WO2017195498A1 - Rotor and rotary electric machine - Google Patents

Rotor and rotary electric machine Download PDF

Info

Publication number
WO2017195498A1
WO2017195498A1 PCT/JP2017/013730 JP2017013730W WO2017195498A1 WO 2017195498 A1 WO2017195498 A1 WO 2017195498A1 JP 2017013730 W JP2017013730 W JP 2017013730W WO 2017195498 A1 WO2017195498 A1 WO 2017195498A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
core piece
insertion hole
rotor
piece
Prior art date
Application number
PCT/JP2017/013730
Other languages
French (fr)
Japanese (ja)
Inventor
愛子 中野
宏紀 立木
篤史 坂上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2017195498A1 publication Critical patent/WO2017195498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor and a rotating electrical machine that can be reduced in magnetic flux leakage and can be assembled at low cost.
  • rotating electrical machines used as electric motors and generators are required to be downsized, rotated at high speed, and increased in output.
  • a rotating electric machine having a shape in which a magnet is embedded in a rotor has been proposed. This utilizes the reluctance torque and increases the generated torque by combining it with the magnet torque generated by the magnet.
  • Patent Document 1 a bridge portion is cut to reduce leakage of magnetic flux, and a connecting member made of a non-magnetic material is inserted into the cut bridge portion, and the iron core is rotated during rotation of the rotor. It has been proposed to relieve the applied stress concentration.
  • the conventional rotor has a problem in that the connecting member is inserted into the notched bridge portion, so that the number of parts and processes is increased, the assemblability is lowered, and the cost is increased.
  • the present invention has been made to solve the above-described problems.
  • a rotor and a rotating electrical machine that can be constructed at low cost with improved assemblability as well as reduced leakage of magnetic flux.
  • the purpose is to provide.
  • the rotor of the present invention is in a rotor including an iron core formed by laminating a plurality of annular core pieces in the axial direction, an insertion hole formed in the iron core, and a permanent magnet installed in the insertion hole,
  • the iron core is formed by laminating a plurality of first iron core pieces and second iron core pieces, The first iron core piece and the second iron core piece are respectively
  • the insertion hole and the permanent magnet are formed in a convex shape in the center direction of the iron core,
  • the insertion hole has an outer arc portion on the outer side in the radial direction of the iron core, and an inner arc portion on the inner side in the radial direction of the iron core, Between the end of the insertion hole on the outer peripheral surface side of the iron core and the outer peripheral surface of the iron core, a bridge portion is formed,
  • the bridge portion includes a first end portion having one end connected to the outer arc portion of the insertion hole, a third end portion having one end connected to the inner arc portion of
  • the first end, the second end, and the third end are each formed by a circular arc surface,
  • R1 the radius of the arc surface of the first end portion
  • R2 the radius of the arc surface of the second end portion
  • R3 the radius of the arc surface of the third end portion
  • the rotor of the present invention is in a rotor including an iron core formed by laminating a plurality of annular core pieces in the axial direction, an insertion hole formed in the iron core, and a permanent magnet installed in the insertion hole,
  • the iron core is formed by laminating a plurality of first iron core pieces and second iron core pieces, The first iron core piece and the second iron core piece are respectively
  • the insertion hole and the permanent magnet are formed in a convex shape in the center direction of the iron core,
  • the insertion hole has an outer arc portion on the outer side in the radial direction of the iron core, and an inner arc portion on the inner side in the radial direction of the iron core, Between the end of the insertion hole on the outer peripheral surface side of the iron core and the outer peripheral surface of the iron core, a bridge portion is formed,
  • the bridge portion includes a first end portion having one end connected to the outer arc portion of the insertion hole, a third end portion having one end connected to the inner arc portion of
  • the rotating electrical machine of the present invention is The rotor shown above, A stator disposed coaxially with the rotor.
  • the leakage of magnetic flux can be reduced, and the assemblability can be improved and it can be configured at low cost.
  • FIG. 1 It is a perspective view which shows the structure of the rotary electric machine in Embodiment 1 of this invention. It is a top view which shows the structure of the rotary electric machine shown in FIG. It is a top view which shows the structure of the rotor of the rotary electric machine shown in FIG. It is the elements on larger scale which show the structure of the 1st iron core piece which the rotor of FIG. 3 comprises. It is the elements on larger scale which show the structure of the 2nd core piece which the rotor of FIG. 3 comprises. It is a top view which shows the state which combined the 1st iron core piece shown in FIG. 4, and the 2nd iron core piece shown in FIG. It is sectional drawing which shows the state which combined the 1st iron core piece shown in FIG.
  • FIG. Embodiments of the present invention will be described below.
  • 1 is a perspective view showing a configuration of a rotating electrical machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view showing the configuration of the rotating electrical machine shown in FIG.
  • FIG. 3 is a top view showing the configuration of the rotor of the rotating electrical machine shown in FIG.
  • FIG. 4 is a partially enlarged view showing the configuration of the first iron core piece constituting the rotor of FIG.
  • FIG. 5 is a partially enlarged view showing the configuration of the second core piece that the rotor of FIG. 3 configures.
  • FIG. 6 is a plan view showing a state in which the first core piece shown in FIG. 4 and the second core piece shown in FIG. 5 are combined.
  • FIG. 7 is a cross-sectional view showing a state in which the first core piece shown in FIG. 4 and the second core piece shown in FIG. 5 are combined.
  • each direction in the rotating electrical machine 1 is shown as a circumferential direction Z, an axial direction Y, a radial direction X, an outer side X1 in the radial direction X, and an inner side X2 in the radial direction X. Therefore, also in the stator 2 and the rotor 3, these directions are the same direction.
  • the rotating electrical machine 1 includes a stator 2, a rotor 3, and a shaft 4.
  • the rotating electrical machine 1 is arranged in the order of the stator 2, the rotor 3, and the shaft 4 from the outer diameter side.
  • the air gap 5 is formed with a thickness of 0.1 mm to 2.5 mm, for example.
  • the stator 2 includes a stator core 20 and a coil 21.
  • the stator core 20 is formed in an annular shape.
  • the stator core 20 is formed by, for example, laminating electromagnetic steel plates in the axial direction Y. However, it is not limited to electromagnetic steel sheets.
  • the rotor 3 has an iron core 30 fixed to the shaft 4 inserted through the axial center position.
  • the iron core 30 is a magnet-type rotor that is disposed inside the stator 2 and includes a permanent magnet (hereinafter referred to as a magnet) 6.
  • the shaft 4 is fixed to the iron core 30 by, for example, shrink fitting or press fitting.
  • the rotating electrical machine 1 can be either distributed winding or concentrated winding.
  • the rotor 3 includes an iron core 30, an insertion hole 7, and a magnet 6.
  • the iron core 30 is formed by laminating a plurality of iron core pieces 31 that are magnetic materials in the axial direction Y.
  • the iron core piece 31 is formed of an electromagnetic steel plate.
  • the thickness of the electromagnetic steel sheet is, for example, 0.1 mm to 1.0 mm.
  • the plurality of iron core pieces 31 are connected in the axial direction Y by a crimping portion 8 as a connecting portion.
  • the crimping portion 8 is shown only in FIG. 6 for convenience.
  • the formation portion and the number of formation may be any. Moreover, it is only necessary that the iron core piece 31 can be connected in the axial direction Y even if it is not the caulking portion 8, and for example, it is possible to use an adhesive portion made of an adhesive.
  • the magnet 6 is formed in a convex shape in the center direction of the rotating electrical machine 1, that is, the iron core 30.
  • the outer peripheral side of the magnet 6 is an outer arc portion 6A
  • the inner peripheral side of the magnet 6 is an inner arc portion 6B. Both ends of the outer arc portion 6A of the magnet 6 and the inner arc portion 6B of the magnet 6 are connected by a plane or a curved surface.
  • the insertion hole 7 is formed in a convex shape in the central direction of the rotating electrical machine 1, that is, the iron core 30.
  • An outer side X1 in the radial direction X of the iron core 30 of the insertion hole 7 is defined as an outer arc portion 7A.
  • An inner side X2 in the radial direction X of the iron core 30 of the insertion hole 7 is defined as an inner arc portion 7B.
  • the insertion hole 7 is configured in a shape into which the magnet 6 can be inserted. Therefore, the outer arc portion 7 ⁇ / b> A of the insertion hole 7 is formed in a shape along which the outer arc portion 6 ⁇ / b> A of the magnet 6 extends.
  • the inner arc portion 7B of the insertion hole 7 is formed in a shape along which the inner arc portion 6B of the magnet 6 is aligned.
  • An adhesive or the like is applied to the outer periphery of the magnet 6.
  • the magnet 6 and the insertion hole 7 are fixed with an adhesive.
  • a flux barrier 10 is formed in the insertion hole 7 as a portion where the magnet 6 is not installed.
  • the flux barrier 10 is composed of a nonmagnetic material or a space.
  • a bridge portion 9 is formed between the end of the insertion hole 7 on the outer peripheral surface 31 ⁇ / b> A side of the core piece 31 and the outer peripheral surface 31 ⁇ / b> A of the core piece 31.
  • the outer peripheral surface 31 ⁇ / b> A of the iron core piece 31 is the same as the outer peripheral surface of the iron core 30.
  • the bridge portion 9 has a first end portion 9A, a second end portion 9B, and a third end portion 9C.
  • One end of the first end 9 ⁇ / b> A is connected to the outer arc 7 ⁇ / b> A of the insertion hole 7.
  • One end of the third end portion 9 ⁇ / b> C is connected to the inner arc portion 7 ⁇ / b> B of the insertion hole 7.
  • the second end 9B connects the other end of the first end 9A and the other end of the third end 9C.
  • the first end 9A, the second end 9B, and the third end 9C are each formed by a circular arc surface.
  • the radius of the arc surface of the first end portion 9A is R1.
  • the radius of the arc surface of the second end portion 9B is R2.
  • the radius of the arc surface of the third end portion 9C is R3.
  • these relationships are formed by R2> R1 and R3.
  • the relationship between R1 and R3 may be either larger or equal.
  • the distance to the outer peripheral surface 31A of the iron core piece 31 of the bridge portion 9 of the first iron core piece 311 is defined as a distance W1.
  • the distance to the outer peripheral surface 31A of the iron core piece 31 of the bridge portion 9 of the second iron core piece 312 is defined as a distance W2.
