JP2005317463A - Material and terminal for high frequency signal transmission - Google Patents

Material and terminal for high frequency signal transmission Download PDF

Info

Publication number
JP2005317463A
JP2005317463A JP2004136648A JP2004136648A JP2005317463A JP 2005317463 A JP2005317463 A JP 2005317463A JP 2004136648 A JP2004136648 A JP 2004136648A JP 2004136648 A JP2004136648 A JP 2004136648A JP 2005317463 A JP2005317463 A JP 2005317463A
Authority
JP
Japan
Prior art keywords
signal transmission
frequency signal
less
mass
copper plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004136648A
Other languages
Japanese (ja)
Inventor
Naohiko Era
尚彦 江良
Kazuhiko Fukamachi
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Metal Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Metal Manufacturing Co Ltd filed Critical Nikko Metal Manufacturing Co Ltd
Priority to JP2004136648A priority Critical patent/JP2005317463A/en
Publication of JP2005317463A publication Critical patent/JP2005317463A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material having a sufficient strength, a superior spring performance, and a superior performance in transmitting high frequency signals to be used for various kinds of parts for electronic equipments, and to provide a terminal made of that material. <P>SOLUTION: This is the material for the high frequency signal transmission, wherein a raw material composed of an alloy which is provided with characteristic relationship between yield strength (YS) 0.2% and electric conductivity (EC) of YS≥-1.25EC+700, and which has a copper plating layer with the thickness of 0.1-5.0 μm on the surface of the raw material, wherein the standard deviation of the thickness of the copper plating layer on the face where the copper plating is applied is σ≤0.5 μm per 1mm<SP>2</SP>, and regarding the surface roughness, the arithmetic average roughness (Ra) is 0.5 μm or less, the maximum height (Ry) is 2 μm or less, and ten-point average roughness (Rz) is 1 μm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は各種電子機器部品に用いる、充分な強度およびばね性に優れた高周波信号伝送用材料及びその材料を用いて端子形状に加工した端子に関するものである。   The present invention relates to a high-frequency signal transmission material excellent in sufficient strength and springiness used for various electronic device parts and a terminal processed into a terminal shape using the material.

各種電子部品の小型化低背化が進行する中で、電子部品用材料には薄い板厚、狭い板幅で対応することが要求されている。信号の送受信を確実に行なうために狭いスペースで安定した接圧を維持することが重要である。また動作環境温度の上昇に伴い、応力緩和特性の良好な材料への要求が高まっている。よって高い接圧を維持するためには材料特性として高強度であることが重要となる。
一方、小型化低背化に伴う高強度化への要求に併行して伝送信号の高速化も進み、GHz帯の高周波への対応が重要となってきた。高周波電流に特有の現象として表皮効果がある。表皮効果は、周波数が高くなるほど、電流が導体の表層部に集中する現象である。この表皮効果について、積層板用銅箔では電流の損失が大きくなるため、表面粗さを平坦に調整して信号伝送に要する時間及び電流損失を改善することが提案されている(特許文献1、2 参照。)。
As electronic components become smaller and lower in profile, electronic component materials are required to be handled with a thin plate thickness and a narrow plate width. In order to reliably transmit and receive signals, it is important to maintain a stable contact pressure in a narrow space. As the operating environment temperature rises, there is an increasing demand for materials with good stress relaxation characteristics. Therefore, in order to maintain a high contact pressure, it is important that the material properties have high strength.
On the other hand, along with the demand for higher strength accompanying the reduction in size and height, the speed of transmission signals has increased, and it has become important to deal with high frequencies in the GHz band. The skin effect is a phenomenon peculiar to high frequency current. The skin effect is a phenomenon in which the current concentrates on the surface layer of the conductor as the frequency increases. Regarding the skin effect, since the loss of current increases in the copper foil for laminated plates, it has been proposed to improve the time and current loss required for signal transmission by adjusting the surface roughness flatly (Patent Document 1, 2).

特開平5−55746号公報JP-A-5-55746 特開2003−31180号公報JP 2003-31180 A

上記のような電流の高周波化への対応は、積層板用の材料のみではなく、端子等の電子機器に用いられる材料にも要求されるようになってきた。例えば、CPUソケット等の高周波信号送受信部に使用されるばね材料が挙げられる。端子に高周波電流が流れると表皮効果で電流が表層に集中し、電気抵抗(表皮抵抗)が大きくなるため、コンタクト表層での発熱量が増加し、材料が応力緩和を起こし、コンタクトの接圧が低下する可能性があるためである。この場合、接触不良の原因となりうる。そのため、端子に用いられる材料の導電率はより高いことが要求される。その点においては、銅箔は導電率が高く、特許文献1による銅箔であれば、高周波信号伝送用として用いることはできるが、コネクタの重要な特性であるコンタクトの接圧は低く、端子用材料として用いることはできない。   Correspondence to the high frequency of current as described above has been demanded not only for materials for laminates but also for materials used for electronic devices such as terminals. For example, the spring material used for high frequency signal transmission / reception parts, such as CPU socket, is mentioned. When high-frequency current flows through the terminal, the current concentrates on the surface due to the skin effect, and the electrical resistance (skin resistance) increases, so the amount of heat generated at the contact surface increases, the material causes stress relaxation, and the contact pressure of the contact This is because it may decrease. In this case, contact failure may be caused. Therefore, the material used for the terminal is required to have higher conductivity. In that respect, the copper foil has a high conductivity, and the copper foil according to Patent Document 1 can be used for high-frequency signal transmission, but the contact pressure of the contact, which is an important characteristic of the connector, is low, and it is for terminals. It cannot be used as a material.

そこで、本発明の目的は、各種電子機器部品に用いるのに充分な強度および良好なばね性を有し、かつ高周波の信号伝送に優れた材料とその材料を用いて加工された端子を提供することにある。   Accordingly, an object of the present invention is to provide a material having sufficient strength and good spring property for use in various electronic device parts and excellent in high-frequency signal transmission and a terminal processed using the material. There is.

