JP2014100048A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2014100048A
JP2014100048A JP2013184523A JP2013184523A JP2014100048A JP 2014100048 A JP2014100048 A JP 2014100048A JP 2013184523 A JP2013184523 A JP 2013184523A JP 2013184523 A JP2013184523 A JP 2013184523A JP 2014100048 A JP2014100048 A JP 2014100048A
Authority
JP
Japan
Prior art keywords
magnet
permanent magnet
rotor core
rotor
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013184523A
Other languages
Japanese (ja)
Other versions
JP6319973B2 (en
Inventor
Norio Takahashi
則雄 高橋
Makoto Matsushita
真琴 松下
Yutaka Hashiba
豊 橋場
Daisuke Misu
大輔 三須
Katsunori Takeuchi
活徳 竹内
Mikio Takahata
幹生 高畠
Yusuke Matsuoka
佑将 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013184523A priority Critical patent/JP6319973B2/en
Priority to CN201310489264.3A priority patent/CN103780038B/en
Publication of JP2014100048A publication Critical patent/JP2014100048A/en
Application granted granted Critical
Publication of JP6319973B2 publication Critical patent/JP6319973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary electric machine which reduces cost and improves reliability while maintaining high torque and high output by suppressing magnetic flux leakage and demagnetization of permanent magnets.SOLUTION: A permanent magnet type rotary electric machine comprises: a stator 12 including a stator core 16; and a rotor 14 including a rotor core 24, a plurality of magnet embedding holes 32a, 32b formed in the rotor core and a plurality of permanent magnets 26a, 26b disposed in a radial direction of the rotor core. The magnet embedding hole has a center on a magnetic pole central axis of the rotor and is formed arcuate to protrude to a central side of the rotor. In the inner circumferential side magnet embedding hole, the rotor core includes two inner circumferential side support protrusions 34 which protrude into the magnet embedding hole in both end portions away from the magnetic pole central axis, and a center lock structure part 50 provided in the inner circumferential side magnet embedding hole on the magnetic pole central axis. The two permanent magnets embedded at both sides of the center lock structure part are held by engaging both end portions in an arcuate direction to the center lock structure part and one support protrusion.

Description

この発明の実施形態は、回転子に永久磁石が埋め込まれた永久磁石型の回転電機に関する。   Embodiments described herein relate generally to a permanent magnet type rotating electrical machine in which a permanent magnet is embedded in a rotor.

近年、電気自動車、ハイブリット自動車向けのような車載用の回転電機では、排出ガスの抑制、燃費向上のため、高効率化を強く求められている。それに伴い、永久磁石を使用した回転電機の小型、高出力化が進められている。   In recent years, in-vehicle rotating electrical machines such as those for electric vehicles and hybrid vehicles have been strongly demanded to be highly efficient in order to suppress exhaust gas and improve fuel efficiency. Along with this, miniaturization and high output of rotating electrical machines using permanent magnets are being promoted.

車載用の回転電機は、限られた搭載スペースの中で高トルク、高出力化が要求される。そのため、例えば希土類(NdFeB)磁石のような高磁気エネルギー積の永久磁石をV字状に配置し、且つ永久磁石の外周側に空洞(磁極間空隙部)を配置した、永久磁石式リラクタンス型の回転電機が提案されている。この回転電機によれば、リラクタンストルクが増加し、高トルクを得ることで高出力、且つ可変速運転が可能となる。   In-vehicle rotating electrical machines are required to have high torque and high output in a limited mounting space. Therefore, for example, a permanent magnet type reluctance type permanent magnet having a high magnetic energy product such as a rare earth (NdFeB) magnet arranged in a V shape and a cavity (a gap portion between magnetic poles) arranged on the outer peripheral side of the permanent magnet. A rotating electrical machine has been proposed. According to this rotating electrical machine, reluctance torque increases, and high output and variable speed operation are possible by obtaining high torque.

一方で、車載用の回転電機として用いられる永久磁石回型転電機では、磁力が強く、高エネルギー積の希土類磁石(NdFeB)が多く用いられている。この希土類磁石は、小さい体積でより高いトルクを発生することができる。しかしながら、希土類金属は生産地が偏在し、資源量も乏しいことから、材料としての入手リスクと、将来の資源枯渇が問題となっている。   On the other hand, in a permanent magnet type rotary electric machine used as an on-vehicle rotating electric machine, a rare earth magnet (NdFeB) having a strong magnetic force and a high energy product is often used. This rare earth magnet can generate a higher torque with a small volume. However, since rare earth metals are unevenly distributed and the amount of resources is scarce, there is a problem with the availability of the materials and the future resource depletion.

そのため、資源量が豊富で、安価なフェライト磁石を用いた回転電機が検討されている。しかし、フェライト磁石は、磁力が希土類磁石に比べて1/3程度と低い。そこで、回転子に多層構造のスリットを設け、そのスリットに永久磁石を配置することにより、リラクタンストルクを活用し、永久磁石による磁石トルクと合わせることで、発生トルクを高める永久磁石式リラクタンス型回転電機が提案されている。   Therefore, a rotating electrical machine using an inexpensive ferrite magnet, which has abundant resources, has been studied. However, ferrite magnets have a magnetic force as low as about 1/3 compared to rare earth magnets. Therefore, a permanent magnet type reluctance type rotating electrical machine that increases the generated torque by utilizing a reluctance torque by providing a slit with a multilayer structure in the rotor and arranging a permanent magnet in the slit, and combining it with the magnet torque by the permanent magnet. Has been proposed.

また、車載用の回転電機では、小型化を図るために高速回転化した場合、回転子鉄心の遠心力による応力が大きくなり、問題となる。そこで、回転子鉄心に埋め込まれている永久磁石を突起により保持することで、永久磁石の回転遠心力を軽減し、回転子鉄心内に発生する応力を低減する永久磁石型の回転電機が提案されている。   In addition, in a rotating electrical machine for in-vehicle use, when it is rotated at a high speed in order to reduce the size, the stress due to the centrifugal force of the rotor core increases, which causes a problem. In view of this, a permanent magnet type rotating electrical machine has been proposed in which the permanent magnet embedded in the rotor core is held by protrusions to reduce the rotational centrifugal force of the permanent magnet and reduce the stress generated in the rotor core. ing.

上述したフェライト磁石を用いた永久磁石式リラクタンス型回転電機に、永久磁石保持突起を設けることにより、磁力の低いフェライト磁石を用いつつ、高速回転が可能な永久磁石式リラクタンス型回転電機が得られる。   By providing the permanent magnet type reluctance type rotary electric machine using the ferrite magnet described above with the permanent magnet holding projection, a permanent magnet type reluctance type rotary electric machine capable of high speed rotation while using a ferrite magnet having a low magnetic force can be obtained.

特開平11−27913号公報JP-A-11-27913 特開2002−199675号公報Japanese Patent Laid-Open No. 2002-199675 特開2011−83066号公報JP 2011-83066 A 特開2001−339919号公報JP 2001-339919 A 特願2012−232125号Japanese Patent Application No. 2012-232125

しかしながら、永久磁石式リラクタンス型回転電機において、外周側上層磁石は、回転遠心力による変形により、磁石保持突起で十分に保持することが困難となる。また、回転子鉄心埋め込み穴と磁石との片当たりが発生し、磁石の割れ、欠けが生じ、更に、モータ特性の低下、磁石割れ、欠けによるロータ鉄心応力の増加、回転アンバランスの増加により、ロータ破損が生じる可能性がある。   However, in the permanent magnet type reluctance type rotating electrical machine, it is difficult to sufficiently hold the outer peripheral side upper layer magnet by the magnet holding projection due to the deformation due to the rotational centrifugal force. In addition, the contact between the rotor core embedded hole and the magnet occurs, causing cracks and chipping of the magnet, and further, due to the deterioration of motor characteristics, increase in rotor core stress due to magnet cracking and chipping, and increase in rotational unbalance, The rotor may be damaged.

この発明は以上の点に鑑みなされたもので、その課題は、永久磁石の破損、及び回転子の破壊を回避し、高トルク、高出力を維持しつつ、高速回転が可能で、低コスト、且つ信頼性の高い永久磁石式リラクタンス型の回転電機を提供することにある。   The present invention has been made in view of the above points, and its problem is to avoid the damage of the permanent magnet and the destruction of the rotor, while maintaining high torque and high output, enabling high-speed rotation, low cost, Another object of the present invention is to provide a highly reliable permanent magnet reluctance type rotating electrical machine.

実施形態によれば、永久磁石型の回転電機は、固定子鉄心およびこの固定子鉄心に取り付けられた電機子巻線を有する固定子と、前記固定子に対して回転自在に設けられた回転子鉄心と、前記回転子鉄心の半径方向に複数層並んで形成された複数の磁石埋め込み孔と、前記磁石埋め込み孔に埋設され、前記回転子鉄心の半径方向に複数層に並べて配置された複数の永久磁石と、を備える回転子と、を具備している。前記複数の磁石埋め込み孔は、前記回転子鉄心の外周側に位置する外周側の磁石埋め込み孔と、前記回転子鉄心の中心側に位置する内周側の磁石埋め込み孔と、を含み、前記外周側および内周側の磁石埋め込み孔は、前記回転子の磁極中心軸上に中心を持ち、かつ、回転子の中心側に凸となる円弧状に形成され、前記内周側の磁石埋め込み孔は、前記回転子鉄心の外周側に位置する外周面と、前記回転子鉄心の中心側に位置し前記外周面と間隔をおいて対向する内周面と、により規定されている。回転子鉄心は、前記内周側の磁石埋め込み孔において、前記磁極中心軸から離れた両端部で前記内周面から磁石埋め込み孔内に突出する2つの内周側の支持突起と、前記磁極中心軸上で前記内周側の磁石埋め込み孔に設けられたセンター係止構造部と、を有し、前記複数の永久磁石は、前記内周側の磁石埋め込み孔内で前記センター係止構造部の両側に埋設された2つの永久磁石を含み、前記2つの永久磁石は、左右線対称で円弧状の断面形状を有し、円弧方向両端部が前記センター係止構造部と一方の支持突起とに係合し前記内周側の磁石埋め込み孔に保持されている。   According to the embodiment, a permanent magnet type rotating electrical machine includes a stator having a stator core and an armature winding attached to the stator core, and a rotor provided rotatably with respect to the stator. An iron core, a plurality of magnet embedding holes formed in a plurality of layers in the radial direction of the rotor core, and a plurality of magnets embedded in the magnet embedding hole and arranged in a plurality of layers in the radial direction of the rotor core A rotor including a permanent magnet. The plurality of magnet embedding holes include an outer peripheral magnet embedding hole located on the outer peripheral side of the rotor core, and an inner peripheral magnet embedding hole located on the center side of the rotor core, and the outer circumference The magnet embedding holes on the side and the inner circumference side are formed in an arc shape having a center on the magnetic pole central axis of the rotor and projecting toward the center side of the rotor, and the magnet embedding holes on the inner circumference side are The outer peripheral surface located on the outer peripheral side of the rotor core and the inner peripheral surface located on the center side of the rotor core and opposed to the outer peripheral surface with a space therebetween. The rotor core includes two inner peripheral support projections projecting from the inner peripheral surface into the magnet embedding hole at both ends away from the magnetic pole central axis in the inner magnet embedding hole, and the magnetic pole center. A center locking structure portion provided on the inner peripheral side magnet embedding hole on the shaft, and the plurality of permanent magnets in the inner periphery side magnet embedding hole of the center locking structure portion. Including two permanent magnets embedded on both sides, the two permanent magnets having an arcuate cross-sectional shape that is symmetrical to the left and right lines, and both ends in the arc direction are formed on the center locking structure part and one support protrusion It is engaged and held in the magnet embedding hole on the inner peripheral side.

