JP2010178535A - Rotor of permanent magnet type rotary electric machine and the rotary electric machine - Google Patents

Rotor of permanent magnet type rotary electric machine and the rotary electric machine Download PDF

Info

Publication number
JP2010178535A
JP2010178535A JP2009019737A JP2009019737A JP2010178535A JP 2010178535 A JP2010178535 A JP 2010178535A JP 2009019737 A JP2009019737 A JP 2009019737A JP 2009019737 A JP2009019737 A JP 2009019737A JP 2010178535 A JP2010178535 A JP 2010178535A
Authority
JP
Japan
Prior art keywords
permanent magnet
bridge
rotor
magnetic
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009019737A
Other languages
Japanese (ja)
Other versions
JP5443778B2 (en
Inventor
Masakatsu Matsubara
正克 松原
Takashi Hanai
隆 花井
Wataru Ito
伊藤  渉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2009019737A priority Critical patent/JP5443778B2/en
Publication of JP2010178535A publication Critical patent/JP2010178535A/en
Application granted granted Critical
Publication of JP5443778B2 publication Critical patent/JP5443778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor of a permanent magnet type rotary electric machine and the rotary electric machine wherein torque characteristics can be improved by reducing the amount of leakage flux in bridge parts. <P>SOLUTION: Each escape hole 14 abutted or approached by an angle 131 of a permanent magnet 13 is formed at the end on the bridge part 12 of a magnet slot 11, and the permanent magnet 13 is disposed so that the angle 131 of the permanent magnet 13 approaches to the bridge part 12 side, and more preferably, a distance D2 between the permanent magnets 13 (distance between points P1, P2) becomes nearly equal to a width D1 of the bridge part 12, thereby limiting the amount of flux generated from the permanent magnet 13 and flowing into the bridge part 12, that is, reducing the amount of the leakage flux. Moreover, the torque characteristics are improved by using this rotor 3 for the permanent magnet type rotary electric machine. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁極形成用の永久磁石を備えた永久磁石式回転電機の回転子及びその回転電機に関する。   The present invention relates to a rotor of a permanent magnet type rotating electrical machine including a permanent magnet for forming a magnetic pole and the rotating electrical machine.

従来、図7に示すように、V字状に配置された一対の磁性体スロット(磁性体挿入孔)100を回転子鉄心101の外周部に複数形成し、それぞれに永久磁石102を挿入した回転子103を用いた永久磁石式回転電機が知られている。このような回転電機では、透磁率が高い鉄心材の幅を狭くしたブリッジ部104を一対の磁性体スロット100間に形成し、永久磁石102から生じてブリッジ部104に流入する磁束を幅狭なブリッジ部104で飽和させることにより、漏れ磁束量を抑制して回転電機のトルク特性の向上が図られている。このとき、回転時の遠心応力による破損を防止するために、磁性体スロット100の端部には、例えば円弧状の逃げ孔部105が設けられている(例えば特許文献1、2参照)。   Conventionally, as shown in FIG. 7, a pair of magnetic body slots (magnetic body insertion holes) 100 arranged in a V shape are formed on the outer periphery of the rotor core 101, and a permanent magnet 102 is inserted into each of the rotations. A permanent magnet type rotating electrical machine using a child 103 is known. In such a rotating electric machine, a bridge portion 104 in which the width of an iron core material having a high magnetic permeability is narrowed is formed between the pair of magnetic body slots 100, and the magnetic flux generated from the permanent magnet 102 and flowing into the bridge portion 104 is narrowed. By saturating at the bridge portion 104, the amount of magnetic flux leakage is suppressed, and the torque characteristics of the rotating electrical machine are improved. At this time, in order to prevent damage due to centrifugal stress during rotation, for example, an arc-shaped escape hole 105 is provided at the end of the magnetic body slot 100 (see, for example, Patent Documents 1 and 2).

特開平9−294344号公報詳細Details of JP-A-9-294344 特開2001−339919号公報JP 2001-339919 A

しかしながら、図8(図7のVIII部の拡大図)に示すように、ブリッジ部104に流入する磁束φ0は、その多くがブリッジ部104を流れる磁束φ1を形成するものの、一部は永久磁石102と磁性体スロット100との間の空隙Gを流れる磁束φ2を形成する。つまり、磁束φ0の総量が多い場合には、ブリッジ部104が磁束φ1で飽和したとしても、ブリッジ部104に沿って空隙Gを流れる磁束φ2が存在するために、ブリッジ部104における漏れ磁束量が増大してしまう。その結果、回転電機のトルク特性が低下するとともに、特に埋め込み磁石式の場合にはリラクタンストルクも低下してしまい、トルク特性がさらに低下するという問題がある。   However, as shown in FIG. 8 (enlarged view of the VIII portion in FIG. 7), most of the magnetic flux φ0 flowing into the bridge portion 104 forms the magnetic flux φ1 flowing through the bridge portion 104, but a part thereof is the permanent magnet 102. And a magnetic flux φ2 flowing through the gap G between the magnetic material slot 100 and the magnetic material slot 100 are formed. That is, when the total amount of the magnetic flux φ0 is large, even if the bridge portion 104 is saturated with the magnetic flux φ1, there is a magnetic flux φ2 flowing through the gap G along the bridge portion 104, so the amount of leakage magnetic flux in the bridge portion 104 is small. It will increase. As a result, the torque characteristics of the rotating electrical machine are reduced, and particularly in the case of the embedded magnet type, the reluctance torque is also reduced, and there is a problem that the torque characteristics are further reduced.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、ブリッジ部における漏れ磁束量を低減し、トルク特性を向上させることができる永久磁石式回転電機の回転子及びその回転電機を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to reduce the amount of magnetic flux leakage in the bridge portion and improve the torque characteristics, and the rotor of the permanent magnet type rotating electric machine and the rotating electric machine. Is to provide.

