JPH01283707A - High strength conductor - Google Patents

High strength conductor

Info

Publication number
JPH01283707A
JPH01283707A JP11377088A JP11377088A JPH01283707A JP H01283707 A JPH01283707 A JP H01283707A JP 11377088 A JP11377088 A JP 11377088A JP 11377088 A JP11377088 A JP 11377088A JP H01283707 A JPH01283707 A JP H01283707A
Authority
JP
Japan
Prior art keywords
wire
copper
stainless steel
conductor
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11377088A
Other languages
Japanese (ja)
Inventor
Susumu Yamamoto
進 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11377088A priority Critical patent/JPH01283707A/en
Publication of JPH01283707A publication Critical patent/JPH01283707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength by coating the outer surface of a wire of stainless steel of a specified wire diameter and a tensile strength with copper or its alloy in a range for a specified rate to its sectional area. CONSTITUTION:On the outer circumference of a wire of a diameter of more than 0.0011mmphi and less than 0.7mmphi of austenite stainless steel for a core material is provided a coating layer 2 of a rate of more than 5% and less than 70% to its sectional area consisting of copper or its alloy. Because high frequency current goes along the surface of the conductor, copper or copper alloy which have good conductivity is applied for the coating layer. In addition, copper or copper alloy is softer and less likely to be hardened than austenite stainless steel, so softness can be obtained by using it for the outer layer. A high strength conductor having a good bend resistance which is durable to repeated stress and elongation deformation can thus be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、曲げ応力、ねじり応力、引張り応力と言っ
た力に対する耐性を改善した高強度導体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a high-strength conductor with improved resistance to forces such as bending stress, torsional stress, and tensile stress.

〔従来の技術とその問題点〕[Conventional technology and its problems]

可動体相互間又は固定体と可動体間を結ぶ導電線は、曲
げやねじり応力、或いは引張り応力を繰り返して受ける
ことが多い。従って、このような用途の導電線としては
、銅線、銅合金線或いは銅メツキ鉄線の細線と言った比
較的可撓性に富む線の単体や撚り合せ集合線に絶縁処理
を施すなどしたものが用いられている。
Conductive wires connecting movable bodies or between a fixed body and a movable body are often repeatedly subjected to bending, torsion stress, or tensile stress. Therefore, conductive wires for such uses include relatively flexible single wires such as copper wires, copper alloy wires, or thin copper-plated iron wires, or wires made by applying insulation treatment to twisted and assembled wires. is used.

しかしながら、それ等の導電線は、主体となる銅や鉄の
強度自体に問題があるため、耐屈曲寿命が決して良いと
は言えず、最近富に需要の増えている各種のロボット、
医療機器、精密電子機器、0Afi器等のように頻繁に
動きを生じる装置の変位点間を結ぶ電気回路には、疲労
が激しくて、早期破断を起こすことがある。
However, these conductive wires have problems with the strength of the copper and iron that make up the main components, so they cannot be said to have a good bending life.
Electrical circuits that connect displacement points of devices that frequently move, such as medical equipment, precision electronic equipment, and 0Afi equipment, are subject to severe fatigue and may cause premature breakage.

そこで、この発明は、繰り返し応力や伸び変形に充分に
耐える屈曲寿命に優れた高強度導体々を提供することを
目的としている。
Therefore, an object of the present invention is to provide high-strength conductors that can sufficiently withstand repeated stress and elongation deformation and have an excellent bending life.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明では補強用芯材と
して強度と伸びのバランスのよいオーステナイト系ステ
ンレス鋼線を採用し、その外周に導電材料を被覆してい
る。具体的には、第1図に示すように、線径が0.01
1mmφ以上0.7mmφ以下で、芯材のオーステナイ
ト系ステンレス鋼線1の外周に、断面積比が5%以上7
0%以下となる銅、又はその合金から成る被y1層2を
設けたこきに特徴づけられるのが、この発明の高強度導
体である。本用途では高周波電流を流して実用されるが
、高周波電流は導体の表面を流れるため、導電性の良好
な銅又は銅合金を被覆材としたのである。
In order to achieve the above object, the present invention employs an austenitic stainless steel wire with a good balance of strength and elongation as a reinforcing core material, and coats the outer periphery of the wire with a conductive material. Specifically, as shown in Figure 1, the wire diameter is 0.01
A wire with a cross-sectional area ratio of 5% or more 7 on the outer periphery of the core austenitic stainless steel wire 1 with a diameter of 1 mm or more and 0.7 mm or less
The high-strength conductor of the present invention is characterized by having a coating layer 2 made of 0% or less copper or an alloy thereof. In this application, a high-frequency current is passed through the conductor, and since the high-frequency current flows on the surface of the conductor, copper or a copper alloy with good conductivity was used as the coating material.