図1は、第1の実施形態に係る永久磁石型の回転電機を示す断面図。FIG. 1 is a cross-sectional view illustrating a permanent magnet type rotating electrical machine according to a first embodiment. 図2は、前記回転電機の回転子の一部を拡大して示す断面図。FIG. 2 is an enlarged cross-sectional view showing a part of the rotor of the rotating electrical machine. 図3は、第2の実施形態に係る永久磁石型の回転電機を示す断面図。FIG. 3 is a cross-sectional view showing a permanent magnet type rotating electrical machine according to a second embodiment. 図4は、第2の実施形態に係る永久磁石型の回転電機の回転子の一部を拡大して示す断面図。FIG. 4 is an enlarged cross-sectional view illustrating a part of a rotor of a permanent magnet type rotating electrical machine according to a second embodiment. 図5は、第3の実施形態に係る永久磁石型の回転電機を示す断面図。FIG. 5 is a cross-sectional view showing a permanent magnet type rotating electrical machine according to a third embodiment. 図6は、第3の実施形態に係る永久磁石型の回転電機の固定子および回転子の一部を拡大して示す断面図。FIG. 6 is an enlarged cross-sectional view showing a part of a stator and a rotor of a permanent magnet type rotating electric machine according to a third embodiment. 図7は、第4の実施形態に係る永久磁石型の回転電機の固定子および回転子の一部を拡大して示す断面図。FIG. 7 is an enlarged cross-sectional view of a part of a stator and a rotor of a permanent magnet type rotating electrical machine according to a fourth embodiment.

以下に、図面を参照しながら、種々の実施形態について説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。   Various embodiments will be described below with reference to the drawings. In addition, the same code | symbol shall be attached | subjected to a common structure through embodiment, and the overlapping description is abbreviate | omitted. In addition, each drawing is a schematic diagram for promoting the embodiment and its understanding, and its shape, dimensions, ratio, etc. are different from the actual device, but these are considered in consideration of the following description and known techniques. The design can be changed as appropriate.

(第1の実施形態)
図1は、第1の実施形態に係る永久磁石式リアクタンス型の回転電機10の固定子および回転子の横断面図、図2は、回転子を拡大して示す断面図である。
本実施形態では、8極、48スロットの永久磁石式リラクタンス型の回転電機について説明するが、回転電機の極数、及びスロット数は適宜増減可能である。図1に示すように、回転電機10は、例えば、インナーロータ型の回転電機として構成され、図示しない固定枠に支持された環状の、ここでは、円筒形状の固定子12と、固定子の内側に回転自在にかつ固定子と同軸的に支持された回転子14と、を備えている。
(First embodiment)
FIG. 1 is a cross-sectional view of a stator and a rotor of a permanent magnet type reactance type electric rotating machine 10 according to the first embodiment, and FIG. 2 is an enlarged cross-sectional view of the rotor.
In this embodiment, an 8-pole, 48-slot permanent magnet reluctance type rotating electrical machine will be described. However, the number of poles and the number of slots of the rotating electrical machine can be appropriately increased or decreased. As shown in FIG. 1, the rotating electrical machine 10 is configured as, for example, an inner rotor type rotating electrical machine, and has an annular, here, cylindrical stator 12 supported by a fixed frame (not shown), and an inner side of the stator. And a rotor 14 supported rotatably and coaxially with the stator.

固定子12は、円筒状の固定子鉄心16と固定子鉄心に埋め込まれた電機子巻線18とを備えている。固定子鉄心16は、磁性材、例えば、円環状の電磁鋼板を多数枚、同芯状に積層して構成されている。固定子鉄心16の内周部には、それぞれ軸方向に延びた複数のスロット20が形成され、これにより、固定子鉄心16の内周部は、回転子14に面する多数の固定子ティース21を構成している。スロット数は48スロットで構成されている。そして、これらのスロット20に電機子巻線18が埋め込まれている。   The stator 12 includes a cylindrical stator core 16 and an armature winding 18 embedded in the stator core. The stator core 16 is configured by laminating a large number of magnetic materials, for example, annular electromagnetic steel plates, in a concentric shape. A plurality of slots 20 extending in the axial direction are formed in the inner peripheral portion of the stator core 16, whereby the inner peripheral portion of the stator core 16 has a large number of stator teeth 21 facing the rotor 14. Is configured. The number of slots is composed of 48 slots. The armature windings 18 are embedded in these slots 20.

回転子14は、両端が図示しない軸受により回転自在に支持された回転軸22と、この回転軸の軸方向ほぼ中央部に固定された円筒形状の回転子鉄心24と、回転子鉄心内に埋め込まれた複数の永久磁石26と、を有し、固定子12の内側に僅かな隙間(エアギャアプ)を置いて同軸的に配置されている。   The rotor 14 has a rotary shaft 22 that is rotatably supported by bearings (not shown) at both ends, a cylindrical rotor core 24 that is fixed at a substantially central portion in the axial direction of the rotary shaft, and embedded in the rotor core. A plurality of permanent magnets 26, and are arranged coaxially with a slight gap (air gap) inside the stator 12.

回転子鉄心24は、磁性材、例えば、円環状の電磁鋼板24aを多数枚、同芯状に積層した積層体として構成されている。回転子鉄心24は、それぞれ回転子鉄心の半径方向あるいは放射方向に延びる磁化容易軸(磁束の通りやすい部分)d、および磁化困難軸(磁束が通り難い部分)qを有し、これらのd軸およびq軸は、回転子鉄心24の円周方向に交互に、かつ、所定の位相で形成されている。   The rotor core 24 is configured as a laminated body in which a large number of magnetic materials, for example, annular electromagnetic steel plates 24a, are laminated concentrically. The rotor core 24 has an easy magnetization axis (portion where magnetic flux easily passes) d and a hard magnetization axis (portion where magnetic flux does not easily pass) q extending in the radial direction or radial direction of the rotor core, respectively. The q axis and the q axis are formed alternately in the circumferential direction of the rotor core 24 and at a predetermined phase.

回転子鉄心24の外周部に複数の凹所30が形成されている。凹所30は、それぞれ回転子鉄心24を軸方向に貫通して延びているとともに、それぞれd軸上に位置している。回転子鉄心24は、外周面に磁気的な凹凸を形成するために、複数の磁石埋め込み孔、および、これらの磁石埋め込み孔に埋め込まれた複数の永久磁石26を備えている。永久磁石26としては、例えば、フェライト磁石を用いる。   A plurality of recesses 30 are formed in the outer peripheral portion of the rotor core 24. Each of the recesses 30 extends through the rotor core 24 in the axial direction and is located on the d-axis. The rotor core 24 includes a plurality of magnet embedded holes and a plurality of permanent magnets 26 embedded in these magnet embedded holes in order to form magnetic irregularities on the outer peripheral surface. For example, a ferrite magnet is used as the permanent magnet 26.

図1および図2に示すように、複数の磁石埋め込み孔は、回転子鉄心24の各d軸上において、回転子鉄心の半径方向に複数層、例えば、2層、並んで形成されている。回転子鉄心24の外周側の磁石埋め込み孔32aは、横断面が円弧状に形成され、回転子鉄心24を軸方向に貫通して延びている。同様に、回転子鉄心24の内周側の磁石埋め込み孔32bは、横断面が円弧状に形成され、回転子鉄心24を軸方向に貫通して延びている。   As shown in FIGS. 1 and 2, the plurality of magnet embedding holes are formed side by side in a plurality of layers, for example, two layers, in the radial direction of the rotor core on each d-axis of the rotor core 24. The magnet embedding hole 32a on the outer peripheral side of the rotor core 24 has a circular cross section and extends through the rotor core 24 in the axial direction. Similarly, the magnet embedding hole 32b on the inner peripheral side of the rotor core 24 has a cross section formed in an arc shape and extends through the rotor core 24 in the axial direction.

2層の磁石埋め込み孔32a、32bは、回転子鉄心24のd軸(磁極中心軸)上に中心を持ち、かつ、回転子鉄心の中心側に凸となる円弧状に形成されている。各磁石埋め込み孔32a、32bの両端部は、回転子鉄心24の外周面の近傍まで延びている。回転子鉄心24は、磁石埋め込み孔32a、32bの円弧方向両端部において、埋め込み孔の内周側面から埋め込み孔内に突出した支持突起34を一体に有している。   The two layers of the magnet embedding holes 32a and 32b are formed in an arc shape having a center on the d-axis (magnetic pole central axis) of the rotor core 24 and protruding toward the center side of the rotor core. Both end portions of the magnet embedding holes 32 a and 32 b extend to the vicinity of the outer peripheral surface of the rotor core 24. The rotor core 24 integrally has support protrusions 34 protruding from the inner peripheral side surfaces of the embedded holes into the embedded holes at both ends of the magnet embedded holes 32a and 32b in the arc direction.