  • the distance W2 between the second core pieces 312 is shorter than the distance W1 between the first core pieces 311. Therefore, the leakage of magnetic flux can be reduced in the bridge portion 9 of the second iron core piece 312 than in the bridge portion 9 of the first iron core piece 311.
  • the iron core 30 is formed by laminating only the second iron core pieces 312 formed as described above, the magnetic flux leakage can be reduced, but the strength as the rotor 3 is weakened. Therefore, the number of laminated first core pieces 311 and the number of laminated second core pieces 312 and the number of laminated portions are such that the strength required for the rotor 3 can be ensured, and the second core pieces 312 are set to be used as much as possible. . Further, since the distance W2 of the second core piece 312 is formed shorter than the distance W1 of the first core piece 311, the insertion hole 7 of the second core piece 312 is formed larger than the insertion hole 7 of the first core piece 311. Is done.
  • an assembly method for the rotating electrical machine 1 according to the first embodiment configured as described above will be described.
  • an assembly method for the stator 2 will be described.
  • the electromagnetic steel sheet is punched to form the stator core 20.
  • the method of forming the stator core 20 is not limited to punching of electromagnetic steel sheets.
  • the coil 21 is assembled in an annular shape. Insulating paper is attached to the coil 21. Then, the coil 21 is inserted into the stator core 20 through insulating paper.
  • the method for assembling the coil 21 and the stator core 20 is not limited to this method.
  • the electromagnetic steel sheet is punched to form the first iron core piece 311 and the second iron core piece 312 of the rotor 3.
  • the method of forming the iron core piece 31 is not limited to punching of an electromagnetic steel sheet.
  • the number of the first iron core pieces 311 and the second iron core pieces 312 are set so that the strength required for the rotor 3 can be ensured, and the first iron core pieces 311 and the second iron core pieces 311 are arranged in the axial direction Y.
  • the core pieces 312 are stacked.
  • the first iron core piece 311 and the second iron core piece 312 are connected in the axial direction Y at the caulking portion 8.
  • the magnet 6 is inserted into the insertion hole 7 of the iron core 30.
  • FIG. 6 is a plan view showing a state in which the second iron core piece 312 is overlaid on the first iron core piece 311. As shown in FIG. 6, since the insertion hole 7 of the second core piece 312 is formed larger than the insertion hole 7 of the first core piece 311, the second core piece 312 is overlaid on the first core piece 311. In this case, a part of the first iron core piece 311 can be seen at the end of the insertion hole 7 of the second iron core piece 312.
  • FIG. 7 is a partial cross-sectional view obtained by cutting the stacked state in the axial direction Y as shown in FIG.
  • FIG. 7 shows an example in which the iron core 30 is configured by combining a plurality of first iron core pieces 311 and a plurality of second iron core pieces 312 respectively.
  • the first core piece 311 and the second core piece 312 are stacked separately in a region, or the first core piece 311 and the second core piece 312 are randomly stacked. As long as the strength required for the rotor 3 can be ensured, any combination may be used.
  • the shaft 4 is fixed to the iron core 30.
  • the rotating electrical machine 1 is manufactured by assembling the stator 2 and the rotor 3.
  • the torque generated by the rotor is improved by having the insertion hole and the magnet that are convex in the center direction of the iron core. Furthermore, the leakage of magnetic flux is reduced by combining two types of the first core piece and the second core piece having different distances between the bridge portions. Further, since the radius R2 of the second end portion is formed larger than the radius R1 of the first end portion and the radius R3 of the third end portion, the stress applied to the bridge portion is reduced when the rotor rotates. .
  • a flux barrier made of a non-magnetic material or space is configured, leakage of magnetic flux is prevented and torque is improved. Furthermore, the amount of magnets used for the rotating electrical machine can be reduced, and the cost can be reduced.
  • the present invention is not limited to this, and the second end portion 9B can be formed with a flat surface.
  • the same effects as those of the first embodiment can be obtained.
  • the present invention is not limited to this, and it may be formed by a plurality of arc surfaces. is there. In that case, when the rotor is rotating, concentration of stress applied to the bridge portion can be further reduced.
  • FIG. 8 is a partially enlarged view showing the configuration of the first iron core piece formed by the rotor according to Embodiment 2 of the present invention.
  • FIG. 9 is a partially enlarged view showing the configuration of the second iron core piece formed by the rotor according to the second embodiment of the present invention.
  • FIG. 10 is a plan view showing a state in which the first core piece shown in FIG. 8 and the second core piece shown in FIG. 9 are combined.
  • FIG. 11 is a perspective view showing a state in which the first core piece shown in FIG. 8 and the second core piece shown in FIG. 9 are combined.
  • the bridge portion 9 of the second core piece 312 includes an opening 33 that communicates from the insertion hole 7 to the outer peripheral surface 31 ⁇ / b> A of the core piece 31.
  • the opening 33 By forming the opening 33, the leakage of magnetic flux is further reduced.
  • the size of the opening 33 is appropriately determined in view of magnetic flux leakage and centrifugal force. In FIG. 9, it is formed around the second end 9 ⁇ / b> B of the bridge portion 9, but may be formed at any position as long as it communicates from the insertion hole 7 to the outer peripheral surface 31 ⁇ / b> A of the core piece 31. .
  • the first iron core piece 311 and the second iron core piece 312 serve as a connecting portion that is connected in the axial direction Y to a location on the outer peripheral surface 31 ⁇ / b> A side of the iron core piece 31 from the insertion hole 7.
  • a crimping portion 81 is provided. This caulking portion 81 is for preventing the opening 33 formed in the bridge portion 9 of the second iron core piece 312 from separating the portion on the outer peripheral surface 31 ⁇ / b> A side of the iron core piece 31 from the insertion hole 7.
  • the core piece 31 should just be connectable to the axial direction Y, for example, can also use the adhesion part comprised with an adhesive agent.
  • FIG. 10 is a plan view showing a state in which the second iron core piece 312 is overlaid on the first iron core piece 311.
  • FIG. 11 is a partial cross-sectional view obtained by cutting the stacked state in the axial direction Y as shown in FIG.
  • the same effect as that of the first embodiment can be obtained, and from the insertion hole to the outer peripheral surface of the iron core piece in the bridge portion. Since the communicating opening is provided, magnetic flux leakage can be further reduced.
  • the connecting portion for connecting in the axial direction is provided at a position on the outer peripheral surface side of the core piece from the insertion hole, the core pieces in the axial direction can be fixed, and the core pieces can be fixed without being scattered.
  • the opening 33 is formed in the bridge portion 9 of the second iron core piece 312
  • the present invention is not limited to this, and the bridge portion 9 of the first iron core piece 311 is not limited to this. It is also possible to form similar openings.
  • FIG. 12 is a partially enlarged view showing the configuration of the first iron core piece formed by the rotor according to Embodiment 3 of the present invention.
  • FIG. 13 is a partially enlarged view showing the configuration of the second iron core piece formed by the rotor according to Embodiment 3 of the present invention.
  • 14 is a plan view showing a state in which the first iron core piece shown in FIG. 12 and the second iron core piece shown in FIG. 13 are combined.
  • FIG. 15 is a perspective view showing a state in which the first core piece shown in FIG. 12 and the second core piece shown in FIG. 13 are combined.
  • the pole bridge portion 12 is provided at the pole center of the iron core piece 31, and in the third embodiment, the insertion hole 7 is arranged in the circumferential direction Z at the pole center of the insertion hole 7. Divide into two. A plurality of pole bridge portions 12 may be formed, and the insertion hole 7 may be divided into two or more in the circumferential direction Z. As shown in FIG. 12, the first iron core piece 311 is formed with a communication hole 13 that communicates with the insertion hole 7 divided by the pole bridge portion 12. The magnets 6 are formed in shapes that can be inserted into the divided insertion holes 7 respectively.
  • the iron core of the insertion hole 7 of the second iron core piece 312 is formed.
  • the outer peripheral surface 31A side of the piece 31 is separated, in the third embodiment, since the pole bridge portion 12 is formed, this portion is not separated. Therefore, even if the caulking portion 81 as shown in the second embodiment is not formed, the second iron core piece 312 does not come apart.
  • FIG. 14 is a plan view showing a state in which the first iron core piece 311 is overlaid on the second iron core piece 312.
  • FIG. 15 is a partial cross-sectional view of the stacked state as shown in FIG.
  • the iron core piece is provided with the pole bridge portion and the communication hole as well as the same effects as the above-described embodiments.
  • the magnetic flux leakage is reduced and, of course, when the opening is formed in the bridge portion, the core pieces are integrally formed at the pole bridge portion. Can be reduced.
  • FIG. 16 is a partially enlarged view showing the structure of the first iron core piece which the rotor according to the fourth embodiment of the present invention constitutes.
  • FIG. 17 is a partially enlarged view showing the configuration of the second iron core piece which the rotor according to the fourth embodiment of the present invention constitutes.
  • 18 is a plan view showing a state in which the first core piece shown in FIG. 16 and the second core piece shown in FIG. 17 are combined.
  • 19 is a sectional view showing a state in which the first core piece shown in FIG. 16 and the second core piece shown in FIG. 17 are combined.
  • the same parts as those in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted.
  • the inner arc portion 7 ⁇ / b> B of the insertion hole 7 is formed with a protrusion 14.
  • the magnet 6 can be positioned and fixed in the insertion hole 7. Therefore, when the magnet 6 is inserted into the insertion hole 7, it can be installed without fixing the magnet 6 with an adhesive or the like.
  • FIG. 18 is a plan view showing a state where the second iron core piece 312 is overlaid on the first iron core piece 311.
  • FIG. 19 is a partial cross-sectional view obtained by cutting the stacked state in the axial direction Y as shown in FIG.
  • the magnet position accuracy is improved by the projections of the insertion holes as well as the same effects as the above-described embodiments. improves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