発明者らは、鋭意研究をした結果、充分な強度および良好なばね性を有する電子機器部品用金属材料に表面粗さを調整した銅めっきを施すことで高周波信号伝送用に好適な材料及びその材料を用いて作られた端子を見出した。   As a result of diligent research, the inventors have made a material suitable for high-frequency signal transmission by applying copper plating with adjusted surface roughness to a metal material for electronic device parts having sufficient strength and good springiness, and its material I found a terminal made of materials.

即ち、本発明は
(1)0.2%耐力(YS)と導電率(EC)の間にYS≧−1.25EC+700となる特性を備えた合金を素材として、素材表面に厚さ0.1〜5.0μmの銅めっき層を有し、かつそのめっきを施した面について1mmあたりの銅めっき層厚さの標準偏差がσ≦0.5μmであって、かつその表面粗さについて算術平均粗さ(Ra)が0.5μm以下、最大高さ(Ry)が2μm以下、十点平均粗さ(Rz)が1μm以下であることを特徴とする高周波信号伝送用材料、
(2)銅めっき後に冷間圧延と焼鈍を1回以上施すことを特徴とする上記(1)に記載の高周波信号伝送用材料、
(3)Tiを2.0〜4.0質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする上記(1)〜(2)に記載の高周波信号伝送用材料、
(4)Tiを2.0〜4.0質量%、第3元素群としてFe、Co、Ni、Cr、V、Zr、BおよびPの中から1種以上を0.01〜0.50質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする上記(1)〜(2)に記載の高周波信号伝送用材料、
(5)Ni:2.0〜4.5質量%、Si:0.4〜1.2質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする上記(1)〜(2)に記載の高周波信号伝送用材料、
(6)Ni:2.0〜4.5質量%、Si:0.4〜1.2質量%、第3元素群として、Mn、Mg、Sn、Ti、Zr、Al、Co、Cr、Fe、Zn、Ag、B、の1種または2種以上を0.003〜2.0質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする上記(1)〜(2)に記載の高周波信号伝送用材料、
(7)合金素材がオーステナイト系ステンレス鋼であることを特徴とする上記(1)〜(2)に記載の高周波信号伝送用材料、
(8)上記(1)〜(7)に記載の高周波信号伝送用材料のいずれかを端子形状にプレス打ち抜き加工した高周波信号伝送用端子、
(9)上記(1)、(3)〜(7)に記載の素材を端子形状へプレス打ち抜き加工後に、素材表面に厚さ0.1〜5.0μmの銅めっき層を施し、かつそのめっきを施した面について1mmあたりの銅めっき層厚さの標準偏差がσ≦0.5μmであって、かつその表面粗さについて算術平均粗さ(Ra)が0.5μm以下、最大高さ(Ry)が2μm以下、十点平均粗さ(Rz)が1μm以下であることを特徴とする高周波信号伝送用端子、
(10)印加される周波数帯が2GHz以上であることを特徴とする上記(8)〜(9)に記載の高周波信号伝送用端子、
である。
That is, the present invention uses (1) an alloy having a property of YS ≧ −1.25EC + 700 between 0.2% proof stress (YS) and conductivity (EC) as a material, and has a thickness of 0.1 on the material surface. The standard deviation of the thickness of the copper plating layer per 1 mm 2 is σ ≦ 0.5 μm on the plated surface having a copper plating layer of ˜5.0 μm, and the arithmetic average of the surface roughness A high-frequency signal transmission material, characterized in that the roughness (Ra) is 0.5 μm or less, the maximum height (Ry) is 2 μm or less, and the ten-point average roughness (Rz) is 1 μm or less,
(2) The material for high-frequency signal transmission according to (1) above, wherein cold rolling and annealing are performed at least once after copper plating,
(3) The high-frequency signal according to any one of (1) to (2) above, wherein the alloy is made of an alloy containing 2.0 to 4.0% by mass of Ti and the balance being Cu and inevitable impurities. Transmission materials,
(4) Ti is 2.0 to 4.0% by mass, and the third element group is 0.01 to 0.50% by mass of one or more of Fe, Co, Ni, Cr, V, Zr, B, and P. The material for high-frequency signal transmission as described in (1) to (2) above, wherein the material is an alloy containing the remaining Cu and the inevitable impurities.
(5) Ni: 2.0 to 4.5% by mass, Si: 0.4 to 1.2% by mass, and an alloy composed of the remainder Cu and inevitable impurities is used as the material The high-frequency signal transmission material according to (1) to (2),
(6) Ni: 2.0 to 4.5 mass%, Si: 0.4 to 1.2 mass%, as the third element group, Mn, Mg, Sn, Ti, Zr, Al, Co, Cr, Fe , Zn, Ag, B, containing 0.003 to 2.0% by mass of one or more of the above, and an alloy composed of the balance Cu and unavoidable impurities as a material (1) ) To (2), a high-frequency signal transmission material,
(7) The material for high-frequency signal transmission according to (1) to (2) above, wherein the alloy material is austenitic stainless steel,
(8) A high-frequency signal transmission terminal obtained by press-punching any one of the high-frequency signal transmission materials according to (1) to (7) into a terminal shape,
(9) After the material described in (1), (3) to (7) above is stamped into a terminal shape, a copper plating layer having a thickness of 0.1 to 5.0 μm is applied to the surface of the material, and the plating is performed. The standard deviation of the thickness of the copper plating layer per 1 mm 2 is σ ≦ 0.5 μm on the surface subjected to, and the arithmetic average roughness (Ra) is 0.5 μm or less and the maximum height ( Ry) is 2 μm or less, and ten-point average roughness (Rz) is 1 μm or less.
(10) The high frequency signal transmission terminal according to (8) to (9) above, wherein the applied frequency band is 2 GHz or more,
It is.

本発明によれば、従来に比べて、高周波通電時の表皮効果による発熱を回避でき、強度および耐熱性に優れた高周波信号伝送用端子およびその材料が得られる。   According to the present invention, compared to the prior art, heat generation due to the skin effect during high-frequency energization can be avoided, and a high-frequency signal transmission terminal and material thereof excellent in strength and heat resistance can be obtained.