更に銅又は銅合金はオーステナイト系ステンレス鋼に比
べれば加工硬化しにくく柔らかいので、本用途で次に重
要な特性であるしなやかさを得るためには外層に用いな
ければならない。
Furthermore, copper or copper alloys are less susceptible to work hardening and are softer than austenitic stainless steels, so they must be used in the outer layer in order to obtain flexibility, which is the next most important property in this application.

又ここで芯材にオーステナイト系ステンレス鋼を用いた
のは、フェライト系、マルテンサイト系、析出硬化型の
ステンレス鋼や鉄、鋼糸の材料では引張強度と伸びのバ
ランスが悪く、本用途の代用特性である屈曲値が低くな
るからである。耐食性の良いしかも一般的に鋼より機械
特性の劣るステンレスを芯に用いることは、−見ナンセ
ンスのように見えるが、これが本発明の最大のPa1n
tである。
In addition, austenitic stainless steel was used as the core material because ferritic, martensitic, precipitation-hardened stainless steel, iron, and steel thread materials have a poor balance of tensile strength and elongation, so it is difficult to use as a substitute for this purpose. This is because the bending value, which is a characteristic, becomes low. It may seem nonsense to use stainless steel, which has good corrosion resistance but generally has inferior mechanical properties than steel, for the core, but this is the biggest advantage of the present invention.
It is t.

ここで、この発明の導体において、芯材となるステンレ
ス!7!I線の線径を上述の値に限定したのは、その線
径が0.011mmφ以下では強度的に優れるステンレ
スであっても、破断力が10g以下となって僅かな力で
断線するため実用に耐えず、一方、0.7mmφ以上で
は、破断力が20kg以上となり、線が硬すぎてしなや
かさの要求される精密電子機器用としては扱い難くなる
からである。
Here, in the conductor of this invention, stainless steel is the core material! 7! The reason why the wire diameter of the I wire is limited to the above value is that even if the wire diameter is 0.011 mmφ or less, even stainless steel has excellent strength, the breaking force will be less than 10 g, and it will break with a slight force, so it is not practical. On the other hand, if the diameter is 0.7 mm or more, the breaking force will be 20 kg or more, and the wire will be too hard to handle for precision electronic devices that require flexibility.

また、被覆層の断面積比も、5%以下では、電子ワイヤ
に要求される導電特性を満足し得す、70%以上ではス
テンレス電線による補強効果が充分に得られないからで
ある。
Further, if the cross-sectional area ratio of the coating layer is 5% or less, the electrical conductivity required for the electronic wire can be satisfied, but if it is 70% or more, the reinforcing effect of the stainless steel wire cannot be sufficiently obtained.

なお、被覆層2は、周知のメツキ法やクラッド法等によ
って形成すればよい。
Note that the covering layer 2 may be formed by a well-known plating method, cladding method, or the like.

また、その層2の形成時期は、ステンレス鋼線1を先に
述べた径になる迄伸線した後、又は伸線前のいずれであ
ってもよい。
Further, the layer 2 may be formed either after the stainless steel wire 1 is drawn to the diameter described above or before the wire drawing.

なお本用途の機械的特性の中で最も重要なのは耐屈曲寿
命であるが、耐屈曲寿命特性の加速試験としては第2図
に示すように、R= 0.4mmの円弧面に沿わせて線
材を(イ)→(r+)→(ハ)の順に屈曲させる90°
曲げ値で評価する屈曲試験が用いられる。
The most important mechanical property for this application is the bending life, but as shown in Figure 2, as an accelerated test of the bending life, the wire was 90° bending in the order of (a) → (r+) → (c)
A bending test is used that evaluates by bending value.