本発明の永久磁石式回転電機の回転子は、回転子鉄心と、前記回転子鉄心の外周部に周方向に一定の間隔を存して複数設けられ、外周に向かうに従って対向距離が順次大となって相互間に幅狭なブリッジ部が形成された一対の磁性体挿入孔と、前記一対の磁性体挿入孔にそれぞれ挿入された永久磁石と、前記一対の磁性体挿入孔のブリッジ部側の端部にそれぞれ設けられ、前記永久磁石の角部と当接又は近接し、その当接又は近接する点相互間の距離が前記ブリッジ部の幅と略等しくなる逃げ孔部と、を備えることを特徴とする。   The rotor of the permanent magnet type rotating electrical machine according to the present invention includes a rotor core and a plurality of outer peripheral portions of the rotor core that are provided at a constant interval in the circumferential direction, and the opposing distance increases sequentially toward the outer periphery. A pair of magnetic body insertion holes in which a narrow bridge portion is formed between each other, a permanent magnet inserted into each of the pair of magnetic body insertion holes, and a bridge portion side of the pair of magnetic body insertion holes A clearance hole provided at each end, in contact with or close to a corner of the permanent magnet, and a distance between the contact or close points being approximately equal to the width of the bridge portion. Features.

本発明の永久磁石式回転電機は、上記の回転子を用いたことを特徴とする。   The permanent magnet type rotating electrical machine of the present invention is characterized by using the above-described rotor.

本発明の回転子によれば、永久磁石の角部が当接又は近接する逃げ孔部をブリッジ部に設け、その当接又は近接する点相互間の距離とブリッジ部の幅とをほぼ等しくしたので、永久磁石から生じる磁束のうちブリッジ部に流入する磁束は、その総量が前記相互間の距離によって抑制される。これにより、ブリッジ部における漏れ磁束量が低減され、トルクに寄与する有効な磁束量の増加、つまりトルク特性を向上させることができる。   According to the rotor of the present invention, the bridge portion is provided with a relief hole portion where the corner portion of the permanent magnet abuts or approaches, and the distance between the abutting or adjacent points is substantially equal to the width of the bridge portion. Therefore, the total amount of the magnetic flux flowing into the bridge portion among the magnetic flux generated from the permanent magnet is suppressed by the distance between them. Thereby, the amount of leakage magnetic flux in the bridge portion is reduced, and an increase in effective magnetic flux amount contributing to torque, that is, torque characteristics can be improved.

また、本発明の回転電機によれば、上記した回転子を用いることにより、トルク特性を向上させることができる。   Moreover, according to the rotating electrical machine of the present invention, the torque characteristics can be improved by using the above-described rotor.

本発明の第1実施形態による永久磁石式回転電機の概略を示す図The figure which shows the outline of the permanent-magnet-type rotary electric machine by 1st Embodiment of this invention. 回転子の外周側の一部を示す図The figure which shows a part of the outer peripheral side of a rotor 逃げ孔部の概略を示す拡大図Enlarged view showing the outline of the escape hole 本発明の第2実施形態による図2相当図FIG. 2 equivalent figure by 2nd Embodiment of this invention. 本発明の第2実施形態による図3相当図FIG. 3 equivalent view according to the second embodiment of the present invention. 逃げ孔部を形成する円弧形状の中心点の範囲を示す図The figure which shows the range of the center point of the circular arc shape which forms a relief hole part 従来の構成による図2相当図FIG. 2 equivalent diagram according to the conventional configuration 従来の構成による図3相当図FIG. 3 equivalent diagram according to the conventional configuration

(第1実施形態)
以下、本発明の第1実施形態につき、図1から図3に基づいて説明する。
図1は、リラクタンス型の永久磁石式回転電機(以下、単に回転電機と称する)1の概略を示す図である。回転電機1は、固定子2及び固定子2の内周側に配置された回転子3から構成されている。固定子2は、固定子鉄心4に、複数相、例えば三相のコイルであるU相コイル5、V相コイル6、W相コイル7が巻装されている。固定子鉄心4は、例えば珪素鋼板を複数枚積層して一体的に形成された円環状をなしており、この固定子鉄心4の内周面には、各コイル5〜7を配設するための固定子スロット8が複数個所、例えば48箇所に形成されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing an outline of a reluctance type permanent magnet rotating electrical machine (hereinafter simply referred to as a rotating electrical machine) 1. The rotating electrical machine 1 includes a stator 2 and a rotor 3 disposed on the inner peripheral side of the stator 2. In the stator 2, a U-phase coil 5, a V-phase coil 6, and a W-phase coil 7, which are multiple-phase, for example, three-phase coils, are wound around a stator core 4. The stator core 4 has an annular shape that is integrally formed by laminating a plurality of silicon steel plates, for example, and the coils 5 to 7 are disposed on the inner peripheral surface of the stator core 4. The stator slots 8 are formed in a plurality of places, for example, 48 places.

回転子3は、例えば珪素鋼板をプレス加工などで打ち抜くことにより円環状に形成された鉄心材を複数積層してなる回転子鉄心9と、回転子鉄心9の内周部に設けられた回転軸10とを有している。回転子3は、その外周面と固定子2の内周面との間に僅かな隙間(エアギャップ)を隔てて回転可能に配置されている。回転軸10は、回転子鉄心9を鉄心材の積層方向に貫いており、回転子鉄心9に固定されている。   The rotor 3 includes, for example, a rotor core 9 formed by laminating a plurality of core materials formed in an annular shape by punching a silicon steel plate by pressing or the like, and a rotating shaft provided on an inner peripheral portion of the rotor core 9. 10. The rotor 3 is rotatably arranged with a slight gap (air gap) between the outer peripheral surface thereof and the inner peripheral surface of the stator 2. The rotary shaft 10 passes through the rotor core 9 in the stacking direction of the core material, and is fixed to the rotor core 9.

回転子鉄心9の外周部には、外周に向かうに従って対向距離が順次大となる一対の磁性体スロット11(本発明でいう磁性体挿入孔)が複数対、例えば八対、周方向に一定の間隔を存して設けられており、回転子鉄心9を鉄心材の積層方向(軸方向)に貫いている。これら一対の磁性体スロット11は回転子3の内周側から視てV字状に配置されており、その中心部分、即ちV字の要部分にはブリッジ部12が形成されている。ブリッジ部12は、回転子3の回転によって永久磁石13が遠心力を受けても破損しない強度を有している一方、後述する漏れ磁束の対策として、できるだけ幅狭に形成されている。これら一対の磁性体スロット11及びブリッジ部12は、ブリッジ部12の中心及び回転子3の中心点Oを通る中心線Lcに対して左右対称(線対称)に形成されている。   In the outer peripheral portion of the rotor core 9, a plurality of pairs of magnetic material slots 11 (magnetic material insertion holes referred to in the present invention) whose opposing distances sequentially increase toward the outer periphery, for example, eight pairs, constant in the circumferential direction. The rotor core 9 is penetrated in the lamination direction (axial direction) of the iron core material. The pair of magnetic material slots 11 are arranged in a V shape when viewed from the inner peripheral side of the rotor 3, and a bridge portion 12 is formed at the central portion thereof, that is, the main portion of the V shape. The bridge portion 12 has such a strength that the permanent magnet 13 is not damaged even if it receives a centrifugal force due to the rotation of the rotor 3. On the other hand, the bridge portion 12 is formed as narrow as possible as a countermeasure against leakage magnetic flux described later. The pair of magnetic material slots 11 and the bridge portion 12 are formed symmetrically (line symmetric) with respect to a center line Lc passing through the center of the bridge portion 12 and the center point O of the rotor 3.