以下に限定理由を説明する。
(1)発明の形態の1つは、電子機器部品に用いるに充分な強度および良好なばね性を有する素材に表面粗さを調整した銅めっきを施すことである。電子機器部品に用いる金属材料に銅めっきを施した材料は、例えば、特開平9−283688号公報のように従来も存在したが、はんだ付け性の改善が目的であるため、高周波信号伝送用材料の動機付けを与えるものではない。
以下に高周波信号伝送用に具備すべき銅めっきの実施の形態を具体的に示す。
The reason for limitation will be described below.
(1) One aspect of the invention is to apply copper plating with adjusted surface roughness to a material having sufficient strength and good springiness for use in electronic equipment components. A material obtained by performing copper plating on a metal material used for an electronic device component has existed conventionally as disclosed in, for example, Japanese Patent Laid-Open No. 9-283688. However, the purpose is to improve solderability. It does not give motivation.
Embodiments of copper plating to be provided for high-frequency signal transmission are specifically shown below.

(a)めっき層厚さ
信号の周波数が高くなるほど、表層に電流が集中するため、通電断面積が小さくなり、実際の抵抗値は導体の抵抗値よりも高い抵抗値となる。よってコンタクト表層での発熱量が増加し、応力緩和および表面酸化などの理由から接触不良の原因となりうる。信号の周波数に応じて、表皮効果により通電断面積が小さくなるので、通電部となる表層のみ導電性の良好な銅めっきを施し、表皮効果により生じた発熱を抑制し信号遅延を回避する。効果的なめっき厚は0.1〜5.0μmであり、より好ましくは1〜3μmである。0.1μm以下では銅めっき層にピンホールが形成されやすくなる。
(A) Plating layer thickness As the frequency of the signal increases, the current concentrates on the surface layer, so that the cross-sectional area of conduction decreases and the actual resistance value is higher than the resistance value of the conductor. Therefore, the amount of heat generated on the contact surface layer increases, which may cause contact failure for reasons such as stress relaxation and surface oxidation. Depending on the frequency of the signal, the energization cross-sectional area is reduced by the skin effect, so that only the surface layer that becomes the energization part is subjected to copper plating with good conductivity to suppress heat generation caused by the skin effect and avoid signal delay. Effective plating thickness is 0.1-5.0 micrometers, More preferably, it is 1-3 micrometers. If the thickness is 0.1 μm or less, pinholes are easily formed in the copper plating layer.

また、めっき厚が5μm以上の場合では局所的に電着粒を形成しやすくなるため、めっき層の厚さの分布が不均一となりやすく、伝送信号の遅延やノイズ発生の原因となるため好ましくない。また、素材板厚に対して過剰な厚さのめっき層を形成すると、複合則により端子の強度が低下し、目標とする接圧が得られないため好ましくない。   In addition, when the plating thickness is 5 μm or more, it is easy to form electrodeposited grains locally, and thus the distribution of the thickness of the plating layer is likely to be non-uniform, which causes transmission signal delay and noise generation. . In addition, if a plating layer having an excessive thickness with respect to the material plate thickness is formed, the strength of the terminal is reduced by the composite rule, and a target contact pressure cannot be obtained, which is not preferable.

めっき層を施した1mmあたりの厚さのバラツキの標準偏差がσ≧0.5μmの場合には、局所的にめっき層の薄い領域が生成する。このような材料に高周波信号を印加すると表皮効果による発熱により素材に応力緩和が生じて接圧が低下し、接触不良を起こす。 When the standard deviation of the thickness variation per 1 mm 2 to which the plating layer is applied is σ ≧ 0.5 μm, a thin region of the plating layer is locally generated. When a high-frequency signal is applied to such a material, stress relaxation occurs in the material due to heat generation due to the skin effect, the contact pressure decreases, and contact failure occurs.

(b)めっき層の表面粗さ(最大高さ(Ry)と算術平均粗さ(Ra)、十点平均粗さ(Rz))
表面粗さが大きくなると、表皮効果による高周波信号の減衰がより顕著になる。この現象を端子について解析した結果、コンタクト挿入後の通電性に影響を及ぼす因子として、コンタクト挿入前のめっき表層の表面粗さの指標として、Ry、Ra、Rzのそれぞれが影響し、これらを制御すればよいことがわかった。即ち、Ryについては2μm以下、Raについては0.5μm以下、Rzについては1μm以下とすればよい。
Ryが2μmを超え、Raが0.5μm、Rzが1μmを超えるものは、銅めっき層の厚さが不均一に分布するため、上記理由により正常な信号の送受信が不可能となる。また、コンタクト挿入時にこの発生部位にて金属紛が発生することもあり、短絡の原因となる。
(B) Surface roughness of plating layer (maximum height (Ry) and arithmetic average roughness (Ra), ten-point average roughness (Rz))
As the surface roughness increases, the attenuation of high-frequency signals due to the skin effect becomes more prominent. As a result of analyzing this phenomenon for terminals, each of Ry, Ra, and Rz has an effect on the surface roughness of the plating surface layer before contact insertion as a factor that affects the electrical conductivity after contact insertion. I understood that I should do. That is, Ry is 2 μm or less, Ra is 0.5 μm or less, and Rz is 1 μm or less.
When Ry exceeds 2 μm, Ra exceeds 0.5 μm, and Rz exceeds 1 μm, the thickness of the copper plating layer is unevenly distributed, so that normal signal transmission / reception is impossible for the above reason. In addition, metal powder may be generated at the site where the contact is inserted, causing a short circuit.

(c)めっき層の作りこみ
上記範囲となるように銅めっき層を制御するためには、浴管理と素材表面粗さが重要となる。浴管理の観点では、添加材を併用するなどして硫酸銅めっきを用いれば本発明範囲内のめっき厚における均一電着性を維持できる。めっき材の表面粗さには素材の表面粗さも影響するため、これを制御する方法も有効である。すなわち圧延機のワークロールの表面粗さを管理して素材に転写したうえで、焼鈍後のスケール除去等の目的で行なう機械研磨または化学研磨などを経て得られた最終製品表面の粗さを所望のめっき表面粗さより平滑となるように管理すればよい。
(C) Preparation of plating layer In order to control the copper plating layer so as to be in the above range, bath management and material surface roughness are important. From the viewpoint of bath management, uniform electrodeposition at a plating thickness within the range of the present invention can be maintained by using copper sulfate plating in combination with an additive. Since the surface roughness of the material also affects the surface roughness of the plated material, a method for controlling this is also effective. That is, the surface roughness of the work roll of the rolling mill is controlled and transferred to the material, and then the final product surface roughness obtained through mechanical polishing or chemical polishing for the purpose of removing the scale after annealing is desired. What is necessary is just to manage so that it may become smoother than the plating surface roughness.

さらにめっき層の表面粗さを制御するためには、めっき後の表面に冷間圧延を施すとより効果的である。すなわち冷間圧延後のめっき表面が本発明範囲内のめっき厚および表面粗さとなるように加工度を調整することでめっき層に分布するピンホールや表層の電着粒を低減できる。よって表面粗さを精度良く制御できるため、信号波形の乱れを抑制し、導体損による伝送損失を抑制できる。冷間圧延加工度は、上限を圧延後の銅めっき層厚みが0.5μm以下とならない範囲で制御し、下限はめっきの凹凸を平滑にするためのスキンパスに必要な加工度として1%以上であればよい。一方、冷間圧延を施すとばね限界値の低下や圧延組織の形成などめっき母材の特性が変化するため、これを回復させるための焼鈍が必要となる場合がある。焼鈍条件は素材特性に応じた条件で行なえばよい。   Furthermore, in order to control the surface roughness of the plating layer, it is more effective to perform cold rolling on the surface after plating. That is, by adjusting the degree of processing so that the plating surface after cold rolling has a plating thickness and surface roughness within the range of the present invention, pinholes distributed in the plating layer and surface electrodeposited grains can be reduced. Therefore, since the surface roughness can be controlled with high accuracy, the disturbance of the signal waveform can be suppressed and the transmission loss due to the conductor loss can be suppressed. The cold rolling work degree is controlled so that the upper limit of the copper plating layer thickness after rolling is not less than 0.5 μm, and the lower limit is 1% or more as the work degree necessary for the skin pass for smoothing the unevenness of plating. I just need it. On the other hand, when cold rolling is performed, the characteristics of the plating base material such as a decrease in the spring limit value and the formation of a rolled structure change, so that annealing may be required to recover this. The annealing conditions may be performed according to the material characteristics.

めっき材をプレス打ち抜きした場合には端面の銅めっきがなく、素材が剥き出しの状態となる。端子のピン幅が狭く、板厚が薄い場合には銅めっきを施されていない部分の表面積の割合が増加するため、表皮効果による発熱が懸念される。よって上記めっき処理はプレス後に施せば、さらに効果的に発熱を抑制できる。   When the plated material is press-punched, there is no copper plating on the end face, and the material is exposed. When the pin width of the terminal is narrow and the plate thickness is thin, since the ratio of the surface area of the portion not subjected to copper plating increases, there is a concern about heat generation due to the skin effect. Therefore, if the plating treatment is performed after pressing, heat generation can be more effectively suppressed.

(2)合金素材について
高周波用途といえども端子である以上、端子に要求される特性を具備する必要がある。端子として十分な接圧を得るためには、強度とばね性が必要である。また、常に高周波の環境下で用いられないとすれば、通常の端子に要求される導電性を有することも重要である。
(2) About alloy material As long as it is a terminal even for high frequency applications, it is necessary to have the characteristics required for the terminal. In order to obtain a sufficient contact pressure as a terminal, strength and springiness are required. It is also important to have conductivity required for normal terminals if it is not always used in a high frequency environment.

従って、高強度と高導電性を両方満足することが要求されるが、一般に合金の0.2%耐力(YS)と導電率(EC)の間にはトレードオフの関係がある。
そこで、本発明においては、0.2%耐力(YS)と導電率(EC)の間にYS≧−1.25EC+700となる0.2%耐力を備えた合金を素材として用いる。素材自体の強度により安定した接圧が得られ、この素材に銅めっきをすることで高周波送信用に適することを見出した。以下に具体的な合金素材を挙げる。
Accordingly, it is required to satisfy both high strength and high conductivity, but generally there is a trade-off relationship between 0.2% proof stress (YS) and conductivity (EC) of an alloy.
Therefore, in the present invention, an alloy having a 0.2% proof stress satisfying YS ≧ −1.25EC + 700 between the 0.2% proof stress (YS) and the conductivity (EC) is used as a material. It has been found that a stable contact pressure can be obtained depending on the strength of the material itself, and that this material is suitable for high-frequency transmission by copper plating. Specific alloy materials are listed below.

a)チタン銅
Tiを2.0〜4.0質量%含有する銅基合金であって、第3元素群としてFe、Co、Ni、Cr、V、Zr、BおよびPの中から1種以上を0.01〜0.50質量%含有した合金は、高強度かつ耐応力緩和特性に優れた電子材料用合金であり、チタン銅系素材として広く活用されている。Ti濃度が上記範囲より高濃度の場合は、導電率が低くなって導体抵抗値が増すため好ましくない。また低濃度の場合には強度が不足する。
a) Titanium copper A copper base alloy containing 2.0 to 4.0% by mass of Ti, and one or more of Fe, Co, Ni, Cr, V, Zr, B and P as the third element group Is an alloy for electronic materials having high strength and excellent stress relaxation resistance, and is widely used as a titanium-copper material. When the Ti concentration is higher than the above range, the conductivity is lowered and the conductor resistance value is increased, which is not preferable. Further, when the concentration is low, the strength is insufficient.

b)Cu−Ni−Si系銅合金
Ni:2.0〜4.5質量%、Si:0.4〜1.2質量%含有し、残部Cuおよび不可避的不純物から構成された合金は、コルソン合金と称され、上記チタン銅より導電率が高いため、各種電子部品用途に広く活用されている。また一部の演算系端子として適用されている。NiおよびSiは、適当な熱処理を施すことにより金属間化合物を形成し、導電率を劣化させずに高強度化が図れる。NiおよびSiの添加量がNi:2.0%未満、Si:0.4%未満では所望の強度が得られず、Ni:4.5%以上、Si:1.2%以上では高強度化は図れるが導電率が著しく低下し、さらに熱間加工性が劣化する。よってNiおよびSiの添加量はNi:2.0〜4.5質量%、Si:0.30〜1.2質量%とした。Mn、Mg、Sn、Ti、Zr、Al、Co、Cr、Fe、Zn、Ag、B、の1種または2種以上を添加することで導電率を損なわずに高強度が得られる。
b) Cu—Ni—Si-based copper alloy Ni: 2.0 to 4.5 mass%, Si: 0.4 to 1.2 mass%, and the alloy composed of the balance Cu and inevitable impurities is Corson It is called an alloy and has a higher conductivity than the titanium copper, so it is widely used in various electronic component applications. It is also applied as a part of arithmetic system terminals. Ni and Si form an intermetallic compound by performing an appropriate heat treatment, and can increase the strength without deteriorating the electrical conductivity. If the added amount of Ni and Si is less than Ni: 2.0% and Si: less than 0.4%, the desired strength cannot be obtained. If Ni: 4.5% or more, Si: 1.2% or more, the strength is increased. However, the electrical conductivity is remarkably lowered, and the hot workability is further deteriorated. Therefore, the addition amounts of Ni and Si were set to Ni: 2.0 to 4.5% by mass and Si: 0.30 to 1.2% by mass. By adding one or more of Mn, Mg, Sn, Ti, Zr, Al, Co, Cr, Fe, Zn, Ag, and B, high strength can be obtained without impairing electrical conductivity.

c)ステンレス鋼
オーステナイト系ステンレス鋼の一般的な特性は、非磁性で焼入れ硬化性がなく、耐食性が優れているほか高温から低温にわたる広い温度範囲で強さと粘り強さが大きく、さらに成形や溶接などの2次加工が容易であるなどの幾多の特徴を兼ね備えている。特に強度は、信号の送受信用途で使用されている銅系合金に比べて著しく高いため、薄い板厚であってもベリリウム銅を凌駕する充分な接圧を維持できる。また加工性にも優れているので省スペースの端子材として有効である。
c) Stainless steel The general characteristics of austenitic stainless steel are non-magnetic, non-quenching hardenability, excellent corrosion resistance, high strength and tenacity in a wide temperature range from high to low temperature, and molding and welding. It has many features such as easy secondary processing. In particular, the strength is remarkably higher than that of a copper-based alloy used in signal transmission / reception applications, so that a sufficient contact pressure surpassing that of beryllium copper can be maintained even with a thin plate thickness. Moreover, since it is excellent in workability, it is effective as a space-saving terminal material.

(3)最新のCPUでは動作周波数が3GHz以上となる場合があり、CPUソケット用途等演算系端子としては動作周波数に対応した高周波特性が要求されるが、信号系端子での適用も考慮に入れた場合に、2GHz以上の周波数に対して特にその効力を発揮することが要求されている。特にソケット向けの端子材は伝送損失を極力低減させるため高強度、高導電性に対する要求が強く、未だベリリウム銅で対応しているのが現状で、環境規制、価格、供給性等の理由から代替特性を備えた材料の開発が待たれていた。 (3) The latest CPU may have an operating frequency of 3 GHz or higher, and high frequency characteristics corresponding to the operating frequency are required for computing sockets such as CPU socket applications. In particular, it is required to exert its effectiveness particularly for frequencies of 2 GHz or higher. In particular, terminal materials for sockets have strong demands for high strength and high conductivity to reduce transmission loss as much as possible, and are currently being supported by beryllium copper because of environmental regulations, price, availability, etc. The development of materials with characteristics was awaited.

(1)実施例1
めっきを施す前の合金素材は、表1に示す組成の合金を準備し、それぞれ焼鈍と冷間圧延を適宜繰り返して、板厚0.1mmの板材とした。めっきは硫酸銅浴を使用し、電解脱脂、硫酸酸洗の後、各めっき厚となるように電気めっきを行なった。
めっき厚は蛍光X線膜厚計を用いて測定し、10mm間隔に測定した10点について平均値と標準偏差を求めた。めっき表面の粗さは、表面粗さ計を用いて測定し、JIS−B0601に従って測定しRy、Ra、Rzを測定した。めっき後の材料をプレス打ち抜きにより圧延方向へ巾1mm、100mm長さに加工し、ネットワークアナライザを用いて、2GHzの高周波信号を印加し、このときの材料の温度変化をサーモグラフィーを用いて直接測定した。例えば、CPU本体の仕様上限温度は70℃付近に設定されているものが多いため、冷却ファンを併用した場合で接点部における動作時の温度上昇は室温に対して30℃未満とすることが望ましい。
(1) Example 1
As the alloy material before plating, an alloy having the composition shown in Table 1 was prepared, and annealing and cold rolling were appropriately repeated to obtain a plate material having a thickness of 0.1 mm. For the plating, a copper sulfate bath was used, and after electrolytic degreasing and sulfuric acid pickling, electroplating was performed so as to obtain each plating thickness.
The plating thickness was measured using a fluorescent X-ray film thickness meter, and an average value and a standard deviation were obtained for 10 points measured at 10 mm intervals. The roughness of the plating surface was measured using a surface roughness meter and measured according to JIS-B0601 to measure Ry, Ra, and Rz. The plated material was processed by press punching to a width of 1 mm and a length of 100 mm in the rolling direction, a 2 GHz high frequency signal was applied using a network analyzer, and the temperature change of the material at this time was directly measured using thermography. . For example, since the specification upper limit temperature of the CPU main body is often set around 70 ° C., it is desirable that the temperature rise during operation at the contact portion is less than 30 ° C. with respect to room temperature when a cooling fan is used in combination. .

表1に示す合金について、それぞれ0.2%耐力および導電率を測定した。合金A〜Eは請求項3、4を満たす合金、合金F〜Kは請求項5、6を満たす合金、合金Lは請求項7を満たす合金である。
合金A〜Mは0.2%耐力(YS)と導電率(EC)の間にYS≧−1.25EC+700となる関係を満足しており、端子としての特性を満足する。なお、参考として、表1の合金Nはタフピッチ銅を用いた積層板用銅箔であり、0.2%耐力が低く、端子用材料に適さない。
表1に示す組成の合金A〜Mの素材の表面粗さも適当に制御し、さらに銅めっき条件も制御した発明例No.1〜13を表2に示す。銅めっきの厚さ、表面粗さが本発明の範囲であるため通電部の温度上昇が少ない。
For the alloys shown in Table 1, 0.2% proof stress and electrical conductivity were measured. Alloys A to E are alloys satisfying claims 3 and 4, Alloys F to K are alloys satisfying claims 5 and 6, and Alloy L is an alloy satisfying claim 7.
Alloys A to M satisfy the relationship of YS ≧ −1.25EC + 700 between the 0.2% proof stress (YS) and the conductivity (EC), and satisfy the characteristics as a terminal. For reference, the alloy N in Table 1 is a copper foil for laminated plates using tough pitch copper, has a low 0.2% yield strength, and is not suitable for a terminal material.
Inventive example No. in which the surface roughness of the materials of the alloys A to M having the composition shown in Table 1 was appropriately controlled and the copper plating conditions were also controlled. 1 to 13 are shown in Table 2. Since the thickness and surface roughness of the copper plating are within the scope of the present invention, the temperature rise of the current-carrying part is small.

一方、比較例を表3に示す。用いる合金素材は、実施例と同様に表1に示す組成の合金である。比較例No.14、21、22、26は、めっき厚を厚くしたところ、粗大な電着粒が多発し、発熱した。比較例19、22はめっき厚を厚くしたところ、粗大な電着粒が多発し、さらにめっき厚のバラツキが大きく発熱した。比較例No.15、17、20、23、25は、めっきが薄かったため、発熱した。比較例No.16は、めっき厚のばらつきが大きく、めっきの薄い部分が発熱した。比較例18、24は、素材にソゲがあり粗大な電着粒が多発し、発熱した。   On the other hand, a comparative example is shown in Table 3. The alloy material used is an alloy having the composition shown in Table 1 as in the example. Comparative Example No. In Nos. 14, 21, 22, and 26, when the plating thickness was increased, coarse electrodeposition grains frequently occurred and heat was generated. In Comparative Examples 19 and 22, when the plating thickness was increased, coarse electrodeposition grains were frequently generated, and the variation in the plating thickness was large, and heat was generated. Comparative Example No. 15, 17, 20, 23, and 25 generated heat because the plating was thin. Comparative Example No. No. 16 had a large variation in plating thickness, and the thin plating portion generated heat. In Comparative Examples 18 and 24, the material was soggy, coarse electrodeposition grains were frequently generated, and heat was generated.

(2)実施例2
実施例1と同様に、合金素材はそれぞれ焼鈍と冷間圧延を適宜繰り返して、板厚0.1mmの板材とし、めっきは硫酸銅浴を使用し、電解脱脂、硫酸酸洗の後、各めっき厚となるように電気めっきを行なった。
合金A、B、F、I、L、Mに本請求範囲を満たさない銅めっきを施した比較例No.33〜38の供試材を作製した。これらの一部について冷間圧延を行い、表面粗さの改善を行った供試材が発明例No.27〜32である。
測定方法も実施例1と同様である。
(2) Example 2
In the same manner as in Example 1, annealing and cold rolling were repeated as appropriate for each alloy material to form a plate material having a thickness of 0.1 mm, and plating was performed using a copper sulfate bath, electrolytic degreasing, and sulfuric acid pickling, and then plating Electroplating was performed to obtain a thickness.
Comparative Examples No. 1 to No. 4 in which alloys A, B, F, I, L, and M were subjected to copper plating not satisfying the present claims Sample materials 33 to 38 were prepared. Samples obtained by performing cold rolling on these parts and improving the surface roughness were No. 27-32.
The measuring method is the same as that in the first embodiment.

表4に示す発明例No.27〜32は、銅めっきを施したままでは本発明範囲外であったが、冷間圧延を施すことで表面粗さを改善したため、通電部温度が上昇しなかった。一方、比較例No.33〜38は、銅めっきを施したままでは本発明範囲外であるので、通電部温度が上昇した。   Invention Example No. shown in Table 4 27 to 32 were out of the scope of the present invention as they were plated with copper, but the surface roughness was improved by performing cold rolling, so the energized part temperature did not increase. On the other hand, Comparative Example No. Since 33-38 was outside the scope of the present invention when copper plating was applied, the temperature of the energized part increased.

(3)実施例3
実施例1で作製した発明例No.1、2、6、9、12、13をプレス打ち抜きし、発明例No.39〜44を作製した。一方、発明例No.45〜50は、合金A、B、F、I、L、Mを実施例1と同様にそれぞれ焼鈍と冷間圧延を適宜繰り返して、板厚0.1mmの板材とし、巾1mm、100mm長さにプレス打ち抜きした後、銅めっきを施して作製した。測定方法は実施例1と同様である。
なお、発明例No.45〜50は請求項10を満たす例である。
(3) Example 3
Invention Example No. 1 produced in Example 1. Nos. 1, 2, 6, 9, 12, and 13 were punched out of the press. 39-44 were produced. On the other hand, Invention Example No. For 45 to 50, alloys A, B, F, I, L, and M were subjected to annealing and cold rolling as appropriate in the same manner as in Example 1 to obtain a plate material having a thickness of 0.1 mm, and a width of 1 mm and a length of 100 mm. After press punching, copper plating was performed. The measuring method is the same as in Example 1.
In addition, invention example No. 45 to 50 are examples satisfying the tenth aspect.

結果を表5に示すが、いずれも本発明の範囲内に表面性状を制御しており、良好な結果がえられている。発明例No.45〜50は、プレス打ち抜き後に銅めっきを施すと、打ち抜き端面も銅めっきが施せるため、導体損を低減でき、昇温を抑えられる。

The results are shown in Table 5, all of which control the surface properties within the scope of the present invention and give good results. Invention Example No. In Nos. 45 to 50, if copper plating is performed after press punching, the punching end face can also be subjected to copper plating, so that conductor loss can be reduced and temperature rise can be suppressed.

Claims (10)

0.2%耐力(YS)と導電率(EC)の間にYS≧−1.25EC+700となる特性を備えた合金を素材として、素材表面に厚さ0.1〜5.0μmの銅めっき層を有し、かつそのめっきを施した面について1mmあたりの銅めっき層厚さの標準偏差がσ≦0.5μmであって、かつその表面粗さについて算術平均粗さ(Ra)が0.5μm以下、最大高さ(Ry)が2μm以下、十点平均粗さ(Rz)が1μm以下であることを特徴とする高周波信号伝送用材料。 A copper plating layer having a thickness of 0.1 to 5.0 μm on the surface of the material made of an alloy having a property of YS ≧ −1.25EC + 700 between 0.2% proof stress (YS) and conductivity (EC) And the standard deviation of the copper plating layer thickness per mm 2 is σ ≦ 0.5 μm for the plated surface, and the arithmetic average roughness (Ra) is 0. A high-frequency signal transmission material characterized by having a maximum height (Ry) of 2 μm or less and a ten-point average roughness (Rz) of 1 μm or less, 5 μm or less, a maximum height (Ry) of 2 μm or less. 銅めっき後に冷間圧延と焼鈍を1回以上施すことを特徴とする請求項1に記載の高周波信号伝送用材料。   The material for high-frequency signal transmission according to claim 1, wherein cold rolling and annealing are performed at least once after copper plating. Tiを2.0〜4.0質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする請求項1〜2に記載の高周波信号伝送用材料。   The high-frequency signal transmission material according to claim 1, wherein the material is made of an alloy containing 2.0 to 4.0% by mass of Ti, and the balance being Cu and inevitable impurities. Tiを2.0〜4.0質量%、第3元素群としてFe、Co、Ni、Cr、V、Zr、BおよびPの中から1種以上を0.01〜0.50質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする請求項1〜2に記載の高周波信号伝送用材料。   Ti is contained in an amount of 2.0 to 4.0% by mass, and the third element group contains 0.01 to 0.50% by mass of one or more of Fe, Co, Ni, Cr, V, Zr, B, and P. The material for high-frequency signal transmission according to claim 1, wherein an alloy composed of the remaining Cu and inevitable impurities is used as a raw material. Ni:2.0〜4.5質量%、Si:0.4〜1.2質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする請求項1〜2に記載の高周波信号伝送用材料。   Ni: 2.0 to 4.5 mass%, Si: 0.4 to 1.2 mass%, and an alloy composed of the balance Cu and unavoidable impurities is used as a raw material. 2. The high-frequency signal transmission material according to 2. Ni:2.0〜4.5質量%、Si:0.4〜1.2質量%、第3元素群として、Mn、Mg、Sn、Ti、Zr、Al、Co、Cr、Fe、Zn、Ag、B、の1種または2種以上を0.003〜2.0質量%含有し、残部Cuおよび不可避的不純物から構成される合金を素材とすることを特徴とする請求項1〜2に記載の高周波信号伝送用材料。   Ni: 2.0-4.5% by mass, Si: 0.4-1.2% by mass, as the third element group, Mn, Mg, Sn, Ti, Zr, Al, Co, Cr, Fe, Zn, An alloy composed of 0.003 to 2.0% by mass of one or more of Ag and B, the balance being Cu and inevitable impurities is used as a material. The material for high frequency signal transmission as described. 合金素材がオーステナイト系ステンレス鋼であることを特徴とする請求項1〜2に記載の高周波信号伝送用材料。 The material for high-frequency signal transmission according to claim 1, wherein the alloy material is austenitic stainless steel. 請求項1〜7に記載の高周波信号伝送用材料のいずれかを端子形状にプレス打ち抜き加工した高周波信号伝送用端子。   A high-frequency signal transmission terminal obtained by press-punching any one of the high-frequency signal transmission materials according to claim 1 into a terminal shape. 請求項1、3〜7に記載の素材を端子形状へプレス打ち抜き加工後に、素材表面に厚さ0.1〜5.0μmの銅めっき層を施し、かつそのめっきを施した面について1mmあたりの銅めっき層厚さの標準偏差がσ≦0.5μmであって、かつその表面粗さについて算術平均粗さ(Ra)が0.5μm以下、最大高さ(Ry)が2μm以下、十点平均粗さ(Rz)が1μm以下であることを特徴とする高周波信号伝送用端子。 After press punching the material according to claim 1, 3 to 7 into a terminal shape, a copper plating layer having a thickness of 0.1 to 5.0 μm is applied to the surface of the material, and the plated surface per 1 mm 2 The standard deviation of the copper plating layer thickness is σ ≦ 0.5 μm, and the arithmetic average roughness (Ra) of the surface roughness is 0.5 μm or less, the maximum height (Ry) is 2 μm or less, ten points A high-frequency signal transmission terminal having an average roughness (Rz) of 1 μm or less. 印加される周波数帯が2GHz以上であることを特徴とする請求項8〜9に記載の高周波信号伝送用端子。 The terminal for high frequency signal transmission according to claim 8, wherein the applied frequency band is 2 GHz or more.
JP2004136648A 2004-04-30 2004-04-30 Material and terminal for high frequency signal transmission Pending JP2005317463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004136648A JP2005317463A (en) 2004-04-30 2004-04-30 Material and terminal for high frequency signal transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004136648A JP2005317463A (en) 2004-04-30 2004-04-30 Material and terminal for high frequency signal transmission

Publications (1)

Publication Number Publication Date
JP2005317463A true JP2005317463A (en) 2005-11-10

Family

ID=35444642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004136648A Pending JP2005317463A (en) 2004-04-30 2004-04-30 Material and terminal for high frequency signal transmission

Country Status (1)

Country Link
JP (1) JP2005317463A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
JP2011198519A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Conductor for high-frequency energization
JP2017179571A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
CN110512115A (en) * 2019-09-29 2019-11-29 宁波金田铜业(集团)股份有限公司 High strength and high flexibility conductive copper titanium alloy rod bar and preparation method thereof
CN111101016A (en) * 2020-02-26 2020-05-05 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof
JPWO2020261564A1 (en) * 2019-06-28 2020-12-30
JPWO2021001928A1 (en) * 2019-07-02 2021-01-07

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283707A (en) * 1988-05-10 1989-11-15 Sumitomo Electric Ind Ltd High strength conductor
JPH02149626A (en) * 1988-11-30 1990-06-08 Kobe Steel Ltd Copper alloy for terminal and connector having excellent strength, electrical conductivity and migration resistance
JP2004091871A (en) * 2002-08-30 2004-03-25 Yamaha Metanikusu Kk High strength copper alloy and its production method
JP2004119961A (en) * 2002-09-02 2004-04-15 Furukawa Techno Research Kk Copper foil for chip-on film, plasma display panel, and high-frequency printed wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283707A (en) * 1988-05-10 1989-11-15 Sumitomo Electric Ind Ltd High strength conductor
JPH02149626A (en) * 1988-11-30 1990-06-08 Kobe Steel Ltd Copper alloy for terminal and connector having excellent strength, electrical conductivity and migration resistance
JP2004091871A (en) * 2002-08-30 2004-03-25 Yamaha Metanikusu Kk High strength copper alloy and its production method
JP2004119961A (en) * 2002-09-02 2004-04-15 Furukawa Techno Research Kk Copper foil for chip-on film, plasma display panel, and high-frequency printed wiring board

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
EP2202326A1 (en) * 2007-10-03 2010-06-30 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
EP2202326A4 (en) * 2007-10-03 2012-06-27 Furukawa Electric Co Ltd Copper alloy plate material for electric and electronic components
JP2011198519A (en) * 2010-03-17 2011-10-06 Fuji Electric Co Ltd Conductor for high-frequency energization
JP2017179571A (en) * 2016-03-31 2017-10-05 Jx金属株式会社 Titanium copper foil with plating layer
JPWO2020261564A1 (en) * 2019-06-28 2020-12-30
JP7259958B2 (en) 2019-06-28 2023-04-18 住友電気工業株式会社 Copper coated steel wires, springs, stranded wires, insulated wires and cables
JPWO2021001928A1 (en) * 2019-07-02 2021-01-07
JP7259959B2 (en) 2019-07-02 2023-04-18 住友電気工業株式会社 Copper coated steel wire, stranded wire, insulated wire and cable
CN110512115A (en) * 2019-09-29 2019-11-29 宁波金田铜业(集团)股份有限公司 High strength and high flexibility conductive copper titanium alloy rod bar and preparation method thereof
CN110512115B (en) * 2019-09-29 2021-08-17 宁波金田铜业(集团)股份有限公司 High-strength high-elasticity conductive copper-titanium alloy bar and preparation method thereof
CN111101016A (en) * 2020-02-26 2020-05-05 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100876051B1 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4986499B2 (en) Method for producing Cu-Ni-Si alloy tin plating strip
JP5619389B2 (en) Copper alloy material
KR100774226B1 (en) Cu-Ni-Si-Zn-Sn BASED PLATING BATH EXCELLENT IN THERMAL PEELING RESISTANCE OF TIN PLATING AND TIN PLATING BATH THEREOF
TWI521073B (en) Copper alloy plate, and with its high current with electronic components and thermal electronic components
TW200844267A (en) Sn-plated copper alloy material for printed board terminal
JP2013227600A (en) Cu-Ni-Si BASED COPPER ALLOY
JP2007314859A (en) Cu-Zn ALLOY STRIP WITH EXCELLENT RESISTANCE TO THERMAL PEELING OF Sn PLATING, AND Sn-PLATED STRIP THEREOF
JP5950499B2 (en) Copper alloy for electrical and electronic parts and copper alloy material with Sn plating
JP6328380B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP5393739B2 (en) Cu-Ni-Si alloy tin plating strip
JP2020164914A (en) Copper alloy plate, copper alloy plate with plated film, and manufacturing method of the same plates
JP3904118B2 (en) Copper alloy for electric and electronic parts and manufacturing method thereof
JP2005317463A (en) Material and terminal for high frequency signal transmission
WO2014104233A1 (en) Low spring-back electrolytic copper foil, and circuit board and flexible circuit board using said electrolytic copper foil
KR100774225B1 (en) Cu-Ni-Si-Zn BASED ALLOY TIN PLATING BATH
JP2007169764A (en) Copper alloy
JP2006299363A (en) Method for producing copper-plated steel sheet for electric contacting point
KR101822374B1 (en) Copper alloy strip, electronic component for heavy-current and electronic component for heat release containing the same
JP4177221B2 (en) Copper alloy for electronic equipment
JP2007291459A (en) TINNED STRIP OF Cu-Sn-P-BASED ALLOY
JP6047466B2 (en) Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP4538424B2 (en) Cu-Zn-Sn alloy tin-plated strip
JP2015120966A (en) Plated wire rod, method for producing the plated wire rod, and metal square wire connector terminal
JP2014005481A (en) Cu-Ni-Si-BASED COPPER ALLOY Sn PLATED SHEET AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100119