According to the present invention: a plurality of first iron core pieces (311) and a plurality of second iron core pieces (312) each having an insertion hole (7), into which a magnet (6) is inserted, are formed so as to be stacked; a bridge part (9) is formed between an end, of the insertion hole (7), on the outer peripheral surface (31A) side of an iron core piece (31) and the outer peripheral surface (31A) of the iron core piece (31); the bridge part (9) has a first end (9A), a second end (9B), and a third end (9C); the first end (9A), the second end (9B), and the third end (9C) are formed such that the radius (R2) of an arc surface of the second end (9B) is larger than the radius (R1) of an arc surface of the first end (9A) and larger than the radius (R3) of an arc surface of the third end (9C); and each first iron core piece (311) and each second iron core piece (312) are formed such that the distance (W2), in the second iron core piece (312), from the bridge part (9) to the outer peripheral surface (31A) of the iron core piece (31) is shorter than the distance (W1), in the first iron core piece (311), from the bridge part (9) to the outer peripheral surface (31A) of the iron core piece (31).

Description

回転子および回転電機Rotor and rotating electric machine
 この発明は、磁束の漏れを低減できるのはもちろんのこと、組み立て性が向上し、低コストで構成可能である回転子および回転電機に関するものである。 The present invention relates to a rotor and a rotating electrical machine that can be reduced in magnetic flux leakage and can be assembled at low cost.
 近年、電動機や発電機として使用される回転電機は、小型化、高速回転化および高出力化が求められる。小型、高速回転化、および高出力の回転電機を実現するための1つの方法として、回転子に磁石を埋め込んだ形状の回転電機が提案されている。これは、リラクタンストルクを活用し、磁石によるマグネットトルクと合わせることで発生トルクを高める。 In recent years, rotating electrical machines used as electric motors and generators are required to be downsized, rotated at high speed, and increased in output. As one method for realizing a small-sized, high-speed rotating, and high-output rotating electric machine, a rotating electric machine having a shape in which a magnet is embedded in a rotor has been proposed. This utilizes the reluctance torque and increases the generated torque by combining it with the magnet torque generated by the magnet.
 しかし、回転子に磁石を埋め込んだ形状で回転電機の小型化、高出力化を達成する場合、ブリッジ部で磁束の漏れが生じるといった問題点があった。これに対し、例えば特許文献1には、ブリッジ部を切り取り、磁束の漏れを低減させ、さらに、切り取ったブリッジ部に非磁性体にてなる連結部材を挿入し、回転子の回転中に鉄心に加わる応力集中を緩和させることが提案されている。 However, when miniaturization and high output of the rotating electric machine are achieved with the magnet embedded in the rotor, there is a problem that magnetic flux leaks at the bridge portion. On the other hand, for example, in Patent Document 1, a bridge portion is cut to reduce leakage of magnetic flux, and a connecting member made of a non-magnetic material is inserted into the cut bridge portion, and the iron core is rotated during rotation of the rotor. It has been proposed to relieve the applied stress concentration.
特開2015-198475号公報JP-A-2015-198475
 従来の回転子は、切り欠いたブリッジ部に連結部材を挿入するため、部品数や工程数が増加し、組み立て性が低下し、コストが高くなるという問題点があった。 The conventional rotor has a problem in that the connecting member is inserted into the notched bridge portion, so that the number of parts and processes is increased, the assemblability is lowered, and the cost is increased.
 この発明は上記のような課題を解決するためになされたものであり、磁束の漏れを低減できるのはもちろんのこと、組み立て性が向上し、低コストで構成可能である回転子および回転電機を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A rotor and a rotating electrical machine that can be constructed at low cost with improved assemblability as well as reduced leakage of magnetic flux. The purpose is to provide.
 この発明の回転子は、
環状の鉄心片を軸方向に複数枚積層して形成する鉄心と、前記鉄心に形成された挿入孔と、前記挿入孔に設置された永久磁石とを備えた回転子において、
前記鉄心は、第一鉄心片および第二鉄心片をそれぞれ複数枚積層して形成され、
前記第一鉄心片および前記第二鉄心片は、それぞれ、
前記挿入孔および前記永久磁石が、前記鉄心の中心方向に凸形状に形成され、
前記挿入孔は、前記鉄心の径方向の外側の外側弧部と、前記鉄心の径方向の内側の内側弧部とを有し、
前記挿入孔の前記鉄心の外周面側の端部と、前記鉄心の外周面との間には、ブリッジ部が形成され、
前記ブリッジ部は、前記挿入孔の前記外側弧部に一端が連結された第一端部、前記挿入孔の前記内側弧部に一端が連結された第三端部と、前記第一端部の他端と前記第三端部の他端とを連結する第二端部とを有し、
前記第一端部、前記第二端部、および前記第三端部は、それぞれ円弧面にて形成され、
前記第一端部の円弧面の半径をR1と、前記第二端部の円弧面の半径をR2と、前記第三端部の円弧面の半径をR3とした場合、これらの関係は、R2>R1およびR3にて形成され、
前記第一鉄心片および前記第二鉄心片は、
前記ブリッジ部の前記鉄心の外周面までの距離が、前記第二鉄心片が前記第一鉄心片より短く形成される。
 また、この発明の回転子は、
環状の鉄心片を軸方向に複数枚積層して形成する鉄心と、前記鉄心に形成された挿入孔と、前記挿入孔に設置された永久磁石とを備えた回転子において、
前記鉄心は、第一鉄心片および第二鉄心片をそれぞれ複数枚積層して形成され、
前記第一鉄心片および前記第二鉄心片は、それぞれ、
前記挿入孔および前記永久磁石が、前記鉄心の中心方向に凸形状に形成され、
前記挿入孔は、前記鉄心の径方向の外側の外側弧部と、前記鉄心の径方向の内側の内側弧部とを有し、
前記挿入孔の前記鉄心の外周面側の端部と、前記鉄心の外周面との間には、ブリッジ部が形成され、
前記ブリッジ部は、前記挿入孔の前記外側弧部に一端が連結された第一端部、前記挿入孔の前記内側弧部に一端が連結された第三端部と、前記第一端部の他端と前記第三端部の他端とを連結する第二端部とを有し、
前記第一端部および前記第三端部は、それぞれ円弧面にて形成され、
前記第二端部は、平面にて形成され、
前記第一鉄心片および前記第二鉄心片とは、
前記ブリッジ部の前記鉄心の外周面までの距離が、前記第二鉄心片が前記第一鉄心片より短く形成される。
 また、この発明の回転電機は、
上記に示した回転子と、
前記回転子と同軸上に配置された固定子とを備える。
The rotor of the present invention is
In a rotor including an iron core formed by laminating a plurality of annular core pieces in the axial direction, an insertion hole formed in the iron core, and a permanent magnet installed in the insertion hole,
The iron core is formed by laminating a plurality of first iron core pieces and second iron core pieces,
The first iron core piece and the second iron core piece are respectively
The insertion hole and the permanent magnet are formed in a convex shape in the center direction of the iron core,
The insertion hole has an outer arc portion on the outer side in the radial direction of the iron core, and an inner arc portion on the inner side in the radial direction of the iron core,
Between the end of the insertion hole on the outer peripheral surface side of the iron core and the outer peripheral surface of the iron core, a bridge portion is formed,
The bridge portion includes a first end portion having one end connected to the outer arc portion of the insertion hole, a third end portion having one end connected to the inner arc portion of the insertion hole, and a first end portion. A second end connecting the other end and the other end of the third end;
The first end, the second end, and the third end are each formed by a circular arc surface,
When the radius of the arc surface of the first end portion is R1, the radius of the arc surface of the second end portion is R2, and the radius of the arc surface of the third end portion is R3, these relationships are expressed as R2 > R1 and R3,
The first iron core piece and the second iron core piece are:
The distance from the bridge portion to the outer peripheral surface of the iron core is such that the second iron core piece is shorter than the first iron core piece.
The rotor of the present invention is
In a rotor including an iron core formed by laminating a plurality of annular core pieces in the axial direction, an insertion hole formed in the iron core, and a permanent magnet installed in the insertion hole,
The iron core is formed by laminating a plurality of first iron core pieces and second iron core pieces,
The first iron core piece and the second iron core piece are respectively
The insertion hole and the permanent magnet are formed in a convex shape in the center direction of the iron core,
The insertion hole has an outer arc portion on the outer side in the radial direction of the iron core, and an inner arc portion on the inner side in the radial direction of the iron core,
Between the end of the insertion hole on the outer peripheral surface side of the iron core and the outer peripheral surface of the iron core, a bridge portion is formed,
The bridge portion includes a first end portion having one end connected to the outer arc portion of the insertion hole, a third end portion having one end connected to the inner arc portion of the insertion hole, and a first end portion. A second end connecting the other end and the other end of the third end;
The first end and the third end are each formed by a circular arc surface,
The second end is formed in a plane,
The first iron core piece and the second iron core piece are:
The distance from the bridge portion to the outer peripheral surface of the iron core is such that the second iron core piece is shorter than the first iron core piece.
The rotating electrical machine of the present invention is
The rotor shown above,
A stator disposed coaxially with the rotor.
 この発明の回転子および回転電機によれば、
磁束の漏れを低減できるのはもちろんのこと、組み立て性が向上し、低コストで構成可能である。
According to the rotor and the rotating electrical machine of the present invention,
As a matter of course, the leakage of magnetic flux can be reduced, and the assemblability can be improved and it can be configured at low cost.
この発明の実施の形態1における回転電機の構成を示す斜視図である。It is a perspective view which shows the structure of the rotary electric machine in Embodiment 1 of this invention. 図1に示した回転電機の構成を示す上面図である。It is a top view which shows the structure of the rotary electric machine shown in FIG. 図2に示した回転電機の回転子の構成を示す上面図である。It is a top view which shows the structure of the rotor of the rotary electric machine shown in FIG. 図3の回転子の構成する第一鉄心片の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 1st iron core piece which the rotor of FIG. 3 comprises. 図3の回転子の構成する第二鉄心片の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 2nd core piece which the rotor of FIG. 3 comprises. 図4に示した第一鉄心片と図5に示した第二鉄心片を組み合わせた状態を示す平面図である。It is a top view which shows the state which combined the 1st iron core piece shown in FIG. 4, and the 2nd iron core piece shown in FIG. 図4に示した第一鉄心片と図5に示した第二鉄心片を組み合わせた状態を示す断面図である。It is sectional drawing which shows the state which combined the 1st iron core piece shown in FIG. 4, and the 2nd iron core piece shown in FIG. この発明の実施の形態2における回転子の構成する第一鉄心片の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 1st iron core piece which the rotor in Embodiment 2 of this invention comprises. この発明の実施の形態2における回転子の構成する第二鉄心片の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 2nd core piece which the rotor in Embodiment 2 of this invention comprises. 図8に示した第一鉄心片と図9に示した第二鉄心片を組み合わせた状態を示す平面図である。It is a top view which shows the state which combined the 1st iron core piece shown in FIG. 8, and the 2nd iron core piece shown in FIG. 図8に示した第一鉄心片と図9に示した第二鉄心片を組み合わせた状態を示す斜視図である。It is a perspective view which shows the state which combined the 1st iron core piece shown in FIG. 8, and the 2nd iron core piece shown in FIG. この発明の実施の形態3における回転子の構成する第一鉄心片の構成を示す部分拡大図である。It is a partial enlarged view which shows the structure of the 1st iron core piece which the rotor in Embodiment 3 of this invention comprises. この発明の実施の形態3における回転子の構成する第二鉄心片の構成を示す部分拡大図である。It is a partial enlarged view which shows the structure of the 2nd core piece which the rotor in Embodiment 3 of this invention comprises. 図12に示した第一鉄心片と図13に示した第二鉄心片を組み合わせた状態を示す平面図である。It is a top view which shows the state which combined the 1st iron core piece shown in FIG. 12, and the 2nd iron core piece shown in FIG. 図12に示した第一鉄心片と図13に示した第二鉄心片を組み合わせた状態を示す斜視図である。It is a perspective view which shows the state which combined the 1st iron core piece shown in FIG. 12, and the 2nd iron core piece shown in FIG. この発明の実施の形態4における回転子の構成する第一鉄心片の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 1st iron core piece which the rotor in Embodiment 4 of this invention comprises. この発明の実施の形態4における回転子の構成する第二鉄心片の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the 2nd core piece which the rotor in Embodiment 4 of this invention comprises. 図16に示した第一鉄心片と図17に示した第二鉄心片を組み合わせた状態を示す平面図である。It is a top view which shows the state which combined the 1st iron core piece shown in FIG. 16, and the 2nd iron core piece shown in FIG. 図16に示した第一鉄心片と図17に示した第二鉄心片を組み合わせた状態を示す断面図である。It is sectional drawing which shows the state which combined the 1st iron core piece shown in FIG. 16, and the 2nd iron core piece shown in FIG.