図2は、回転子鉄心9の外周側の一部を示す図(図1のII部の拡大図)である。磁性体スロット11には、例えばフェライト磁石、或いはネオジムなどの希土類元素を含む希土類磁石などで形成された永久磁石13がそれぞれ挿入されている。永久磁石13は、一対の磁性体スロット11では同じ極(図2ではN極)が回転子3の外周側に位置するように配置されているとともに、周方向に隣接する磁性体スロット11では外周側に位置する極性が互いに逆になるように配置されている。これにより、回転子3の周方向には、互いに極性の異なる磁極が交互に形成されている(図1参照)。   FIG. 2 is a diagram (an enlarged view of a portion II in FIG. 1) illustrating a part on the outer peripheral side of the rotor core 9. For example, a ferrite magnet or a permanent magnet 13 formed of a rare earth magnet containing a rare earth element such as neodymium is inserted into the magnetic material slot 11. The permanent magnets 13 are arranged so that the same pole (N pole in FIG. 2) is located on the outer peripheral side of the rotor 3 in the pair of magnetic slots 11, and the outer circumference is in the magnetic slots 11 adjacent in the circumferential direction. It arrange | positions so that the polarity located in the side may become mutually opposite. As a result, magnetic poles having different polarities are alternately formed in the circumferential direction of the rotor 3 (see FIG. 1).

このような構成を備えた回転子3には、磁石モータとして考えた場合に、磁束が通り難い磁気的凹部(d軸)と磁束が通り易い磁気的凸部(q軸)とが形成され、d軸では磁気抵抗が高く、q軸では磁気抵抗が低くなる。この磁気抵抗の変化によってリラクタンストルクが発生するとともに、永久磁石13と固定子2の磁極との間の磁気吸引力および磁気反発力によってもトルクが発生し、回転子3は回転する。   In the rotor 3 having such a configuration, when considered as a magnet motor, a magnetic concave portion (d axis) in which magnetic flux does not easily pass and a magnetic convex portion (q axis) in which magnetic flux easily passes are formed, The d-axis has a high magnetic resistance, and the q-axis has a low magnetic resistance. A reluctance torque is generated by this change in magnetic resistance, and torque is also generated by a magnetic attractive force and a magnetic repulsive force between the permanent magnet 13 and the magnetic poles of the stator 2, so that the rotor 3 rotates.

ところで、回転電機1の回転の高速化に伴い、磁性体スロット11に加わる永久磁石13による遠心応力も大きくなることから、磁性体スロット11の端部には遠心応力を緩和するための円弧状の逃げ孔部14が設けられている。   By the way, as the rotation speed of the rotating electrical machine 1 increases, the centrifugal stress due to the permanent magnet 13 applied to the magnetic material slot 11 also increases, so that the end of the magnetic material slot 11 has an arc shape for relaxing the centrifugal stress. An escape hole 14 is provided.

図3は、ブリッジ部12側に形成された逃げ孔部14の概略を示す拡大図である。逃げ孔部14は、その外縁が円弧状に形成され、外縁上の点P1、P2において永久磁石13の角部131と当接又は近接している。ここで、「近接」とは、永久磁石13の角部131と逃げ孔部14の外縁との間の隙間が極めて小である状態を意味している。尚、この逃げ孔部14は、略直方体に形成された永久磁石13を磁性体スロット11に挿入するとき、或いは回転時に応力が加わったときなど、その角部131が破損しないように保護する機能も兼ね備えている。   FIG. 3 is an enlarged view showing an outline of the escape hole portion 14 formed on the bridge portion 12 side. The escape hole portion 14 has an outer edge formed in an arc shape, and is in contact with or close to the corner portion 131 of the permanent magnet 13 at points P1 and P2 on the outer edge. Here, “proximity” means a state in which the gap between the corner portion 131 of the permanent magnet 13 and the outer edge of the escape hole portion 14 is extremely small. The escape hole portion 14 protects the corner portion 131 from being damaged when the permanent magnet 13 formed in a substantially rectangular parallelepiped is inserted into the magnetic body slot 11 or when stress is applied during rotation. Also has.

さて、図8に示すように、永久磁石102(13)から生じてブリッジ部104(12)に流入する磁束量がブリッジ部104(12)を飽和させるのに必要な磁束量よりも多い場合には、永久磁石102(13)と磁性体スロット100(11)との間の空隙Gを流れる磁束φ2が発生し、漏れ磁束量の増加、即ち回転に有効な磁束量の低下を招くことになる(尚、括弧内の数字は、本実施形態における符号を示している)。   As shown in FIG. 8, when the amount of magnetic flux generated from the permanent magnet 102 (13) and flowing into the bridge portion 104 (12) is larger than the amount of magnetic flux required to saturate the bridge portion 104 (12). Generates a magnetic flux φ2 flowing through the gap G between the permanent magnet 102 (13) and the magnetic material slot 100 (11), leading to an increase in the amount of leakage magnetic flux, that is, a decrease in the amount of magnetic flux effective for rotation. (The numbers in parentheses indicate the symbols in the present embodiment).