複数の永久磁石26は、各磁石埋め込み孔32a、32bに挿入され、回転子鉄心24に埋め込まれている。各永久磁石26は、例えば、断面が円弧形状の細長い棒状に形成され、回転子鉄心24の軸方向長さとほぼ等しい長さを有している。そして、各永久磁石26は回転子鉄心24のほぼ全長に亘って埋め込まれている。これにより、複数の永久磁石26は、回転子鉄心24の各d軸上において、回転子鉄心の半径方向に複数層、例えば、2層、並んで配置されている。   The plurality of permanent magnets 26 are inserted into the magnet embedding holes 32 a and 32 b and embedded in the rotor core 24. Each permanent magnet 26 is formed, for example, in the shape of an elongated bar having a circular arc cross section, and has a length substantially equal to the axial length of the rotor core 24. Each permanent magnet 26 is embedded over substantially the entire length of the rotor core 24. Thereby, the plurality of permanent magnets 26 are arranged in a plurality of layers, for example, two layers in the radial direction of the rotor core on each d-axis of the rotor core 24.

すなわち、永久磁石26は、外周側の磁石埋め込み孔32a内に挿入された外側の永久磁石26aと、内周側の磁石埋め込み孔32b内に挿入された内側の永久磁石26bと、を含んでいる。外側の永久磁石26aは、磁石埋め込み孔32aの断面形状に対応する円弧状の断面形状に形成され、磁石埋め込み孔32a内に嵌め込まれ、接着剤等により回転子鉄心24に固定されている。また、永久磁石26aは、その円弧方向の両端面がそれぞれ支持突起34に当接し、円弧方向の位置が決められている。   That is, the permanent magnet 26 includes an outer permanent magnet 26a inserted into the outer magnet embedded hole 32a and an inner permanent magnet 26b inserted into the inner magnet embedded hole 32b. . The outer permanent magnet 26a is formed in an arcuate cross-sectional shape corresponding to the cross-sectional shape of the magnet embedding hole 32a, is fitted into the magnet embedding hole 32a, and is fixed to the rotor core 24 with an adhesive or the like. Further, the end faces of the permanent magnet 26a in the arc direction are in contact with the support protrusions 34, respectively, and the position in the arc direction is determined.

内側の永久磁石26bは、磁石埋め込み孔32bの断面形状に対応する円弧状の断面形状に形成され、磁石埋め込み孔32b内に嵌め込まれ、接着剤等により回転子鉄心24に固定されている。また、永久磁石26bは、その円弧方向の両端面がそれぞれ支持突起34に当接し、円弧方向の位置が決められている。これにより、2層の永久磁石26a、26bは、回転子鉄心24のd軸(磁極中心軸)上に中心を持ち、かつ、回転子鉄心の中心側に凸となる円弧状に配置されている。   The inner permanent magnet 26b has an arcuate cross-sectional shape corresponding to the cross-sectional shape of the magnet embedding hole 32b, is fitted into the magnet embedding hole 32b, and is fixed to the rotor core 24 with an adhesive or the like. Further, both end surfaces of the permanent magnet 26b in the arc direction are in contact with the support protrusions 34, and the position in the arc direction is determined. Thus, the two layers of permanent magnets 26a and 26b are arranged in a circular arc shape having a center on the d-axis (magnetic pole central axis) of the rotor core 24 and protruding toward the center side of the rotor core. .

内周側の磁石埋め込み孔32bは、回転子鉄心24の外周側に位置する円弧状の外周面33aと、回転子鉄心24の中心側に位置し外周面33aと間隔をおいて対向する円弧状の内周面33bと、により規定されている。回転子鉄心24は、内周側の磁石埋め込み孔32bにおいて、磁極中心軸dから離れた円弧方向両端部で内周面33bから磁石埋め込み孔32b内に突出する2つの支持突起34と、磁極中心軸d上で内周面33bから磁石埋め込み孔32b内に突出するセンター係止突起50と、を一体に有している。このセンター係止突起50は、内周側の磁石埋め込み孔32bの中央部に設けられたセンター係止構造部を構成している。   The magnet-embedded hole 32b on the inner peripheral side is an arc-shaped outer peripheral surface 33a located on the outer peripheral side of the rotor core 24, and an arc-shaped outer surface 33a located on the center side of the rotor core 24 and facing the outer peripheral surface 33a with a space therebetween. Of the inner peripheral surface 33b. The rotor core 24 includes two support projections 34 projecting from the inner circumferential surface 33b into the magnet embedding hole 32b at both ends in the arc direction away from the magnetic pole center axis d in the inner magnet embedding hole 32b, and the magnetic pole center. A center locking protrusion 50 that protrudes from the inner peripheral surface 33b into the magnet embedding hole 32b on the axis d is integrally provided. The center locking projection 50 constitutes a center locking structure provided at the center of the inner magnet embedded hole 32b.

本実施形態では、多層配置された2つの永久磁石26a、26bの内、少なくとも一方、例えば、内側の永久磁石26bをその中央部で2つの永久磁石26b1、26b2に分割している。永久磁石26b1、26b2は、それぞれ磁石埋め込み孔32bに挿入および固定され、センター係止突起50の両側に埋設されている。2つの永久磁石26b1、26b2は、左右線対称で円弧状の断面形状を有している。各永久磁石26b1、26b2は、外周側の端が支持突起34に当接し、磁極中心軸d側の端がセンター係止突起50に当接している。これにより、永久磁石26b1、26b2は、それぞれ磁石埋め込み孔32b内に位置決め保持されている。   In the present embodiment, at least one of the two permanent magnets 26a and 26b arranged in multiple layers, for example, the inner permanent magnet 26b is divided into two permanent magnets 26b1 and 26b2 at the center thereof. The permanent magnets 26b1 and 26b2 are inserted and fixed in the magnet embedding holes 32b, respectively, and are embedded on both sides of the center locking projection 50. The two permanent magnets 26b1 and 26b2 are symmetrical with respect to the left and right lines and have an arcuate cross-sectional shape. Each permanent magnet 26b1, 26b2 has an end on the outer peripheral side in contact with the support protrusion 34 and an end on the magnetic pole central axis d side in contact with the center locking protrusion 50. Thus, the permanent magnets 26b1 and 26b2 are positioned and held in the magnet embedding holes 32b, respectively.

図2に示すように、各d軸上に位置する2層の永久磁石26a、26bにおいて、少なくとも支持突起34に当接している円弧方向の磁石端部は、磁化方向がd軸(磁極中心軸)側を向くように着磁されている。本実施形態において、外周側の永久磁石26aは、その全体の磁化方向が磁極中心軸d側を向くように着磁されている。また、内周側の永久磁石26b1、26b2において、センター係止突起50側の端部は、磁化方向がq軸(磁極間中心軸)に向くように、つまり、d軸から離れる方向を向くように、着磁されている。複数の永久磁石26a、26bを上記のように配置することにより、回転子鉄心24の外周部において各d軸上の領域は磁極部40を形成し、各q軸上の領域は磁極間部42を形成している。そして、回転子14は、回転子鉄心24に装着された電機子巻線18に電流を流すことにより回転磁界が発生し、この回転磁界と永久磁石26からの発生磁界との相互作用により、回転子14が回転軸22を中心に回転する。   As shown in FIG. 2, in the two layers of permanent magnets 26a and 26b positioned on each d-axis, at least the end of the magnet in the arc direction contacting the support protrusion 34 has a magnetization direction of d-axis (magnetic pole central axis). ) It is magnetized to face the side. In the present embodiment, the outer peripheral side permanent magnet 26a is magnetized so that the entire magnetization direction faces the magnetic pole central axis d side. Further, in the inner peripheral side permanent magnets 26b1 and 26b2, the end portion on the center locking projection 50 side is oriented so that the magnetization direction is directed to the q axis (central axis between magnetic poles), that is, the direction away from the d axis. It is magnetized. By arranging the plurality of permanent magnets 26a, 26b as described above, the regions on each d-axis form the magnetic pole portion 40 in the outer peripheral portion of the rotor core 24, and the regions on each q-axis form the inter-magnetic pole portion 42. Is forming. The rotor 14 generates a rotating magnetic field by causing a current to flow through the armature winding 18 attached to the rotor core 24, and the rotor 14 rotates due to the interaction between the rotating magnetic field and the generated magnetic field from the permanent magnet 26. The child 14 rotates about the rotation shaft 22.

また、本実施形態では、回転子鉄心24の各支持突起34は、例えば、レーザーピーニング、ショットピーニング、プレスなどにより機械的圧力が加えられ、飽和磁束密度が回転子鉄心の他の部分よりも低くなるように処理され、磁気特性が劣化されている。
(作用)
次に、上記のように構成された回転電機10の作用について説明する。回転電機10が運転される際、回転子14の回転により、永久磁石26a、26bが径方向に飛び出そうとする遠心力が永久磁石26a、26bに作用する。この際、永久磁石26a、26bの円弧方向の両磁石端部は、回転子鉄心24の支持突起34に当接していることから、これらの支持突起34およびセンター係止突起50により永久磁石26a、26bは飛び出すことなく保持される。
In the present embodiment, the support protrusions 34 of the rotor core 24 are subjected to mechanical pressure by, for example, laser peening, shot peening, pressing, or the like, so that the saturation magnetic flux density is lower than other portions of the rotor core. As a result, the magnetic properties are deteriorated.
(Function)
Next, the operation of the rotating electrical machine 10 configured as described above will be described. When the rotating electrical machine 10 is operated, the centrifugal force that the permanent magnets 26a and 26b try to jump out in the radial direction is applied to the permanent magnets 26a and 26b by the rotation of the rotor 14. At this time, both end portions of the permanent magnets 26 a and 26 b in the arc direction are in contact with the support protrusions 34 of the rotor core 24, so that the permanent magnets 26 a and 26 b are centered by the support protrusions 34 and the center locking protrusions 50. 26b is held without jumping out.

内周側の永久磁石26bを2つの永久磁石26b1、26b2に分割した場合、磁極中心軸上において永久磁石26bに作用する遠心力を低減し、永久磁石26b1、26b2の変位、変形を低減することが可能なる。   When the inner peripheral permanent magnet 26b is divided into two permanent magnets 26b1 and 26b2, the centrifugal force acting on the permanent magnet 26b on the magnetic pole central axis is reduced, and the displacement and deformation of the permanent magnets 26b1 and 26b2 are reduced. Is possible.