実施の形態1.
 以下、本願発明の実施の形態について説明する。
図1はこの発明の実施の形態1における回転電機の構成を示す斜視図である。
図2は図1に示した回転電機の構成を示す上面図である。
図3は図2に示した回転電機の回転子の構成を示す上面図である。
図4は図3の回転子の構成する第一鉄心片の構成を示す部分拡大図である。
Embodiment 1 FIG.
Embodiments of the present invention will be described below.
1 is a perspective view showing a configuration of a rotating electrical machine according to Embodiment 1 of the present invention.
FIG. 2 is a top view showing the configuration of the rotating electrical machine shown in FIG.
FIG. 3 is a top view showing the configuration of the rotor of the rotating electrical machine shown in FIG.
FIG. 4 is a partially enlarged view showing the configuration of the first iron core piece constituting the rotor of FIG.
 図5は図3の回転子の構成する第二鉄心片の構成を示す部分拡大図である。
図6は図4に示した第一鉄心片と図5に示した第二鉄心片を組み合わせた状態を示す平面図である。
図7は図4に示した第一鉄心片と図5に示した第二鉄心片を組み合わせた状態を示す断面図である。
FIG. 5 is a partially enlarged view showing the configuration of the second core piece that the rotor of FIG. 3 configures.
FIG. 6 is a plan view showing a state in which the first core piece shown in FIG. 4 and the second core piece shown in FIG. 5 are combined.
FIG. 7 is a cross-sectional view showing a state in which the first core piece shown in FIG. 4 and the second core piece shown in FIG. 5 are combined.
 本実施の形態1では、8極48スロットの永久磁石型の回転電機1について説明する。但し、回転電機1の極数およびスロット数は適宜増減可能である。また、以下の説明において、回転電機1における各方向を、周方向Z、軸方向Y、径方向X、径方向Xの外側X1、径方向Xの内側X2としてそれぞれ示す。よって、固定子2および回転子3においても、これらの方向は同一方向となる。 In the first embodiment, an 8-pole 48-slot permanent magnet type rotating electrical machine 1 will be described. However, the number of poles and the number of slots of the rotating electrical machine 1 can be appropriately increased or decreased. In the following description, each direction in the rotating electrical machine 1 is shown as a circumferential direction Z, an axial direction Y, a radial direction X, an outer side X1 in the radial direction X, and an inner side X2 in the radial direction X. Therefore, also in the stator 2 and the rotor 3, these directions are the same direction.
 図1および図2において、回転電機1の構成について説明する。回転電機1は固定子2と回転子3とシャフト4とで構成される。回転電機1は、外径側から固定子2、回転子3、シャフト4の順番に配置される。固定子2と回転子3との間には空隙であるエアギャップ5を有する。このエアギャップ5は例えば0.1mm~2.5mmにて形成される。 1 and 2, the configuration of the rotating electrical machine 1 will be described. The rotating electrical machine 1 includes a stator 2, a rotor 3, and a shaft 4. The rotating electrical machine 1 is arranged in the order of the stator 2, the rotor 3, and the shaft 4 from the outer diameter side. Between the stator 2 and the rotor 3, there is an air gap 5 which is a gap. The air gap 5 is formed with a thickness of 0.1 mm to 2.5 mm, for example.
 固定子2は固定子鉄心20とコイル21とを備える。固定子鉄心20は円環状に形成される。固定子鉄心20は、例えば電磁鋼板を軸方向Yに積層している。但し、電磁鋼板に限られるものではない。回転子3は、軸心位置に挿通されたシャフト4に固定された鉄心30を有している。鉄心30は固定子2の内側に配置され、永久磁石(以下、磁石として示す)6を備えた磁石型回転子である。シャフト4は、例えば、焼きばめや圧入等にて鉄心30に固定される。また、回転電機1は分布巻き、集中巻きのどちらでも可能である。 The stator 2 includes a stator core 20 and a coil 21. The stator core 20 is formed in an annular shape. The stator core 20 is formed by, for example, laminating electromagnetic steel plates in the axial direction Y. However, it is not limited to electromagnetic steel sheets. The rotor 3 has an iron core 30 fixed to the shaft 4 inserted through the axial center position. The iron core 30 is a magnet-type rotor that is disposed inside the stator 2 and includes a permanent magnet (hereinafter referred to as a magnet) 6. The shaft 4 is fixed to the iron core 30 by, for example, shrink fitting or press fitting. The rotating electrical machine 1 can be either distributed winding or concentrated winding.
 次に、図3を用いて回転子3の構成について説明する。回転子3は鉄心30と、挿入孔7と、磁石6とから構成される。鉄心30は磁性材である鉄心片31を軸方向Yに複数枚積層して形成される。例えば、鉄心片31は電磁鋼板にて形成される。但し、電磁鋼板に限られるものではない。電磁鋼板の厚さは、例えば0.1mm~1.0mmのものを使用する場合が多い。複数枚の鉄心片31は、連結部としてのカシメ部8により軸方向Yに連結される。但し、カシメ部8は便宜上、図6のみに示している。このカシメ部8は、鉄心片31同士がばらけることなく、カシメ部8により軸方向Yに隙間が形成されなければ、形成箇所および形成個数はいずれでもよい。また、カシメ部8でなくても鉄心片31が軸方向Yに連結可能であればよく、例えば接着剤にて構成される接着部を用いることも可能である。 Next, the configuration of the rotor 3 will be described with reference to FIG. The rotor 3 includes an iron core 30, an insertion hole 7, and a magnet 6. The iron core 30 is formed by laminating a plurality of iron core pieces 31 that are magnetic materials in the axial direction Y. For example, the iron core piece 31 is formed of an electromagnetic steel plate. However, it is not limited to electromagnetic steel sheets. In many cases, the thickness of the electromagnetic steel sheet is, for example, 0.1 mm to 1.0 mm. The plurality of iron core pieces 31 are connected in the axial direction Y by a crimping portion 8 as a connecting portion. However, the crimping portion 8 is shown only in FIG. 6 for convenience. As long as the caulking portion 8 does not separate the iron core pieces 31 and no gap is formed in the axial direction Y by the caulking portion 8, the formation portion and the number of formation may be any. Moreover, it is only necessary that the iron core piece 31 can be connected in the axial direction Y even if it is not the caulking portion 8, and for example, it is possible to use an adhesive portion made of an adhesive.
 磁石6は回転電機1、すなわち鉄心30の中心方向に凸形状に構成される。磁石6の外周側を外側弧部6Aとし、磁石6の内周側を内側弧部6Bとする。磁石6の外側弧部6Aと磁石6の内側弧部6Bとの両端は、平面または曲面で連結されている。挿入孔7は回転電機1、すなわち鉄心30の中心方向に凸形状に構成される。挿入孔7の鉄心30の径方向Xの外側X1を外側弧部7Aとする。挿入孔7の鉄心30の径方向Xの内側X2を内側弧部7Bとする。 The magnet 6 is formed in a convex shape in the center direction of the rotating electrical machine 1, that is, the iron core 30. The outer peripheral side of the magnet 6 is an outer arc portion 6A, and the inner peripheral side of the magnet 6 is an inner arc portion 6B. Both ends of the outer arc portion 6A of the magnet 6 and the inner arc portion 6B of the magnet 6 are connected by a plane or a curved surface. The insertion hole 7 is formed in a convex shape in the central direction of the rotating electrical machine 1, that is, the iron core 30. An outer side X1 in the radial direction X of the iron core 30 of the insertion hole 7 is defined as an outer arc portion 7A. An inner side X2 in the radial direction X of the iron core 30 of the insertion hole 7 is defined as an inner arc portion 7B.
 そして、挿入孔7は磁石6が挿入可能な形状にて構成される。よって、挿入孔7の外側弧部7Aには、磁石6の外側弧部6Aが沿う形状にて形成される。挿入孔7の内側弧部7Bには磁石6の内側弧部6Bが沿う形状にて形成される。また、磁石6の外周には接着材等が塗布される。磁石6と挿入孔7とは接着材により固定される。さらに、挿入孔7内には磁石6が設置されていない部分として、フラックスバリア10が形成される。このフラックスバリア10は、非磁性体または空間にて構成される。 And the insertion hole 7 is configured in a shape into which the magnet 6 can be inserted. Therefore, the outer arc portion 7 </ b> A of the insertion hole 7 is formed in a shape along which the outer arc portion 6 </ b> A of the magnet 6 extends. The inner arc portion 7B of the insertion hole 7 is formed in a shape along which the inner arc portion 6B of the magnet 6 is aligned. An adhesive or the like is applied to the outer periphery of the magnet 6. The magnet 6 and the insertion hole 7 are fixed with an adhesive. Further, a flux barrier 10 is formed in the insertion hole 7 as a portion where the magnet 6 is not installed. The flux barrier 10 is composed of a nonmagnetic material or a space.
 次に、図4および図5を用いて鉄心片31としての第一鉄心片311および第二鉄心片312の形状について説明する。尚、本実施の形態1の説明において、鉄心片31と示すときは、第一鉄心片311および第二鉄心片312の全てを指すものとして示している。まず、第一鉄心片311と第二鉄心片312との形状の共通部分について、先の鉄心片31にて示した以外の部分について説明する。挿入孔7の鉄心片31の外周面31A側の端部と、鉄心片31の外周面31Aとの間には、ブリッジ部9が形成される。尚、鉄心片31の外周面31Aは、鉄心30の外周面と同様である。 Next, the shape of the first core piece 311 and the second core piece 312 as the core piece 31 will be described with reference to FIGS. 4 and 5. In the description of the first embodiment, when the iron core piece 31 is indicated, all the first iron core pieces 311 and the second iron core pieces 312 are indicated. First, the parts other than those shown in the previous iron core piece 31 will be described with respect to the common parts of the shapes of the first iron core piece 311 and the second iron core piece 312. A bridge portion 9 is formed between the end of the insertion hole 7 on the outer peripheral surface 31 </ b> A side of the core piece 31 and the outer peripheral surface 31 </ b> A of the core piece 31. The outer peripheral surface 31 </ b> A of the iron core piece 31 is the same as the outer peripheral surface of the iron core 30.
 ブリッジ部9は、第一端部9A、第二端部9Bおよび第三端部9Cを有する。第一端部9Aは、挿入孔7の外側弧部7Aに一端が連結される。第三端部9Cは、挿入孔7の内側弧部7Bに一端が連結される。第二端部9Bは、第一端部9Aの他端と、第三端部9Cの他端とを連結する。第一端部9A、第二端部9B、および第三端部9Cは、それぞれ円弧面にて形成される。ここで、第一端部9Aの円弧面の半径をR1とする。第二端部9Bの円弧面の半径をR2とする。第三端部9Cの円弧面の半径をR3とする。この場合、これらの関係は、R2>R1およびR3にて形成される。尚、R1とR3との関係は、どちらかが大きい、または、等しくてもよい。 The bridge portion 9 has a first end portion 9A, a second end portion 9B, and a third end portion 9C. One end of the first end 9 </ b> A is connected to the outer arc 7 </ b> A of the insertion hole 7. One end of the third end portion 9 </ b> C is connected to the inner arc portion 7 </ b> B of the insertion hole 7. The second end 9B connects the other end of the first end 9A and the other end of the third end 9C. The first end 9A, the second end 9B, and the third end 9C are each formed by a circular arc surface. Here, the radius of the arc surface of the first end portion 9A is R1. The radius of the arc surface of the second end portion 9B is R2. The radius of the arc surface of the third end portion 9C is R3. In this case, these relationships are formed by R2> R1 and R3. In addition, the relationship between R1 and R3 may be either larger or equal.