そこで、本実施形態の回転子3は、逃げ孔部14の形状を工夫することにより、ブリッジ部12に流入する磁束の総量を制限するように構成されている。
逃げ孔部14は、その外縁が円弧状に形成され、外縁上の点P1及び点P2において永久磁石13の角部131が当接(又は近接)している。このとき、点P1及びP2における接線L1、L2は、中心線Lcとほぼ平行となっている。即ち、点P1及び点P2は、逃げ孔部14の外縁上において、最もブリッジ部12の中心線Lc側に位置する点である。換言すると、永久磁石13は、逃げ孔部14において、点P1と点P2と間の距離(点P1、P2相互間の距離)D2が最も短くなる状態、つまり、最も永久磁石13間の距離D2が短くなる状態に配置されている。尚、図3には、従来構成の永久磁石102の位置を二点鎖線にて示している。
Therefore, the rotor 3 of the present embodiment is configured to limit the total amount of magnetic flux flowing into the bridge portion 12 by devising the shape of the escape hole portion 14.
The escape hole portion 14 has an outer edge formed in an arc shape, and the corner portion 131 of the permanent magnet 13 is in contact (or close proximity) at points P1 and P2 on the outer edge. At this time, the tangent lines L1 and L2 at the points P1 and P2 are substantially parallel to the center line Lc. That is, the points P <b> 1 and P <b> 2 are points that are closest to the center line Lc side of the bridge portion 12 on the outer edge of the escape hole portion 14. In other words, the permanent magnet 13 is in a state in which the distance D2 between the points P1 and P2 (distance between the points P1 and P2) D2 is the shortest in the escape hole 14, that is, the distance D2 between the permanent magnets 13 most. Are arranged in a state of shortening. In FIG. 3, the position of the permanent magnet 102 having the conventional configuration is indicated by a two-dot chain line.

このように、点P1及び点P2間の距離、即ち一対の永久磁石13間の距離D2が短くなる状態に磁束が通り難い永久磁石13を配置することにより、磁路の断面積(本実施形態では、点P1と点P2とを通り、回転軸10に平行な面で回転子鉄心3を切断した場合の断面積に相当)が小さくなり、その結果、永久磁石13間における磁気抵抗が高くなる。つまり、ブリッジ部12に流入する磁束の量は、永久磁石13間の距離Dにより制限される。これにより、空隙Gに流出する磁束量が低減される。尚、本実施形態では、「永久磁石13間の距離」を、「一対の磁性体スロット11に挿入された一対の永久磁石13の角部131間の距離」として定義しており、点P1、P2相互間の距離と永久磁石間の距離とがほぼ一致している。   In this way, by arranging the permanent magnets 13 in which the magnetic flux is difficult to pass in a state where the distance between the points P1 and P2, that is, the distance D2 between the pair of permanent magnets 13 is short, the cross-sectional area of the magnetic path (this embodiment) In this case, the cross-sectional area when the rotor core 3 is cut by a plane passing through the points P1 and P2 and parallel to the rotary shaft 10 is reduced, and as a result, the magnetic resistance between the permanent magnets 13 is increased. . That is, the amount of magnetic flux flowing into the bridge portion 12 is limited by the distance D between the permanent magnets 13. Thereby, the amount of magnetic flux flowing out into the gap G is reduced. In the present embodiment, the “distance between the permanent magnets 13” is defined as “the distance between the corner portions 131 of the pair of permanent magnets 13 inserted into the pair of magnetic body slots 11”, and the points P1, The distance between P2 and the distance between permanent magnets are almost the same.

このような回転子3では、永久磁石13間の距離D2が従来構成(図8参照)の距離D0よりも短いものの、永久磁石13間の距離D2とブリッジ部12の幅D1とはほぼ等しくなるようにしているため、逃げ孔部14を形成した場合であっても、回転時に破損しないだけの強度を持たせることができる。   In such a rotor 3, although the distance D2 between the permanent magnets 13 is shorter than the distance D0 of the conventional configuration (see FIG. 8), the distance D2 between the permanent magnets 13 and the width D1 of the bridge portion 12 are substantially equal. Thus, even when the escape hole portion 14 is formed, the strength sufficient to prevent damage during rotation can be provided.

また、永久磁石13間の距離D2を短くすることにより、永久磁石13の長さW1(図2参照)を、従来構成の長さW0に対してΔWだけ長くすること可能となる。これにより、永久磁石13の量が増加し、磁石トルクに寄与する磁束量を増加させることが可能となる。この場合、図2に示すように回転子鉄心9の周方向に形成される各磁極の幅D3は従来構成と同じであることから、固定子2側に大きな設計変更を加える必要はない。   Further, by shortening the distance D2 between the permanent magnets 13, the length W1 (see FIG. 2) of the permanent magnet 13 can be increased by ΔW with respect to the length W0 of the conventional configuration. Thereby, the quantity of the permanent magnet 13 increases and it becomes possible to increase the magnetic flux amount which contributes to magnet torque. In this case, as shown in FIG. 2, the width D3 of each magnetic pole formed in the circumferential direction of the rotor core 9 is the same as that of the conventional configuration, so that it is not necessary to make a large design change on the stator 2 side.

以上説明した第1実施形態による回転子3及びこの回転子3を用いた回転電機1によれば次のような効果を得ることができる。
磁性体スロット11のブリッジ部12側の端部に逃げ孔部14を設け、永久磁石13の角部131が当接(又は近接)するように配置したので、永久磁石13間の距離D2が短くなり、永久磁石13から生じる磁束のうち、ブリッジ部12に流入し、回転に寄与しない磁束(漏れ磁束)の量を抑制することが可能となる。これにより、ブリッジ部12における漏れ磁束量を低減することができ、トルク特性を向上させることができる。
According to the rotor 3 and the rotary electric machine 1 using the rotor 3 according to the first embodiment described above, the following effects can be obtained.
Since the escape hole 14 is provided at the end of the magnetic material slot 11 on the bridge portion 12 side and the corner 131 of the permanent magnet 13 is in contact (or close), the distance D2 between the permanent magnets 13 is short. Thus, the amount of magnetic flux (leakage magnetic flux) that flows into the bridge portion 12 and does not contribute to rotation among the magnetic flux generated from the permanent magnet 13 can be suppressed. Thereby, the amount of leakage magnetic flux in the bridge part 12 can be reduced, and a torque characteristic can be improved.