また、2つの永久磁石26b1、26b2に分割した場合、各永久磁石の重心位置が磁極中心から離れる方向に変化する。この場合、永久磁石26b1、26b2は、磁石埋め込み孔の円弧方向両端部に設けられた支持突起34で拘束されるため、図2に示すように、支持突起34を支点として、遠心力により、永久磁石に回転モーメントMが作用する。このため、永久磁石26b1、26b2が磁石埋め込み孔32bの外周面33aに当たり、回転子鉄心24に作用する応力が増加してしまう。本実施形態によれば、磁極中央部にセンター係止構造部としてセンター係止突起50を配置し、このセンター係止突起50に永久磁石26b1、26b2の磁極中心軸側の端部が当接することにより、永久磁石26b1、26b2の回転を抑制することができる。これにより、永久磁石26b1、26b2が磁石埋め込み孔32bの外周面33aで回転子鉄心24に片当たりすることを防止し、回転子鉄心24に作用する応力を大幅に低減することが可能となる。従って、遠心力による回転子鉄心24の変形を抑制し、永久磁石26b1、26b2を安定して保持することができる。   Moreover, when it divides | segments into two permanent magnets 26b1 and 26b2, the gravity center position of each permanent magnet changes in the direction away from a magnetic pole center. In this case, the permanent magnets 26b1 and 26b2 are restrained by the support protrusions 34 provided at both ends in the arc direction of the magnet embedding hole. Therefore, as shown in FIG. A rotational moment M acts on the magnet. For this reason, the permanent magnets 26b1 and 26b2 hit the outer peripheral surface 33a of the magnet embedding hole 32b, and the stress acting on the rotor core 24 increases. According to the present embodiment, the center locking projection 50 is disposed as a center locking structure portion at the magnetic pole center, and the end portions of the permanent magnets 26b1 and 26b2 on the magnetic pole central axis side are in contact with the center locking projection 50. Thus, the rotation of the permanent magnets 26b1 and 26b2 can be suppressed. Thereby, it is possible to prevent the permanent magnets 26b1 and 26b2 from hitting the rotor core 24 at the outer peripheral surface 33a of the magnet embedding hole 32b, and to greatly reduce the stress acting on the rotor core 24. Therefore, deformation of the rotor core 24 due to centrifugal force can be suppressed, and the permanent magnets 26b1 and 26b2 can be stably held.

更に、センター係止突起50は、磁石埋め込み孔32bの内周面側のみに設けられていることから、漏れ磁束を低減することができる。これにより、トルクの減少を抑え、回転電機の高トルク、高出力を得ることが可能となる。   Furthermore, since the center locking protrusion 50 is provided only on the inner peripheral surface side of the magnet embedding hole 32b, the leakage magnetic flux can be reduced. As a result, it is possible to suppress a decrease in torque and to obtain high torque and high output of the rotating electrical machine.

トルクを発生する際、永久磁石26a、26bの端部側面を流れようとする漏れ磁束に対し、永久磁石の磁化方向が対向しているため、漏れ磁束が流れにくくなる。また、大きなトルクを発生させるため、電機子巻線18に大電流を流した際、永久磁石26a、26bの逆磁界となる電機子反作用磁界の加わる方向に対し、永久磁石の磁化方向が対向しているため、永久磁石の磁化が弱まりにくくなる。   When torque is generated, the leakage magnetic flux is less likely to flow because the magnetization direction of the permanent magnet is opposed to the leakage magnetic flux that tends to flow on the side surfaces of the end portions of the permanent magnets 26a and 26b. Further, in order to generate a large torque, when a large current is passed through the armature winding 18, the magnetization direction of the permanent magnet is opposite to the direction in which the armature reaction magnetic field that is the reverse magnetic field of the permanent magnets 26a and 26b is applied. Therefore, the magnetization of the permanent magnet is difficult to weaken.

(効果)
第1の実施形態によれば、永久磁石26a、26bに作用する回転遠心力が支持突起34およびセンター係止突起50で保持されるため、回転子鉄心24内の応力を低減でき、回転電機の高速回転化、および信頼性向上を図ることができる。また、永久磁石26a、26bの磁石端部側面からの漏れ磁束を抑制することで、トルクの減少を抑え、回転電機の高トルク、高出力を実現することが可能となる。
(effect)
According to the first embodiment, since the rotational centrifugal force acting on the permanent magnets 26a and 26b is held by the support protrusion 34 and the center locking protrusion 50, the stress in the rotor core 24 can be reduced. High speed rotation and improved reliability can be achieved. Further, by suppressing the leakage magnetic flux from the side surfaces of the magnet end portions of the permanent magnets 26a and 26b, it is possible to suppress a decrease in torque and realize high torque and high output of the rotating electrical machine.

電機子反作用による永久磁石の磁化減少を抑制することで、永久磁石が不可逆減磁し難くなり、信頼性が向上する。また、永久磁石として、安価で磁力の弱いフェライト磁石を用いた場合においても、高トルク、高出力、且つ高速回転が可能となり、信頼性の高い低コストの永久磁石式リラクタンス型の回転電機を提供することができる。   By suppressing the decrease in magnetization of the permanent magnet due to the armature reaction, the permanent magnet becomes difficult to irreversibly demagnetize, and the reliability is improved. In addition, even when low-cost, low-magnetism ferrite magnets are used as permanent magnets, high-torque, high-output, high-speed rotation is possible, and a reliable, low-cost, permanent-magnet reluctance type rotating electrical machine is provided can do.

次に、他の実施形態に係る回転電機について説明する。なお、以下に説明する他の実施形態において、前述した第1の実施形態と同一の部分には、同一の参照符号を付してその詳細な説明を省略し、第1の実施形態と異なる部分を中心に詳しく説明する。   Next, a rotating electrical machine according to another embodiment will be described. In other embodiments described below, the same parts as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted, and the parts different from those in the first embodiment. Will be described in detail.

(第2の実施形態)
図3は、第2の実施形態に係る永久磁石型リアクタンス回転電機10の固定子および回転子の横断面図、図4は、固定子および回転子の一部を拡大して示す断面図である。
本実施形態では、回転子鉄心24のセンター係止構造部として、内周側の埋め込み孔32bの中央部に設けられ、外周面33aと内周面33bとを接続するセンターブリッジ58を用いている。すなわち、図4および図5に示すように、回転子鉄心24の半径方向に2層に並んで、外周側の磁石埋め込み孔32aと内周側の磁石埋め込み孔32bが形成され、これらの磁石埋め込み孔32a、32b内に永久磁石26a、26bが埋め込まれ、回転子鉄心24の半径方向に2層に並べて配置されている。
(Second Embodiment)
FIG. 3 is a cross-sectional view of the stator and the rotor of the permanent magnet type reactance rotating electrical machine 10 according to the second embodiment, and FIG. 4 is an enlarged cross-sectional view of a part of the stator and the rotor. .
In the present embodiment, as the center locking structure portion of the rotor core 24, a center bridge 58 provided at the center portion of the inner peripheral side embedded hole 32b and connecting the outer peripheral surface 33a and the inner peripheral surface 33b is used. . That is, as shown in FIG. 4 and FIG. 5, the outer peripheral magnet embedded hole 32a and the inner peripheral magnet embedded hole 32b are formed in two layers in the radial direction of the rotor core 24, and these magnet embedded Permanent magnets 26 a and 26 b are embedded in the holes 32 a and 32 b, and are arranged in two layers in the radial direction of the rotor core 24.

内側の永久磁石26bをその中央部で2つの永久磁石26b1、26b2に分割している。また、内側の永久磁石を埋め込む内周側の磁石埋め込み孔32bもその中央部、つまり、磁極中心軸(d軸)上に設けられたセンターブリッジ48により2つに分割されている。センターブリッジ48は、回転子鉄心24と一体に形成されている。   The inner permanent magnet 26b is divided into two permanent magnets 26b1 and 26b2 at the center. The inner peripheral magnet embedding hole 32b for embedding the inner permanent magnet is also divided into two by a center bridge 48 provided on the central portion thereof, that is, on the magnetic pole central axis (d axis). The center bridge 48 is formed integrally with the rotor core 24.

そして、永久磁石26b1、26b2は、それぞれ磁石埋め込み孔32bに挿入および固定され、円弧方向両端に位置する各磁石端部は、回転子鉄心24の支持突起34に当接している。また、各永久磁石26b1、26b2のセンターブリッジ48側の端部は、センターブリッジ48に当接している。これにより、永久磁石26b1、26b2は、それぞれ磁石埋め込み孔32b内に位置決め保持されている。   The permanent magnets 26b1 and 26b2 are respectively inserted and fixed in the magnet embedding holes 32b, and the respective magnet end portions located at both ends in the arc direction are in contact with the support protrusions 34 of the rotor core 24. The end portions of the permanent magnets 26b1 and 26b2 on the center bridge 48 side are in contact with the center bridge 48. Thus, the permanent magnets 26b1 and 26b2 are positioned and held in the magnet embedding holes 32b, respectively.

各永久磁石26b1、26b2において、支持突起34側の磁石端部は、磁化方向がd軸(磁極中心軸)側を向くように着磁されている。各永久磁石26b1、26b2において、センターブリッジ48側の端部は、磁化方向がq軸(磁極間中心軸)に向くように、つまり、d軸から離れる方向に、着磁されている。   In each permanent magnet 26b1, 26b2, the magnet end on the support projection 34 side is magnetized so that the magnetization direction faces the d-axis (magnetic pole central axis) side. In each permanent magnet 26b1, 26b2, the end on the center bridge 48 side is magnetized so that the magnetization direction is directed to the q axis (center axis between magnetic poles), that is, in a direction away from the d axis.

また、本実施形態では、回転子鉄心24の各支持突起34は、例えば、レーザーピーニング、ショットピーニング、プレスなどにより機械的圧力が加えられ、飽和磁束密度が回転子鉄心の他の部分よりも低くなるように処理され、磁気特性が劣化されている。
なお、第3の実施形態において、回転電機の他の構成は、前述した第1の実施形態に係る回転電機と同一である。
In the present embodiment, the support protrusions 34 of the rotor core 24 are subjected to mechanical pressure by, for example, laser peening, shot peening, pressing, or the like, so that the saturation magnetic flux density is lower than other portions of the rotor core. As a result, the magnetic properties are deteriorated.
In the third embodiment, other configurations of the rotating electrical machine are the same as those of the rotating electrical machine according to the first embodiment described above.

(作用および効果)
上記のように構成された第2の実施形態に係る回転電機の作用および効果について説明する。内周側の永久磁石26bを2つの永久磁石26b1、26b2に分割した場合、磁極中心軸上において永久磁石26bに作用する遠心力を低減し、永久磁石26b1、26b2の変位、変形を低減することが可能なる。
(Function and effect)
The operation and effect of the rotating electrical machine according to the second embodiment configured as described above will be described. When the inner peripheral permanent magnet 26b is divided into two permanent magnets 26b1 and 26b2, the centrifugal force acting on the permanent magnet 26b on the magnetic pole central axis is reduced, and the displacement and deformation of the permanent magnets 26b1 and 26b2 are reduced. Is possible.

内側の永久磁石26bを2つの永久磁石26b1、26b2に分割した場合、各永久磁石の重心位置が磁極中心から離れる方向に変化する。この場合、永久磁石26b1、26b2は、磁石埋め込み孔の円弧方向両端部に設けられた支持突起34で拘束されるため、図4に示すように、支持突起34が支点となり、永久磁石に作用する遠心力により、永久磁石に回転モーメントMが作用する。このため、永久磁石26b1、26b2が回転子鉄心に当たり、回転子鉄心の応力が増加してしまう。本実施形態によれば、磁極中央部にセンター係止構造部としてセンターブリッジ48を配置し、永久磁石26b1、26b2の回転を抑制することにより、永久磁石26b1、26b2が固定子鉄心に片当たりすることを防止することができる。これにより、回転子鉄心に作用する応力を大幅に低減することが可能となる。   When the inner permanent magnet 26b is divided into two permanent magnets 26b1 and 26b2, the center of gravity of each permanent magnet changes in a direction away from the magnetic pole center. In this case, the permanent magnets 26b1 and 26b2 are restrained by the support protrusions 34 provided at both ends of the magnet embedding hole in the arc direction, so that the support protrusions 34 serve as fulcrums and act on the permanent magnets as shown in FIG. A rotational moment M acts on the permanent magnet by centrifugal force. For this reason, permanent magnet 26b1, 26b2 hits a rotor core, and the stress of a rotor core will increase. According to the present embodiment, the center bridge 48 is disposed as a center locking structure portion at the magnetic pole center portion, and the permanent magnets 26b1 and 26b2 come into contact with the stator core by suppressing the rotation of the permanent magnets 26b1 and 26b2. This can be prevented. As a result, the stress acting on the rotor core can be greatly reduced.

更に、センター係止構造部として機能するセンターブリッジ48により磁石埋め込み孔32bの中央の外周部と内周部とを接続することにより、回転子鉄心24の機械的強度が上がり、回転遠心力による回転子鉄心の変形が更に抑制される。これにより、回転子鉄心の応力を一層低減でき、回転電機の高速回転を可能とし、高出力で信頼性が向上する。   Furthermore, the mechanical strength of the rotor core 24 is increased by connecting the outer peripheral portion and the inner peripheral portion of the center of the magnet embedding hole 32b by the center bridge 48 functioning as a center locking structure portion, and the rotation due to the rotational centrifugal force is increased. Deformation of the core is further suppressed. Thereby, the stress of the rotor core can be further reduced, the rotating electric machine can be rotated at high speed, and the reliability is improved with high output.

センターブリッジ48近傍を流れようとする漏れ磁束に対し、永久磁石26b1、26b2の磁化方向が対向していることから、漏れ磁束が流れ難くなる。これにより、トルクの減少を抑え、回転電機の高トルク、高出力を得ることが可能となる。   Since the magnetization directions of the permanent magnets 26b1 and 26b2 are opposed to the leakage magnetic flux that tends to flow in the vicinity of the center bridge 48, the leakage magnetic flux hardly flows. As a result, it is possible to suppress a decrease in torque and to obtain high torque and high output of the rotating electrical machine.

また、大きなトルクを発生させるため、電機子巻線18に大電流を流した際、センターブリッジ48近傍の永久磁石26b1、26b2の逆磁界となる電機子反作用磁界の加わる方向に対し、永久磁石の磁化方向が対向しているため、永久磁石の磁化が弱まり難くなる。永久磁石が不可逆減磁し難くなり、回転電機の信頼性が向上する。   Further, in order to generate a large torque, when a large current is passed through the armature winding 18, the permanent magnet is applied to the direction in which the armature reaction magnetic field that is the reverse magnetic field of the permanent magnets 26b1 and 26b2 near the center bridge 48 is applied. Since the magnetization directions are opposed to each other, the magnetization of the permanent magnet is difficult to weaken. The permanent magnet is difficult to irreversibly demagnetize, and the reliability of the rotating electrical machine is improved.

更に、回転子鉄心24の支持突起34の磁気特性を他の部分よりも劣化させることにより、支持突起に磁束が流れ難くなり、磁界の漏洩を一層確実に低減することが可能となる。これにより、高トルク化、高出力化が可能となる。   Further, by deteriorating the magnetic characteristics of the support protrusion 34 of the rotor core 24 as compared with other portions, it becomes difficult for the magnetic flux to flow through the support protrusion, and the leakage of the magnetic field can be more reliably reduced. Thereby, high torque and high output can be achieved.

(第3の実施形態)
図5は、第3の実施形態に係る永久磁石式リアクタンス型の回転電機10の固定子および回転子の横断面図、図6は、回転子を拡大して示す断面図である。
図5および図6に示すように、複数の磁石埋め込み孔は、回転子鉄心24の各d軸上において、回転子鉄心の半径方向に複数層、例えば、2層、並んで形成されている。回転子鉄心24の外周側の磁石埋め込み孔32aは、横断面が円弧状に形成され、回転子鉄心24を軸方向に貫通して延びている。同様に、回転子鉄心24の内周側の磁石埋め込み孔32bは、横断面が円弧状に形成され、回転子鉄心24を軸方向に貫通して延びている。
(Third embodiment)
FIG. 5 is a cross-sectional view of the stator and the rotor of the permanent magnet reactance type rotating electrical machine 10 according to the third embodiment, and FIG. 6 is an enlarged cross-sectional view of the rotor.
As shown in FIGS. 5 and 6, the plurality of magnet embedding holes are formed side by side in a plurality of layers, for example, two layers in the radial direction of the rotor core on each d-axis of the rotor core 24. The magnet embedding hole 32a on the outer peripheral side of the rotor core 24 has a circular cross section and extends through the rotor core 24 in the axial direction. Similarly, the magnet embedding hole 32b on the inner peripheral side of the rotor core 24 has a cross section formed in an arc shape and extends through the rotor core 24 in the axial direction.

2層の磁石埋め込み孔32a、32bは、回転子鉄心24のd軸(磁極中心軸)上に中心を持ち、かつ、回転子鉄心の中心側に凸となる円弧状に形成されている。各磁石埋め込み孔32a、32bの両端部は、回転子鉄心24の外周面の近傍まで延びている。回転子鉄心24は、磁石埋め込み孔32a、32bの円弧方向の両端部において、埋め込み孔の内周側面から埋め込み孔内に突出した支持突起34を一体に有している。   The two layers of the magnet embedding holes 32a and 32b are formed in an arc shape having a center on the d-axis (magnetic pole central axis) of the rotor core 24 and protruding toward the center side of the rotor core. Both end portions of the magnet embedding holes 32 a and 32 b extend to the vicinity of the outer peripheral surface of the rotor core 24. The rotor core 24 integrally has support protrusions 34 protruding into the embedded hole from the inner peripheral side surface of the embedded hole at both ends in the arc direction of the magnet embedded holes 32a and 32b.

複数の永久磁石26は、各磁石埋め込み孔32a、32bに挿入され、回転子鉄心24に埋め込まれている。各永久磁石26は、例えば、断面が円弧形状の細長い棒状に形成され、回転子鉄心24の軸方向長さとほぼ等しい長さを有している。そして、各永久磁石26は回転子鉄心24のほぼ全長に亘って埋め込まれている。これにより、複数の永久磁石26は、回転子鉄心24の各d軸上において、回転子鉄心の半径方向に複数層、例えば、2層、並んで配置されている。   The plurality of permanent magnets 26 are inserted into the magnet embedding holes 32 a and 32 b and embedded in the rotor core 24. Each permanent magnet 26 is formed, for example, in the shape of an elongated bar having a circular arc cross section, and has a length substantially equal to the axial length of the rotor core 24. Each permanent magnet 26 is embedded over substantially the entire length of the rotor core 24. Thereby, the plurality of permanent magnets 26 are arranged in a plurality of layers, for example, two layers in the radial direction of the rotor core on each d-axis of the rotor core 24.

すなわち、永久磁石26は、外周側の磁石埋め込み孔32a内に挿入された外側の永久磁石26aと、内周側の磁石埋め込み孔32b内に挿入された内側の永久磁石26bと、を含んでいる。外側の永久磁石26aは、磁石埋め込み孔32aの断面形状に対応する円弧状の断面形状に形成され、磁石埋め込み孔32a内に嵌め込まれ、接着剤等により回転子鉄心24に固定されている。また、永久磁石26aは、その円弧方向の両端面がそれぞれ支持突起34に当接し、円弧方向の位置が決められている。   That is, the permanent magnet 26 includes an outer permanent magnet 26a inserted into the outer magnet embedded hole 32a and an inner permanent magnet 26b inserted into the inner magnet embedded hole 32b. . The outer permanent magnet 26a is formed in an arcuate cross-sectional shape corresponding to the cross-sectional shape of the magnet embedding hole 32a, is fitted into the magnet embedding hole 32a, and is fixed to the rotor core 24 with an adhesive or the like. Further, the end faces of the permanent magnet 26a in the arc direction are in contact with the support protrusions 34, respectively, and the position in the arc direction is determined.