 次に、第一鉄心片311と第二鉄心片312との形状の異なる部分について説明する。第一鉄心片311のブリッジ部9の鉄心片31の外周面31Aまでの距離を距離W1とする。第二鉄心片312のブリッジ部9の鉄心片31の外周面31Aまでの距離を距離W2とする。そして、第二鉄心片312の距離W2が第一鉄心片311の距離W1より短く形成されている。よって、第二鉄心片312のブリッジ部9が、第一鉄心片311のブリッジ部9より磁束の漏れが低減できる。 Next, the different parts of the shape of the first core piece 311 and the second core piece 312 will be described. The distance to the outer peripheral surface 31A of the iron core piece 31 of the bridge portion 9 of the first iron core piece 311 is defined as a distance W1. The distance to the outer peripheral surface 31A of the iron core piece 31 of the bridge portion 9 of the second iron core piece 312 is defined as a distance W2. The distance W2 between the second core pieces 312 is shorter than the distance W1 between the first core pieces 311. Therefore, the leakage of magnetic flux can be reduced in the bridge portion 9 of the second iron core piece 312 than in the bridge portion 9 of the first iron core piece 311.
 このように形成された、第二鉄心片312のみを積層して鉄心30を形成すると、磁束の漏れは低減できるものの、回転子3としての強度が弱くなる。よって、第一鉄心片311および第二鉄心片312の積層枚数および積層箇所は、回転子3として必要となる強度を確保できる程度であって、第二鉄心片312をなるべく多く使用するよう設定する。また、第二鉄心片312の距離W2が第一鉄心片311の距離W1より短く形成されているため、第二鉄心片312の挿入孔7は、第一鉄心片311の挿入孔7より大きく形成される。 When the iron core 30 is formed by laminating only the second iron core pieces 312 formed as described above, the magnetic flux leakage can be reduced, but the strength as the rotor 3 is weakened. Therefore, the number of laminated first core pieces 311 and the number of laminated second core pieces 312 and the number of laminated portions are such that the strength required for the rotor 3 can be ensured, and the second core pieces 312 are set to be used as much as possible. . Further, since the distance W2 of the second core piece 312 is formed shorter than the distance W1 of the first core piece 311, the insertion hole 7 of the second core piece 312 is formed larger than the insertion hole 7 of the first core piece 311. Is done.
 次に、上記のように構成された実施の形態1の回転電機1の組み立て工法について説明する。最初に固定子2の組み立て工法について説明する。まず、電磁鋼板を打ち抜いて固定子鉄心20を形成する。但し、固定子鉄心20の形成方法は、電磁鋼板の打ち抜きに限られるものではない。円環状にコイル21を組み立てる。コイル21に絶縁紙を取り付ける。そして、絶縁紙を介してコイル21を固定子鉄心20に挿入する。尚、コイル21や固定子鉄心20の組み立て方法はこの方法に限られるものではない。 Next, an assembly method for the rotating electrical machine 1 according to the first embodiment configured as described above will be described. First, an assembly method for the stator 2 will be described. First, the electromagnetic steel sheet is punched to form the stator core 20. However, the method of forming the stator core 20 is not limited to punching of electromagnetic steel sheets. The coil 21 is assembled in an annular shape. Insulating paper is attached to the coil 21. Then, the coil 21 is inserted into the stator core 20 through insulating paper. The method for assembling the coil 21 and the stator core 20 is not limited to this method.
 次に、回転子3の組み立て工法について説明する。まず、電磁鋼板を打ち抜いて回転子3の第一鉄心片311および第二鉄心片312をそれぞれ形成する。但し、鉄心片31の形成方法は、電磁鋼板の打ち抜きに限られるものではない。次に、第一鉄心片311および第二鉄心片312の積層枚数および積層箇所を、回転子3として必要となる強度を確保できる程度に設定し、軸方向Yに第一鉄心片311と第二鉄心片312とを積層する。第一鉄心片311と第二鉄心片312とはカシメ部8にて軸方向Yが連結される。鉄心30の挿入孔7中に磁石6を挿入する。 Next, the assembly method of the rotor 3 will be described. First, the electromagnetic steel sheet is punched to form the first iron core piece 311 and the second iron core piece 312 of the rotor 3. However, the method of forming the iron core piece 31 is not limited to punching of an electromagnetic steel sheet. Next, the number of the first iron core pieces 311 and the second iron core pieces 312 are set so that the strength required for the rotor 3 can be ensured, and the first iron core pieces 311 and the second iron core pieces 311 are arranged in the axial direction Y. The core pieces 312 are stacked. The first iron core piece 311 and the second iron core piece 312 are connected in the axial direction Y at the caulking portion 8. The magnet 6 is inserted into the insertion hole 7 of the iron core 30.
 図6は、第一鉄心片311の上に、第二鉄心片312を重ねた状態を示す平面図である。図6に示すように、第二鉄心片312の挿入孔7が第一鉄心片311の挿入孔7より大きく形成されるため、第一鉄心片311の上に、第二鉄心片312を重ねた場合、第二鉄心片312の挿入孔7の端部に、第一鉄心片311の一部が見える状態となる。図7は図6に示したように重ねた状態を軸方向Yに切断した部分断面図である。 FIG. 6 is a plan view showing a state in which the second iron core piece 312 is overlaid on the first iron core piece 311. As shown in FIG. 6, since the insertion hole 7 of the second core piece 312 is formed larger than the insertion hole 7 of the first core piece 311, the second core piece 312 is overlaid on the first core piece 311. In this case, a part of the first iron core piece 311 can be seen at the end of the insertion hole 7 of the second iron core piece 312. FIG. 7 is a partial cross-sectional view obtained by cutting the stacked state in the axial direction Y as shown in FIG.
 尚、図7においては、鉄心30を第一鉄心片311と第二鉄心片312とをそれぞれ複数枚ずつ組み合わせて構成する例を示している。この組み合わせの構成はこれ以外に、第一鉄心片311と第二鉄心片312とを領域を分けて積層する場合、また、第一鉄心片311および第二鉄心片312をランダムに積層する場合など、回転子3として必要となる強度を確保できる程度であれば、どのように組み合わせてもよい。次に、鉄心30にシャフト4を固定する。そして、固定子2と回転子3とを組み立てて回転電機1を製造する。 Note that FIG. 7 shows an example in which the iron core 30 is configured by combining a plurality of first iron core pieces 311 and a plurality of second iron core pieces 312 respectively. In addition to this configuration, the first core piece 311 and the second core piece 312 are stacked separately in a region, or the first core piece 311 and the second core piece 312 are randomly stacked. As long as the strength required for the rotor 3 can be ensured, any combination may be used. Next, the shaft 4 is fixed to the iron core 30. Then, the rotating electrical machine 1 is manufactured by assembling the stator 2 and the rotor 3.
 上記のように構成された実施の形態1の回転子によれば、鉄心の中心方向に凸形状となる挿入孔および磁石を有することで、回転子が作るトルクが向上する。
 さらに、ブリッジ部の距離が異なる二種類の第一鉄心片および第二鉄心片を組み合わせることで、磁束の漏れが低減する。
 さらに、第二端部の半径R2が第一端部の半径R1および第三端部の半径R3よりも大きく形成されていることで、回転子が回転するとき、ブリッジ部に加わる応力が低減する。
According to the rotor of the first embodiment configured as described above, the torque generated by the rotor is improved by having the insertion hole and the magnet that are convex in the center direction of the iron core.
Furthermore, the leakage of magnetic flux is reduced by combining two types of the first core piece and the second core piece having different distances between the bridge portions.
Further, since the radius R2 of the second end portion is formed larger than the radius R1 of the first end portion and the radius R3 of the third end portion, the stress applied to the bridge portion is reduced when the rotor rotates. .
 また、非磁性体または空間にてなるフラックスバリアを構成するので、磁束の漏れを防ぎ、トルクが向上する。さらに、回転電機に使用する磁石の量を減らすことができ、コストが低減できる。 Also, since a flux barrier made of a non-magnetic material or space is configured, leakage of magnetic flux is prevented and torque is improved. Furthermore, the amount of magnets used for the rotating electrical machine can be reduced, and the cost can be reduced.
 上記実施の形態1においては、第二端部9Bを円弧面にて形成する場合を示したが、これに限られることはなく、第二端部9Bを平面にて形成することも可能であり、上記実施の形態1と同様の効果を奏することができる。 In the first embodiment, the case where the second end portion 9B is formed with an arc surface has been shown, but the present invention is not limited to this, and the second end portion 9B can be formed with a flat surface. The same effects as those of the first embodiment can be obtained.
 また、上記実施の形態1においては、第二端部9Bを1つの円弧面にて形成する場合について示したが、これに限られることはなく、複数の円弧面にて形成することも可能である。その場合、回転子が回転しているとき、ブリッジ部に加わる応力の集中がさらに低減できる。 In the first embodiment, the case where the second end portion 9B is formed by one arc surface has been described. However, the present invention is not limited to this, and it may be formed by a plurality of arc surfaces. is there. In that case, when the rotor is rotating, concentration of stress applied to the bridge portion can be further reduced.
 また、上記実施の形態1では径方向には1層の挿入孔7および磁石6を配置する例を示しているが、径方向に複数層の挿入孔7および磁石6を配置した形状にて形成してもよい。 In the first embodiment, an example in which one layer of insertion holes 7 and magnets 6 are arranged in the radial direction is shown. However, a plurality of layers of insertion holes 7 and magnets 6 are arranged in the radial direction. May be.
 尚、本実施の形態1にて示した、鉄心片31におけるR1、R2、R3の関係、および、第一鉄心片311のW1および第二鉄心片312のW2の関係は、以下の実施の形態においても同様であるため、その説明は適宜省略する。 The relationship between R1, R2, and R3 in the iron core piece 31 and the relationship between W1 of the first iron core piece 311 and W2 of the second iron core piece 312 shown in the first embodiment are as follows. Since the same applies to, the description thereof will be omitted as appropriate.
実施の形態2.
 本実施の形態2は、上記実施の形態1と異なり第二鉄心片312のブリッジ部9に開口部33を備える例について説明する。
図8はこの発明の実施の形態2における回転子の構成する第一鉄心片の構成を示す部分拡大図である。
図9はこの発明の実施の形態2における回転子の構成する第二鉄心片の構成を示す部分拡大図である。
図10は図8に示した第一鉄心片と図9に示した第二鉄心片を組み合わせた状態を示す平面図である。
図11は図8に示した第一鉄心片と図9に示した第二鉄心片を組み合わせた状態を示す斜視図である。
Embodiment 2. FIG.
In the second embodiment, an example in which the opening portion 33 is provided in the bridge portion 9 of the second iron core piece 312 will be described, unlike the first embodiment.
FIG. 8 is a partially enlarged view showing the configuration of the first iron core piece formed by the rotor according to Embodiment 2 of the present invention.
FIG. 9 is a partially enlarged view showing the configuration of the second iron core piece formed by the rotor according to the second embodiment of the present invention.
FIG. 10 is a plan view showing a state in which the first core piece shown in FIG. 8 and the second core piece shown in FIG. 9 are combined.
FIG. 11 is a perspective view showing a state in which the first core piece shown in FIG. 8 and the second core piece shown in FIG. 9 are combined.
 図において、上記実施の形態1と同様の部分は同一符号を付して説明を省略する。図9に示すように、第二鉄心片312のブリッジ部9には、挿入孔7から鉄心片31の外周面31Aまで連通する開口部33を備える。開口部33が形成されることにより、磁束の漏れはさらに低減する。開口部33の大きさは、磁束の漏れおよび遠心力を鑑みて適宜決定されるものである。また、図9においては、ブリッジ部9の第二端部9Bの辺りに形成されているが、挿入孔7から鉄心片31の外周面31Aまで連通すれば、いずれの位置に形成してもよい。 In the figure, the same parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted. As shown in FIG. 9, the bridge portion 9 of the second core piece 312 includes an opening 33 that communicates from the insertion hole 7 to the outer peripheral surface 31 </ b> A of the core piece 31. By forming the opening 33, the leakage of magnetic flux is further reduced. The size of the opening 33 is appropriately determined in view of magnetic flux leakage and centrifugal force. In FIG. 9, it is formed around the second end 9 </ b> B of the bridge portion 9, but may be formed at any position as long as it communicates from the insertion hole 7 to the outer peripheral surface 31 </ b> A of the core piece 31. .
 また、図8および図9に示すように、第一鉄心片311および第二鉄心片312は、挿入孔7より鉄心片31の外周面31A側の箇所に軸方向Yに連結する連結部としてのカシメ部81を備える。このカシメ部81は、第二鉄心片312のブリッジ部9に形成された開口部33により、挿入孔7より鉄心片31の外周面31A側の部分がばらけるのを防止するためである。尚、カシメ部81でなくても、鉄心片31が軸方向Yに連結可能であればよく、例えば接着剤にて構成される接着部を用いることも可能である。 As shown in FIGS. 8 and 9, the first iron core piece 311 and the second iron core piece 312 serve as a connecting portion that is connected in the axial direction Y to a location on the outer peripheral surface 31 </ b> A side of the iron core piece 31 from the insertion hole 7. A crimping portion 81 is provided. This caulking portion 81 is for preventing the opening 33 formed in the bridge portion 9 of the second iron core piece 312 from separating the portion on the outer peripheral surface 31 </ b> A side of the iron core piece 31 from the insertion hole 7. In addition, even if it is not the crimping part 81, the core piece 31 should just be connectable to the axial direction Y, for example, can also use the adhesion part comprised with an adhesive agent.