磁性体スロット11の端部に円弧状の逃げ孔部14を形成したので、回転時の遠心応力により磁性体スロット11が破損するおそれを低減することができる。
永久磁石13の角部131が当接(又は近接)する点P1及び点P2における接線L1及びL2をブリッジ部12の中心線Lcとほぼ平行になるようにしたので、永久磁石13間の距離D2が最も短くなる状態に永久磁石13を配置することが可能となり、d軸インダクタンスが小さくなることから、リラクタンストルクを大きくすることができる。
Since the arc-shaped escape hole 14 is formed at the end of the magnetic body slot 11, the possibility that the magnetic body slot 11 is damaged due to centrifugal stress during rotation can be reduced.
Since the tangents L1 and L2 at the point P1 and the point P2 at which the corner portion 131 of the permanent magnet 13 abuts (or closes) are made substantially parallel to the center line Lc of the bridge portion 12, the distance D2 between the permanent magnets 13 It is possible to arrange the permanent magnet 13 in the state where the current is the shortest, and the d-axis inductance is reduced, so that the reluctance torque can be increased.

永久磁石13間の距離D2、即ち逃げ孔部14間の最小幅は、ブリッジ部12の幅D1とほぼ等しいので、逃げ孔部14間に位置する鉄心材に十分な強度を与えることができ、回転時の遠心応力により逃げ孔部14の近傍が破損するおそれを低減することができる。
永久磁石13の長さをΔWだけ長くすることができるので、永久磁石13の量が増加、即ちトルクに寄与する磁束量が増加することから、回転電機1のトルク特性の向上を図ることができる。
上述した効果を奏する回転子3を用いたので、トルク特性が向上した回転電機1を得ることができる。また、永久磁石13が形成する磁極の幅D3は従来構成と同じであるので、大きな設計変更を加えることなく、トルク特性が向上した回転電機1を得ることができる。
Since the distance D2 between the permanent magnets 13, that is, the minimum width between the escape holes 14 is substantially equal to the width D1 of the bridge part 12, it is possible to give sufficient strength to the iron core material positioned between the escape holes 14, The possibility that the vicinity of the escape hole 14 may be damaged due to the centrifugal stress during rotation can be reduced.
Since the length of the permanent magnet 13 can be increased by ΔW, the amount of the permanent magnet 13 increases, that is, the amount of magnetic flux contributing to the torque increases, so that the torque characteristics of the rotating electrical machine 1 can be improved. .
Since the rotor 3 having the above-described effects is used, the rotating electrical machine 1 with improved torque characteristics can be obtained. Moreover, since the width D3 of the magnetic pole formed by the permanent magnet 13 is the same as that of the conventional configuration, the rotating electrical machine 1 with improved torque characteristics can be obtained without making a major design change.

逃げ孔部14の外縁を円弧状に形成したので、鉄心材の製造時(打ち抜き時)には標準の金型を用いることができ、製造後の品質管理工程には円弧部分の曲率の検査作業が軽減される。また、逃げ孔部14を設けたので、永久磁石13の角部131などを面取り(研削加工)する必要が無い。従って、製造コストを低減することができる。   Since the outer edge of the escape hole portion 14 is formed in an arc shape, a standard mold can be used when manufacturing the iron core material (at the time of punching), and inspecting the curvature of the arc portion in the quality control process after manufacturing. Is reduced. Further, since the escape hole 14 is provided, it is not necessary to chamfer (grind) the corner 131 of the permanent magnet 13 or the like. Therefore, the manufacturing cost can be reduced.

(第2実施形態)
以下、本発明の第2実施形態の回転子を図4から図6に基づいて説明する。第2実施形態の回転子は、永久磁石を配置する角度を変更することにより永久磁石間の距離を短くしている点において第1実施形態の回転子と異なっている。尚、第1実施形態による回転子と実質的に同一の構成に対しては同一の符号を付して説明を省略する。
(Second Embodiment)
Hereinafter, a rotor according to a second embodiment of the present invention will be described with reference to FIGS. The rotor of the second embodiment differs from the rotor of the first embodiment in that the distance between the permanent magnets is shortened by changing the angle at which the permanent magnets are arranged. In addition, the same code | symbol is attached | subjected to the structure substantially the same as the rotor by 1st Embodiment, and description is abbreviate | omitted.

第2実施形態の回転子3は、図5(図4のV部の拡大図)に示すように、従来構成(図7参照)と同じ長さ寸法W0を有する永久磁石13を、永久磁石13のブリッジ部12と反対側の端部近傍の点P5及び点P6(図4、図7参照)を支点として、ブリッジ部12側の角部131を回転子3の外周側にα°だけ回転させた構成となっている。つまり、従来構成では点P7及び点P8に位置していた永久磁石102の角が、それぞれ点P3及びP4の位置に移動している。   As shown in FIG. 5 (enlarged view of portion V in FIG. 4), the rotor 3 of the second embodiment includes a permanent magnet 13 having the same length dimension W0 as the conventional configuration (see FIG. 7). Using the points P5 and P6 (see FIGS. 4 and 7) in the vicinity of the end opposite to the bridge portion 12 as a fulcrum, the corner portion 131 on the bridge portion 12 side is rotated by α ° toward the outer peripheral side of the rotor 3. It has become the composition. In other words, the corners of the permanent magnet 102 located at the points P7 and P8 in the conventional configuration have moved to the positions of the points P3 and P4, respectively.

磁性体スロット11のブリッジ部12側の端部には、第1実施形態と同様に逃げ孔部14が設けられており、永久磁石13の角部131は、点P3及び点P4においてこの逃げ孔部14の外縁に当接(又は近接)している。このとき、点P3及び点P4における接線L3及び接線L4は、中心線Lcと概ね平行であるものの僅かにずれており、ブリッジ部12及び回転子3の中心点O(図5には図示せず)を通っている。   A clearance hole portion 14 is provided at the end of the magnetic material slot 11 on the bridge portion 12 side in the same manner as in the first embodiment, and the corner portion 131 of the permanent magnet 13 is located at the point P3 and the point P4. It is in contact with (or close to) the outer edge of the portion 14. At this time, the tangent line L3 and the tangent line L4 at the point P3 and the point P4 are substantially parallel to the center line Lc, but slightly shifted, and the center point O of the bridge portion 12 and the rotor 3 (not shown in FIG. 5). )

このように、永久磁石13の長さを従来の永久磁石102に対して変更しなくとも、永久磁石13の配置(角度)を変更することにより、点P3、P4相互間の距離、即ち永久磁石13間の距離D4を、従来構成の距離D0よりも短く、且つブリッジ部12の幅D1とほぼ等しくすることが可能となる。   Thus, even if the length of the permanent magnet 13 is not changed with respect to the conventional permanent magnet 102, the distance between the points P3 and P4, that is, the permanent magnet can be obtained by changing the arrangement (angle) of the permanent magnet 13. It is possible to make the distance D4 between 13 shorter than the distance D0 of the conventional configuration and substantially equal to the width D1 of the bridge portion 12.