内側の永久磁石26bは、磁石埋め込み孔32bの断面形状に対応する円弧状の断面形状に形成され、磁石埋め込み孔32b内に嵌め込まれ、接着剤等により回転子鉄心24に固定されている。また、永久磁石26bは、その円弧方向の両端面がそれぞれ支持突起34に当接し、円弧方向の位置が決められている。これにより、2層の永久磁石26a、26bは、回転子鉄心24のd軸(磁極中心軸)上に中心を持ち、かつ、回転子鉄心の中心側に凸となる円弧状に配置されている。   The inner permanent magnet 26b has an arcuate cross-sectional shape corresponding to the cross-sectional shape of the magnet embedding hole 32b, is fitted into the magnet embedding hole 32b, and is fixed to the rotor core 24 with an adhesive or the like. Further, both end surfaces of the permanent magnet 26b in the arc direction are in contact with the support protrusions 34, and the position in the arc direction is determined. Thus, the two layers of permanent magnets 26a and 26b are arranged in a circular arc shape having a center on the d-axis (magnetic pole central axis) of the rotor core 24 and protruding toward the center side of the rotor core. .

各d軸上に位置する2層の永久磁石26a、26bにおいて、少なくとも支持突起34に当接している円弧方向の磁石端部は、磁化方向が磁極中心軸d側を向くように着磁されている。本実施形態において、永久磁石26a、26bは、その全体の磁化方向が磁極中心軸d側を向くように着磁されている。複数の永久磁石26を上記のように配置することにより、回転子鉄心24の外周部において各d軸上の領域は磁極部40を形成し、各q軸上の領域は磁極間部42を形成している。そして、回転子14は、回転子鉄心24に装着された電機子巻線18に電流を流すことにより回転磁界が発生し、この回転磁界と永久磁石26からの発生磁界との相互作用により、回転子14が回転軸22を中心に回転する。   In the two layers of permanent magnets 26a and 26b located on each d-axis, at least the arc ends of the magnets in contact with the support protrusions 34 are magnetized so that the magnetization direction faces the magnetic pole center axis d side. Yes. In the present embodiment, the permanent magnets 26a and 26b are magnetized so that the entire magnetization direction faces the magnetic pole central axis d side. By arranging the plurality of permanent magnets 26 as described above, the regions on each d-axis form the magnetic pole portions 40 in the outer peripheral portion of the rotor core 24, and the regions on each q-axis form the inter-magnetic pole portion 42. doing. The rotor 14 generates a rotating magnetic field by causing a current to flow through the armature winding 18 attached to the rotor core 24, and the rotor 14 rotates due to the interaction between the rotating magnetic field and the generated magnetic field from the permanent magnet 26. The child 14 rotates about the rotation shaft 22.

(作用)
次に、上記のように構成された回転電機10の作用について説明する。回転電機10が運転される際、回転子14の回転により、永久磁石26a、26bが径方向に飛び出そうとする遠心力が永久磁石26a、26bに作用する。この際、永久磁石26a、26bの円弧方向の両磁石端部は、回転子鉄心24の支持突起34に当接していることから、これらの支持突起34により永久磁石26a、26bは飛び出すことなく保持される。
(Function)
Next, the operation of the rotating electrical machine 10 configured as described above will be described. When the rotating electrical machine 10 is operated, the centrifugal force that the permanent magnets 26a and 26b try to jump out in the radial direction is applied to the permanent magnets 26a and 26b by the rotation of the rotor 14. At this time, since both end portions of the permanent magnets 26a and 26b in the arc direction are in contact with the support protrusions 34 of the rotor core 24, the permanent magnets 26a and 26b are held by the support protrusions 34 without jumping out. Is done.

トルクを発生する際、永久磁石26a、26bの端部側面を流れようとする漏れ磁束に対し、永久磁石の磁化方向が対向しているため、漏れ磁束が流れにくくなる。また、大きなトルクを発生させるため、電機子巻線18に大電流を流した際、永久磁石26a、26bの逆磁界となる電機子反作用磁界の加わる方向に対し、永久磁石の磁化方向が対向しているため、永久磁石の磁化が弱まりにくくなる。   When torque is generated, the leakage magnetic flux is less likely to flow because the magnetization direction of the permanent magnet is opposed to the leakage magnetic flux that tends to flow on the side surfaces of the end portions of the permanent magnets 26a and 26b. Further, in order to generate a large torque, when a large current is passed through the armature winding 18, the magnetization direction of the permanent magnet is opposite to the direction in which the armature reaction magnetic field that is the reverse magnetic field of the permanent magnets 26a and 26b is applied. Therefore, the magnetization of the permanent magnet is difficult to weaken.

更に、内周側の永久磁石26bは、2つに分割されることなく、円弧方向の中央部は、ほぼd軸上に延在している。そのため、永久磁石26bは、より大きな磁力を発生し、回転電機の高トルク、高出力化に貢献することができる。   Further, the inner peripheral permanent magnet 26b is not divided into two, and the central portion in the arc direction extends substantially on the d-axis. Therefore, the permanent magnet 26b can generate a larger magnetic force and contribute to high torque and high output of the rotating electrical machine.

(効果)
第3の実施形態によれば、永久磁石26a、26bに作用する回転遠心力が支持突起34で保持されるため、回転子鉄心24内の応力を低減でき、回転電機の高速回転化、および信頼性向上を図ることができる。また、永久磁石26a、26bの磁石端部側面からの漏れ磁束を抑制することで、トルクの減少を抑え、回転電機の高トルク、高出力を実現することが可能となる。
(effect)
According to the third embodiment, since the rotational centrifugal force acting on the permanent magnets 26a and 26b is held by the support protrusions 34, the stress in the rotor core 24 can be reduced, the rotating electrical machine can be rotated at high speed, and the reliability can be increased. It is possible to improve the performance. Further, by suppressing the leakage magnetic flux from the side surfaces of the magnet end portions of the permanent magnets 26a and 26b, it is possible to suppress a decrease in torque and realize high torque and high output of the rotating electrical machine.

電機子反作用による永久磁石の磁化減少を抑制することで、永久磁石が不可逆減磁し難くなり、信頼性が向上する。また、永久磁石として、安価で磁力の弱いフェライト磁石を用いた場合においても、高トルク、高出力、且つ高速回転が可能となり、信頼性の高い低コストの永久磁石式リラクタンス型の回転電機を提供することができる。   By suppressing the decrease in magnetization of the permanent magnet due to the armature reaction, the permanent magnet becomes difficult to irreversibly demagnetize, and the reliability is improved. In addition, even when low-cost, low-magnetism ferrite magnets are used as permanent magnets, high-torque, high-output, high-speed rotation is possible, and a reliable, low-cost, permanent-magnet reluctance type rotating electrical machine is provided can do.

(第4の実施形態)
図7は、第4の実施形態に係る永久磁石式回転電機の回転子の一部を拡大して示す断面図である。本実施形態によれば、永久磁石26a、26bの各磁石端部と支持突起34との間に、非磁性材、例えば、炭素強化繊維46が配置されている。炭素強化繊維46は、永久磁石26a、26bの磁石端部の端面(側面)に固定され、永久磁石26a、26bのほぼ全長に亘って延びいるとともに、支持突起34に当接している。
なお、回転電機の他の構成は、前述した第3の実施形態に係る回転電機と同一である。
(Fourth embodiment)
FIG. 7 is an enlarged cross-sectional view of a part of the rotor of the permanent magnet type rotating electric machine according to the fourth embodiment. According to the present embodiment, the nonmagnetic material, for example, the carbon reinforcing fiber 46 is disposed between the magnet end portions of the permanent magnets 26 a and 26 b and the support protrusion 34. The carbon reinforcing fiber 46 is fixed to the end surfaces (side surfaces) of the magnet end portions of the permanent magnets 26a and 26b, extends substantially over the entire length of the permanent magnets 26a and 26b, and is in contact with the support protrusion 34.
The other configuration of the rotating electrical machine is the same as that of the rotating electrical machine according to the third embodiment described above.

(作用)
上記のように永久磁石端部と支持突起34との間に非磁性材を設けることにより、永久磁石26a、26bと支持突起34との磁気抵抗が大きくなり、漏れ磁束が流れに難くなる。永久磁石26a、26bの逆磁界となる電機子反作用による磁界も、永久磁石と支持突起34との間の磁気抵抗が大きくなることで、永久磁石の磁化が弱まり難くなる。また、非磁性材は、対圧縮性が高く、比重の軽い炭素強化繊維であるため、回転による遠心力を小さくすることができ、その分、永久磁石保持の信頼性が向上する。
(Function)
By providing a nonmagnetic material between the end of the permanent magnet and the support protrusion 34 as described above, the magnetic resistance between the permanent magnets 26a and 26b and the support protrusion 34 is increased, and the leakage magnetic flux is difficult to flow. Also in the magnetic field due to the armature reaction that becomes a reverse magnetic field of the permanent magnets 26a and 26b, the magnetic resistance between the permanent magnet and the support protrusion 34 is increased, so that the magnetization of the permanent magnet is not easily weakened. Further, since the nonmagnetic material is a carbon reinforced fiber having high compressibility and low specific gravity, the centrifugal force due to rotation can be reduced, and the reliability of holding the permanent magnet is improved accordingly.

(効果)
第4の実施形態によれば、非磁性材により漏れ磁束を一層抑制することができ、トルクの減少を抑え、高トルク、高出力が可能となる。また、電機子反作用による永久磁石の磁化減少を抑制することで、永久磁石が不可逆減磁し難くなり、信頼性が向上する。非磁性材の回転遠心力が小さくなり、回転子鉄心の応力を低減することが可能となり、更なる高速回転、信頼性が向上する。
(effect)
According to the fourth embodiment, the leakage magnetic flux can be further suppressed by the non-magnetic material, the torque can be suppressed from decreasing, and high torque and high output can be achieved. Further, by suppressing the decrease in magnetization of the permanent magnet due to the armature reaction, the permanent magnet becomes difficult to irreversibly demagnetize, and the reliability is improved. The rotational centrifugal force of the nonmagnetic material is reduced, the stress of the rotor core can be reduced, and further high-speed rotation and reliability are improved.

なお、この発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化可能である。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
例えば、永久磁石型の回転電機は、インナーロータ型に限らず、アウターロータ型としてもよい。回転子の磁極数、寸法、形状等は、前述した実施形態に限定されることなく、設計に応じて種々変更可能である。また、回転子鉄心24内における永久磁石26の多層配置は、2層に限らず、3層以上としてもよい。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
For example, the permanent magnet type rotating electrical machine is not limited to the inner rotor type, and may be an outer rotor type. The number of magnetic poles, the size, the shape, and the like of the rotor are not limited to the above-described embodiments, and can be variously changed according to the design. Further, the multilayer arrangement of the permanent magnets 26 in the rotor core 24 is not limited to two layers, and may be three or more layers.

10…回転電機、12…固定子、14…回転子、16…固定子鉄心、
18…電機子巻線、20…スロット、22…回転軸、24…回転子鉄心、
26、26a、26b…永久磁石、26b1、26b2…永久磁石、
32a、32b…磁石埋め込み孔、34…支持突起、46…非磁性材、
48…センターブリッジ、50…センター係止突起
DESCRIPTION OF SYMBOLS 10 ... Rotary electric machine, 12 ... Stator, 14 ... Rotor, 16 ... Stator iron core,
18 ... Armature winding, 20 ... Slot, 22 ... Rotating shaft, 24 ... Rotor core,
26, 26a, 26b ... permanent magnets, 26b1, 26b2 ... permanent magnets,
32a, 32b ... magnet embedding hole, 34 ... support projection, 46 ... non-magnetic material,
48 ... Center bridge, 50 ... Center locking protrusion

Claims (12)

固定子鉄心およびこの固定子鉄心に取り付けられた電機子巻線を有する固定子と、
前記固定子に対して回転自在に設けられた回転子鉄心と、前記回転子鉄心の半径方向に複数層並んで形成された複数の磁石埋め込み孔と、前記磁石埋め込み孔に埋設され、前記回転子鉄心の半径方向に複数層に並べて配置された複数の永久磁石と、を備える回転子と、を具備し、
前記複数の磁石埋め込み孔は、前記回転子鉄心の外周側に位置する外周側の磁石埋め込み孔と、前記回転子鉄心の中心側に位置する内周側の磁石埋め込み孔と、を含み、前記外周側および内周側の磁石埋め込み孔は、前記回転子の磁極中心軸上に中心を持ち、かつ、回転子の中心側に凸となる円弧状に形成され、
前記内周側の磁石埋め込み孔は、前記回転子鉄心の外周側に位置する外周面と、前記回転子鉄心の中心側に位置し前記外周面と間隔をおいて対向する内周面と、により規定され、
前記回転子鉄心は、前記内周側の磁石埋め込み孔において、前記磁極中心軸から離れた両端部で前記内周面から磁石埋め込み孔内に突出する2つの内周側の支持突起と、前記磁極中心軸上で前記内周側の磁石埋め込み孔に設けられたセンター係止構造部と、を有し、
前記複数の永久磁石は、前記内周側の磁石埋め込み孔内で前記センター係止構造部の両側に埋設された2つの永久磁石を含み、前記2つの永久磁石は、左右線対称で円弧状の断面形状を有し、円弧方向両端部が前記センター係止構造部と一方の支持突起とに係合し前記内周側の磁石埋め込み孔に保持されている永久磁石型の回転電機。
A stator having a stator core and an armature winding attached to the stator core;
A rotor core rotatably provided to the stator; a plurality of magnet embedded holes formed in a plurality of layers in a radial direction of the rotor core; and the rotor embedded in the magnet embedded holes. A rotor provided with a plurality of permanent magnets arranged in a plurality of layers in the radial direction of the iron core, and
The plurality of magnet embedding holes include an outer peripheral magnet embedding hole located on the outer peripheral side of the rotor core, and an inner peripheral magnet embedding hole located on the center side of the rotor core, and the outer circumference The side and inner peripheral magnet embedding holes are formed in an arc shape having a center on the magnetic pole central axis of the rotor and projecting toward the center side of the rotor,
The inner peripheral magnet embedding hole is formed by an outer peripheral surface located on the outer peripheral side of the rotor core, and an inner peripheral surface located on the center side of the rotor core and facing the outer peripheral surface with a gap therebetween. Prescribed,
The rotor core includes two inner peripheral support projections projecting from the inner peripheral surface into the magnet embedding hole at both end portions away from the magnetic pole central axis in the inner magnet embedding hole, and the magnetic pole A center locking structure provided in the inner circumferential magnet embedding hole on the central axis, and
The plurality of permanent magnets includes two permanent magnets embedded on both sides of the center locking structure portion in the inner peripheral side magnet embedding hole, and the two permanent magnets are symmetrical with respect to the left and right lines and are arc-shaped. A permanent magnet type rotating electrical machine having a cross-sectional shape and having both ends in an arc direction engaged with the center locking structure portion and one support projection and held in the inner magnet embedding hole.
前記センター係止構造部は、前記磁極中心軸上で前記内周側の磁石埋め込み孔の内周面から磁石埋め込み孔内に突出するセンター係止突起を有する請求項1に記載の永久磁石片の回転電機。   2. The permanent magnet piece according to claim 1, wherein the center locking structure portion has a center locking protrusion that protrudes into the magnet embedding hole from an inner peripheral surface of the inner magnet embedding hole on the magnetic pole central axis. Rotating electric machine. 前記2つの永久磁石の前記センター係止突起側の端部は、磁化方向が磁極中心軸から離れる側を向くように着磁されている請求項2に記載の永久磁石型の回転電機。   3. The permanent magnet type rotating electric machine according to claim 2, wherein ends of the two permanent magnets on the side of the center locking protrusion are magnetized so that a magnetization direction faces a side away from the magnetic pole central axis. 前記センター係止構造部は、前記内周側の磁石埋め込み孔の内周面と外周面とを連結するセンターブリッジを有し、前記2つの永久磁石は、前記センターブリッジの両側で前記内周側の磁石埋め込み孔内に配置されている請求項1に記載の永久磁石型の回転電機。   The center locking structure has a center bridge that connects an inner peripheral surface and an outer peripheral surface of the inner magnet embedded hole, and the two permanent magnets are on the inner peripheral side on both sides of the center bridge. The permanent magnet type rotating electrical machine according to claim 1, wherein the permanent magnet type rotating electrical machine is disposed in the magnet embedding hole. 前記2つの永久磁石の前記センターブリッジ側の端部は、磁化方向が磁極中心軸から離れる側を向くように着磁されている請求項4に記載の永久磁石型の回転電機。   5. The permanent magnet type rotating electric machine according to claim 4, wherein ends of the two permanent magnets on the center bridge side are magnetized so that a magnetization direction faces a side away from the magnetic pole central axis. 前記回転子鉄心は、前記外周側の磁石埋め込み孔内に突出し前記永久磁石の円弧方向両端部に当接し前記永久磁石を支持する2つの支持突起を備えている請求項1ないし5のいずれか1項に記載の永久磁石型の回転電機。   6. The rotor core according to claim 1, further comprising: two support protrusions that project into the magnet embedding hole on the outer peripheral side, abut against both ends of the permanent magnet in the arc direction, and support the permanent magnet. The permanent magnet type rotating electric machine according to item. 前記永久磁石の前記支持突起と接する端部は、その磁化方向が前記磁極中心軸に向くように着磁されている請求項6に記載の永久磁石型の回転電機。   The permanent magnet type rotating electrical machine according to claim 6, wherein an end portion of the permanent magnet in contact with the support protrusion is magnetized so that a magnetization direction thereof faces the magnetic pole central axis. 前記永久磁石は、その磁化方向が前記磁極中心軸に向くように着磁されている請求項1ないし7のいずれか1項に記載の永久磁石型の回転電機。   The permanent magnet type rotating electric machine according to any one of claims 1 to 7, wherein the permanent magnet is magnetized so that a magnetization direction thereof is directed to the magnetic pole central axis. 前記永久磁石の端部と前記支持突起との間に配置された非磁性材を備えている請求項1ないし8のいずれか1項に記載の永久磁石型の回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 8, further comprising a nonmagnetic material disposed between an end portion of the permanent magnet and the support protrusion. 前記非磁性材は、炭素強化繊維で構成されている請求項9に記載の永久磁石型の回転電機。   The permanent magnet type rotating electrical machine according to claim 9, wherein the nonmagnetic material is made of a carbon reinforcing fiber. 前記支持突起は、前記回転子鉄心の他の部分よりも飽和磁束密度が低く処理されている請求項1又は6に記載の永久磁石型の回転電機。   The permanent magnet type rotating electrical machine according to claim 1, wherein the support protrusion is processed to have a saturation magnetic flux density lower than that of other portions of the rotor core. 前記永久磁石はフェライト磁石である請求項1ないし11のいずれか1項に記載の永久磁石型の回転電機。   The permanent magnet type rotating electric machine according to any one of claims 1 to 11, wherein the permanent magnet is a ferrite magnet.
JP2013184523A 2012-10-19 2013-09-05 Permanent magnet type rotating electric machine Active JP6319973B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013184523A JP6319973B2 (en) 2012-10-19 2013-09-05 Permanent magnet type rotating electric machine
CN201310489264.3A CN103780038B (en) 2012-10-19 2013-10-18 Permanent magnet rotating machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012232125 2012-10-19
JP2012232125 2012-10-19
JP2013184523A JP6319973B2 (en) 2012-10-19 2013-09-05 Permanent magnet type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2014100048A true JP2014100048A (en) 2014-05-29
JP6319973B2 JP6319973B2 (en) 2018-05-09

Family

ID=50941585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184523A Active JP6319973B2 (en) 2012-10-19 2013-09-05 Permanent magnet type rotating electric machine

Country Status (1)

Country Link
JP (1) JP6319973B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231278A (en) * 2014-06-04 2015-12-21 オークマ株式会社 Rotor for reluctance motor
CN105811612A (en) * 2016-05-13 2016-07-27 山东理工大学 Claw pole permanent-magnet and salient pole electromagnetic series-parallel power generation device for range extender of vehicle
CN105811715A (en) * 2016-05-12 2016-07-27 张学义 Brushless electromagnetic generator equipped with built-in combined type radial permanent magnet rotor and dual claw poles
CN105846572A (en) * 2016-05-13 2016-08-10 山东理工大学 Dual-radial permanent magnetic and brushless electromagnetic series-parallel generating apparatus
CN105846571A (en) * 2016-05-13 2016-08-10 山东理工大学 Imbedded dual-radial permanent magnetic and electromagnetic generator with vacuum pump
CN105896863A (en) * 2016-05-13 2016-08-24 山东理工大学 Hybrid excitation generator and vacuum pump integrated device
CN105978278A (en) * 2016-05-12 2016-09-28 张学义 Claw pole permanent magnet and salient pole electric excitation mixed generator
WO2016185829A1 (en) * 2015-05-19 2016-11-24 三菱電機株式会社 Rotor, rotating electrical machine, and method for producing rotor
JP2016220514A (en) * 2015-05-25 2016-12-22 株式会社豊田自動織機 Rotary electric machine
JP2017192221A (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Rotor, rotary electric machine, and method of manufacturing rotor
WO2017195498A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Rotor and rotary electric machine
KR20180099851A (en) * 2016-03-25 2018-09-05 미쓰비시덴키 가부시키가이샤 Rotor, electric motor, compressor, and refrigeration air conditioner
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
JP2020005459A (en) * 2018-06-29 2020-01-09 株式会社荏原製作所 Permanent magnet motor and rotor
CN111384801A (en) * 2018-12-27 2020-07-07 本田技研工业株式会社 Rotor of rotating electric machine
US10873225B2 (en) 2018-01-11 2020-12-22 Honda Motor Co.. Ltd. Rotor for rotary electric machine having a gap for alleviating stress during rotation
CN112968549A (en) * 2021-01-26 2021-06-15 珠海格力电器股份有限公司 Rotor assembly and self-starting permanent magnet synchronous reluctance motor
CN112968553A (en) * 2021-01-26 2021-06-15 珠海格力电器股份有限公司 Rotor assembly and self-starting permanent magnet synchronous reluctance motor
JP2021516939A (en) * 2018-05-29 2021-07-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Motor rotor device and motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022140066A (en) 2021-03-12 2022-09-26 本田技研工業株式会社 Rotor and rotary electric machine

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099537A (en) * 1995-04-21 1997-01-10 Mitsubishi Electric Corp Permanent magnet motor
JP2000184638A (en) * 1998-12-18 2000-06-30 Calsonic Kansei Corp Motor
JP2003088071A (en) * 2001-09-06 2003-03-20 Toshiba Corp Reluctance type electric rotating machine
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine
JP2005287285A (en) * 2004-03-03 2005-10-13 Asmo Co Ltd Motor
JP2006109700A (en) * 2006-01-10 2006-04-20 Aichi Elec Co Interior permanent magnet motor
JP2007330027A (en) * 2006-06-07 2007-12-20 Asmo Co Ltd Buried-magnet motor
JP2007336671A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet rotary electric machine
JP2008067474A (en) * 2006-09-06 2008-03-21 Mitsui High Tec Inc Rotor
JP2009044893A (en) * 2007-08-09 2009-02-26 Toyota Industries Corp Rotor and rotary electric machine
JP2009118674A (en) * 2007-11-08 2009-05-28 Nissan Motor Co Ltd Permanent magnet motor
JP2009153353A (en) * 2007-12-21 2009-07-09 Aichi Elec Co Permanent magnet rotating machine
JP2009240036A (en) * 2008-03-26 2009-10-15 Asmo Co Ltd Embedded magnet motor
JP2010178535A (en) * 2009-01-30 2010-08-12 Toshiba Industrial Products Manufacturing Corp Rotor of permanent magnet type rotary electric machine and the rotary electric machine
JP2011083066A (en) * 2009-10-02 2011-04-21 Osaka Prefecture Univ Permanent magnet assisted synchronous reluctance motor

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099537A (en) * 1995-04-21 1997-01-10 Mitsubishi Electric Corp Permanent magnet motor
JP2000184638A (en) * 1998-12-18 2000-06-30 Calsonic Kansei Corp Motor
JP2003088071A (en) * 2001-09-06 2003-03-20 Toshiba Corp Reluctance type electric rotating machine
JP2004104962A (en) * 2002-09-12 2004-04-02 Toshiba Industrial Products Manufacturing Corp Permanent magnet type reluctance rotary electric machine
JP2005287285A (en) * 2004-03-03 2005-10-13 Asmo Co Ltd Motor
JP2006109700A (en) * 2006-01-10 2006-04-20 Aichi Elec Co Interior permanent magnet motor
JP2007330027A (en) * 2006-06-07 2007-12-20 Asmo Co Ltd Buried-magnet motor
JP2007336671A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet rotary electric machine
JP2008067474A (en) * 2006-09-06 2008-03-21 Mitsui High Tec Inc Rotor
JP2009044893A (en) * 2007-08-09 2009-02-26 Toyota Industries Corp Rotor and rotary electric machine
JP2009118674A (en) * 2007-11-08 2009-05-28 Nissan Motor Co Ltd Permanent magnet motor
JP2009153353A (en) * 2007-12-21 2009-07-09 Aichi Elec Co Permanent magnet rotating machine
JP2009240036A (en) * 2008-03-26 2009-10-15 Asmo Co Ltd Embedded magnet motor
JP2010178535A (en) * 2009-01-30 2010-08-12 Toshiba Industrial Products Manufacturing Corp Rotor of permanent magnet type rotary electric machine and the rotary electric machine
JP2011083066A (en) * 2009-10-02 2011-04-21 Osaka Prefecture Univ Permanent magnet assisted synchronous reluctance motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231278A (en) * 2014-06-04 2015-12-21 オークマ株式会社 Rotor for reluctance motor
JPWO2016185829A1 (en) * 2015-05-19 2017-07-06 三菱電機株式会社 Rotor, rotating electric machine, and method of manufacturing rotor
WO2016185829A1 (en) * 2015-05-19 2016-11-24 三菱電機株式会社 Rotor, rotating electrical machine, and method for producing rotor
JP2016220514A (en) * 2015-05-25 2016-12-22 株式会社豊田自動織機 Rotary electric machine
US11121593B2 (en) 2016-03-25 2021-09-14 Mitsubishi Electric Corporation Rotor, motor, compressor, and refrigeration air conditioner
KR102061520B1 (en) * 2016-03-25 2020-01-03 미쓰비시덴키 가부시키가이샤 Rotors, electric motors, compressors, and refrigeration air conditioners
KR20180099851A (en) * 2016-03-25 2018-09-05 미쓰비시덴키 가부시키가이샤 Rotor, electric motor, compressor, and refrigeration air conditioner
JP2017192221A (en) * 2016-04-14 2017-10-19 三菱電機株式会社 Rotor, rotary electric machine, and method of manufacturing rotor
WO2017195498A1 (en) * 2016-05-11 2017-11-16 三菱電機株式会社 Rotor and rotary electric machine
CN105978278A (en) * 2016-05-12 2016-09-28 张学义 Claw pole permanent magnet and salient pole electric excitation mixed generator
CN105811715A (en) * 2016-05-12 2016-07-27 张学义 Brushless electromagnetic generator equipped with built-in combined type radial permanent magnet rotor and dual claw poles
CN105846571A (en) * 2016-05-13 2016-08-10 山东理工大学 Imbedded dual-radial permanent magnetic and electromagnetic generator with vacuum pump
CN105846572A (en) * 2016-05-13 2016-08-10 山东理工大学 Dual-radial permanent magnetic and brushless electromagnetic series-parallel generating apparatus
CN105896863A (en) * 2016-05-13 2016-08-24 山东理工大学 Hybrid excitation generator and vacuum pump integrated device
CN105811612A (en) * 2016-05-13 2016-07-27 山东理工大学 Claw pole permanent-magnet and salient pole electromagnetic series-parallel power generation device for range extender of vehicle
US20190089212A1 (en) * 2017-09-15 2019-03-21 Ford Global Technologies, Llc Rotor with nonmagnetic insert
US10873225B2 (en) 2018-01-11 2020-12-22 Honda Motor Co.. Ltd. Rotor for rotary electric machine having a gap for alleviating stress during rotation
JP2021516939A (en) * 2018-05-29 2021-07-08 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Motor rotor device and motor
JP2020005459A (en) * 2018-06-29 2020-01-09 株式会社荏原製作所 Permanent magnet motor and rotor
CN111384801A (en) * 2018-12-27 2020-07-07 本田技研工业株式会社 Rotor of rotating electric machine
US11121594B2 (en) 2018-12-27 2021-09-14 Honda Motor Co., Ltd. Rotor of rotating electrical machine
CN111384801B (en) * 2018-12-27 2022-06-10 本田技研工业株式会社 Rotor of rotating electric machine
CN112968553A (en) * 2021-01-26 2021-06-15 珠海格力电器股份有限公司 Rotor assembly and self-starting permanent magnet synchronous reluctance motor
CN112968549A (en) * 2021-01-26 2021-06-15 珠海格力电器股份有限公司 Rotor assembly and self-starting permanent magnet synchronous reluctance motor

Also Published As

Publication number Publication date
JP6319973B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6319973B2 (en) Permanent magnet type rotating electric machine
JP6508168B2 (en) Electric rotating machine
JP5479978B2 (en) Rotating electric machine
CN112838693B (en) Rotary electric machine
JP5491484B2 (en) Switched reluctance motor
US9300175B2 (en) Rotor and motor including rotor
JP6385715B2 (en) Rotating electric machine
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
US9356479B2 (en) Hybrid excitation rotating electrical machine
US9806569B2 (en) Hybrid excitation rotating electrical machine
JP2013021840A (en) Rotor of reluctance motor
JP6415758B2 (en) Magnetization method, rotor, electric motor and scroll compressor
JP5347588B2 (en) Embedded magnet motor
JP7076188B2 (en) Variable magnetic force motor
JP6406355B2 (en) Double stator type rotating machine
JPWO2019050050A1 (en) Rotor and rotating electric machine
JP2013132124A (en) Core for field element
JPWO2020194390A1 (en) Rotating machine
JP5677212B2 (en) Rotating electric machine
JP2009065803A (en) Magnet synchronous machine
JP2008187802A (en) Rotor for rotary electrical machine, and electric machine
CN113541348A (en) Rotating electrical machine
JP2011193627A (en) Rotor core and rotary electric machine
JP2014050253A (en) Permanent magnet rotary electric machine rotor, and permanent magnet rotary electric machine
KR101628150B1 (en) Rotor structure of wrsm motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6319973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150