 次に、上記のように構成された実施の形態2の回転電機1および回転子3の組み立て工法は、上記実施の形態1と同様に行うことができ、第一鉄心片311および第二鉄心片312の積層枚数および積層箇所は、回転子3として必要となる強度を確保できる程度に設定し、軸方向Yに第一鉄心片311と第二鉄心片312とを積層する。図10は、第一鉄心片311の上に、第二鉄心片312を重ねた状態を示す平面図である。図11は図10に示したように重ねた状態を軸方向Yに切断した部分断面図である。 Next, the assembly method of the rotating electrical machine 1 and the rotor 3 of the second embodiment configured as described above can be performed in the same manner as in the first embodiment, and the first iron core piece 311 and the second iron core piece. The number of laminated layers 312 and the number of laminated portions are set to such an extent that the strength required for the rotor 3 can be ensured, and the first iron core pieces 311 and the second iron core pieces 312 are laminated in the axial direction Y. FIG. 10 is a plan view showing a state in which the second iron core piece 312 is overlaid on the first iron core piece 311. FIG. 11 is a partial cross-sectional view obtained by cutting the stacked state in the axial direction Y as shown in FIG.
 上記のように構成された実施の形態2の回転子および回転電機によれば、上記実施の形態1と同様の効果を奏するのはもちろんのこと、ブリッジ部に挿入孔から鉄心片の外周面まで連通する開口部を備えたので、磁束の漏れをさらに低減できる。 According to the rotor and the rotating electrical machine of the second embodiment configured as described above, the same effect as that of the first embodiment can be obtained, and from the insertion hole to the outer peripheral surface of the iron core piece in the bridge portion. Since the communicating opening is provided, magnetic flux leakage can be further reduced.
 また、挿入孔より鉄心片の外周面側の箇所に軸方向に連結する連結部を備えたので、軸方向の鉄心片同士の固定を可能とし、鉄心片がばらけずに固定できる。 In addition, since the connecting portion for connecting in the axial direction is provided at a position on the outer peripheral surface side of the core piece from the insertion hole, the core pieces in the axial direction can be fixed, and the core pieces can be fixed without being scattered.
 尚、上記実施の形態2においては、第二鉄心片312のブリッジ部9に開口部33を形成する例を示したが、これに限られることはなく、第一鉄心片311のブリッジ部9に同様の開口部を形成することも可能である。 In the second embodiment, the example in which the opening 33 is formed in the bridge portion 9 of the second iron core piece 312 is shown, but the present invention is not limited to this, and the bridge portion 9 of the first iron core piece 311 is not limited to this. It is also possible to form similar openings.
実施の形態3.
 本実施の形態3は、上記各実施の形態と異なり、極ブリッジ部12を備える例について説明する。
図12はこの発明の実施の形態3における回転子の構成する第一鉄心片の構成を示す部分拡大図である。
図13はこの発明の実施の形態3における回転子の構成する第二鉄心片の構成を示す部分拡大図である。
図14は図12に示した第一鉄心片と図13に示した第二鉄心片を組み合わせた状態を示す平面図である。
図15は図12に示した第一鉄心片と図13に示した第二鉄心片を組み合わせた状態を示す斜視図である。
Embodiment 3 FIG.
In the third embodiment, an example in which the pole bridge unit 12 is provided will be described, unlike the above embodiments.
FIG. 12 is a partially enlarged view showing the configuration of the first iron core piece formed by the rotor according to Embodiment 3 of the present invention.
FIG. 13 is a partially enlarged view showing the configuration of the second iron core piece formed by the rotor according to Embodiment 3 of the present invention.
14 is a plan view showing a state in which the first iron core piece shown in FIG. 12 and the second iron core piece shown in FIG. 13 are combined.
FIG. 15 is a perspective view showing a state in which the first core piece shown in FIG. 12 and the second core piece shown in FIG. 13 are combined.
 図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。図12および図13に示すように、極ブリッジ部12は鉄心片31の極中心に設けられており、本実施の形態3では挿入孔7の極中心にて挿入孔7を周方向Zに2つに分断する。尚、極ブリッジ部12を複数形成し、挿入孔7を周方向Zの2個以上に分断してもよい。図12に示すように第一鉄心片311は、極ブリッジ部12に分断された挿入孔7を連通する連通孔13が形成される。磁石6は、分断された挿入孔7にそれぞれ挿入可能な形状にて形成されている。 In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIGS. 12 and 13, the pole bridge portion 12 is provided at the pole center of the iron core piece 31, and in the third embodiment, the insertion hole 7 is arranged in the circumferential direction Z at the pole center of the insertion hole 7. Divide into two. A plurality of pole bridge portions 12 may be formed, and the insertion hole 7 may be divided into two or more in the circumferential direction Z. As shown in FIG. 12, the first iron core piece 311 is formed with a communication hole 13 that communicates with the insertion hole 7 divided by the pole bridge portion 12. The magnets 6 are formed in shapes that can be inserted into the divided insertion holes 7 respectively.
 図13の第二鉄心片312に示したように、ブリッジ部9に開口部33が形成されると、上記実施の形態2にて示したように、第二鉄心片312の挿入孔7の鉄心片31の外周面31A側が分離されることとなるが、本実施の形態3においては、極ブリッジ部12が形成されているため、この部分が分離されることがない。よって、実施の形態2に示したようなカシメ部81が形成されていなくとも、第二鉄心片312がばらけることがない。 When the opening 33 is formed in the bridge portion 9 as shown in the second iron core piece 312 in FIG. 13, as shown in the second embodiment, the iron core of the insertion hole 7 of the second iron core piece 312 is formed. Although the outer peripheral surface 31A side of the piece 31 is separated, in the third embodiment, since the pole bridge portion 12 is formed, this portion is not separated. Therefore, even if the caulking portion 81 as shown in the second embodiment is not formed, the second iron core piece 312 does not come apart.
 次に、上記のように構成された実施の形態3の回転電機1および回転子3の組み立て工法は、上記各実施の形態と同様に行うことができ、第一鉄心片311および第二鉄心片312の積層枚数および積層箇所は、回転子3として必要となる強度を確保できる程度に設定し、軸方向Yに第一鉄心片311と第二鉄心片312とを積層する。図14は、第二鉄心片312の上に、第一鉄心片311を重ねた状態を示す平面図である。図15は図14に示したように重ねた状態を軸方向Yに切断した部分断面図である。 Next, the assembly method of the rotating electrical machine 1 and the rotor 3 according to the third embodiment configured as described above can be performed in the same manner as in each of the above embodiments, and the first iron core piece 311 and the second iron core piece. The number of laminated layers 312 and the number of laminated portions are set to such an extent that the strength required for the rotor 3 can be ensured, and the first iron core pieces 311 and the second iron core pieces 312 are laminated in the axial direction Y. FIG. 14 is a plan view showing a state in which the first iron core piece 311 is overlaid on the second iron core piece 312. FIG. 15 is a partial cross-sectional view of the stacked state as shown in FIG.
 上記のように構成された実施の形態3の回転子および回転電機によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、鉄心片に極ブリッジ部および連通孔を備えることで、磁束の漏れが低減するのはもちろんのこと、ブリッジ部に開口部が形成された場合、極ブリッジ部にて鉄心片が一体に形成されるため、鉄心片同士の軸方向を固定するための連結部を減少できる。 According to the rotor and the rotating electrical machine of the third embodiment configured as described above, the iron core piece is provided with the pole bridge portion and the communication hole as well as the same effects as the above-described embodiments. In order to fix the axial direction of the core pieces, the magnetic flux leakage is reduced and, of course, when the opening is formed in the bridge portion, the core pieces are integrally formed at the pole bridge portion. Can be reduced.
実施の形態4.
 本実施の形態4は、上記各実施の形態と異なり、挿入孔7が、内側弧部7Bに突起部14を備える例について説明する。
図16はこの発明の実施の形態4における回転子の構成する第一鉄心片の構成を示す部分拡大図である。
図17はこの発明の実施の形態4における回転子の構成する第二鉄心片の構成を示す部分拡大図である。
図18は図16に示した第一鉄心片と図17に示した第二鉄心片を組み合わせた状態を示す平面図である。
図19は図16に示した第一鉄心片と図17に示した第二鉄心片を組み合わせた状態を示す断面図である。
Embodiment 4 FIG.
In the fourth embodiment, unlike the above-described embodiments, an example in which the insertion hole 7 includes the protrusion 14 on the inner arc portion 7B will be described.
FIG. 16 is a partially enlarged view showing the structure of the first iron core piece which the rotor according to the fourth embodiment of the present invention constitutes.
FIG. 17 is a partially enlarged view showing the configuration of the second iron core piece which the rotor according to the fourth embodiment of the present invention constitutes.
18 is a plan view showing a state in which the first core piece shown in FIG. 16 and the second core piece shown in FIG. 17 are combined.
19 is a sectional view showing a state in which the first core piece shown in FIG. 16 and the second core piece shown in FIG. 17 are combined.
 図において、上記各実施の形態と同様の部分は同一符号を付して説明を省略する。図16および図17に示すように、挿入孔7の内側弧部7Bは、突起部14が形成される。突起部14を設けることで、挿入孔7における磁石6の位置決めと固定とが可能となる。よって、挿入孔7内に磁石6を挿入する際、接着剤等で磁石6を固定しなくても設置が可能となる。 In the figure, the same parts as those in the above embodiments are denoted by the same reference numerals, and the description thereof is omitted. As shown in FIGS. 16 and 17, the inner arc portion 7 </ b> B of the insertion hole 7 is formed with a protrusion 14. By providing the projection 14, the magnet 6 can be positioned and fixed in the insertion hole 7. Therefore, when the magnet 6 is inserted into the insertion hole 7, it can be installed without fixing the magnet 6 with an adhesive or the like.
 次に、上記のように構成された実施の形態4の回転電機1および回転子3の組み立て工法は、上記各実施の形態と同様に行うことができ、第一鉄心片311および第二鉄心片312の積層枚数および積層箇所は、回転子3として必要となる強度を確保できる程度に設定し、軸方向Yに第一鉄心片311と第二鉄心片312とを積層する。図18は、第一鉄心片311の上に、第二鉄心片312を重ねた状態を示す平面図である。図19は図18に示したように重ねた状態を軸方向Yに切断した部分断面図である。 Next, the assembly method of the rotating electrical machine 1 and the rotor 3 according to the fourth embodiment configured as described above can be performed in the same manner as the above-described embodiments, and the first iron core piece 311 and the second iron core piece. The number of laminated layers 312 and the number of laminated portions are set to such an extent that the strength required for the rotor 3 can be ensured, and the first iron core pieces 311 and the second iron core pieces 312 are laminated in the axial direction Y. FIG. 18 is a plan view showing a state where the second iron core piece 312 is overlaid on the first iron core piece 311. FIG. 19 is a partial cross-sectional view obtained by cutting the stacked state in the axial direction Y as shown in FIG.
 上記のように構成された実施の形態4の回転子および回転電機によれば、上記各実施の形態と同様の効果を奏するのはもちろんのこと、挿入孔の突起部により、磁石の位置精度が向上する。また、磁石を挿入孔への固定する際の工程数の削減やコストの低減を可能となる。 According to the rotor and the rotating electrical machine of the fourth embodiment configured as described above, the magnet position accuracy is improved by the projections of the insertion holes as well as the same effects as the above-described embodiments. improves. In addition, it is possible to reduce the number of processes and costs when fixing the magnet to the insertion hole.
 尚、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Claims (12)