ところで、接線L3及びL4が中心線Lcとのずれが大きくなると、永久磁石13間の距離D4とブリッジ部12の幅D1との差が大きくなり、ブリッジ部12に流入する磁束量を抑制することができなくなるおそれがある。そこで、本実施形態では、逃げ孔部14を形成する円弧形状の中心点について、その位置を以下のように制限している。   By the way, when the deviation between the tangent lines L3 and L4 and the center line Lc increases, the difference between the distance D4 between the permanent magnets 13 and the width D1 of the bridge portion 12 increases, and the amount of magnetic flux flowing into the bridge portion 12 is suppressed. There is a risk that it will not be possible. Therefore, in the present embodiment, the position of the arc-shaped center point forming the escape hole portion 14 is limited as follows.

図6は、逃げ孔部14の外縁を形成する円弧の中心点の集合である移動範囲(中心点の軌跡)Cを示す図である。ブリッジ部12の中心線Lcに垂直で、点P3及びP4を通る線L5と永久磁石13の長辺とがなす角をθ°とすると、上記円弧の中心点は、点P3或いは点P4を中心とした円周上にあり、且つ線L5に対して±1/2θ°の範囲にある円弧上、つまり移動範囲C上に位置するように構成されている。これにより、永久磁石13の角部131が接する点P3及びP4の位置が、逃げ孔部14の外縁において、ブリッジ部12の近傍に位置するようになる。   FIG. 6 is a diagram showing a moving range (center point trajectory) C that is a set of center points of arcs forming the outer edge of the escape hole portion 14. When the angle between the line L5 passing through the points P3 and P4 and the long side of the permanent magnet 13 perpendicular to the center line Lc of the bridge portion 12 and the long side of the permanent magnet 13 is θ °, the center point of the arc is centered on the point P3 or the point P4. And is located on a circular arc in a range of ± 1 / 2θ ° with respect to the line L5, that is, on the movement range C. Thereby, the positions of the points P3 and P4 where the corner portion 131 of the permanent magnet 13 contacts are positioned in the vicinity of the bridge portion 12 on the outer edge of the escape hole portion 14.

逃げ孔部14の外縁を形成する円弧の中心点を、上記のようにその位置を制限することにより、点P3及び点P4間の距離D4、即ち永久磁石13間の距離D4を極力短くすることが可能となる。このとき、距離D4とブリッジ部12の幅D1とをほぼ等しくすると、より望ましい配置になる。尚、本実施形態では、円弧形状の中心点は、線L5上の点C0(線L5と移動範囲Cとの交点)より僅かに図示下方の位置に設定されており、点P3及び点P4における接線L3及びL4が回転子3の中心点Oを通っている。   By limiting the position of the center point of the arc that forms the outer edge of the escape hole 14 as described above, the distance D4 between the points P3 and P4, that is, the distance D4 between the permanent magnets 13 is made as short as possible. Is possible. At this time, if the distance D4 and the width D1 of the bridge portion 12 are substantially equal, a more desirable arrangement is obtained. In the present embodiment, the center point of the arc shape is set to a position slightly lower than the point C0 (intersection of the line L5 and the movement range C) on the line L5, and at the points P3 and P4. Tangent lines L3 and L4 pass through the center point O of the rotor 3.

従って、第2実施形態においても、ブリッジ部12における漏れ磁束量を抑制できるなど、第1実施形態と同様の効果を得ることができる。特に、第2実施形態では、逃げ孔部14の外縁を形成する円弧の中心を円弧L6上に配置したので、永久磁石13間の距離D4がブリッジ部12の幅D1とほぼ等しい範囲に制限され、ブリッジ部12に流入する磁束の総量を効果的に抑制することができる。   Therefore, also in 2nd Embodiment, the effect similar to 1st Embodiment can be acquired, such as the amount of leakage magnetic flux in the bridge part 12 being restrained. In particular, in the second embodiment, since the center of the arc that forms the outer edge of the escape hole portion 14 is disposed on the arc L6, the distance D4 between the permanent magnets 13 is limited to a range substantially equal to the width D1 of the bridge portion 12. The total amount of magnetic flux flowing into the bridge portion 12 can be effectively suppressed.

また、永久磁石13の大きさを変更していないので、既存の製品と部材の共通化を図ることが可能となり、製造コストを低減することができる。勿論、第2実施形態による回転子3を用いることにより、トルク特性が向上した回転電機1を得ることができる。   In addition, since the size of the permanent magnet 13 is not changed, it is possible to share existing products and members, and the manufacturing cost can be reduced. Of course, the rotary electric machine 1 with improved torque characteristics can be obtained by using the rotor 3 according to the second embodiment.

(その他の実施形態)
本発明は上記し且つ図面に示した実施形態に限定されず、次のような変形、拡張が可能である。
磁性体スロットのブリッジ部とは反対側(回転子鉄心の外周側)の端部に幅狭な外周側ブリッジ部を形成し、外周側ブリッジ部にも本発明を適用してもよい。
逃げ孔部の外縁は、その全域に渡って同一中心点の円弧で形成する必要はなく、複数の円弧を組み合わせて形成してもよく、円弧に限らず曲線で形成してもよい。
第2実施形態で説明した逃げ孔部の円弧形状の位置関係の制限(中心点を移動範囲C上に設ける)を、第1実施形態による逃げ孔部に適用してもよい。
(Other embodiments)
The present invention is not limited to the embodiment described above and shown in the drawings, and the following modifications and expansions are possible.
A narrow outer peripheral bridge portion may be formed at an end of the magnetic slot opposite to the bridge portion (the outer peripheral side of the rotor core), and the present invention may be applied to the outer peripheral bridge portion.
The outer edge of the escape hole portion does not need to be formed by an arc having the same center point over the entire region, and may be formed by combining a plurality of arcs, or may be formed by a curve instead of the arc.
The restriction on the arc-shaped positional relationship of the escape holes described in the second embodiment (the center point is provided on the movement range C) may be applied to the escape holes according to the first embodiment.