しかしこの屈曲値は同じ素材でも荷重の重さと線径によ
り大きく異なるので単純にその大小で評価できない。
However, this bending value cannot be evaluated simply by its size, as it varies greatly depending on the weight of the load and the wire diameter even for the same material.

そこで我々は(引張強度(kg/mm2)) x (伸
び(%))なる指!(TP)を導入すれば荷重の重さや
線径が異ってもその値の大小で屈曲値の良否すなわち精
密電子機器用電線としての屈曲寿命の長短を評価できる
ことを見出した。この指標は引張強度と伸びという互い
に相反するものであるが、その積をとることにより”°
しなやかさ°′を一軸で評価できるという利点がある。
So we have a finger that is (tensile strength (kg/mm2)) x (elongation (%))! It has been found that by introducing (TP), it is possible to evaluate the quality of the bending value, that is, the length of the bending life as an electric wire for precision electronic equipment, by the magnitude of the value even if the weight of the load and the wire diameter are different. This index is tensile strength and elongation, which are contradictory to each other, but by taking the product of
It has the advantage of being able to evaluate suppleness °′ on a single axis.

このほか、この発明の高強度導体は、単線、燃線、それ
等の外周に絶縁被覆を施したもの、或いは裸線を編成し
たメツシュ導体等を最終製品として実用に供すればよい
In addition, the high-strength conductor of the present invention may be put to practical use as a final product, such as a solid wire, a flammable wire, a wire with an insulating coating applied to the outer periphery of the wire, or a mesh conductor formed by knitting bare wires.

次に、この発明の導体の性能を見るため、従来の導体と
比較した特性測定を行った。測定に使った供試材は下記
の通りである。
Next, in order to examine the performance of the conductor of the present invention, characteristics were measured in comparison with conventional conductors. The sample materials used for the measurements are as follows.

(i)本発明の導体 ■−0,075mmφの八ls+304なまし線1こ、
0.0125mm厚のメツキを施したもの。
(i) Conductor of the present invention - 8 ls + 1 piece of 304 annealed wire of 0,075 mmφ,
Plated with a thickness of 0.0125mm.

■−3,On++nφの八1sI304 E線に、線径
を4.1mmにする銅パイプをクラッドし、さらに線径
が0.1mmφになる迄伸線、焼鈍を繰り返し、最終焼
鈍したもの。
■-3, On++ nφ 81sI304 E wire is clad with a copper pipe having a wire diameter of 4.1 mm, and the wire is drawn and annealed repeatedly until the wire diameter becomes 0.1 mmφ, and finally annealed.

■−線径が0.26mmφになる迄伸線したもので、他
の条件は■に同じ。
(2) - The wire was drawn until the wire diameter was 0.26 mmφ, and the other conditions were the same as (2).

■−線径が0.5mmφになる迄伸線したもので、他の
条件は■に同じ。
■--The wire was drawn until the wire diameter became 0.5 mmφ, and the other conditions were the same as ■.

■−クラッド後の線径を5.0mmφ、伸線後の線径を
0.1mmφとしたもので他の条件は■に同じ。
■-The wire diameter after cladding was 5.0 mmφ, and the wire diameter after wire drawing was 0.1 mmφ, and the other conditions were the same as in ■.

■−3,0mmφのAIS+304鋼線に厚さ 0.1
mmの銅メツキ後、線径が0.1mmφとなる迄伸線、
焼鈍を繰り返し、最終焼鈍。
■-3.0mmφ AIS+304 steel wire with thickness 0.1
After copper plating of mm, wire drawing until the wire diameter becomes 0.1 mmφ,
Repeat annealing and final annealing.

■ ■を素線とする7木撚線。■ ■ is a 7-wood stranded wire.

(ii )従来の導体 ■−0,1mmφの純銅なまし線。(ii) Conventional conductor ■-0.1mmφ pure copper annealed wire.

■−0,26mmφの純銅なまし線。■-0.26mmφ pure copper annealed wire.

@ −0,5mmφの純銅なまし線。@-0.5mmφ pure copper annealed wire.