  1. 環状の鉄心片を軸方向に複数枚積層して形成する鉄心と、前記鉄心に形成された挿入孔と、前記挿入孔に設置された永久磁石とを備えた回転子において、
    前記鉄心は、第一鉄心片および第二鉄心片をそれぞれ複数枚積層して形成され、
    前記第一鉄心片および前記第二鉄心片は、それぞれ、
    前記挿入孔および前記永久磁石が、前記鉄心の中心方向に凸形状に形成され、
    前記挿入孔は、前記鉄心の径方向の外側の外側弧部と、前記鉄心の径方向の内側の内側弧部とを有し、
    前記挿入孔の前記鉄心の外周面側の端部と、前記鉄心の外周面との間には、ブリッジ部が形成され、
    前記ブリッジ部は、前記挿入孔の前記外側弧部に一端が連結された第一端部、前記挿入孔の前記内側弧部に一端が連結された第三端部と、前記第一端部の他端と前記第三端部の他端とを連結する第二端部とを有し、
    前記第一端部、前記第二端部、および前記第三端部は、それぞれ円弧面にて形成され、
    前記第一端部の円弧面の半径をR1と、前記第二端部の円弧面の半径をR2と、前記第三端部の円弧面の半径をR3とした場合、これらの関係は、R2>R1およびR3にて形成され、
    前記第一鉄心片および前記第二鉄心片は、
    前記ブリッジ部の前記鉄心の外周面までの距離が、前記第二鉄心片が前記第一鉄心片より短く形成される回転子。
    In a rotor including an iron core formed by laminating a plurality of annular core pieces in the axial direction, an insertion hole formed in the iron core, and a permanent magnet installed in the insertion hole,
    The iron core is formed by laminating a plurality of first iron core pieces and second iron core pieces,
    The first iron core piece and the second iron core piece are respectively
    The insertion hole and the permanent magnet are formed in a convex shape in the center direction of the iron core,
    The insertion hole has an outer arc portion on the outer side in the radial direction of the iron core, and an inner arc portion on the inner side in the radial direction of the iron core,
    Between the end of the insertion hole on the outer peripheral surface side of the iron core and the outer peripheral surface of the iron core, a bridge portion is formed,
    The bridge portion includes a first end portion having one end connected to the outer arc portion of the insertion hole, a third end portion having one end connected to the inner arc portion of the insertion hole, and a first end portion. A second end connecting the other end and the other end of the third end;
    The first end, the second end, and the third end are each formed by a circular arc surface,
    When the radius of the arc surface of the first end portion is R1, the radius of the arc surface of the second end portion is R2, and the radius of the arc surface of the third end portion is R3, these relationships are expressed as R2 > R1 and R3,
    The first iron core piece and the second iron core piece are:
    The rotor in which the distance between the bridge portion and the outer peripheral surface of the iron core is such that the second iron core piece is shorter than the first iron core piece.
  2. 前記第二端部は、半径の異なる複数の円弧面にて形成される請求項1に記載の回転子。 The rotor according to claim 1, wherein the second end portion is formed by a plurality of circular arc surfaces having different radii.
  3. 環状の鉄心片を軸方向に複数枚積層して形成する鉄心と、前記鉄心に形成された挿入孔と、前記挿入孔に設置された永久磁石とを備えた回転子において、
    前記鉄心は、第一鉄心片および第二鉄心片をそれぞれ複数枚積層して形成され、
    前記第一鉄心片および前記第二鉄心片は、それぞれ、
    前記挿入孔および前記永久磁石が、前記鉄心の中心方向に凸形状に形成され、
    前記挿入孔は、前記鉄心の径方向の外側の外側弧部と、前記鉄心の径方向の内側の内側弧部とを有し、
    前記挿入孔の前記鉄心の外周面側の端部と、前記鉄心の外周面との間には、ブリッジ部が形成され、
    前記ブリッジ部は、前記挿入孔の前記外側弧部に一端が連結された第一端部、前記挿入孔の前記内側弧部に一端が連結された第三端部と、前記第一端部の他端と前記第三端部の他端とを連結する第二端部とを有し、
    前記第一端部および前記第三端部は、それぞれ円弧面にて形成され、
    前記第二端部は、平面にて形成され、
    前記第一鉄心片および前記第二鉄心片とは、
    前記ブリッジ部の前記鉄心の外周面までの距離が、前記第二鉄心片が前記第一鉄心片より短く形成される回転子。
    In a rotor including an iron core formed by laminating a plurality of annular core pieces in the axial direction, an insertion hole formed in the iron core, and a permanent magnet installed in the insertion hole,
    The iron core is formed by laminating a plurality of first iron core pieces and second iron core pieces,
    The first iron core piece and the second iron core piece are respectively
    The insertion hole and the permanent magnet are formed in a convex shape in the center direction of the iron core,
    The insertion hole has an outer arc portion on the outer side in the radial direction of the iron core, and an inner arc portion on the inner side in the radial direction of the iron core,
    Between the end of the insertion hole on the outer peripheral surface side of the iron core and the outer peripheral surface of the iron core, a bridge portion is formed,
    The bridge portion includes a first end portion having one end connected to the outer arc portion of the insertion hole, a third end portion having one end connected to the inner arc portion of the insertion hole, and a first end portion. A second end connecting the other end and the other end of the third end;
    The first end and the third end are each formed by a circular arc surface,
    The second end is formed in a plane,
    The first iron core piece and the second iron core piece are:
    The rotor in which the distance between the bridge portion and the outer peripheral surface of the iron core is such that the second iron core piece is shorter than the first iron core piece.
  4. 前記第一鉄心片または前記第二鉄心片のいずれか一方の前記ブリッジ部は、
    前記挿入孔から前記鉄心の外周面まで連通する開口部を備えた請求項1から請求項3のいずれか1項に記載の回転子。
    The bridge portion of either the first iron core piece or the second iron core piece is:
    The rotor according to any one of claims 1 to 3, further comprising an opening that communicates from the insertion hole to an outer peripheral surface of the iron core.
  5. 前記第一鉄心片および前記第二鉄心片は、
    前記挿入孔より前記鉄心の外周面側の箇所に軸方向に連結する連結部を備えた請求項4に記載の回転子。
    The first iron core piece and the second iron core piece are:
    The rotor according to claim 4, further comprising a connecting portion that is connected in an axial direction from the insertion hole to a portion on the outer peripheral surface side of the iron core.
  6. 前記連結部は、カシメ部または接着部にて形成されている請求項5に記載の回転子。 The rotor according to claim 5, wherein the connecting part is formed by a crimping part or an adhesive part.
  7. 前記第一鉄心片および前記第二鉄心片は、
    前記挿入孔が、前記挿入孔を周方向の中央部にて分断する極ブリッジ部を備えた請求項1から請求項6のいずれか1項に記載の回転子。
    The first iron core piece and the second iron core piece are:
    The rotor according to any one of claims 1 to 6, wherein the insertion hole includes a pole bridge portion that divides the insertion hole at a central portion in a circumferential direction.
  8. 前記極ブリッジ部は、分断された前記挿入孔を連通する連通孔を備えた請求項7に記載の回転子。 The rotor according to claim 7, wherein the pole bridge portion includes a communication hole that communicates the divided insertion hole.
  9. 前記第一鉄心片および前記第二鉄心片は、
    前記挿入孔が、前記挿入孔を周方向に分断する極ブリッジ部を備え、
    前記第一鉄心片または前記第二鉄心片のいずれか一方の前記ブリッジ部が、
    前記挿入孔から前記鉄心の外周面まで連通する開口部を備え、
    前記開口部が形成された前記第一鉄心片または前記第二鉄心片のいずれか一方の前記極ブリッジ部が、分断された前記挿入孔を連通する連通孔を備えた請求項1から請求項3のいずれか1項に記載の回転子。
    The first iron core piece and the second iron core piece are:
    The insertion hole includes a pole bridge portion that divides the insertion hole in a circumferential direction,
    The bridge portion of either the first iron core piece or the second iron core piece,
    Comprising an opening communicating from the insertion hole to the outer peripheral surface of the iron core;
    The said pole bridge part of any one of said 1st iron core piece in which said opening part was formed, or said 2nd iron core piece was equipped with the communicating hole which connects the said divided insertion hole. The rotor according to any one of the above.
  10. 前記挿入孔は、前記永久磁石が設置されていないフラックスバリアを有し、
    前記フラックスバリアは、非磁性体または空間にて構成される請求項1から請求項9のいずれか1項に記載の回転子。
    The insertion hole has a flux barrier in which the permanent magnet is not installed,
    The rotor according to any one of claims 1 to 9, wherein the flux barrier is configured by a nonmagnetic material or a space.
  11. 前記挿入孔は、前記内側弧部に突起部を備えた請求項1から請求項10のいずれか1項に記載の回転子。 The rotor according to any one of claims 1 to 10, wherein the insertion hole includes a protrusion on the inner arc portion.
  12. 請求項1から請求項11のいずれか1項の回転子と、
    前記回転子と同軸上に配置された固定子とを備えた回転電機。
    The rotor according to any one of claims 1 to 11,
    A rotating electrical machine comprising the rotor and a stator arranged coaxially.
PCT/JP2017/013730 2016-05-11 2017-03-31 Rotor and rotary electric machine WO2017195498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016095393A JP2019126102A (en) 2016-05-11 2016-05-11 Rotor and rotary electric machine
JP2016-095393 2016-05-11