図面中、1は永久磁石式回転電機、3は回転子、9は回転子鉄心、11は磁性体スロット(磁性体挿入孔)、12はブリッジ部、13は永久磁石、14は逃げ孔部、131は角部、D2、D4は点相互間の距離(角部間の距離)、D1はブリッジ部の幅、L1、L2、L3、L4は接線、Lcは中心線、P1、P2、P3、P4は点を示す。   In the drawings, 1 is a permanent magnet type rotating electrical machine, 3 is a rotor, 9 is a rotor core, 11 is a magnetic material slot (magnetic material insertion hole), 12 is a bridge portion, 13 is a permanent magnet, 14 is a relief hole portion, 131 is a corner, D2 and D4 are distances between points (distance between corners), D1 is the width of the bridge, L1, L2, L3, and L4 are tangents, Lc is a center line, P1, P2, P3, P4 represents a point.

Claims (3)

回転子鉄心と、
前記回転子鉄心の外周部に周方向に一定の間隔を存して複数設けられ、外周に向かうに従って対向距離が順次大となって相互間に幅狭なブリッジ部が形成された一対の磁性体挿入孔と、
前記一対の磁性体挿入孔にそれぞれ挿入された永久磁石と、
前記一対の磁性体挿入孔のブリッジ部側の端部にそれぞれ設けられ、前記永久磁石の角部と当接又は近接し、その当接又は近接する点相互間の距離が前記ブリッジ部の幅と略等しくなる逃げ孔部と、
を備えることを特徴とする永久磁石式回転電機の回転子。
The rotor core,
A pair of magnetic bodies in which a plurality of circumferentially spaced outer circumferential portions of the rotor core are provided with a constant interval in the circumferential direction, and the opposing distances are sequentially increased toward the outer periphery to form a narrow bridge portion therebetween. An insertion hole,
Permanent magnets respectively inserted into the pair of magnetic body insertion holes;
Provided respectively at the ends of the pair of magnetic body insertion holes on the bridge part side, abutting or approaching the corners of the permanent magnet, and the distance between the abutting or approaching points is the width of the bridge part. A substantially equal relief hole,
A rotor for a permanent magnet type rotating electrical machine.
前記逃げ孔部は、その外縁が円弧状に形成され、前記永久磁石の角部が当接又は近接する点における接線が前記ブリッジ部の中心線と略平行になっていることを特徴とする請求項1記載の永久磁石式回転電機の回転子。   The escape hole portion has an outer edge formed in an arc shape, and a tangent line at a point where a corner portion of the permanent magnet abuts or approaches is substantially parallel to a center line of the bridge portion. Item 10. A rotor of a permanent magnet type rotating electric machine according to Item 1. 請求項1または2記載の回転子を用いたことを特徴とする永久磁石式回転電機。   A permanent magnet type rotating electrical machine using the rotor according to claim 1.
JP2009019737A 2009-01-30 2009-01-30 Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof Active JP5443778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019737A JP5443778B2 (en) 2009-01-30 2009-01-30 Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019737A JP5443778B2 (en) 2009-01-30 2009-01-30 Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof

Publications (2)

Publication Number Publication Date
JP2010178535A true JP2010178535A (en) 2010-08-12
JP5443778B2 JP5443778B2 (en) 2014-03-19

Family

ID=42708926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019737A Active JP5443778B2 (en) 2009-01-30 2009-01-30 Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof

Country Status (1)

Country Link
JP (1) JP5443778B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629788A (en) * 2011-02-03 2012-08-08 丰田自动车株式会社 Rotor for rotary electric machine
JP5005830B1 (en) * 2011-11-30 2012-08-22 株式会社安川電機 Rotor core, rotor and rotating electric machine
WO2013051617A1 (en) * 2011-10-04 2013-04-11 日立オートモティブシステムズ株式会社 Permanent magnet type rotating electrical machine and vehicle equipped with permanent magnet type rotating electrical machine
JP2013116036A (en) * 2012-05-22 2013-06-10 Yaskawa Electric Corp Rotor core, rotor, and rotary electric machine
CN103166350A (en) * 2011-12-09 2013-06-19 通用汽车环球科技运作有限责任公司 Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
JP2014060835A (en) * 2012-09-14 2014-04-03 Denso Corp Rotor of rotary electric machine
JP2014100048A (en) * 2012-10-19 2014-05-29 Toshiba Corp Permanent magnet type rotary electric machine
JP2014197970A (en) * 2013-03-29 2014-10-16 株式会社小松製作所 Motor
WO2014178227A1 (en) * 2013-05-01 2014-11-06 日立オートモティブシステムズ株式会社 Rotary electrical machine, and rotor for rotary electrical machine
US8937418B2 (en) 2011-11-08 2015-01-20 Kabushiki Kaisha Yaskawa Denki Rotor core, rotor, and rotating electric machine
JP2015097437A (en) * 2013-11-15 2015-05-21 株式会社デンソー Rotor for rotary electric machine
US10211688B2 (en) 2014-06-06 2019-02-19 Komatsu Ltd. Electric machine
WO2019038958A1 (en) * 2017-08-22 2019-02-28 株式会社 東芝 Rotary electric machine
CN111463937A (en) * 2019-01-21 2020-07-28 本田技研工业株式会社 Rotor of rotating electric machine and rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143788A (en) * 2001-10-31 2003-05-16 Meidensha Corp Demagnetization preventive structure of embedded- magnet synchronous motor
JP2005117740A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Laminated core structure of rotary electric machine and manufacturing method thereof
JP2006311730A (en) * 2005-04-28 2006-11-09 Toyota Motor Corp Rotor
JP2008211934A (en) * 2007-02-27 2008-09-11 Toyota Industries Corp Rotating electrical machine and rotator therefor
WO2008123086A1 (en) * 2007-03-20 2008-10-16 Kabushiki Kaisha Yaskawa Denki Electromagnetic steel plate former and electromagnetic steel plate laminate, and permanent magnet type synchronous rotation motor rotor and permanent magnet type synchronous rotation motor having the same, and, vehicle, lift, fluid machine and working machine using the rotation motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003143788A (en) * 2001-10-31 2003-05-16 Meidensha Corp Demagnetization preventive structure of embedded- magnet synchronous motor
JP2005117740A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Laminated core structure of rotary electric machine and manufacturing method thereof
JP2006311730A (en) * 2005-04-28 2006-11-09 Toyota Motor Corp Rotor
JP2008211934A (en) * 2007-02-27 2008-09-11 Toyota Industries Corp Rotating electrical machine and rotator therefor
WO2008123086A1 (en) * 2007-03-20 2008-10-16 Kabushiki Kaisha Yaskawa Denki Electromagnetic steel plate former and electromagnetic steel plate laminate, and permanent magnet type synchronous rotation motor rotor and permanent magnet type synchronous rotation motor having the same, and, vehicle, lift, fluid machine and working machine using the rotation motor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803394B2 (en) 2011-02-03 2014-08-12 Toyota Jidosha Kabushiki Kaisha Rotor for rotary electric machine having a magnetic flux-restraining hole
JP2012165481A (en) * 2011-02-03 2012-08-30 Aisin Aw Co Ltd Rotor for rotary electric machine
CN102629788A (en) * 2011-02-03 2012-08-08 丰田自动车株式会社 Rotor for rotary electric machine
WO2013051617A1 (en) * 2011-10-04 2013-04-11 日立オートモティブシステムズ株式会社 Permanent magnet type rotating electrical machine and vehicle equipped with permanent magnet type rotating electrical machine
JP2013081302A (en) * 2011-10-04 2013-05-02 Hitachi Automotive Systems Ltd Permanent magnet type rotary electric machine and vehicle having the same
CN103858318A (en) * 2011-10-04 2014-06-11 日立汽车系统株式会社 Permanent magnet type rotating electrical machine and vehicle equipped with permanent magnet type rotating electrical machine
US8937418B2 (en) 2011-11-08 2015-01-20 Kabushiki Kaisha Yaskawa Denki Rotor core, rotor, and rotating electric machine
US9077224B2 (en) 2011-11-08 2015-07-07 Kabushiki Kaisha Yaskawa Denki Rotor core, rotor, and rotating electric machine
JP5005830B1 (en) * 2011-11-30 2012-08-22 株式会社安川電機 Rotor core, rotor and rotating electric machine
CN103166350A (en) * 2011-12-09 2013-06-19 通用汽车环球科技运作有限责任公司 Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
US8917005B2 (en) 2011-12-09 2014-12-23 GM Global Technology Operations LLC Rotor barrier shaping for demagnetization mitigation in an internal permanent magnet machine
JP2013116036A (en) * 2012-05-22 2013-06-10 Yaskawa Electric Corp Rotor core, rotor, and rotary electric machine
JP2014060835A (en) * 2012-09-14 2014-04-03 Denso Corp Rotor of rotary electric machine
JP2014100048A (en) * 2012-10-19 2014-05-29 Toshiba Corp Permanent magnet type rotary electric machine
JP2014197970A (en) * 2013-03-29 2014-10-16 株式会社小松製作所 Motor
WO2014178227A1 (en) * 2013-05-01 2014-11-06 日立オートモティブシステムズ株式会社 Rotary electrical machine, and rotor for rotary electrical machine
US10511198B2 (en) 2013-05-01 2019-12-17 Hitachi Automotive Systems, Ltd. Rotary electrical machine, and rotor for rotary electrical machine
EP2993761A4 (en) * 2013-05-01 2016-12-28 Hitachi Automotive Systems Ltd Rotary electrical machine, and rotor for rotary electrical machine
JPWO2014178227A1 (en) * 2013-05-01 2017-02-23 日立オートモティブシステムズ株式会社 Rotating electric machine and rotating electric machine rotor
US9793770B2 (en) 2013-11-15 2017-10-17 Denso Corporation Permanent magnets rotor for rotating electric machine
JP2015097437A (en) * 2013-11-15 2015-05-21 株式会社デンソー Rotor for rotary electric machine
US10211688B2 (en) 2014-06-06 2019-02-19 Komatsu Ltd. Electric machine
WO2019038958A1 (en) * 2017-08-22 2019-02-28 株式会社 東芝 Rotary electric machine
JP2019041450A (en) * 2017-08-22 2019-03-14 株式会社東芝 Rotary electric machine
CN111463937A (en) * 2019-01-21 2020-07-28 本田技研工业株式会社 Rotor of rotating electric machine and rotating electric machine
CN111463937B (en) * 2019-01-21 2022-06-07 本田技研工业株式会社 Rotor of rotating electric machine and rotating electric machine

Also Published As

Publication number Publication date
JP5443778B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5443778B2 (en) Rotor of permanent magnet type rotating electric machine and rotating electric machine thereof
JP5353917B2 (en) Rotating machine rotor
JP6806352B2 (en) Manufacturing method of rotary electric machine and rotor core
US9172279B2 (en) Automotive embedded permanent magnet rotary electric machine
JP5813254B2 (en) Permanent magnet rotating electric machine
JP5757281B2 (en) Rotating electrical machine rotor
JP2012161226A (en) Rotor for rotary electric machine
JP5542423B2 (en) Rotating electric machine rotor and rotating electric machine
JP2008206308A (en) Permanent-magnet rotating electric machine
US20140210296A1 (en) Rotor for permanent magnet type motor, method of manufacturing rotor for permanent magnet type motor, and permanent magnet type motor
EP3457534A1 (en) Rotating electric machine
WO2014155438A1 (en) Permanent magnet reluctance dynamo-electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP5936060B2 (en) Rotating electrical machine rotor
JP2008312318A (en) Rotor of rotary electric machine, and rotary electric machine
WO2016147946A1 (en) Rotor for rotating electrical machine
JP6357859B2 (en) Permanent magnet embedded rotary electric machine
WO2020100675A1 (en) Rotor, and rotary electric machine provided with same
JP6237412B2 (en) Rotor structure of embedded magnet type rotating electrical machine
JP2012044789A (en) Rotary electric machine and method for manufacturing the same
JP4862556B2 (en) Field element and rotating electric machine
JP6949283B1 (en) Synchronous motor
JP2014161205A (en) Interior magnet type rotating electrical machine
JP6390212B2 (en) Permanent magnet embedded rotary electric machine
JP6338139B2 (en) Permanent magnet embedded motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5443778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350