@ −0,1mmφのCu −0,65Cr −0,1
3Agなまし線。
@ -0,1mmφ Cu -0,65Cr -0,1
3Ag smoothed wire.

@  0.26mmφのCu −0,65Cr −0,
13Agなまし線。
@0.26mmφ Cu -0,65Cr -0,
13Ag smoothed wire.

@ −0,1mmφの銅被覆なまし鋼線(銅厚さ0.0
1mm)。
@ -0.1mmφ copper coated annealed steel wire (copper thickness 0.0
1mm).

■ 0の伸線終了線(焼鈍なし) @ −0,1mmφAl5I304の溶体化処理済み線
■ 0 wire drawing finished wire (no annealing) @ -0, 1mmφAl5I304 solution treated wire.

[相] ■の7本撚線。[Phase] ■ 7 strands of wire.

(iii )比較のための導体 O゛■の芯材にAl5J420を用いたもの。(iii) Conductor for comparison O゛■ uses Al5J420 as the core material.

○ ■の芯材にAl51631(析出硬化型)を用い析
出硬化型ステンレス鋼としての強度を得るため最終溶体
化処理を施さず475℃×1時間の時効処理を施した。
Al51631 (precipitation hardening type) was used as the core material of ○ (2), and in order to obtain the strength of precipitation hardening stainless steel, aging treatment was performed at 475° C. for 1 hour without final solution treatment.

また、測定は、各材料の導電率、引張強度、伸び、及び
屈曲値について行った。又TPは引張強度き伸びから計
算で求めた。この結果を次表に示す。
Measurements were also made of the electrical conductivity, tensile strength, elongation, and bending value of each material. Further, TP was calculated from tensile strength and elongation. The results are shown in the table below.

この表から判るように、この発明の導体は、導電率が被
覆層(試供品は銅)の断面積率に応じて変化し、周知の
銅系導体等に比較して小さくはなるが、多くの電子機器
用導電線の場合、大電流を流すことはないので、そのよ
うな用途の導電材料としては、不足の無い導電性能を確
保し得る。逆に、高周波の導体として使用する場合には
、外周が銅やアルミニウムであるので、実質的には、全
体の平均導電率を上回る性能を期待できるし、断面債比
を変化させて導電率をコントロールできると云うメリッ
トも生まれる。
As can be seen from this table, the conductivity of the conductor of the present invention changes depending on the cross-sectional area ratio of the coating layer (the sample is copper), and although it is smaller than that of well-known copper-based conductors, it is In the case of conductive wires for electronic devices, since large currents do not flow, sufficient conductive performance can be ensured as a conductive material for such applications. On the other hand, when used as a high-frequency conductor, since the outer periphery is made of copper or aluminum, it can be expected that the performance will actually exceed the overall average conductivity, and the conductivity can be increased by changing the cross-sectional bond ratio. There is also the advantage of being able to control it.

また、引張強度は、ステンレス鋼線を芯材としているた
め、銅系材料よりも3倍程度おおきく(■の銅被覆ステ
ンレス鋼線の伸線品に近い)、伸びも、銅系材料や銅被
覆なまし鉄線等に比較してはるかに優れる。
In addition, since the stainless steel wire is used as the core material, the tensile strength is about three times higher than that of copper-based materials (close to the drawn copper-clad stainless steel wire in ■), and the elongation is also lower than that of copper-based materials and copper-clad stainless steel wire. Much superior to annealed iron wire, etc.

さらに、屈曲値は首記のロボット等に採用する場合、最
も重要視されるが、この発明の導体は、従来のそれと比
較にならない程優れた特性を示している。
Furthermore, the bending value is considered most important when used in the above-mentioned robots, and the conductor of the present invention exhibits characteristics that are incomparably superior to those of conventional conductors.

なお比較例[相]ではTP値は744とかなり良い数値
を示しているが屈曲値はそれ程良くない。
In Comparative Example [Phase], the TP value is 744, which is a fairly good value, but the bending value is not so good.

やはり芯材はオーステナイト系ステンレスwJ線を用い
なければ本用途を満足させることはできない。
After all, this application cannot be satisfied unless an austenitic stainless steel wJ wire is used as the core material.

第3図には0.1+nn+φのオーステナイト系ステン
レス鋼線銅線のTP値と屈曲値の関係を示すがTP値が
800以上で屈曲値が優れるのがわかる。
FIG. 3 shows the relationship between the TP value and the bending value of 0.1+nn+φ austenitic stainless steel wire and copper wire, and it can be seen that the bending value is excellent when the TP value is 800 or more.

〔効果〕〔effect〕

以上述べたように、この発明の高強度導体は、線径及び
引張強度の特定されたステンレスi線の外表面に、銅、
又はその合金を特定された断面猜比の範囲で被覆したも
のであるから、強度が大きく向上し、かつ導電性能も要
求値を充分に確保し得る。増強効果は、勿論、ステンレ
スの特性によるものである。
As described above, the high-strength conductor of the present invention includes copper, copper,
Alternatively, since the alloy is coated with a specified cross-sectional ratio range, the strength can be greatly improved, and the required conductivity can be sufficiently ensured. The reinforcing effect is, of course, due to the properties of stainless steel.

また、銅合金は、元来伸びが小さい上、高強度を得るの
に必要な冷間加工により、その伸びが著しく小さくなる
。これに対し、ステンレスは本来、高強度で焼鈍状態で
利用できるため、大きな伸びを確保できる。
In addition, copper alloys inherently have low elongation, and the cold working necessary to obtain high strength significantly reduces their elongation. On the other hand, stainless steel inherently has high strength and can be used in an annealed state, so it can ensure large elongation.

さらに、ステンレスの特性により、耐疲労性、屈曲性能
も大巾に向上する。
Furthermore, due to the characteristics of stainless steel, fatigue resistance and bending performance are greatly improved.

そのほか、ステンレスと被覆属の断面積比を限定値内で
自由に選べるので、導電率のコントロールも可能になる
と云う効果が得られる。
In addition, since the cross-sectional area ratio of the stainless steel and the coating metal can be freely selected within a limited value, it is possible to control the electrical conductivity.

また、この発明の方法によれば、被ff1層形成後に伸
線加工するので、被覆効率を上げることができ、さらに
、極細の線に対してもクラッド法の適用が可能になる。
Further, according to the method of the present invention, since the wire drawing process is performed after the formation of the first ff layer, the coating efficiency can be increased, and furthermore, the cladding method can be applied to extremely fine wires.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の高強度導体の断面図、第2図は、
屈曲値の測定法を示す図、第3図は測定値を(引張強度
X伸び>(TP値)と屈曲値との関係で整理した線図で
ある。 1・・−ステンレス鋼線、 2−・ 銅、又はその合金の被r!!層、3・・ 試験
材把持装置、 千1図 第2図
FIG. 1 is a cross-sectional view of the high-strength conductor of the present invention, and FIG.
Figure 3 is a diagram illustrating the method for measuring the bending value, and is a diagram in which the measured values are arranged in the relationship between (Tensile strength x elongation > (TP value)) and the bending value. - Covering layer of copper or its alloy, 3... Test material gripping device, Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)芯材がオーステナイト系ステンレス鋼線で、被覆
材が銅又は銅合金でその断面積比率が5%以上70%以
下で、かつ芯線の線径が0.011mmφ以上0.7m
mφ以下であり(引張強度(kg/mm^2)×(伸び
(%))の値が800以上の精密導電高強度線材料。
(1) The core material is an austenitic stainless steel wire, the sheath material is copper or a copper alloy, and its cross-sectional area ratio is 5% to 70%, and the wire diameter of the core wire is 0.011 mmφ to 0.7 m.
Precision conductive high-strength wire material with a diameter of mφ or less (tensile strength (kg/mm^2) x (elongation (%)) of 800 or more.
JP11377088A 1988-05-10 1988-05-10 High strength conductor Pending JPH01283707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11377088A JPH01283707A (en) 1988-05-10 1988-05-10 High strength conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11377088A JPH01283707A (en) 1988-05-10 1988-05-10 High strength conductor

Publications (1)

Publication Number Publication Date
JPH01283707A true JPH01283707A (en) 1989-11-15

Family

ID=14620693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11377088A Pending JPH01283707A (en) 1988-05-10 1988-05-10 High strength conductor

Country Status (1)

Country Link
JP (1) JPH01283707A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157919A (en) * 2000-11-21 2002-05-31 Hitachi Metals Ltd Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire
JP2005317463A (en) * 2004-04-30 2005-11-10 Nikko Metal Manufacturing Co Ltd Material and terminal for high frequency signal transmission
WO2005112046A1 (en) * 2004-05-19 2005-11-24 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire harness and process for producing the same
US7230186B2 (en) 2003-09-02 2007-06-12 Sumitomo (Sei) Steel Wire Corp. Covered wire and automobile-use wire harness
CN109791815A (en) * 2016-11-16 2019-05-21 住友电气工业株式会社 Harness strands and harness
JPWO2020261564A1 (en) * 2019-06-28 2020-12-30
JPWO2021001928A1 (en) * 2019-07-02 2021-01-07

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286607A (en) * 1985-10-11 1987-04-21 住友電気工業株式会社 High strength conductor and manufacture of the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286607A (en) * 1985-10-11 1987-04-21 住友電気工業株式会社 High strength conductor and manufacture of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157919A (en) * 2000-11-21 2002-05-31 Hitachi Metals Ltd Composite metal core wire, manufacturing method for it, and insulated wire using composite metal core wire
US7230186B2 (en) 2003-09-02 2007-06-12 Sumitomo (Sei) Steel Wire Corp. Covered wire and automobile-use wire harness
JP2005317463A (en) * 2004-04-30 2005-11-10 Nikko Metal Manufacturing Co Ltd Material and terminal for high frequency signal transmission
WO2005112046A1 (en) * 2004-05-19 2005-11-24 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire harness and process for producing the same
US7491891B2 (en) 2004-05-19 2009-02-17 Sumitomo (Sei) Steel Wire Corp. Composite wire for wire-harness and process for producing the same
CN109791815A (en) * 2016-11-16 2019-05-21 住友电气工业株式会社 Harness strands and harness
CN109791815B (en) * 2016-11-16 2020-08-14 住友电气工业株式会社 Wire strand for wire harness and wire harness
JPWO2020261564A1 (en) * 2019-06-28 2020-12-30
JPWO2021001928A1 (en) * 2019-07-02 2021-01-07

Similar Documents

Publication Publication Date Title
KR900001683B1 (en) High-strength conductor and process for manufacturing same
JP4143087B2 (en) Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same
KR950005852B1 (en) Cable conductor for auto-mobil
JPH0336241B2 (en)
CN113994439A (en) Copper-clad steel wire, spring, stranded wire, insulated wire, and cable
JP4068556B2 (en) Stainless steel fiber by focused drawing
JPH01283707A (en) High strength conductor
JP4143088B2 (en) Coaxial cable, manufacturing method thereof, and multicore cable using the same
KR950005853B1 (en) Conductive wire for auto-mobil
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JP2001040439A (en) Cu-Ag ALLOY AND ITS MANUFACTURE
US7604860B2 (en) High tensile nonmagnetic stainless steel wire for overhead electric conductor, low loss overhead electric conductor using the wire, and method of manufacturing the wire and overhead electric conductor
KR100507904B1 (en) Nonmagnetic stainless steel wire for overhead electric conductor, overhead electric conductor using the same, and manufacturing method of them respectively
JP2008115423A (en) Conductor for flexible cable, its manufacturing method, and flexible cable using the conductor
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JPH01264110A (en) Insulating coated conductor excellent in flexibility
JP7259959B2 (en) Copper coated steel wire, stranded wire, insulated wire and cable
JPH01231213A (en) Copper covered steel wire
JPH10144144A (en) Stainless steel wire for electric wire cable
JPH0830231B2 (en) Flexible cable conductor
JPH04191351A (en) Clad metallic wire
JPS6176636A (en) Heat-resistant high-strength copper alloy having high electric conductivity
JPH03184210A (en) Cable conductor for automobile
JPS63252302A (en) High strength conducting fine wire
JPH0689620A (en) Manufacture of high conductivity and high strength stranded wire