Publications (1)

Publication Number Publication Date
WO2017195498A1 true WO2017195498A1 (en) 2017-11-16

Family

ID=60266506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013730 WO2017195498A1 (en) 2016-05-11 2017-03-31 Rotor and rotary electric machine

Country Status (2)

Country Link
JP (1) JP2019126102A (en)
WO (1) WO2017195498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327135A (en) * 2018-12-14 2020-06-23 Tdk株式会社 Permanent magnet and rotating electric machine
US20220085673A1 (en) * 2019-01-10 2022-03-17 Johnson Electric International AG Magnetic core, electric motor having magnetic core, and mower having electric motor
CN114503397A (en) * 2019-10-11 2022-05-13 三菱电机株式会社 Rotor, motor, compressor, and air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095149A1 (en) * 2019-11-13 2021-05-20 三菱電機株式会社 Rotor, rotating electric machine and method of manufacturing rotor
JP7367552B2 (en) * 2020-02-17 2023-10-24 株式会社デンソー rotor
JP2021158842A (en) * 2020-03-27 2021-10-07 ダイキン工業株式会社 motor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318049A (en) * 1998-03-20 1999-11-16 Samsung Electronics Co Ltd Permanent magnet embedded motor
JP2002010547A (en) * 2000-06-16 2002-01-11 Yamaha Motor Co Ltd Permanent magnet rotor and manufacturing method thereof
JP2006109683A (en) * 2004-10-08 2006-04-20 Asmo Co Ltd Rotary electric machine
JP2007336671A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet rotary electric machine
EP2187503A2 (en) * 2008-11-17 2010-05-19 Traktionssysteme Austria GmbH Permanent magnet machine
JP2011004480A (en) * 2009-06-17 2011-01-06 Meidensha Corp Permanent magnet embedded rotary electric machine
JP2013255326A (en) * 2012-06-06 2013-12-19 Hitachi Appliances Inc Permanent magnet synchronous machine
JP2014054046A (en) * 2012-09-06 2014-03-20 Mitsubishi Electric Corp Stator for rotary electric machine and rotary electric machine
JP2014100048A (en) * 2012-10-19 2014-05-29 Toshiba Corp Permanent magnet type rotary electric machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11318049A (en) * 1998-03-20 1999-11-16 Samsung Electronics Co Ltd Permanent magnet embedded motor
JP2002010547A (en) * 2000-06-16 2002-01-11 Yamaha Motor Co Ltd Permanent magnet rotor and manufacturing method thereof
JP2006109683A (en) * 2004-10-08 2006-04-20 Asmo Co Ltd Rotary electric machine
JP2007336671A (en) * 2006-06-14 2007-12-27 Toshiba Mitsubishi-Electric Industrial System Corp Rotor of permanent magnet rotary electric machine
EP2187503A2 (en) * 2008-11-17 2010-05-19 Traktionssysteme Austria GmbH Permanent magnet machine
JP2011004480A (en) * 2009-06-17 2011-01-06 Meidensha Corp Permanent magnet embedded rotary electric machine
JP2013255326A (en) * 2012-06-06 2013-12-19 Hitachi Appliances Inc Permanent magnet synchronous machine
JP2014054046A (en) * 2012-09-06 2014-03-20 Mitsubishi Electric Corp Stator for rotary electric machine and rotary electric machine
JP2014100048A (en) * 2012-10-19 2014-05-29 Toshiba Corp Permanent magnet type rotary electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111327135A (en) * 2018-12-14 2020-06-23 Tdk株式会社 Permanent magnet and rotating electric machine
CN111327135B (en) * 2018-12-14 2022-12-16 Tdk株式会社 Permanent magnet and rotating electric machine
US20220085673A1 (en) * 2019-01-10 2022-03-17 Johnson Electric International AG Magnetic core, electric motor having magnetic core, and mower having electric motor
CN114503397A (en) * 2019-10-11 2022-05-13 三菱电机株式会社 Rotor, motor, compressor, and air conditioner

Also Published As

Publication number Publication date
JP2019126102A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2017195498A1 (en) Rotor and rotary electric machine
JP5234202B2 (en) Rotor and rotating electric machine using the same
JP6274475B2 (en) Rotor, rotating electric machine, and method of manufacturing rotor
JP6385588B2 (en) Rotor and rotating electric machine
JP7293371B2 (en) Rotor of rotary electric machine
EP3764520B1 (en) Rotor for dynamo-electric machine, and rotor core support structure for dynamo-electric machine
WO2017209302A1 (en) Rotor
JP4515236B2 (en) Embedded magnet type rotor
JP2018057155A (en) Rotator of rotating electrical machine
JP2005102461A (en) Permanent-magnetic electric motor
JP2014072904A (en) Dynamo-electric machine
JP5235912B2 (en) Reluctance motor
JP6112970B2 (en) Permanent magnet rotating electric machine
CN113169596B (en) Rotor and rotating electrical machine including the same
JP4644922B2 (en) Synchronous motor rotor structure
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP7224471B2 (en) Rotor of rotating electrical machine, rotating electrical machine, method for manufacturing rotor of rotating electrical machine, and method for manufacturing rotating electrical machine
WO2013111335A1 (en) Rotary electric machine
CN112636554A (en) Rotating electrical machine
JP2011193627A (en) Rotor core and rotary electric machine
JP2015162980A (en) Permanent magnet embedded rotor of rotary electric machine and rotary electric machine
WO2018138806A1 (en) Rotor and dynamo-electric machine
WO2022107713A1 (en) Motor and stator manufacturing method
WO2017175461A1 (en) Axial gap rotary electric machine
JP7224986B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP