2 [mm],
    0.365 ≤ D2 ≤ 0.865
    The rotor according to any one of claims 2 to 4.
  6.  前記第2の端スリットから前記磁石挿入孔までの最短距離をD2[mm]としたとき、
     0.365≦D2≦0.765を満たす請求項2から4のいずれか1項に記載のロータ。
    When the shortest distance from the second end slit to the magnet insertion hole is D2 [mm],
    The rotor according to any one of claims 2 to 4, which satisfies 0.365 ≦ D2 ≦ 0.765.
  7.  前記ロータコアは、
     前記第1の端スリットを定めており前記第1のフラックスバリア部に対向する第1の端スリット辺と、
     前記第1の端スリットを定めており、前記第1の端スリット辺に隣接しており、且つ前記第1の端スリット辺と前記磁石挿入孔との間に位置している第1の端スリット湾曲部と
     を有し、
     前記ロータの軸方向と直交する平面において、前記ロータの磁極中心を通る磁極中心線と直交する直線が、前記第1の内辺と前記第1の外側湾曲部との間の第1の境界を通り且つ前記第1の端スリット辺と交わる点を第1の点とし、前記第1の境界から前記第1の点までの距離をd11とし、前記第1の端スリット辺と前記第1の端スリット湾曲部との間の境界を第3の境界とし、前記磁極中心線と直交する直線が、前記第3の境界を通り且つ前記第1の内辺と交わる点を第2の点とし、前記第3の境界から前記第2の点までの距離をd12としたとき、
     d11≧d12
     を満たす請求項1から6のいずれか1項に記載のロータ。
    The rotor core
    The first end slit side that defines the first end slit and faces the first flux barrier portion, and the first end slit side.
    The first end slit that defines the first end slit, is adjacent to the first end slit side, and is located between the first end slit side and the magnet insertion hole. Has a curved part and
    In a plane orthogonal to the axial direction of the rotor, a straight line orthogonal to the magnetic pole center line passing through the magnetic pole center of the rotor defines a first boundary between the first inner side and the first outer curved portion. The point that passes through and intersects the first end slit side is defined as the first point, the distance from the first boundary to the first point is d11, and the first end slit side and the first end are defined as d11. The boundary between the slit curved portion is defined as a third boundary, and the point at which a straight line orthogonal to the magnetic pole center line passes through the third boundary and intersects with the first inner edge is defined as a second point. When the distance from the third boundary to the second point is d12,
    d11 ≧ d12
    The rotor according to any one of claims 1 to 6.
  8.  前記ロータコアは、
     前記第2の端スリットを定めており前記第2のフラックスバリア部に対向する第2の端スリット辺と、
     前記第2の端スリットを定めており、前記第2の端スリット辺に隣接しており、且つ前記第2の端スリット辺と前記磁石挿入孔との間に位置している第2の端スリット湾曲部と
     を有し、
     前記ロータの前記軸方向と直交する前記平面において、前記磁極中心線と直交する直線が、前記第2の内辺と前記第2の外側湾曲部との間の第2の境界を通り且つ前記第2の端スリット辺と交わる点を第3の点とし、前記第2の境界から前記第3の点までの距離をd21とし、前記第2の端スリット辺と前記第2の端スリット湾曲部との間の境界を第4の境界とし、前記磁極中心線と直交する直線が、前記第4の境界を通り且つ前記第2の内辺と交わる点を第4の点とし、前記第4の境界から前記第4の点までの距離をd22としたとき、
     d21≧d22
     を満たす請求項7に記載のロータ。
    The rotor core
    The second end slit side that defines the second end slit and faces the second flux barrier portion, and the second end slit side.
    A second end slit that defines the second end slit, is adjacent to the second end slit side, and is located between the second end slit side and the magnet insertion hole. Has a curved part and
    In the plane orthogonal to the axial direction of the rotor, a straight line orthogonal to the magnetic pole centerline passes through a second boundary between the second inner side and the second outer curved portion and said the first. The point where the end slit side of 2 intersects is set as the third point, the distance from the second boundary to the third point is set to d21, and the second end slit side and the second end slit curved portion The boundary between the two is defined as the fourth boundary, the point at which the straight line orthogonal to the magnetic pole center line passes through the fourth boundary and intersects with the second inner edge is defined as the fourth point, and the fourth boundary is defined as the fourth boundary. When the distance from the fourth point to the fourth point is d22,
    d21 ≧ d22
    The rotor according to claim 7.
  9.  d11=d12
     を満たす請求項7又は8に記載のロータ。
    d11 = d12
    The rotor according to claim 7 or 8.
  10.  前記第1の端スリットから前記第1のフラックスバリア部までの最短距離をd13[mm]としたとき、
     0.365≦d13≦0.55
     を満たす請求項9に記載のロータ。
    When the shortest distance from the first end slit to the first flux barrier portion is d13 [mm],
    0.365 ≤ d13 ≤ 0.55
    The rotor according to claim 9.
  11.  前記第1の端スリットから前記第1のフラックスバリア部までの最短距離をd13[mm]としたとき、
     0.365≦d13≦0.4
     を満たす請求項9に記載のロータ。
    When the shortest distance from the first end slit to the first flux barrier portion is d13 [mm],
    0.365 ≤ d13 ≤ 0.4
    The rotor according to claim 9.
  12.  θ=253.3/Pを満たす請求項1から11のいずれか1項に記載のロータ。 The rotor according to any one of claims 1 to 11, which satisfies θ = 253.3 / P.
  13.  ステータと、
     前記ステータの内側に配置された請求項1から12のいずれか1項に記載のロータと
     を備えたモータ。
    With the stator
    A motor including the rotor according to any one of claims 1 to 12, which is arranged inside the stator.
  14.  インバータ制御で駆動する請求項13に記載のモータ。 The motor according to claim 13, which is driven by inverter control.
  15.  密閉容器と、
     前記密閉容器内に配置された圧縮装置と、
     前記圧縮装置を駆動する請求項13又は14に記載のモータと
     を備える圧縮機。
    With a closed container
    With the compression device arranged in the closed container,
    A compressor including the motor according to claim 13 or 14, which drives the compressor.
  16.  請求項15に記載の圧縮機と、
     熱交換器と
     を備える空気調和機。
    The compressor according to claim 15 and
    An air conditioner equipped with a heat exchanger.
PCT/JP2019/016422 2019-04-17 2019-04-17 Rotor, motor, compressor, and air conditioner WO2020213081A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514709A JP7204897B2 (en) 2019-04-17 2019-04-17 Rotors, motors, compressors, and air conditioners
PCT/JP2019/016422 WO2020213081A1 (en) 2019-04-17 2019-04-17 Rotor, motor, compressor, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016422 WO2020213081A1 (en) 2019-04-17 2019-04-17 Rotor, motor, compressor, and air conditioner

Publications (1)

Publication Number Publication Date
WO2020213081A1 true WO2020213081A1 (en) 2020-10-22

Family

ID=72838170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016422 WO2020213081A1 (en) 2019-04-17 2019-04-17 Rotor, motor, compressor, and air conditioner

Country Status (2)

Country Link
JP (1) JP7204897B2 (en)
WO (1) WO2020213081A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114176A1 (en) * 2020-11-30 2022-06-02 三菱重工サーマルシステムズ株式会社 Electric motor
WO2024078117A1 (en) * 2022-10-14 2024-04-18 广东美芝制冷设备有限公司 Motor rotor having flux barriers, motor and compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278896A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2012217250A (en) * 2011-03-31 2012-11-08 Fujitsu General Ltd Rotor and permanent magnet motor
JP2013126291A (en) * 2011-12-14 2013-06-24 Mitsuba Corp Brushless motor and electric power steering device
WO2015083274A1 (en) * 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138142A1 (en) 2016-02-12 2017-08-17 三菱電機株式会社 Electric motor, compressor, and refrigerating and air-conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278896A (en) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd Rotor of motor
JP2012217250A (en) * 2011-03-31 2012-11-08 Fujitsu General Ltd Rotor and permanent magnet motor
JP2013126291A (en) * 2011-12-14 2013-06-24 Mitsuba Corp Brushless motor and electric power steering device
WO2015083274A1 (en) * 2013-12-05 2015-06-11 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2017085821A (en) * 2015-10-29 2017-05-18 株式会社富士通ゼネラル Rotor and permanent magnet motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114176A1 (en) * 2020-11-30 2022-06-02 三菱重工サーマルシステムズ株式会社 Electric motor
WO2024078117A1 (en) * 2022-10-14 2024-04-18 广东美芝制冷设备有限公司 Motor rotor having flux barriers, motor and compressor

Also Published As

Publication number Publication date
JP7204897B2 (en) 2023-01-16
JPWO2020213081A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP7003267B2 (en) Motors, compressors and air conditioners
JP7195408B2 (en) Rotors, motors, compressors, and air conditioners
JP7204897B2 (en) Rotors, motors, compressors, and air conditioners
JP7237178B2 (en) Rotors, electric motors, compressors, and air conditioners
JP2023168510A (en) Motor, compressor, air blower, and refrigerating air conditioner
JP7150181B2 (en) motors, compressors, and air conditioners
JP7034328B2 (en) Rotors, motors, compressors, and refrigeration and air conditioning equipment
JP6956881B2 (en) Motors, compressors, and air conditioners
JP7154373B2 (en) Electric motors, compressors, and air conditioners
JP7130051B2 (en) Rotors, electric motors, compressors, and refrigeration and air conditioning equipment
JP7094369B2 (en) Stator, motor, compressor, and refrigeration air conditioner
JP7345562B2 (en) Stators, motors, compressors, and air conditioners
WO2019186682A1 (en) Electric motor, compressor, blower, and refrigeration and air-conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925273

Country of ref document: EP

Kind code of ref document: A1